http://myexs.ru/wp-content/themes/multiflex-4-10/img/header.gif
http://myexs.ru/wp-content/themes/multiflex-4-10/img/bg30.jpg

Staged learning of agile motor skills

Дата: Май 2nd, 2011 Автор:
+ Показать свойства документа
  • Тип контента: Научная статья
  • Номер документа: 7805
  • Название документа: Staged learning of agile motor skills
  • Номер (DOI, IBSN, Патент): Не заполнено
  • Изобретатель/автор: Andrej Karpathy
  • Правопреемник/учебное заведение: University of Toronto
  • Дата публикации документа: 2011-05-02
  • Страна опубликовавшая документ: Канада
  • Язык документа: Английский
  • Наименование изделия: Не заполнено
  • Источник: Не заполнено
  • Вложения: Да
  • Аналитик: Глаголева Елена

Motor learning lies at the heart of how humans and animals acquire their skills. Understanding of this process enables many benefits in Robotics, physics-based Computer Animation, and other areas of science and engineering. In this thesis, we develop a computational framework for learning of agile, integrated motor skills. Our algorithm draws inspiration from the process by which humans and animals acquire their skills in nature. Specifically, all skills are learned through a process of staged, incremental learning, during which progressively more complex skills are acquired and subsequently integrated with prior abilities. Accordingly, our learning algorithm is comprised of three phases. In the first phase, a few seed motions that accomplish goals of a skill are acquired. In the second phase, additional motions are collected through active exploration. Finally, the third phase generalizes from observations made in the second phase to yield a dynamics model that is relevant to the goals of a skill. We apply our learning algorithm to a simple, planar character in a physical simulation and learn a variety of integrated skills such as hopping, ipping, rolling, stopping, getting up and continuous acrobatic maneuvers. Aspects of each skill, such as length, height and speed of the motion can be interactively controlled through a user interface. Furthermore, we show that the algorithm can be used without modification to learn all skills for a whole family of parameterized characters of similar structure. Finally, we demonstrate that our approach also scales to a more complex quadruped character.

Категория: Научные статьи | Нет комментариев »

Комментарии

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *


Статистика

Категорий: 179
Статей всего: 2,003
По типу:
 Видео: 36
 Выдержка с форума: 1
 Контактные данные: 12
 Научная статья: 1388
 Не заполнено: 5
 Новостная статья: 317
 Обзор технологии: 42
 Патент: 219
 Тех.подробности: 34
 Тип: 1
Комментариев: 6,672
Изображений: 3,005
Подробней...

ТОР 10 аналитиков

    Глаголева Елена - 591
    Дмитрий Соловьев - 459
    Helix - 218
    Ридна Украина))) - 85
    Наталья Черкасова - 81
    max-orduan - 29
    Елена Токай - 15
    Роман Михайлов - 9
    Мансур Жигануров - 4
    Дуванова Татьяна - 3

Календарь

  • Май 2011
    Пн Вт Ср Чт Пт Сб Вс
    « Апр   Июн »
     1
    2345678
    9101112131415
    16171819202122
    23242526272829
    3031  
  • Авторизация

    Ошибка в тексте?

    Выдели её мышкой!

    И нажми Ctrl+Enter