http://myexs.ru/wp-content/themes/multiflex-4-10/img/header.gif
http://myexs.ru/wp-content/themes/multiflex-4-10/img/bg30.jpg

A mathematical model for mapping EMG signal to joint torque for the human elbow joint using nonlinear regression

Дата: Октябрь 2nd, 2011 Автор:
+ Показать свойства документа
  • Тип контента: Научная статья
  • Номер документа: 1747
  • Название документа: A mathematical model for mapping EMG signal to joint torque for the human elbow joint using nonlinear regression
  • Номер (DOI, IBSN, Патент): 10.1109/ICARA.2000.4803995
  • Изобретатель/автор: Ullah, K, Jung-Hoon Kim
  • Правопреемник/учебное заведение: Dept. of Electron. & Commun. Eng., Myongji Univ., Yongin
  • Дата публикации документа: 2009-03-21
  • Страна опубликовавшая документ: Корея
  • Язык документа: Английский
  • Наименование изделия: Не заполнено
  • Источник: http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&a
  • Вложения: Не заполнено
  • Аналитик: Не заполнено

Numerous researchers have investigated the relationship between EMG and joint torque. Most of these studies use some conventional filtering (i.e. rectification followed by low pass filtering) to estimate the electromyogram (EMG) amplitude and then relate it to the joint torque. Currently some advanced pre-processing techniques (i.e. signal whitening) are also used to estimate the EMG amplitude and then relate it to joint torque. In this study we apply some pre-processing techniques like DC offset removal, noise filtering followed by rectification and then we calculate the moving average of the EMG signal. Thus we get a linear envelope (muscle activation) of the EMG signal and use that linear envelope to estimate the joint torque. To map the EMG to joint torque we propose a new mathematical model. This model has some unknown adjustable parameters, and the values of these parameters are obtained using nonlinear regression. Five subjects took part in the experiments. They were asked to perform non-fatiguing and variable force maximal voluntary contractions (MVC) and submaximal voluntary contractions (SMVC), and the resulting elbow joint torque and EMG signals were recorded. This recorded data was entered to the model, to estimate best fit values for the unknown parameters. Once these values of the parameters were obtained they were put into the model and thus joint torque was estimated. Predictions made by our model are well correlated with experimental data in both MVC and SMVC, the correlation coefficient and mean square error obtained for experimental data during MVC are 0.998 and 0.056 Nm respectively. The results of this new model were compared with other existing models and some new models and it was found that our model has greater correlation and least mean square error with experimental data. This model may be helpful in the control systems for recognition systems, robot manipulators, exoskeletons, EMG prosthesis and electric stimulators.

Категория: Ищем научные статьи | Нет комментариев »

Комментарии

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *


Статистика

Категорий: 179
Статей всего: 2,003
По типу:
 Видео: 36
 Выдержка с форума: 1
 Контактные данные: 12
 Научная статья: 1388
 Не заполнено: 5
 Новостная статья: 317
 Обзор технологии: 42
 Патент: 219
 Тех.подробности: 34
 Тип: 1
Комментариев: 6,672
Изображений: 3,005
Подробней...

ТОР 10 аналитиков

    Глаголева Елена - 591
    Дмитрий Соловьев - 459
    Helix - 218
    Ридна Украина))) - 85
    Наталья Черкасова - 81
    max-orduan - 29
    Елена Токай - 15
    Роман Михайлов - 9
    Мансур Жигануров - 4
    Дуванова Татьяна - 3

Календарь

  • Октябрь 2011
    Пн Вт Ср Чт Пт Сб Вс
    « Сен   Ноя »
     12
    3456789
    10111213141516
    17181920212223
    24252627282930
    31  
  • Авторизация

    Ошибка в тексте?

    Выдели её мышкой!

    И нажми Ctrl+Enter