http://myexs.ru/wp-content/themes/multiflex-4-10/img/header.gif
http://myexs.ru/wp-content/themes/multiflex-4-10/img/bg30.jpg

Geometric Control and Motions Planning For Three-Dimensional Bipedallocomotion

Дата: Декабрь 30th, 2010 Автор:
+ Показать свойства документа
  • Тип контента: Научная статья
  • Номер документа: 6993
  • Название документа: Geometric Control and Motions Planning For Three-Dimensional Bipedallocomotion
  • Номер (DOI, IBSN, Патент): Не заполнено
  • Изобретатель/автор: ROBERT DE MOSS GREGG IV
  • Правопреемник/учебное заведение: Graduate College of the University of Illinois at Urbana-Champaign
  • Дата публикации документа: 2010-12-30
  • Страна опубликовавшая документ: Не заполнено
  • Язык документа: Английский
  • Наименование изделия: Не заполнено
  • Источник: Не заполнено
  • Вложения: Да
  • Аналитик: Глаголева Елена

This thesis presents a hierarchical geometric control approach for fast and energetically fiecient bipedal dynamic walking in three-dimensional (3-D) space to enable motion planning applications that have previously been limited to ineficient quasi-static walkers. In order to produce exponentially stable hybrid limit cycles, we exploit system energetics, symmetry, and passivity through the energy-shaping method of controlled geometric reduction. This decouples a subsystem corresponding to a lower-dimensional robot through a passivity-based feedback transformation of the system Lagrangian into a special form of controlled Lagrangian with broken symmetry, which corresponds to an equivalent closed-loop Hamiltonian system with upper-triangular form. The first control term reduces to mechanically-realizable passive feedback that establishes a functional momentum conservation law that controls the «divided» cyclic variables to set-points or periodic orbits. We then prove extensive symmetries in the class of open kinematic chains to present the multistage application of controlled reduction. A reduction-based control law is derived to construct straightahead and turning gaits for a 4-DOF and 5-DOF hipped biped in 3-D space, based on the existence of stable hybrid limit cycles in the sagittal plane-of-motion. Given such a set of asymptotically stable gait primitives, a dynamic walker can be controlled as a discrete-time switched system that sequentially composes gait primitives from step to step. We derive «funneling» rules by which a walking path that is a sequence of these gaits may be stably followed by the robot. The primitive set generates a tree exploring the action space for feasible walking paths, where each primitive corresponds to walking along a nominal arc of constant curvature. Therefore, dynamically stable motion planning for dynamic walkers reduces to a discrete search problem, which we demonstrate for 3-D compass-gait bipeds. After reecting on several connections to human biomechanics, we propose extensions of this energy-shaping control paradigm to robot-assisted locomotor rehabilitation. This work aims to oer a systematic design methodology for assistive control strategies that are amenable to sequential composition for novel progressive training therapies.

Категория: Научные статьи | Нет комментариев »

Комментарии

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *


Статистика

Категорий: 179
Статей всего: 2,003
По типу:
 Видео: 36
 Выдержка с форума: 1
 Контактные данные: 12
 Научная статья: 1388
 Не заполнено: 5
 Новостная статья: 317
 Обзор технологии: 42
 Патент: 219
 Тех.подробности: 34
 Тип: 1
Комментариев: 6,627
Изображений: 3,005
Подробней...

ТОР 10 аналитиков

    Глаголева Елена - 591
    Дмитрий Соловьев - 459
    Helix - 218
    Ридна Украина))) - 85
    Наталья Черкасова - 81
    max-orduan - 29
    Елена Токай - 15
    Роман Михайлов - 9
    Мансур Жигануров - 4
    Дуванова Татьяна - 3

Календарь

  • Декабрь 2010
    Пн Вт Ср Чт Пт Сб Вс
    « Ноя   Янв »
     12345
    6789101112
    13141516171819
    20212223242526
    2728293031  
  • Авторизация

    Ошибка в тексте?

    Выдели её мышкой!

    И нажми Ctrl+Enter