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Abstract

Motor learning lies at the heart of how humans and animals acquire their

skills. Understanding of this process enables many benefits in Robotics,

physics-based Computer Animation, and other areas of science and engi-

neering. In this thesis, we develop a computational framework for learning

of agile, integrated motor skills.

Our algorithm draws inspiration from the process by which humans and

animals acquire their skills in nature. Specifically, all skills are learned

through a process of staged, incremental learning, during which progressively

more complex skills are acquired and subsequently integrated with prior

abilities. Accordingly, our learning algorithm is comprised of three phases.

In the first phase, a few seed motions that accomplish goals of a skill are

acquired. In the second phase, additional motions are collected through

active exploration. Finally, the third phase generalizes from observations

made in the second phase to yield a dynamics model that is relevant to the

goals of a skill.

We apply our learning algorithm to a simple, planar character in a phys-

ical simulation and learn a variety of integrated skills such as hopping, flip-

ping, rolling, stopping, getting up and continuous acrobatic maneuvers. As-

pects of each skill, such as length, height and speed of the motion can be

interactively controlled through a user interface. Furthermore, we show

that the algorithm can be used without modification to learn all skills for

a whole family of parameterized characters of similar structure. Finally, we

demonstrate that our approach also scales to a more complex quadruped

character.
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Chapter 1

Introduction

A basketball player takes a sharp turn through two defenders, catches the

ball, instantly jumps up and dunks it into the basket. The agility with which

humans and animals move through their environment remains unmatched

by our state-of-the art robots. The task of replicating these abilities has

proven to be a difficult problem even for our physically simulated charac-

ters, where one is allowed to abstract away the myriad of difficulties involved

when working with robotic hardware. Leaving physical implementation de-

tails aside, it is clear that we do not yet have a good understanding of how

to control a complicated physical character, such as a human, to achieve

demanding tasks in a complex environment with the agility and grace that

we observe in nature.

It is difficult to develop a generic approach for simplifying the problem.

Traditionally, much research has focused on controlling complex systems

such as humanoid robots, but these solutions often restrict the repertoire

of skills to ones that involve slow and deliberate looking motions. In con-

trast, this thesis works toward the ultimate goal described above from the

other direction: Our goal is to produce quick and agile motions even if

it comes at the immediate cost of having to work with simpler characters

rather than characters of human complexity. In addition, we allow ourselves

to concentrate on the theoretical problems associated with developing the

appropriate representations and algorithms, and therefore work exclusively

in a simulated environment. Physical simulation offers a fertile playground

for modeling of skilled motion. It allows one to experiment with a wide

variety of representations and hypotheses without being concerned with the

limitations of robotic hardware. In addition, a simulation can be run much
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1.1. Motivation

faster than real time, which encourages the development of automated so-

lutions.

Our work is inspired by the observation that humans and animals acquire

their skills and abilities through a long process of incremental learning, dur-

ing which progressively more complex skills are acquired and subsequently

integrated with prior abilities. As an example, think of a child as it acquires

the ability to run. It first figures out how to roll over, then crawl, then it

learns to walk while being supported by furniture or parents, and only then

does it slowly adjust its walk cycle into an agile running gait. Through-

out the entire time, it is subject to supervision from its parents, who guide

it along its development by contributing examples, giving it incrementally

harder tasks to complete, and rewarding good attempts and strategies. Our

approach is to model this process explicitly in order to learn a controller for

several agile, integrated skills through a large collection of trial and error

exercises. To simplify the framework and speed up the computation, we use

a simple, planar character for most of our experiments. Later, we apply our

learning algorithm to learn leaps for a simulated quadruped dog in order to

demonstrate the scalability and generality of the approach.

1.1 Motivation

Imitation of skillful human and animal motion has applications in Computer

Animation, Robotics, and many other areas of science and engineering.

For Computer Animation, the ability to create controllable physically

realistic motion quickly and easily is desirable both in the film and video

game industries. Current approaches to animation involve significant repet-

itive, manual labor of an artist, or processing of a large database of motion

capture data. The former approach is a time-consuming and expensive pro-

cess. In addition, if some specifications of the desired motion change, it may

become necessary to redo large portions of the animation. The resulting

2
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motion is also not guaranteed to look and feel realistic. The use of motion

capture can alleviate some of these shortcomings, but raises other concerns.

For example, the actor who was used to collect the motion data may not

have desirable physical characteristics such as body proportions, size, or

style of motion. In addition, the final animation is limited in its capabilities

by the available motion capture data. Having characters that are capable of

performing controllable, physically-plausible and realistic-looking motions

could aid with many aspects of the animation process.

Lessons learned in controlling physical characters in simulation also find

applications in Robotics. While controllers built in simulation do not always

transfer directly to real robots, they often provide a good initial guess. In

general, it is a common practice to work in simulation first, and then at-

tempt to transfer a solution to a real robot.

Finally, the study of how humans and animals execute skilled motion is

a vast area of research that is of academic interest in many disciplines. Re-

searchers from diverse fields, such as Anatomy, Control Theory, Robotics,

Machine Learning, Biomechanics, Kinesiology and Neuroscience all study

the problem. While many researchers approach the problem by reverse-

engineering the human and animal motor system through experiments, it

is a worthwhile goal to work in the other direction, and attempt to build

computer systems that replicate it. In the end, we can only be certain that

we understand the human or animal motor system if we are able to repro-

duce it in a simulation, or on a robot. Understanding of the principles that

give rise to human and animal motion could also have far-reaching medical

applications. It could lead to improvements in the design and functional-

ity of prosthetics and exoskeletons. The models may also allow for better

predictions of surgical outcomes regarding patient mobility.

3



1.2. Why is motor control hard?

1.2 Why is motor control hard?

The unintuitive difficulty of controlling a physical character is not apparent

until one attempts to replicate our abilities in a physical simulation. After

all, we learn to perform thousands of skilled motor actions in our lifetime

without much effort. We walk around our environment without thinking

about it, and perform many other manipulation tasks automatically. How-

ever, several types of issues arise when one sets out to implement a control

solution for a physically-simulated character.

1.2.1 Modeling issues

Humans and animals are complex organisms made up of bones, flexible

tendons and muscles, cartilage, and other tissue with a variety of physical

properties. It is not yet feasible to model an entire body in its full complex-

ity, and traditionally many simplifying assumptions are made. In particular,

it is common to assume that a character is made up of some number of rigid

bodies that are connected by idealized ball joints. Rigid bodies are con-

venient to work with mathematically, but lack many desirable properties,

which may be detrimental to our efforts. Most notably, rigid bodies cannot

cushion impacts as is done by the flesh on a foot, and cannot absorb and

release energy as tendons do. Whether or not this is a crucial feature of our

bodies that is necessary for natural movement is a subject of debate.

Additional simplifying assumptions are made when modeling the dynam-

ics. Real bodies are powered by contractions of hundreds of antagonistic and

synergistic muscles each with their own activation dynamics, but characters

in simulation are typically controlled by directly applying desired torques

at the joints. The dynamics of the movements are therefore, once again,

slightly different as a result.

Modeling of the properties of the surrounding physical environment also

poses challenges. Most often, ground is treated as a rigid plane with some

4



1.2. Why is motor control hard?

coefficient of friction. This approach is inadequate when trying to faithfully

model the interactions of ground with feet of animals or humans. For ex-

ample, animals can decide to sink their claws into the ground, providing

additional friction when necessary. The most commonly used model of a

foot, however, is a single rigid body.

1.2.2 Control issues

Part of the difficulty in modeling our motor system stems from the fact

that most of the underlying complexity is hidden from our consciousness,

and cannot be introspected. Even though a plethora experiments have been

conducted on humans and animals to gain understanding of the control prin-

ciples in use, there remains much disagreement in the scientific community

on how to explain the data in a computational framework.

Much of the trouble also comes down to the sheer scale of the problem.

Humans and animals are high-dimensional systems composed of hundreds of

degrees of freedom. Even the simplest models of a human can therefore have

as many as 30 degrees of freedom. Computing the torques for all joints over

time such that the result is a stable walking or running gait is a challenging

problem.

The unforgiving nature of physics introduces an additional layer of com-

plexity. A small mistake in controlling a particular aspect of the motion

may lead to disastrous consequences some time later. For example, if the

foot of a human character gently scrapes the ground, friction may stop it

in its path, thereby tipping the character unless the disturbance is immedi-

ately and appropriately corrected for. Conversely, many aspects of various

motions need not be carefully controlled. For example, during a walking

motion the arms of a character can move around without many restrictions.

5
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1.2.3 Simulation issues

Even with an adequate model and controller, simulation may still not pro-

duce desired results. Sources of failure can be due to numerical artifacts

in the simulation, or other issues pertaining to numerical stability. When

simulating rigid bodies, it is easy to detect an overlap between two rigid

bodies, but it is much harder to resolve it accurately. The simulation may

also become unstable under a variety of conditions, such as when the con-

troller asks for a rapid increase in the applied torques. Many of the popular

physical simulation frameworks are explicitly designed to minimize errors

due to numerical inaccuracies, rendering these concerns relatively minor.

However, a programmer must keep these issues in mind when designing a

suitable control solution.

1.3 Related work

The study of control laws that give rise to skilled motion has been a subject

of research in various disciplines. However, every discipline tends to work

on the problem from a different perspective, subject to different constraints,

and usually with different goals in mind. Researchers in Computer Anima-

tion are primarily concerned with creating animations of characters for use

in simulation scenarios, film and video games. In Robotics, the goal is to

move a physical robot through an environment, subject to many hardware

constraints. Finally, researchers in Kinesiology, Biomechanics and Neuro-

science are specifically interested in modeling the control systems of humans.

The focus of this thesis, in particular, is on motor learning. How does

one go about learning skills from experience? What is the structure of the

learning process? What is the correct level of abstraction to work on, and

what are the right representations for motion? How can one formalize the

process in a learning algorithm? First, we discuss prior work on this topic

from these disciplines. Later, we discuss existing control approaches for a

character called Acrobot, which we use for most of our experiements.

6
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1.3.1 Physics-based Computer Animation

In Computer Animation, there has been a growing trend of using physical

simulation to achieve natural-looking motions. As far as animation is con-

cerned, the downside of this approach is that it requires significant effort to

design controllers that can accomplish even simple tasks, such as walking.

However, over the last few years, significant progress has been made by sev-

eral research groups [5, 9, 12, 14, 20] on the associated control problems.

The prevalent approaches most often contain a significant hand-engineered

component that is obtained from human insight into the problem. The pa-

rameters in the system are often either fine-tuned using optimization, or

inferred from motion capture data. Even though it is now possible to con-

trol complicated physical systems such as humans for various tasks, it is still

beyond our capabilities to generate rich, integrated, and agile motions such

as a character playing basketball.

1.3.2 Robotics

The typical approach to motor control in Robotics has changed little over

the last two decades [8]: Every particular task at hand is first modeled as

accurately as possible, and then the roboticist develops a strategy for ad-

dressing that type of problem. If inaccuracies remain, all exceptions are

handled using human understanding of the task. However, it is becoming

increasingly clear that if robots are ever to leave factory floors and research

environments, we will need to reduce or eliminate the strong reliance on

hand-crafted models and skills.

Several research groups have therefore adopted the paradigm of learning

motor skills from demonstration, which provides greater potential to scale

to novel setups. The merit of this approach has been demonstrated in con-

junction with Reinforcement Learning for several tasks, including learning

a tennis swing for a robot[17], and helicopter flight[1].

Yet another more closely related alternative for learning in robots comes

7
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from the newly emerging field of Developmental Robotics [13]. This branch

of Robotics takes inspiration from biology and infant studies when designing

algorithms for robot learning.

1.3.3 Kinesiology, Biomechanics, Neuroscience

A large number of experiments have been conducted on humans and animals

to study motor learning [18]. One of the common hypotheses that has been

drawn by the researchers from these experiments is that movements in hu-

mans are controlled by motor programs. Motor programs are parameterized,

open-loop motions in abstract space that can be executed over time by the

motor system. This hypothesis is supported by three reasons: the slowness

of information processing states, the evidence for planning movements in

advance, and the findings that deafferented animals and humans can often

produce aspects of skilled actions without feedback. This is not to say that

feedback is not used in movement, only that it is not strictly necessary.

Concerning the learning process, one of the non-disputed conclusions

[18] is that learners appear to pass through various phases when acquiring

a skill: a cognitive phase in which emphasis is on discovering what to do,

an associative phase in which the concern is with perfecting the movement

patterns, and an autonomous phase in which attentional requirements of the

movement appear to be reduced or even eliminated. The actual theories of

learning, however, are still the subject of disputes. One influential theory

of motor learning is called the Schema Theory. It is based on the idea that

slow movements are feedback based and rapid movements are motor pro-

gram based. With learning, subjects develop rules (or schemas) that allow

for generation of movements.

Despite suggesting high-level ideas and representations that can explain

the accumulated experimental data, ideas in these fields lack the mathe-

matical rigor and detail that is needed when one sets out to implement a

solution.

8
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Figure 1.1: Acrobot character

1.3.4 Acrobot

We propose to control a planar, physically simulated character that consists

of two cylindrical rigid bodies (links) connected by one actuated joint and an

attached, fixed cylindrical foot, as shown in Figure 1.1. The joint between

the body and the foot is held fixed. A character with this structure is

commonly referred to in Computer Animation and Robotics as Acrobot. In

previous work, the foot of the Acrobot is often held fixed in space above

ground with the rest of its body hanging down, and the task is to use its

actuated joint to swing up to a balanced position [3, 10, 19]. [2, 15] keep

the foot free and develop an analytic solution for a hopping gait. However,

analytic approaches to control laws were not demonstrated to scale to more

agile motions such as flips and rolls. Instead, [11] achieves these motions

by assuming perfect knowledge of forward dynamics, and formulating the

control problem as a planning problem on move trees. The approach adopted

in this work is not formalized as a planning problem and does not assume

the a priori existence of a forward dynamics model. Instead, we gradually

build a similar forward model by learning the dynamics through trial and

error.

9
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1.4 Contributions

The main contribution of this thesis is a learning algorithm that addresses

the problem of learning whole-body motor skills. We designed our algo-

rithm to explicitly model the process by which humans and animals acquire

their motor skills. Specifically, the algorithm proceeds through three major

phases: In the first phase, the character acquires a strategy for completing

goals of a skill. In the second phase, the skill is perfected through many

repeated trials. In the third, final phase, observations are generalized to

form a compact model of the skill. We show that the algorithm can be used

to learn a variety of controllable motor skills that are tightly integrated into

a coherent system.

1.5 Thesis organization

Chapter 2 begins with description of a simple, planar character that we use

for most of our experiments. This is followed by a description of the simu-

lation environment and the control framework. We then describe the set of

skills that the character will be trained for. In Chapter 3 we introduce the

learning algorithm that is used to acquire every one of the skills. In Chapter

4 we present results of our experiments. We also present evidence for the

scalability of our approach by applying the algorithm to a more complex

character in 3D. Finally, conclusions, limitations, and future work are ad-

dressed in Chapter 5.

10



Chapter 2

System Overview

The goal of this work is to endow a character in a physical simulation with

various skills through application of a learning algorithm. In §2.1 of this

chapter, we introduce the parametrized family of characters that we use for

this task. In §2.2 we discuss the control system that is used by to generate

motion. Finally, in §2.3 we describe the set of skills that the characters will

be trained for. We defer all details pertaining to the learning algorithm to

Chapter 3.

2.1 Characters

We propose to control a planar, physically simulated character that consists

of two cylindrical rigid bodies (links) connected by one actuated joint and

an attached, fixed cylindrical foot, as shown in Figure 2.1. The joint be-

tween the body and the foot is held fixed. A character with this structure

is commonly referred to in Computer Animation and Robotics as Acrobot

[10]. Despite its apparent simplicity, Acrobot is capable of a wide variety

of challenging, agile motions. Note that the simplicity of the character does

not imply that the resulting control problem is easy. On the contrary, the

character must use its single joint very precisely over time in order to ac-

complish all tasks.

11



2.1. Characters

Figure 2.1: Right: The Acrobot character consists of three rigid body links:
head, body and foot. The angle between the body and the foot is held fixed.
The only controllable joint is the one between head and body link. Left:
The character variations are obtained by varying the masses M1, M2, M3,
the link lengths L1, L2, L3, and the angle between the foot and the body
link, φ.

Figure 2.2: Character variations. This figure shows sample characters that
we consider in this work. The first character on the left is our baseline
character. The second character has a very short base link. The third
character has a foot that is tilted by 0.11 radians to the right. The fourth
character has a head link that is 1.5x heavier. The last character has a foot
which is 33% shorter. We refer to our characters as C1 - C5, as indicated
above each character.

The exact proportions of our character are left as free variables. Indeed,

one of the strengths of the proposed framework is that it can learn con-

trollers for a family of characters of this type. The characters we choose to

experiment with are shown in Figure 2.2. Details of the parameters used for

12



2.2. Control

Name Description L1 L2 L3 M1 M2 M3 φ

C1 normal 0.6 0.6 0.3 5 5 1 0
C2 short base 0.6 0.2 0.3 5 5 1 0
C3 tilted base 0.6 0.6 0.3 5 5 1 0.11
C4 heavy head 0.6 0.6 0.3 8 5 1 0
C5 small foot 0.6 0.6 0.2 5 5 1 0

Table 2.1: Parameter values used for our characters. All lengths are given
in meters, and all masses in kilograms.

each character are provided in Figure 2.1.

The configuration space of the Acrobot is described by q ∈ R4, q =

[x, y, θ1, θ2], where (x, y) is the absolute position of the head link, θ1 is the

absolute angle of the head link, and θ2 is the relative angle between the head

and body link. The state space is then described by s ∈ R8, s = [q, q̇].

Throughout this thesis, we will sometimes refer to the rest state of a

character. This state describes the character being in the upright position,

i.e. with head and base links vertical, and at rest. Whenever the character

is re-initialized, or reset, its state is simply set to the rest state.

The distance metric ds(s1, s2) on the state space is a weighted L2 norm

between two state vectors: ds(s1, s2) = ‖wT (s1 − s2)‖. The weights are set

manually through experimentation. We use w = [1, 1, 1, 1, 0.1, 0.1, 0.1, 0.1]T .

Even though it is difficult to justify any particular setting of the weights,

our system is not very sensitive to this choice because of our scarce use of

the state distance metric. In particular, it is required only when dealing

with the recovery Hop mapping described in §2.3.1.

2.2 Control

Figure 2.3 shows a block diagram of the control system. The character

moves by sequencing short, open-loop motions that we refer to as Motor

13



2.2. Control

Figure 2.3: Block diagram of the control system.

Actions, or simply actions. Only one action can be active at any time. The

Controller is responsible for initiating actions at the appropriate time based

on what skill is currently active, based on events that occur in the world,

and input received from the user. For example, when the user input in-

dicates that the character should be hopping then the character controller

initiates a new hop action every time when the foot hits the ground. While

an action is active, it outputs two quantities over time: the desired angle

between the head and body links (θd) and the force with which this value

should be pursued (kp). A PD-controller then calculates the torque that

must be applied on the joint to meet the desired angle. Finally, the torque

is applied as input to the Physical Simulator at each time step to produce

motion. The simulator computes the accelerations using the equations of

motion and these are then numerically integrated to updated the character

state.

The PD-controller computes the torque on the actuated joint using

τ = kp(θd − θ)− kdθ̇

where θ is the current angle of the joint, θ̇ is its instantaneous rate of change

14



2.2. Control

in time, θd is the desired angle, kp is the spring coefficient, and kd is the

damping coefficient. Qualitatively, large values of kp lead to stiff motions,

and cause the character to exert large torques in order to meet the de-

sired angle. It is desirable to add the second term in the equation above

to prevent the system from oscillating around the desired value θd. To

achieve this effect, the coefficient kd penalizes large angular velocities. We

fix kd =
√

2 ∗ kp in this work, as this ensures that the system is approxi-

mately critically damped.

An action can be formalized as a paired, piecewise constant function of

time A(t) : t→ (θd, kp). An example of an action is visualized in Figure 2.4.

The number of pieces in every action is left as a design parameter, which we

usually fix to be between 3 and 6 for simplicity. In general, fixing the number

of pieces to be N allows us to think of every Motor Action as a (3 × N)-

dimensional vector, because for every piece we need to specify its duration,

as well as the (θd, kp) over that time period. Thinking of Motor Actions in

this way allows us to interpolate two actions by simply interpolating values

separately along each dimension, as long as the number of pieces is the same.

The distance metric da(a1, a2) on the action space is a weighted L2

norm between two action vectors: da(a1, a2) = ‖wT (a1 − a2)‖. The weights

are set manually through experimentation. For values corresponding to time

durations we use weights of 3, for desired angles we use weights of 1, and

for kp values we use 0.01. These choices were made by considering typical

numerical ranges for these quantities.
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2.3. Skills

Figure 2.4: An example of a Motor Action with 4 pieces. The horizontal
axis represents time, and vertical axis indicates the desired angle θd of the
joint. The thickness of every piece corresponds to the spring coefficient
kp. This Motor Action causes one of our characters to hop when it is re-
initialized by the controller every time when the character lands on the
ground. Intuitively, the character first lowers its head (first 2 pieces), then
stiffens up and quickly kicks its head backwards (third piece). During the
fourth piece, the character relaxes as it anticipates impact with the ground.

2.3 Skills

We now give an overview of the skills that our characters will be trained for.

We defer the description of learning to Chapter 3.

The majority of skills are parameterized according to a set of task pa-

rameters denoted by α, which specify aspects of the skills that the user has

control over. The set of skills and their connectivity is shown in Figure

2.5. The base skill is the Hop, which allows the character to transition to a

hopping motion from the rest state. The task parameter for the Hop skill,

αv, is the desired speed of the hop. Once the character is hopping, it can

perform several other skills. The HopFlip skill allows the character to per-

form a back-flip with user-specified length, αl, and height, αh, and continue

hopping immediately after landing. The HopRoll skill consists of the same

set of task parameters, but results in a motion that more closely resembles

a forward dive roll. The Stop skill allows our character to suddenly stop

hopping and return to the rest state. From the rest state, the character can

be commanded to hop again. Alternatively, while the character is in the rest

state, it can also execute a Flip. The length of the flip is a user-controlled
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2.3. Skills

Figure 2.5: Skill transitions graph. Eeach node corresponds to a set of
character states. Rest is the rest state. Hopping refers to any state where
the character has just landed and made contact with left part of its foot. On
ground refers to any state where the character is motionless on the ground.
Every directed edge represents an action returned by a skill.

task parameter. If the character falls while executing any of the above skills,

it can get back up using the GetUp skill. Finally, we consider a compos-

ite skill that we call Acrobatics. This skill can be executed from rest and

involves a fixed sequence of the above skills executed in quick succession.

Specifically, with Acrobatics the character starts from rest, and then uses

Flip, followed immediately by HopRoll, and then HopFlip.

The function of a skill is to return a Motor Action that accomplishes

the task parameters set by the user, while taking into account the current

state of the character. For example, if the character is in the rest state and

the user requests a Flip of length 2 meters, the character controller queries

the skill for a Motor Action that accomplishes that task, and then initiates

it. For some skills it is also necessary to know about the exact state of the

character at the time when the action is about to be initiated. For example,

when the character is hopping and the user requests a HopFlip of length 2

meters and height 2 meters, the appropriate action depends on the current

state of the character while it is hopping. One of our insights is that it is not

necessary to know the exact details of the state, because the set of states
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2.3. Skills

it could be in is already constrained to a very particular part of the state

space through the hopping skill. Therefore, the initial conditions of one skill

can be summarized by the task parameters of the skill before it. In this

particular example, the HopFlip skill must only know about the speed task

parameter that is currently being used to generate the Hop.

Every skill can thus be formalized as a mapping I × T → A, where I is

the set of skill-specific parameters that describes the initial conditions, T is

a set of skill-specific task parameters, and A is the Motor Action space. The

mapping specifies the action that should be initialized by the controller in

order to accomplish the goals given by the task parameters from the current

initial conditions. Table 2.2 shows the initial conditions and task parameters

used for every skill. Note that in this thesis the initial conditions set is either

empty, in which case the character starts from the rest state, or it contains

the speed of the hop, as motivated by the previous paragraph.

Skill Initial Conditions Task Parameters

Hop {} {αv}
Flip {} {αl}
GetUp {} {}
Stop {αv} {}
HopFlip {αv} {αl, αh}
HopRoll {αv} {αl, αh}
Acrobatics {} {}

Table 2.2: Initial Conditions and Task Parameters sets for all skills. αv, αl

and αh are labels for the speed, length, and height parameters, respectively.
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2.3. Skills

2.3.1 Hop

Figure 2.6: Hop skill. Top: character pose snapshots concatenated horizon-
tally from right to left. Bottom: character pose snapshots, with a stationary
camera and overlaid frames.

The hop skill H : αv → A returns an action that causes the character to hop

if it is initialized every time when the foot strikes the ground. In addition,

the hop skill can also be used from the rest state, in which case the character

starts hopping. The user can change the speed of the hop interactively by

changing the value of αv. A value of αv = 0 makes the character hop slowly,

and αv = 1 makes the character hop at the maximum speed. The exact

speed achieved by the slowest and the fastest hop is not determined a pri-

ori. Instead, it depends on what the character acquires during the learning

process.

It is the responsibility of the Hop skill to manage its own velocity to

minimize the chance of falling. If the character is hopping at αv = 0, but

suddenly the user changes the value to αv = 1, simply initializing the new

action right away may cause the character fall over. To address this issue,

we introduce a new variable β, which roughly corresponds to carefulness of

the character. When β = 0, the character will execute a hop of any speed αv

that the user specifies. However, when β = 1, the character will ignore the

user-defined αv, and instead uses a recovery mapping R : S → αv to specify

the value of αv. The recovery mapping R predicts a value of αv that most

likely results in a successful hop, given the current state of the character.

More generally, every time the character lands, the controller initiates a new
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2.3. Skills

Hop action

H(βR(~s) + (1− β)αv)

where ~s is the state of the character and αv is the user-defined desired speed.

A high-level controller can make effective use β to accomplish various

tasks. For example, if it becomes very important that the character starts

hopping as fast as possible, we can increase αv, decrease β, and hope that

the character does not fall. However, if we want the character to casually

speed up, we can increase both αv and β, and the character will slowly

speed up without risking a fall. More importantly, whenever the character

lands from a flip or a roll, the controller forces β = 1 regardless of the user-

specified value for one hop. We refer to these hops as recovery hops, because

they temporarily ignore the task parameters to maximize the probability of

a successful recovery. In practice, we set β = 0.05 which is usually sufficient

to guarantee that the character does not fall while hopping, even if the user

quickly changes the value of αv.

2.3.2 Flip

Figure 2.7: Flip skill. Top: character pose snapshots concatenated horizon-
tally from right to left. Bottom: character pose snapshots, with a stationary
camera and overlaid frames.
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2.3. Skills

The Flip skill F : αl → A returns an action that causes the character to

flip from the rest state. The length of the flip, αl ∈ [0, 1] is controlled by

the user. Low values of αl cause the character to execute a short flip, while

values close to 1 lead to long flips. On landing, the controller initializes a

hop with β = 1 to force a single recovery hop.

2.3.3 HopFlip

Figure 2.8: HopFlip skill. Top: character pose snapshots concatenated hor-
izontally from right to left. Bottom: character pose snapshots, with a sta-
tionary camera and overlaid frames.

The HopFlip skill HF : {αv, αl, αh} → A returns an action that causes the

character to flip while it is hopping at some speed αv. The length of the flip,

αl ∈ [0, 1] and the height of the flip αh ∈ [0, 1] are controlled by the user.

As before, low values of αl cause the character to execute a short flip, while

values close to 1 lead to long flips. The user also has control over the height

of the flips through the task parameter αh, which works analogously. On

landing, the controller initializes a hop with β = 1 to force a single recovery

hop.
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2.3. Skills

2.3.4 HopRoll

Figure 2.9: HopRoll skill. Top: character pose snapshots concatenated
horizontally from right to left. Bottom: character pose snapshots, with a
stationary camera and overlaid frames.

The HopRoll skill HF : {αv, αl, αh} → A works exactly as the HopFlip,

which is described in 2.3.3. The only difference is in the style of the motion:

Instead of a flip, the HopRoll skill causes the character to perform a forward

dive-roll.

2.3.5 Stop

Figure 2.10: Stop skill. Character pose snapshots concatenated horizontally
(from right to left) as the character stops.

The Stop skill SS : αv → A returns an action that causes the character to

stop from a hop of some speed given by αv. If the character is hopping too

quickly to stop in a single stop action, the controller first lowers the speed

of the hop, and then initiates a Stop action once it becomes available. The

highest speed limit from which a Stop action can be successfully executed

is determined during the learning process.
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2.4. Composite skills

2.3.6 GetUp

Figure 2.11: GetUp skill. Top: character pose snapshots concatenated hor-
izontally from right to left. Bottom: character pose snapshots, with a sta-
tionary camera and overlaid frames.

The GetUp skill can be used by the character to recover back into a hopping

motion if it happens to fall. Even though the character can be in slightly

different positions while it is on the ground, only a single Motor Action

is required to bring it back to its feet. The character can achieve this by

learning an action that consist of two parts: The first segment of the action

usually brings the character to some specific static pose on the ground, and

the second segment causes it to get up from that pose. Therefore, even if

the character begins in a slightly different configuration, by the end of the

first segment it will always be in the same state. The GetUp skill therefore

consists of only two actions: one for getting up if the character falls to the

left, and one for getting up if it falls to the right. The controller is pro-

grammed to execute the appropriate action by detecting if the character fell

to the left or right.

2.4 Composite skills

It is possible to naturally extend the idea of skills into a higher level of

abstraction to explore more complicated, composite skills. Every skill dis-

cussed in the previous section is of the form I×T→ A, where the output is a

23



2.4. Composite skills

vector that specifies a Motor Action. The output of a composite skill is also

a vector, but the numbers are instead interpreted as the initial condition

and task parameters of other skills, which then get translated into Motor

Actions accordingly. We only experimented with one composite skill and

describe it in more detail below.

2.4.1 Acrobatics

Figure 2.12: Acrobatics composite skill. Top: character pose snapshots con-
catenated horizontally from right to left. Bottom: character pose snapshots,
with a stationary camera and overlaid frames.

The Acrobatics skill initializes a specific sequence of actions over time that

cause the character to perform a continuous sequence of acrobatic maneu-

vers starting from rest. More specifically, Acrobatics initializes a Flip from

rest, followed immediately by HopRoll, and then immediately by HopFlip.

After landing from the HopFlip, the controller initiates one recovery hop.

Recall from Section 2.3 that the flip skill is defined as αl → A, and that

HopRoll and HopFlip are both defined as (αv, αl, αh)→ A. The Acrobatics

skill consists of one composite action (α1
l , α

2
v, α

2
l , α

2
h, α

3
v, α

3
l , α

3
h) where α1

l is

used to execute the Flip, α2
v, α

2
l , α

2
h are used for the subsequent HopRoll,

and α3
v, α

3
l , α

3
h are used for the HopFlip that immediately follows. The Mo-

tor Action therefore becomes the concatenation of F (α1
l ), HR(α2

v, α2
l , α

2
h),

and HF (α3
v, α

3
l , α

3
h) in time.

Note that both HopRoll and HopFlip are meant to work from a steady
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2.4. Composite skills

hopping motion of some speed and are therefore not generally expected to

work from the initial conditions that come up during the Acrobatics se-

quence. Specifically, the HopRoll must be executed right after landing from

a Flip, and the HopFlip right after landing from the HopRoll. Nonetheless,

we shall show that by choosing the parameters of both skills appropriately,

it is almost always possible to successfully string these skills together. The

computational advantage of formalizing the Acrobatics skill through param-

eters of other skills instead of simply one long Motor Action will become

apparent when we discuss the learning algorithm in more detail. We offer

additional remarks concerning this issue in the Results section.
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Chapter 3

Learning

3.1 Overview

We take inspiration from nature when designing our learning algorithm. An-

imals and humans go through stages of exploration when mastering a new

skill. Consider how a human could go about learning a flip: Through obser-

vation, we first get a sense of the gist of the motion. What does a flip look

like? Approximately how could one go about doing a flip? We then begin

to try many variations of some initial guess, until we finally accomplish our

first flip after many iterations of trial and error. We then begin to explore

small variations of our successful trial, until we converge on a motion that

reliably causes us to flip. If our goal is to control a particular aspect of the

flip, such as its length, we can proceed further. We could attempt variations

of our initial flip, and try to come up with motions that lead to longer flips.

Finally, after getting a sense of how the flip length varies with the motions

we attempt, we can try to generalize and come up with a rule on how to

accomplish longer flips. In our example, we must push off harder from the

ground and extend our arms further while in the air in order to compensate

for our higher angular momentum. Finally, suppose that our goal was to flip

while running. The natural way to learn this skill would be start with what

we know: we already know how to flip from rest. We can then slowly start

to attempt flips while moving at incrementally quicker pace, until eventually

learning how to flip while running quickly. In summary, attempting to learn

how to flip while running is nearly impossible from scratch, but the task

becomes significantly easier by going through incrementally harder stages of

learning.
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3.1. Overview

This thesis attempts to formalize the intuition described above in a

staged learning algorithm, which we use to learn all skills described in Sec-

tion 2.3 one by one. The skills are learned in the following order: Hop,

Flip, GetUp, Stop, HopFlip, HopRoll, and finally Acrobatics. The learning

is done in an online, active learning setting and proceeds as follows: every

skill is initialized with a seed Motor Action that at least approximately ac-

complishes the goal of the skill. For the Flip skill, this action could be a flip

that almost works. Phase 1 of learning runs a stochastic greedy local search

to find the first Motor Action that accomplishes the goal of the skill with-

out falling. In our example, this corresponds to a motion that successfully

leads to a flip and a subsequent recovery through recovery hops. Phase 2

of learning explores similar motions and collects a large set of actions that

are all successful, but possibly with different outcomes. Finally, in phase 3

we generalize from our observations by fitting linear models to the actions

found in phase 2. This corresponds to finding a rule of thumb on how to

accomplish flips of various sizes.

Figure 3.1: Stages of the Learning Algorithm. This diagram visualizes one
execution of the learning algorithm for some skill. Bounded by the black
contour is the set of Motor Actions that are successful from some initial
parameters setting. The algorithm is initialized with a seed action (boxed in
red dot). In phase 1, stochastic greedy local search finds the first successful
action (green dot inside triangle). Starting with this action, phase 2 explores
its variations to collect a large database of successful actions (green dots).
Finally, phase 3 attempts to fit a model to this data to generalize from the
observations. Specifically, in this thesis we consider linear models. Several
candidate models (light red dashed lines) are collected and the best one is
returned according to some skill-specific criteria (dark red line).
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3.2. Trials

3.2 Trials

The character learns every skill by measuring outcomes of actions through

repeated trials in simulation. A trial is labeled as being successful if the

character completes a skill-specific training sequence without falling. A re-

sult of a successful trial is a tuple E = (I, A, T ) that we refer to as an

Experience. It encodes the observation that starting from a character state

generated by initial condition parameters I ∈ I and applying Motor Action

A ∈ A results in task parameter outcome T ∈ T.

An example of an Experience while learning HopFlip is a 3-tuple

(0.3, A, (1.2, 1.5)), where A is some Motor Action. It states that when we

hop with α = 0.3 and then execute A the next time we land on the ground,

it will cause us to flip 1.2 meters forward, and at the highest point of the

motion we will be 1.5 meters off the ground. Furthermore, after landing

from the flip, executing a few recovery hops will lead us to recover balance.

Figure 3.2: An example of a trial for learning the HopFlip skill. The char-
acter is initialized in the rest state and starts to execute skills according to
the training sequence for HopFlip. First, the Hop mapping H is used to hop
5 times using the provided α parameter. Next, the HopFlip is attempted
using the action that is currently being investigated. The last 5 hops are
executed as recovery hops and use the Hop recovery mapping R(~s), where ~s
is the state of the character every time it lands. Arrows indicate the points
at which a Motor Action is initialized. Since the character did not fall, the
Trial is marked as being successful, and the resulting Experience is returned.
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3.2. Trials

In general, trials can be thought of as a function I,A → T. In other

words, they measure the outcome of an action from some initial conditions.

During phase 2, the character accumulates a large database of Experiences

E = {Ei} by conducting many trials. Collectively, the experiences form

a tuple-based dynamics model, which is a common strategy for modeling

dynamical systems in general [4, 6]. This database can later be used to

perform high-level tasks, because it can be inverted to produce a model of

the form I,T → A. In other words, given some initial conditions, what

action should be initialized to meet some desirable goals specified in the

task parameters? For example, if we find ourselves hopping at some speed

and wanting to jump over a gap ahead using HopFlip, what action should

we initialize to meet this goal?

The training sequence that describes the order of skills that should be

executed during every trial is generally different for each skill. For example,

as shown in Figure 3.2, the training sequence for HopFlip is to Hop 5 times

at some speed, attempt a HopFlip, and then attempt 5 recovery hops on

landing. A full listing of training sequences for every skill can be found in

Table 3.1.

Skill Training sequence

Hop Hop 20 times
Flip Flip, 5 recovery hops
GetUp Hop 2 times, (push), Getup, 5 recovery hops
Stop Hop 5 times, Stop
HopFlip Hop 5 times, HopFlip, 5 recovery hops
HopRoll Hop 5 times, HopRoll, 5 recovery hops
Acrobatics Flip,HopRoll,HopFlip, 5 recovery hops

Table 3.1: Training sequences for all skills. If the character executes the
entire sequence without falling, the trial is considered to be successful. For
GetUp, (push) indicates that the character is suddenly pushed with signif-
icant force in a random direction. In this case, its objective is to recover
back to hopping motion.
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3.2.1 Motor Action reliability

A crucial element of our approach is that during the learning process we

explicitly look for actions that not only successfully complete the training

sequence, but actions that can reliably do so even if subjected to small dis-

turbances in both the initial conditions and the action itself. For example,

when learning a skill such as a flip, humans will explicitly look for motions

that can make them land flat on both feet. This particular outcome is de-

sirable because it is inherently robust toward small disturbances in initial

conditions and errors in the motion itself. Similarly, a motion that only

barely makes us flip and causes us to land off balance should likely undergo

further refinement.

We explicitly incorporate the concept of reliability into our learning

framework. While we cannot implement high-level intuitions for evaluat-

ing actions (such as detecting when we fall off-balance) it is still possible

to approximate the reliability of an action by explicitly measuring the ro-

bustness of its outcome toward small changes in initial conditions and the

action itself. As mentioned in the previous section, Trials enable us to

test an outcome of some action under some initial conditions. If we define

Successful(A, I) that returns 1 if action A succeeds from initial conditions

I and 0 if the character falls, then we can formalize this notion by defining

reliability as:

Reliability(A, I) :=

∑N
i=1 Successful(A+ ∆A, I + ∆I)

N

where N is large, and ∆A, and ∆I, are drawn from an appropriate noise

distribution. Given an Experience (I, A, T ), we could compute an estimate

of its reliability according to the above definition by running many Trials

with slightly different actions and initial conditions. However, in order to

improve the efficiency of our algorithm, we will instead approximate the

reliability of every action online, during phase 2 of the learning algorithm.
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3.3 Learning algorithm

In this section we describe the core learning algorithm that is used to train

every skill. The goals of each phase, using the terminology defined in the

previous section are as follows:

• In phase 1, we find the first successful Experience E0 = (I0, A0, T0).

• In phase 2, we extend the Experience into a large set of Experiences

{Ei} = {(Ii, Ai, Ti)} through exploration.

• In phase 3, we generalize from the observations made in phase 2 by

fitting a model I × T → A to the database of Experiences E. This

model can be later used to accomplish high-level tasks.

3.3.1 Initialization

The algorithm is initialized with a seed Motor Action Ainit and some Ini-

tial Condition parameters I0 that are needed for the particular training

sequence. Ideally, I0 should contain parameters that result in the easiest

initial conditions. In the case of hopping, the easiest initial conditions are

to hop as slowly as possible (i.e. I0 = {αv = 0}).

3.3.2 Phase 1: initial successful action generation

The goal of phase 1 is to find the first successful Experience (I0, A0, T0).

We assume that we are given Ainit, I0, and a Phase 1 reward function for

every skill. The Phase 1 reward function assigns a score to every failed trial,

which helps guide the search. We run a stochastic greedy local search, start-

ing with the seed action Ainit as our initial guess. In this setting, conducting

a single trial corresponds to one function evaluation. We keep attempting

variations of Ainit with the highest reward until we reach an action that is

successful. The procedure is summarized in Algorithm 1.

The phase 1 reward functions are skill specific:
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• For Hop, the reward function returns the number of hops that were

successfully executed before a fall.

• For Flip, HopFlip and HopRoll, the reward function returns the

difference of net rotation undergone by the character from a full circle.

• For GetUp, the reward function measures the angle of the body link

and its velocity, and returns high rewards for near-vertical angles and

low velocity at some point during the action.

• For Stop, the reward function measures the amount by which the Stop

action decreases the velocity of the character.

• For Acrobatics, the reward function measures the number of skills

that were successfully executed before a fall and returns this number

as the reward.
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Algorithm 1 Phase 1: Initial successful action generation

Input:
I0 ← Initial Parameters
A0 ← Seed action

Output:
Successful Experience (I, A, T )

1: (T, success, reward)← Trial(I0, A0)
2: if sucess then
3: return (I0, A0, T )
4: end if
5: reward best← reward
6: A← A0

7: loop
8: Acandidate ← A+ ∆A
9: (T, success, reward)← Trial(I0, Acandidate)

10: if success then
11: return (I0, Acandidate, T )
12: end if
13: if reward > reward best then
14: reward best← reward
15: A← Acandidate

16: end if
17: end loop

In the above algorithm, Trial(I, A) executes a single Trial, as described

in 3.2. If the training sequence contains hops before the action that is be-

ing investigated, all hops are executed using the same speed parameter αv

provided in I0.

In practice, we restart the search if reward best does not improve for

some number of iterations to minimize the chance of getting stuck in local

optima. In addition, a small set of Experiences is collected in this phase

instead of only a single one to decrease the probability of hitting a bad local

optimum with the first successful Experience.
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Figure 3.3: Phase 1 of the learning algorithm. The set of successful actions
for some initial conditions is bounded by the given black contour. We are
given a seed action (boxed in red dot), and explore its variations (light red
dots), guided by the phase 1 reward function. Phase 1 ends when the first
successful action is found (green dot inside triangle).

3.3.3 Phase 2: exploration

Having acquired the first successful Experience, phase 2 of the learning al-

gorithm incrementally grows the set E = {Ei}. This stage corresponds to

exploring variations of successful motions and their effects on the task pa-

rameters.

The exploration process is shown in detail in Algorithm 2. First, we

select a specific promising experience Ek = (Ik, Ak, Tk) ∈ E. The details

of this choice are discussed later. We then change the initial parameters Ik

and the Motor Action Ak by adding sparse gaussian noise to obtain slightly

different initial conditions Inew and action Anew. Next, a Trial is attempted

using Inew and Anew. If the trial is successful, we record the outcomes of the

trial in the task parameters Tnew, and add the Experience (Inew, Anew, Tnew)

to the set of all Experiences E. If the trial was unsuccessful, its results are

discarded. One could imagine making use of this information in some way to

avoid recomputing a similar trial in the future, but we defer this extension

to future work. Finally, based on the outcome of a trial we also update our

estimate of the reliability of Ek. Reliability is thus computed over time by

simply keeping track of how many times a variation of some Experience was

attempted, and how many times that variation was also successful. After

updating the reliability statistics, we pick another promising experience and
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repeat the procedure.

Algorithm 2 Phase 2: Exploration

Input:
(I0, A0, T0)← Initial successful Experience from phase 1
N ← Number of Experiences to collect

Output:
Successful Experience set E

1: E = {(I0, A0, T0)}
2: while |E| < N do
3: (Ik, Ak, Tk)← pick promising Experience from E
4: Ntriedk ← Ntriedk + 1
5: Inew ← Ik + ∆I
6: Anew ← Ak + ∆A
7: (Tnew, success)← Trial(Inew, Anew)
8: if success then
9: E← E ∪ {(Inew, Anew, Tnew)}

10: Nsuccessfulk ← Nsuccessfulk + 1
11: end if
12: end while
13: return E

A good definition of a promising Experience is crucial to the success of

the algorithm. On one hand, it is desirable to explore experiences that are

known to be reliable in hopes of discovering more. On the other hand, we

also want to consider newly found experiences, as they may prove to be

reliable in the future. We also want to collect Experiences from many initial

conditions that result in a wide variety of task parameters. Lastly, we must

be cautious to not over-explore a certain part of the space. Algorithm 3

addresses these tradeoffs.
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Algorithm 3 Picking promising Experience.

Input:
E← Successful Experience set
Ntriedi, Nsuccessfuli reliability statistics for each Experience in E
q ∈ [0, 1]← Exploration-Exploitation threshold
n ∈ N← threshold for what counts as new Experience
maxTry ∈ N← maximum number of times an Experience is explored
σ1, a1, σ2, a2 ∈ R+ ← parameters

Output:
Promising Experience E

1: if U(0, 1) < q then
2: return Random Experience Ei ∈ E such that Ntriedi < n
3: end if
4: Ir ← Random initial parameters
5: Tr ← Random task parameters from region of interest
6: for Ei ∈ E for which Ntriedi ≤ maxTry do

7: Scorei ← Nsuccessfuli
Ntriedi

+ a1e
− ‖Ii−Ir‖

2

2σ21 + a2e
− ‖Ti−Tr‖

2

2σ22

8: end for
9: Rolli ← U(0, Scorei)

10: return argmax
Ei∈E

(Rolli)

In the above algorithm, we usually set q = 0.5, n = 4, maxTry = 30,

σ1 = 0.5, σ2 = 0.5, a1 ∼ U(0, 0.3) and a2 ∼ U(0, 0.3). U(a, b) is the

uniform random distribution. Overall, the algorithm tends to pick reliable

Experiences as promising. The second and third terms in the equation for

Scorei ensure that we explore actions from all possible initial conditions that

achieve rich set of task parameters. As per line 2, we also choose to explore

actions that are new to gather significant statistics of their reliability. No

action is explored too often due to the hard upper bound given by maxTry.
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Figure 3.4: Phase 2 of the learning algorithm. The set of successful actions
for some initial conditions is bounded by the given black contour. We explore
the set of successful experiences starting from the first successful experience
(dark green) by repeatedly trying variations of experiences in trials. Note
that every point in this diagram can only be interpreted as a Motor Action
for Flip, Hop, and Acrobatics because these skills don’t have any initial
condition parameters. However, in general I×A is the space that undergoes
exploration in this phase. The reader can imagine the variables in I forming
another axis that extends outwards, such that only a particular slice for
some initial conditions is shown in this diagram.

3.3.4 Phase 3: parameterization and generalization

Once we have accumulated a large database of successful Experiences in

phase 2, we can develop an inverse model, I × T → A. This mapping is

desirable because it can be used by the character to accomplish high-level

tasks. For example, given that we want to flip across a 2-meter gap, what

Motor Action should be executed to accomplish this goal?

In this work we only experiment with 1-dimensional linear models for

Hop and Flip skills in phase 3. That is, for the Hop skill we fit a linear

model αv → A such that αv = 0 and αv = 1 result in slow and fast hops,

respectively. For Flip, we fit a linear model αl → A such that αl = 0 and

αl = 1 result in short and long flips, respectively. Since both skills don’t

have any initial parameters because they start from the rest state, this task

can simply be viewed as that of fitting a line to data in the action space, as

illustrated in Figure 3.5. More generally, for a set of N task parameters, a

linear model can be constructed using either:

• a linear weighting of N + 1 examples, or
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• defined according to A = A0 +M~α, where M is a matrix and ~α is the

vector of task parameters.

For every skill other than Hop and Flip, we stop after phase 2 and then

construct a non-parametric model. This is done by first partitioning the

volume of space I×T into cubes of some small size (we use 0.05). According

to the collected experiences E, we then map each cube to the most reliable

Motor Action that was found in that part of space. In either case, the Ex-

periences E that were collected in phase 2 can then be discarded.

Some considerations should be made when fitting a model to these kinds

of datasets. One difficulty is that there are usually many Motor Actions

that all accomplish the goals of the skill, but do so with a particular style

of motion. The output of phase 2 therefore contains a mix of many kinds of

motions. To deal with the large number of outliers in the data, it becomes

important to only consider robust fitting methods. In addition, instead of

only fitting one model we collect a number of candidate models and later

evaluate their performance to pick the best one.

Algorithm 4 Phase 3: Generalization

Input:
E← successful experiences from phase 2
N ← number of candidate models to collect

Output:
Best model M

1: L← {}
2: for i = 1 to N do
3: M ← fit model I× T→ A
4: if M generalizes then
5: L← L ∪ {M}
6: end if
7: end for
8: return argmax

Mi∈L
(Score(Mi))
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The fitting procedure (line 3 in Algorithm 4) is carried out using a

method that is inspired by the RANSAC algorithm to deal with the high

number of outliers in our data. The fitting procedure constructs the model

as follows: first, a line is constructed through two randomly chosen actions

from the data. Then, the distance from every other action to this line is

found, and the sum of the 10% of the lowest distances is computed to pro-

duce a robust estimate of the evidence for this model. In this context, small

values for the final sum indicate more evidence for a model. We keep se-

lecting pairs of actions and repeating this procedure some number of times

(usually about 30), and finally set the output of the procedure to the line

that achieved the lowest sum.

The next step is to test the generalization of a proposed model (line 4

in Algorithm 4). The test is carried out by systematically sampling points

along the line. If any point somewhere in the middle between the two ac-

tions results in a failed trial, the generalization test fails. If the model

passes the generalization test, we extrapolate along the line in both direc-

tions for as long as the resulting actions lead to successful trials, and in

the end keep the two actions A1, A2 at the boundary of what was found to

be successful in both directions. The final candidate model then becomes

A(αv) = αvA1 + (1− αv)A2. We repeat the entire procedure until a signifi-

cant number of candidate models is gathered and then proceed to score them.

Since the scoring procedure is specific to each skill, we discuss them sep-

arately below.

Hop phase 3 model scoring function

The candidate models for the Hop skill are scored according to two desirable

properties. First, a good model covers a large portion of the task parameters.

In context of a Hop, this is equivalent to requiring that the difference between

the slowest and fastest hop generated by the model is large. In addition,
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a good model results in a Hop that is robust to changes in the speed. We

investigate this robustness for every one of the candidate models as follows.

The character starts hopping with αv = 0.5, and every hop the speed is

changed according to αv ← min(1,max(0, αv + N(0, 0.25))) with a 50%

probability. Here, N is the Normal distribution. If the character ever falls,

it is reset and the evaluation continues. A high score is given to the character

that falls the least number of times during a fixed-length evaluation. In the

end, the two contributions are weighted together, and the model with highest

variance in task parameters and the highest robustness to change in speed

is returned.

Flip phase 3 model scoring function

For Flip, models that cover a large portion of task parameters are also pre-

ferred. In context of a Flip, this corresponds to requiring that the difference

between the smallest and largest flip is large. In addition, the transition of

the Flip into a Hop on landing should be as robust as possible. As a good

quantitative correlate of this intuition, we record the variance in the speed

of the 5 recovery hops that follow the flip. If the variance is small, it is likely

that the transition was successful and the action receives a large score. In

the end, the two contributions are weighted together, and the model with

highest variance in the task parameters and the best transition to a Hop is

returned.
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Figure 3.5: Phase 3 of the learning algorithm. In this phase, we attempt to
discover a model of the form (I× T)→ A from the experiences collected in
phase 2. Every model is tested according to some skill-specific generalization
criteria, and then scored. The highest scoring model is returned as output.
In this work, we experimented with finding a linear manifold of successful
actions. Linear models (dashed light red lines) are repeatedly fit to our
dataset, and subsequently tested for generalization. The blue dashed line in
this diagram is a model that fails to generalize. In the end, we evaluate all
candidate models, and pick the best one (dark red line) as output according
to skill-specific criteria.

3.3.5 Learning the recovery model for Hop

Unlike other skills, we also learn a recovery model for the Hop skill, which

allows us to recover from arbitrary landings. As discussed in 2.3.1, the

recovery model is a mapping R : S → αv that predicts the αv of the Hop

action that most likely leads the character toward a stable hopping motion

from some state. To learn the recovery model for the Hop skill we proceed as

follows. While the character is hopping using the learned Hop skill, the speed

of the hop is changed according to αv ← min(1,max(0, αv + N(0, 0.25)))

with a 50% probability every hop. On every landing, we store the character’s

state together with the parameter αv that will be used for the next hop. If

the character ever happens to fall, we discard the latest 3 measurements.

The resulting database of (~s, αv) forms the non-parametric recovery model

for the Hop skill. Intuitively, the character remembers the states that it

usually encounters while hopping at different speeds. If it needs to transition

to a hop from an arbitrary state, the best guess for the αv that should be

used during the recovery attempt can be extracted from the table by finding

the nearest neighbor of the current state, and using the corresponding αv.
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Chapter 4

Results

We applied our algorithm to learn skills for two different characters. We

first discuss results pertaining to the planar Acrobot character. We then in-

troduce a more complicated 3D simulated quadruped and demonstrate that

the algorithm can be used to train the character to perform parameterized

leaps from a trotting gait.

We used a 2.7GHz computer for all of our experiments. The simulation-

based system was built using the Open Dynamics Engine (ODE) as the

physics engine. The time step frequency was set to 2000Hz. This allows

us to simulate the Acrobot character 30x faster than real time, and the dog

character about 3x faster than real time. Given this setup, about 10-20

trials can be evaluated per second with the Acrobot character, and about

1-2 trials per second with the dog character.

4.1 Acrobot

We were able to successfully learn all skills on the base Acrobot character

(C1) using our learning algorithm. The seed Motor Actions that must be

provided as input to each skill in phase 1 took less than a few minutes to

create in each case, although more complex characters might require more

finely tuned actions. Afterwards, we were able to run the entire algorithm

on all four variations of the base character (C2, C3, C4, C5) without any

parameter changes, with the exception of having to change the seed Motor

Action on a few occasions. We defer a more detailed treatment of these

modifications to the Discussions section. The learning algorithm was run

for about 10 hours on every character. In our experiments, phase 1 usually
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completes in a few seconds and never lasts more than one minute. The ma-

jority of the computation is taken up by phase 2, and phase 3 for the Hop

and Flip skills. As with many other online algorithms, the results progres-

sively improve when the algorithm is allowed to run for longer periods of

time. We experimented with shorter learning times by collecting a smaller

set of actions in phase 2 and by restricting the number of candidate models

that are evaluated in phase 3. Under these constraints, the learned skills

become generally less reliable and tend to cover a smaller range of task pa-

rameters.

The end product of the learning algorithm can be summarized for every

Acrobot character as consisting of:

• A model for the Hop skill, linearly parameterized for speed (αv). This

is constructed from two hop actions and their known speeds. In addi-

tion, the Hop skill contains the recovery model, which is represented

as a table of (~s, αv) pairs, where ~s ∈ S is a state vector.

• An analogous linear model of the Flip skill, constructed from two flip

actions and their respective lengths.

• For HopFlip, HopRoll, Stop, the output is a lookup table that

stores the most reliable action for cubes with side lengths 0.05 in the

appropriate I×T space. For HopFlip and HopRoll, this space consists

of the parameters αv, αl, αh. For Stop, this space only consists of one

dimension, αv.

• For GetUp and Acrobotics, the skill only contains the most reliable

action that was found in phase 2.

We now proceed to discuss the details of the results pertaining to all skills.

4.1.1 Hop and Flip skills

The results from learning of the Hop and Flip skills are visualized Figure

4.1. The figure summarizes the extent of capabilities that were learned for
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all characters. Looking at the achieved ranges of speeds and lengths for the

Hop and the Flip, it is clear that the most challenging characters to control

for these skills are C3 and C5. It is important to note that characters were

often capable of performing each skill with task parameters outside of the

ranges given in the figure. All results listed are merely the ones derived from

the highest-scoring linear model that was found in each case. In particular,

note that a simple linear model performs poorly for C5 on the Flip skill.

This indicates that a linear model is too weak to capture the challenging

dynamics of this skill for that character. In this case, it may be better to

instead only use the non-parametric model that derives from the experiences

collected in phase 2.
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Figure 4.1: Results for the Hop and Flip skill. For both skills and all
characters, we fit a linear model in phase 3 and examine the range of task
parameters that are covered by these models. On left, min and max speed
for the Hop (corresponding to speeds of αv = 0 and αv = 1 respectively) is
shown in meters per second. The computed range is also shown for viewer’s
convenience. Speed change fail % is the percentage of hops that lead to a fall
during the phase 3 candidate model scoring procedure discussed in §3.3.4,
where robustness of the Hop to changes in speed is estimated. Analogously,
on the right we show the smallest and largest Flip that each character can
generate in meters.

4.1.2 Stop skill

The Stop skill was found to be relatively easy to learn for all of our char-

acters. Phase 1 of the learning algorithm usually terminates after a single

trial because to stop from a very slow hopping motion, the character can

almost always simply stiffen up in the upright position and wait until it

settles. Recall that the Stop skill is a single action that causes our char-

acters to stop right away, without taking any additional hops. However, in

some cases the character may be traveling too quickly for the Stop action to

be successful under these constraints. We were able to learn the Stop skill
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from any velocity for every character except for C1 and C5. For these two

characters, the maximum stopping αv is 0.7 and 0.65, respectively. If the

controller detects that the character is hopping too quickly, it first lowers

the speed and then executes one of the appropriate Stop actions.

4.1.3 HopFlip and HopRoll skills

In this section we document the results for both HopRoll and HopFlip for

all of our characters. In each of the figures below, we show histograms and

scatter plots of Experiences collected in phase 2. Specifically, for each Expe-

rience we examine its length αl, height αh, the initial condition parameter

αv, and reliability. Recall that the reliability is computed as a fraction,

which results in the lines that can be observed in some figures. For ex-

ample, a reliability of 0.5 is common because it can be a result of several

distinct fractions, such as 1
2 ,

2
4 ,

3
6 , ... etc. In all of the figures below, we only

plot Experiences that were picked as promising at least 6 times during the

execution of phase 2. This increases the accuracy of the reliability estimate

for each of the plotted Experiences.
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Figure 4.2: HopFlip capabilities for characters C1 (base character) and C2
(short base link).
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Figure 4.3: HopFlip capabilities for characters C3 (tilted base link) and C4
(heavy head link)
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Figure 4.4: HopFlip capabilities for character C5 (small foot)
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Figure 4.5: HopRoll capabilities for characters C1 (base character) and C2
(short base link).
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Figure 4.6: HopRoll capabilities for characters C3 (tilted base link) and C4
(heavy head link)
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Figure 4.7: HopRoll capabilities for character C5 (small foot)

4.1.4 Acrobatics and GetUp skill

Recall that the Acrobatics skill searches for the parameters in I×T of Flip,

HopRoll, and HopFlip, and Hop skills such that the resulting string of ac-

tions is successful. Despite the fact that both HopRoll and HopFlip are

intended to work from a hop of some steady speed, we found that it was

easy to find combinations of task parameters in the Acrobatics skill that

still resulted in successful trials. We speculate that this robustness to initial

conditions is a result of the fact that we explicitly maximize for reliability

of every action in the final model of both HopFlip and HopRoll.

In Figure 4.8 we show the progress of phase 2 over time for the Acrobat-

ics skill on all characters. The reliability value itself holds no information

because it depends on the amount of noise that we add into the Motor Ac-

tions as we explore variations of each action in phase 2. However, a clear
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trend emerges from the graph regarding the speed of convergence and the

relative order of the characters in the graph. First, note that it only takes

about 200 trials (roughly 10-20 seconds of computation) to find parameters

that are close to what the algorithm eventually converges to. In addition,

the task was easiest for C1, followed by C2, C3, C4, and finally C5.

Figure 4.8: Maximum reliability over all Experiences collected in phase 2 of
the Acrobatics skill as a function of number of trials. 2500 trials correspond
to about 3 minutes of computation. The maximum reliability sometimes
decreases as we accumulate more precise statistics on the reliability of each
Experience.

The dynamics of the GetUp skill are easy for our character to master

due to reasons described in 2.3.6. In practice, after only a few hundred trials

during phase 2, the reliability of many GetUp actions is identically 1 for all

of our characters.

53



4.1. Acrobot

4.1.5 Sample sequences of skills executed in sequence

The learned skills can be used to generate contiguous motion. Several as-

pects of the motion can be controlled by the user through task parameters

of all skills. In the figures below, the user commands the character to exe-

cute various skills over time by pressing buttons in the user interface. The

task parameters for each skill can be provided through sliders in the user

interface. The user also has the option of not providing the task parameters.

This functionality can be useful for situations where one wants to execute

some motion without regard to its precise outcome. In these cases, the

controller picks the task parameters that lead to the most reliable action.

Figure 4.9: Sample contiguous sequence of skills, as executed by one of our
characters. The sequence starts on top right, then goes across to the left,
and downwards. Text above a film strip indicates what skill was initialized
at that time.
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Figure 4.10: Additional example sequences with a stationary camera and
overlapped frames for characters C1, C5 and C2 (from top to bottom). Note
that in the first sequence, the character successfully completed a HopRoll
right away after a HopFlip. This often works even though the character was
trained to roll from a hopping motion. We believe that this robustness to
initial conditions is a result of explicitly maximizing the reliability of our
Motor Actions.

4.1.6 Use of task parameters in planning

The characters can accomplish various high-level tasks through appropriate

use of task parameters in each skill. For example, with the skills defined in

this work it is possible to do simple planning over terrain. Specifically, we

experimented with gaps in the ground. For small gaps, the character can

modulate its velocity to land close to the edge of the gap, and then execute

a long HopFlip or HopRoll. For longer gaps, the controller uses the Stop

skill to stop the character at an edge of the gap, and then uses the Flip skill

to perform a large flip. If the character ever happens to fall, the controller

detects this and uses the GetUp skill to recover.
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Figure 4.11: Sample runs through a terrain with two of our characters.
The character goes from right to left. Snapshots are taken at regular time
intervals. The character executes a HopFlip to get over the first gap because
it is short enough for HopFlip. The second gap is too large, so the controller
commands the character to hop to the edge, stop, and then execute a Flip.

Figure 4.12: Our characters are only trained on flat ground. However, they
can still flip up on top of high platforms and then use the GetUp skill to
continue. The learning algorithm generalizes easily to incorporate flips on
platforms of different heights by adding a task parameter for height of the
platform. We did not consider this extension in this work.
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4.2 Quadruped character in 3D

Figure 4.13: This image shows, from left to right, the display mesh, collision
proxies, and the joint hierarchy of the dog character.

To demonstrate the scalability of our approach, we used our algorithm to

learn parameterized leaps for a high-dimensional dog character in 3-D. Fig-

ure 4.13 shows the details of the character structure. The entire articulated

figure is comprised of 30 links: 4 links for each leg, 6 for the back, 4 for

the tail, and 4 for the neck-and-head. There are 67 internal degrees of free-

dom: 7 per leg, 15 for the spine, 12 for the neck-and-head, and 12 for the

tail. In comparison, Acrobot only has 3 links and a single internal degree of

freedom. Additional details about the character and many elements of the

control strategy can be found in [7].

The controller for the dog character relies on two control abstractions to

generate torques for every joint. Similar to this work, the first primary com-

ponent of the final torques comes from PD-controllers. First, the controller

specifies the desired end-effector positions over time for every leg. Inverse

kinematics is then used to compute the exact pose that each leg should as-

sume in order to meet the specified end-effector position. The output pose

from Inverse kinematics is then used in the PD-controller to generate track-

ing torques. The second primary component derives from use of internal

virtual forces [16]. Using this abstraction, the controller can specify forces

on any link of the dog body. The method then allows the character to

compute torques that it should apply on every joint such that the resulting

motion behaves as if a given internal force was applied between the base link
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and the point of application of the virtual force.

By appropriately controlling the positions of the legs and the virtual

forces on links of the body over time, the character can accomplish a large

variety of motions. In particular, the dog comes equipped with a controller

for several common gaits such as trot, gallop, and walk. Details of the gaits

and the control are described in more detail in [7].

We applied our learning algorithm to train the dog to leap to different

heights and lengths, starting from a trotting gait at some speed. The dog

leap skill is thus analogous to HopFlip: the task parameters of the skill are

the length and height of the leap and the initial conditions contain a single

parameter that describes the speed of the trotting gait that the dog is using

immediately before the leap. While the learning algorithm did not have to

undergo any changes, the Motor Actions take on a different interpretation.

A skeleton of a single leap was first designed manually, but some of the

exact timings, end-effector positions, and magnitudes of virtual forces were

left as free parameters. These parameters then formed a 17-dimensional

Motor Action space. The task of the learning algorithm thus became to find

a setting of these parameters such that the result is leap of different lengths

and heights from a range of initial velocities.

Similar to our Acrobot character, the dog can use the resulting param-

eterized leaping skill to accomplish various high-level tasks: it can navigate

complex terrain by jumping over gaps of various lengths (Figure 4.16, top),

it can jump on top of platforms of different heights (Figure 4.16, Figure

4.15), it can jump over barriers (Figure 4.16, bottom left), and finally, the

dog is able to jump up and catch a sausage at an arbitrary reasonable po-

sition in space (Figure 4.16, bottom right).
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4.2. Quadruped character in 3D

Figure 4.14: Film strip visualization of the dog as it leaps into the air and
lands again. Horizontal distance is not to scale.

Figure 4.15: Film strip visualization of the dog as it leaps on top of a
platform. Horizontal distance is not to scale.

Figure 4.16: Illustrations of some of the capabilities of the dog after learning.
Top: the dog can traverse a complicated environment by executing leaps
with different length and height task parameters. Bottom Left: Jumping
over barrier. Bottom right: Precise, targeted jump for sausage.
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4.2. Quadruped character in 3D

As an alternative approach to the procedure outlined in phase 3, we de-

velop an approach for generalization of the leaping skill by use of Principal

Component Analysis. Specifically, we computed the principal components

of all actions that produce a successful leap from a velocity in the range

of [0.45, 0.55]. Next, we systematically sampled actions on the manifold

spanned by the first two most significant principal components and sub-

jected them to a trial. The resulting graph of outcomes can be found in

Figure 4.17. It is interesting to note that the outcome varies smoothly with

the relative displacement along each component. In addition, the first and

second components correlate well with the height and length of the leap.

Principal Component Analysis may therefore be a powerful heuristic for

generating candidate models during phase 3 of the learning algorithm.

Figure 4.17: PCA analysis of dog leaps for some initial velocity. Visualiza-
tion of the variance in length and height of leaps from one velocity, if we
execute actions along the 2-dimensional manifold spanned by the first two
principal component vectors. An absence of a circle at some coordinates
indicates that the corresponding action led to an unsuccessful trial.
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Chapter 5

Conclusions

We have presented a learning algorithm for agile, integrated whole-body

skills of physically-simulated characters. The algorithm uses a nature-inspired

online, active exploration of the character action space to find reliable mo-

tions that give rise to parameterized skills. We further demonstrated that

our algorithm works for a family of simple characters without requiring any

algorithm or parameter modifications. In addition, we experimented with

a complex dog character in 3-D and showed that our approach generalizes

to this character, given appropriate changes in the motor abstractions used

during the learning process. Finally, we showed that the resulting parame-

terized skills can be effectively used for high-level tasks, such as traversing

a terrain.

5.1 Discussion

While a learning approach to acquiring skills possesses many benefits, it also

comes with its own set of limitations.

Mainly, we found that the learning process requires occasional super-

vision to ensure that the intended skills are actually being learned. For

example in one case, a character learned a Flip motion that made it launch

into air, fall down, and then get back up very quickly. On a different oc-

casion, the character learned a double-flip instead of a flip. It thus became

necessary to supervise the learning process and restart it on a few occasions.

The majority of skill and character combinations (roughly 90%) did not re-

quire any interventions. We believe that these issues could be alleviated by

better quantifying when a particular trial should count as being successful
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5.2. Limitations and future work

for every skill.

In addition, the phase 1 reward functions may be difficult to specify in

some cases. In particular, we found the GetUp skill to be the most trou-

blesome. If the character fails at getting up after some Motor Action, how

should one assign a score for how close the attempt was? Specifying a bad

phase 1 reward function could lead to long computation times in phase 1,

because the character is essentially left searching randomly in the motor

space for a successful action. Even worse, the optimization in phase 1 could

be repeatedly led astray with an inappropriately specified phase 1 reward

function.

The main challenges for the quadruped character were aesthetic in na-

ture. Unlike the Acrobot’s motions, a dog’s leap is a specific type of motion

that we are all familiar with from nature. Even though the learning al-

gorithm produced leaps that accomplished all desired goals, they did not

always resemble leaps that one would expect to see from a real dog. For

example, dogs exhibit a tendency to lift their front feet while in mid-flight,

but this motion did not emerge in the actions that were produced by the

algorithm. Instead, the dog left its front feet outstretched during the leap,

producing a motion that felt qualitatively strange despite achieving all task

goals. In the end, we opted to include these details into the leap controller

manually to achieve a more familiar style of motion.

5.2 Limitations and future work

Even though the learning algorithm described in this thesis works well for

our characters and the set of skills we considered, we make no claims to

have addressed the general problem of motor learning. In this section, we

discuss possible extensions of the proposed framework that can bring us

closer toward the final goal of matching human or animal abilities.

To begin with, several immediate improvements can be made to the

framework by addressing some of the simplifications that were made mostly
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5.2. Limitations and future work

out of convenience.

Fine-grained Motor Actions. In our definition of piecewise defined

Motor Actions, we manually selected the number of piecewise constant con-

trol actions for each skill. This simplifying assumption could be relaxed in

later stages of the learning process. At some discrete points in time during

the execution of the algorithm, we could take every piece in a Motor Action

and split it in two distinct pieces in the middle. The added pieces could then

be slowly refined as the algorithm continues its execution. Giving greater

freedom to actions that can be learned could allow the character to develop

better and more reliable skills.

Extensions to phase 3 model fitting In this work, we only considered

fitting lines to data in phase 3 of the learning algorithm, but in principle this

could be extended to hyperplanes that define a multi-dimensional task pa-

rameterization. However, we expect that higher-dimensional linear models

may only cover small ranges of task parameters. In addition, good candidate

models may be harder to find due to much larger number of possibilities. We

investigated the use of Principal Component Analysis as a potential heuris-

tic to address some of these issues. Finally, it may be possible to represent

a skill using a set of local linear models to cover a greater breadth of task

parameters.

More complicated environments. A subject of further research

could be generalizing the framework to more complicated terrains, such as

slopes of different angles, various friction coefficients of the ground, etc.

The obvious way to handle these additional parameters is to include them

as additional parameters in the initial conditions. For example, a HopFlip

could be redefined as a mapping (αv, αs, αf , αl, αh) → A where αs and αf

parameterize the slope and the friction coefficient, respectively. Clearly, as

the number of parameters grows, the exploration will also become more

difficult. It might therefore be advantageous to repeatedly toggle between

phase 2 and phase 3. Phase 2 would find some Experiences in some region

of the search space, and phase 3 could immediately attempt to generalize
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5.2. Limitations and future work

them with a local model. One could then return back to phase 2, work on

a different part of the space, and repeat.

Learning transition skills. More serious simplifications were made

when designing the connectivity between skills. For example, the Hop skill

has no setup action. In other words, the same actions are used to generate

the hop not only from rest, but also while the character is already hop-

ping. Getting rid of this simplification by learning the initial setup actions

together with the skills is an interesting future direction. In general, we

were able to do without having to learn transition motions between any of

our skills, but it is clear that transition motions may be required in more

complicated scenarios.

Composite Motor Actions. Another interesting direction for future

research is to more closely investigate types of actions and their interactions.

In this thesis, we used three separate interpretations for what an action is:

For skills defined in section 2.3, an action is a piecewise-constant function

that forms the input of a PD-controller. For the Acrobatics skill, an action

is interpreted as the task parameters of other skills. Lastly, for the dog

character, an action translated to virtual forces, end-effector positions, and

relative timings. However, one could easily imagine other interpretations for

an action. For example, an action could directly describe the raw torques

that should be applied at some joints over time. Instead of choosing an ac-

tion representation for every skill, it would be interesting to use all of them

at once because they all have advantages and disadvantages depending on

the type of task at hand. One could further imagine learning what the right

type of action is for a skill, and even mixing different types of actions to-

gether to successfully execute a single skill.

Incorporating Feedback into Motor Actions. The representation

of Motor Actions, as defined in 2.3 lacks concept of a continuous feedback

mechanism. One direction to expand upon in the future is to add optional

local feedback terms to Motor Actions, and then learn the feedback laws
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5.2. Limitations and future work

for every skill in a new, fourth phase of the learning algorithm. This phase

could even further increase the robustness of every skill to perturbations in

initial conditions, and the actions themselves. For example, an algorithm

could learn that while it is executing a Hop action, then if it is ever leaning

too much to the front, it should kick back further to recover. A possible way

to achieve this is as follows: We could push the character while it is hopping

to make it fall. Then, the character could attempt variations of the action

until it does not fall from that same push. If we remembered results of this

form for many pushes, we could use them to predict compensations to novel

pushes. As we did in phase 3, we could further attempt to generalize from

this data to arrive at a local linear feedback law.

Parallel execution of Motor Actions. We assumed that only a sin-

gle Motor Action can be played at a time. An obvious extension is to allow

several Motor Actions to be played at the same. This could allow, for ex-

ample, a human character to walk forward, while simultaneously picking up

an object from a nearby table.

Learning skills and their connectivity. The framework presented

above describes a general learning algorithm for a every one of our skills, but

no attempts are made to learn the skills themselves. Every skill also comes

with pre-defined goals, initial parameters, and its connectivity with other

skills. There are other hard-coded elements in the framework. For example,

the salient common event of foot touching the ground is at the center of ev-

ery skill transition, but the event is hard-wired for this particular character.

Eliminating these aspects of the framework is another interesting direction

for future work.

Parallelizing the computation. Implementation aspects of the frame-

work could also be immediately improved on. For example, there is much

potential for parallelizing the execution of the learning algorithm. Not only

is there room for parallelizing the individual phases, but it is also possible

to parallelize entire skills because some of them are mutually independent.
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5.2. Limitations and future work

For example, GetUp, Stop, and Flip are all independent given that the Hop

has been learned. Similarly, HopFlip and HopRoll are independent given

Hop and Flip.

Transfer learning to the real world. One of the promises of this al-

gorithm is that it could eventually be used in Robotics. One possible way of

accomplishing this is to run it in simulation to train several skills, and then

attempt to transfer them onto a real robot. This transfer learning process

from simulation to real world is arguably feasible because the solutions that

work inside the simulation may only need to be slightly adjusted.

Improvements aimed toward Robotics. It could also possible to

have the algorithm run on a real robot from the beginning, without the

need of a high-fidelity simulated environment. In its present form, it is not

practical for immediate use on a robot. However, it is possible to address

this by explicitly incorporating some of the limitations that real robots are

also subject to. For example, real robots cannot magically reset themselves

to a rest state. Real robots also cannot run faster than real-time, so the

algorithm should be modified with the explicit goal of minimizing the num-

ber of trials that must be attempted. Finally, robotic hardware is expensive

and subject to damage. The algorithm could respect this limitation by care-

fully considering actions that may result in high-velocity impacts and not

attempting them unless it is sure that they will succeed with a high proba-

bility. Even though the algorithm currently ignores all of the above issues,

they are not theoretically insurmountable, and present interesting challenges

for future research.
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