Geometric Control and Motions Planning For Three-Dimensional Bipedallocomotion
- Тип контента: Научная статья
- Номер документа: 6993
- Название документа: Geometric Control and Motions Planning For Three-Dimensional Bipedallocomotion
- Номер (DOI, IBSN, Патент): Не заполнено
- Изобретатель/автор: ROBERT DE MOSS GREGG IV
- Правопреемник/учебное заведение: Graduate College of the University of Illinois at Urbana-Champaign
- Дата публикации документа: 2010-12-30
- Страна опубликовавшая документ: Не заполнено
- Язык документа: Английский
- Наименование изделия: Не заполнено
- Источник: Не заполнено
- Вложения: Да
- Аналитик: Глаголева Елена
This thesis presents a hierarchical geometric control approach for fast and energetically fiecient bipedal dynamic walking in three-dimensional (3-D) space to enable motion planning applications that have previously been limited to ineficient quasi-static walkers. In order to produce exponentially stable hybrid limit cycles, we exploit system energetics, symmetry, and passivity through the energy-shaping method of controlled geometric reduction. This decouples a subsystem corresponding to a lower-dimensional robot through a passivity-based feedback transformation of the system Lagrangian into a special form of controlled Lagrangian with broken symmetry, which corresponds to an equivalent closed-loop Hamiltonian system with upper-triangular form. The first control term reduces to mechanically-realizable passive feedback that establishes a functional momentum conservation law that controls the «divided» cyclic variables to set-points or periodic orbits. We then prove extensive symmetries in the class of open kinematic chains to present the multistage application of controlled reduction. A reduction-based control law is derived to construct straightahead and turning gaits for a 4-DOF and 5-DOF hipped biped in 3-D space, based on the existence of stable hybrid limit cycles in the sagittal plane-of-motion. Given such a set of asymptotically stable gait primitives, a dynamic walker can be controlled as a discrete-time switched system that sequentially composes gait primitives from step to step. We derive «funneling» rules by which a walking path that is a sequence of these gaits may be stably followed by the robot. The primitive set generates a tree exploring the action space for feasible walking paths, where each primitive corresponds to walking along a nominal arc of constant curvature. Therefore, dynamically stable motion planning for dynamic walkers reduces to a discrete search problem, which we demonstrate for 3-D compass-gait bipeds. After reecting on several connections to human biomechanics, we propose extensions of this energy-shaping control paradigm to robot-assisted locomotor rehabilitation. This work aims to oer a systematic design methodology for assistive control strategies that are amenable to sequential composition for novel progressive training therapies.
Категория: Научные статьи | Нет комментариев »
Комментарии
Статистика
Категорий: 179
Статей всего: 2,003
По типу:
Видео: 36
Выдержка с форума: 1
Контактные данные: 12
Научная статья: 1388
Не заполнено: 5
Новостная статья: 317
Обзор технологии: 42
Патент: 219
Тех.подробности: 34
Тип: 1
Комментариев: 6,672
Изображений: 3,005
Подробней...
ТОР 10 аналитиков
-
Глаголева Елена - 591
Дмитрий Соловьев - 459
Helix - 218
Ридна Украина))) - 85
Наталья Черкасова - 81
max-orduan - 29
Елена Токай - 15
Роман Михайлов - 9
Мансур Жигануров - 4
Дуванова Татьяна - 3
Календарь
Авторизация
Ошибка в тексте?
Выдели её мышкой!
И нажми Ctrl+Enter