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ABSTRACT 

           Virtual Reality describes a 3-D computer generated environment, 

controlled by the user from a remote location. VR has applications in robotics, 

entertainment and medical field. Virtual Reality robotic systems have been a major help 

in hazardous environments and in areas which need a high degree precision such as 

nuclear plants and tele-surgery. An ideal VR system immerses the user in the virtual 

environment. This condition is termed as telepresence. The components of a VR system 

are human operator, interface system and teleoperator. VR system relies on human 

interface performance for its high accuracy. Commercially available interfaces such as 

Data Gloves and exoskeleton devices provide less accuracy and restricted motion. A 

biocontrol interface utilizing human physiological signals such as Electromyogram 

(EMG) would be a natural and synergistic way of controlling a remote teleoperator.  

                        Previous studies (Suryanarayan and Reddy) have shown that surface EMG 

(SEMG) from flexor muscle can be effectively used as a human interface for controlling 

teleoperators for dynamic motion of elbow joints. The goal of the present study was to 

investigate the use of SEMG from extensor muscle to control real time dynamic 

movement of index finger at various speeds for full range. Normal subjects were asked to 

rhythmically flex and extend the index finger at different speeds. The actual angle was 

measured   using  a  miniature  accelerometer. SEMG from extensor  muscle  (Extensor  
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Digitorum Superficialis (EDS)) was used to correlate with angle made by index finger at 

various speeds, with all other fingers at constant position. Parameters were extracted from 

SEMG. Neural networks were trained with input as extracted parameters and targets as 

measured angles. Best five networks were recruited for each committee. Two committees 

for each speed were formed. The committees were evaluated using data from new subject 

and the errors between actual and predicted joint angle was calculated.  

                        The committees were able to predict the joint angle at different speeds. 

The RMS errors between the predicted and the actual angle were found to be between 3-

27%. The errors were more in the flexion region as compared to the extensor region. The 

study demonstrated the use of SEMG from EDS for the prediction of joint angle at 

different speeds. It also demonstrated the use of committee neural networks (CNN) in 

control related prediction problems. The study has taken a step forward in the direct 

biocontrol of telemanipulator and VR environments using SEMG. The study would find 

an application in medicine and control of robotic assist devices.  
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CHAPTER I 

 
INTRODUCTION 

Robotic telemanipulators and Virtual Reality (VR) have seen many rapid 

advances in the recent times. A VR environment is defined as a 3-D computer world that 

looks and feels real. During last few decades, VR has made its presence felt in many 

areas, including combat simulation, virtual flight simulation, rehabilitation (Reddy et. al, 

1994) and entertainment. A lot of interest has been generated in controlling a mechanical 

device or a telemanipulator from a remote environment. A telemanipulator can be used in 

potential hazardous environments, video games, rehabilitation, space and military. It 

gives the operator the capacity to manipulate real world environments from the comfort 

of his/her workplace. Robotic telemanipulators have been used in assisting surgical 

procedures such as endoscopy and image guided surgeries for brain tumor. The advances 

in robotic telemanipulators have the potential to make complex surgical procedures 

minimally invasive, reducing the time and effort for the procedure, and increasing the 

efficiency of the operator by many fold. It is extremely important that the tasks 

performed by the robotic manipulator closely follow the behavioral pattern of the 

operator, both intellectually and anatomically. The system should also be able to provide 

a haptic and visual feedback to make the operator feel present, and immersed in the 

environment. This condition is termed as telepresence.  
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The components of an ideal telemanipulator system are: 

• Human Operator, which controls the environment from a remote location. 

• Teleoperator, which is a remote operator controlled by the human and, 

• Interfacing device, which acts as data transfer system between the operator and 

the telemanipulator. 

The performance of the overall systems is dictated by the performance of its 

subsystems, and any errors in any of the subsystem can translate into the erroneous 

operation of the entire system. A teleoperator, which has anatomical structures matching 

the human, is termed as an anthropomorphic telemanipulator. The interfacing devices can 

take the form of human features, such as data glove, or device which assist the human 

operations, such as joy sticks and key boards. An interfacing device is responsible for 

transferring the manipulation information from the operator to the teleoperator as well as 

feedback information from the teleoperator to the operator. However, the development of 

an ideal interfacing device, which could reliably transfer the information both ways, has 

always posed problems for researchers. 

Some of the commercially available devices include joy sticks, magnetic trackers, 

DataGloveTM, CyberGlove®, Exo-Skeletal devices (EXOS), motion trackers such as 

Flock of Birds (Ascension Inc.) and ultrasound trackers. These devices measure the joint 

angle of fingers or the position of the operating anatomical structure. Even though these 

devices are used for controlling a telemanipulator, they have several limitations. 

DataGloveTM measure the angle and position of the finger using several resistors. 

However, the accuracy of the measurement depends on the position of the resistors on the  
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human hand, which varies with the size and structure of the human hand, inducing error  

in the system. Moreover, the calibration procedures of DataGloveTM are complicated and 

static errors are in the range of 4-8º (Burdea and Langarana, 1992). Furthermore, these 

errors were obtained on mechanical models not using the actual finger joints. EXOS are 

very bulky and hence cause fatigue to the user, thus compromising the ability of the user 

to work in stressful environments.  

Therefore, there is a need to develop an interfacing device which would overcome 

these problems, while maintaining the required accuracy of the system. The system 

should be very easy to calibrate, and should not cause a hindrance to the natural working 

habits of the user. Direct bio-control of the telemanipulator using physiological signals 

such as Electro-oculogram (EOG) and Surface Electromyogram (SEMG) can provide a 

useful control of the telemanipulator, thus making the system more synergistic and 

natural. Out of all the physiological signals, SEMG presents the most useful information 

about the movement and the activity of the user, and can be used to control an 

anthropomorphic telemanipulator. The SEMG is random, non stationary and non-linear 

(Duchene, 1993) and is the manifestation of the electrical activity of the human muscle. 

A lot of study has been conducted in studying the relation between SEMG and the muscle 

activity (Kearney, 1990). But most of the studies have investigated the isometric 

properties of the muscle, and failed to address the dynamic movements of the limb. The 

SEMG signal pattern for the dynamic movement of the limb depends on several factors, 

such as the velocity of the muscle movement, load on the muscle and the time for which 

the activity is performed. Also, the nature of the SEMG varies with environmental factors  
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such as temperature, humidity, measurement conditions, skin impedance and the 

placement of electrodes. A change in any of these factors may result in unpredictable 

change in the SEMG pattern.  

Attempts have been made to study the usefulness of the SEMG for the control of 

a telemanipulator. Reddy and Gupta (2006) used SEMG from flexor muscles to control 

computer models of finger and wrist. However, their study was limited to 24º of finger 

flexion, from neutral position to touching the thumb. Moreover, the study involved only 

static analysis. Previous studies conducted by Suryanarayan and Reddy (1997), on 

dynamic tracking of elbow joint movement using the SEMG, showed that the SEMG can 

be used for the control of the telemanipulator. The non-linear nature of the signal 

prompted them to use hybrid intelligent systems involving neural networks and fuzzy 

logic. Devavaram (2003) conducted the investigation on the dynamic movement of the 

finger by acquiring the SEMG from flexor muscle. However, the range of the 

investigation was limited to 20º flexion of the finger. The study made use of individual 

committee neural network for each subject, making the procedure very cumbersome and 

complicated.  The question still remains whether the SEMG can be used to predict the 

joint angle of the finger for the entire range of flexion and extension at various speeds. 

The present investigation was aimed at answering this question. Specific objectives of the 

study were:- 

• To develop a reliable SEMG signal acquisition system for acquiring SEMG 

signals from Extensor Digitorum Superficialis muscle (EDS), during the 

movement of index finger at various speeds. 
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• To acquire SEMG signals from subjects at various speeds, during the flexion and 

extension of index finger. 

•  To find a relation between strength of the SEMG signal and joint angle. 

• Extract parameters from the SEMG for the training of neural networks. 

• Train Artificial Neural Networks (ANN) for the prediction of joint angle of the 

finger rotation. 

• Recruit the committee for the prediction of joint angle. 

• Evaluate the result by finding RMS errors between the predicted angle and actual 

angle measured by accelerometer. 

The hypotheses of the study are: 

Null Hypotheses 

1. There does not exist a definite relation between the SEMG from EDS muscle and 

the joint angle of the finger movement at various speeds. 

2. SEMG along with Committee Neural Networks (CNN) cannot be used for 

predicting the joint angle of the finger movement at various speeds (average RMS 

errors >0.2). 

Alternate Hypotheses 

1. There exists a definite relation between the SEMG from EDS muscle and the joint 

angle of the finger movement at various speeds. 

2. SEMG along with Committee Neural Networks (CNN) can be used for predicting 

the joint angle of the finger movement at various speeds (average RMS errors 

<0.2). 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Virtual Reality 

        Virtual Reality (VR) addresses as many human senses as possible. The term 

Virtual Reality describes a computer-generated scenario of objects (virtual world) the 

user can interact with. In contrast to conventional man-computer interfaces, the 

interaction is designed in three dimensions rather than two. The combination of three-

dimensional computer graphics, special display techniques (head mounted display or 

stereo glasses) and specific input devices (spaceball, CyberGlove®, etc) allow intuitive 

manipulation of objects in the virtual world, thus giving users the impression of being 

part of the world. 

            Sutherland (1965) described Virtual Reality, as a looking glass into the 

mathematical wonderland, constructed in the computer memory. He coined the idea of an 

ultimate display, where the existence of matter is controlled by the computer (Sutherland, 

1965). Virtual Reality, since then has seen many advances. Its use covers a wide range of 

spectrum ranging from military to medical. Some of the most common applications of 

VR are aircraft simulators, surgical simulators, telepresence systems and teleoperations. 

In 1985, NASA scientists and engineers at Ames Research Center in Palo Alto, 

California, used VR techniques for developing a Martian  environment  for  training  their  
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space missions. This event marked the beginning of the use of VR for scientific 

visualization. The use of VR in medicine started with its application in medical 

education. Medical applications in VR include telepresence surgery, 3-D visualization of 

human anatomy and VR surgical simulators (Satava, 1995). Numerous surgical 

simulators in the field of ophthalmology, laproscopy, urology, orthopathy and neurologic 

surgery are presently in use.  These simulators are mainly used in teaching cognitive and 

manual skills (Zajtchuk and Satava, 1997).  NASA scientists at Johnson Space Center, in 

collaboration with the University of Texas Medical Branch at Galveston and the 

Galveston Independent School District, developed a Virtual Visual Environmental 

Display (VIVED). This is a high resolution simulator for human body and is used for 

educational purposes (Suzanne, 1994).   

 

2.2 Telepresence 

          The cardinal concept to define a VR system in terms of human experience is 

presence. Gibson (1979) described presence as perception of one’s surroundings, 

generated by an automatic and controlled mental process, and not as one’s surrounding in 

the physical world. The user should be totally immersed in the environment and should 

feel a sense of telepresence.  

         The different factors, which influence the sense of presence, are the inputs from 

some or all sensory channels and the mental process that integrates the data to give it a 

real meaning based on past experiences (Gibson 1966).  Researches have been trying to 

incorporate these factors to make a VR system appear more real. In a telepresence system  

7 



the user has all the necessary inputs which make him feel to be present at the site of 

operation. Applications of telepresence include Entertainment and Telesurgery.  

 

2.3 Telesurgery 

         Telesurgery is an important application of telepresence and is gaining importance 

in teleoperations. Telesurgical manipulations are used in battlefields and in emergency 

surgical operation situations. Surgeons have started making use of telesurgery in urology. 

A robotic laparoscopy surgery provides many advantages over a conventional 

laparoscopy, such as stereovision, dexterity and tremor filtering. However, such kind of 

surgery requires a lot of practice on the part of surgeon, mainly because of magnification 

and lack of tactile feedback (Rassweiler et. al, 2001). Further, although the current 

systems offer numerous advantages, the principal paradigm remains the same, and that is 

manual control of the instruments with visual feedback by video cameras.  Figure 1 

shows the general architecture of a telesurgical system.  

 

A Telesurgical system consists of following constituents: 

1. Human Operator 

2. Interfacing Devices 

3. Computer Networks and Data Processing Systems 

4. Patient Database and Treatment Module 

5. Anthropomorphic Teleoperator 

 

8 



 

 

 

 

 

Figure 2.1. Architecture of a Telesurgical System 
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2.4 Interfacing Devices 

          The control data from the operator is acquired by an interface device, which 

plays an important part in a teleoperations system. The interface device is responsible for 

transmitting physiological data to the control system in a form that can be used for 

controlling the telemanipulator located at a remote site, or to interact with the VR 

environment. The overall performance of the telemanipulator system is largely dictated 

by a reliable, robust and error free interface device. The first modern master-slave 

teleoperator system was developed by Raymond Govertz in 1940, at Argonne National 

Laboratory near Chicago, for manipulation of radioactive materials. Since then, 

interfacing devices have seen a lot of technological advances in the field of space, 

military, mining and telesurgical operations. Sutherland in 1968 developed the first head 

mounted display which measured the viewing direction. Advanced naval systems use 

cable and video cameras to control teleoperators on submarines. Several commercial 

systems are available for the use in human interface for teleoperations.  Commercial 

interfaces for tracking human arm movements include CyberGlove®, joy sticks, 

magnetic and ultrasound trackers, Optical Position Tracking System (OPTS), power 

gloves, external skeletal devices etc. Although these systems offer a definite advantage 

over humans, they suffer from various performance disadvantages which are discussed in 

the proceeding section. 
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2.4.1 CyberGlove® 

          A CyberGlove® is mounted with series of flexible sensors for measuring the 

position of the finger and the wrist. A CyberGlove® makes use of the bend sensor for 

sensing the motion. The sensors measure the resistance generated due to bending. This 

change in resistance gives the measure of the degree of motion. These gloves are widely 

used for sensing finger motions, but they have a serious limitation associated with them. 

The sensor is prone to environmental noise resulting in the tremor in virtual hand. A 

repeatability evaluation study conducted by Dipietro et. al (2003) on a 20 DOF human 

glove showed an overall performance error of 6.17°.  Though the system offered many 

advantages over the conventional data gloves like more number of sensors for 

measurement (20) as compared to data gloves (10) and ability to measure abduction due 

to increased sensors, it lacked the required repeatability in telesurgery. Furthermore, the 

repeatability error increases for humans with different anatomical hand structure. 

Dipietro et. al (2003) reported that the system performance is acceptable in rehabilitation 

but the cost of the system may be a hinder for its widespread use. It is also difficult to 

implement haptic feedback control due to the presence of glove (Dipietro et. al, 2003).  

 

2.4.2 Magnetic Trackers 

            Magnetic trackers, also called as “Flock of Birds” was developed by Scully in 

1993. The system is an assembly of receivers and transmitters, using alternate low-

frequency field to determine an object’s motion. Magnetic trackers use sets of coils that 

are pulsed to produce magnetic fields. The magnetic sensors determine  the  strength  and  
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angles of the fields. Limitations of these trackers are, a high latency for the measurement 

and processing, range limitations, and interference from ferrous materials within the 

fields. 

 

2.4.3 Optical Position Tracking System (OPTS) 

            Optical Position Tracking System (OPTS) was developed as an alternative to 

magnetic trackers. OPTS makes use of a ceiling LEDs grid, which emit the light in pulse 

sequences, and a head mounted camera. The camera’s image is processed to detect the 

flashes. The problems with this method are, limited space (grid size) and lack of full 

motion (rotations). Another optical method uses a number of video cameras to capture 

simultaneous images that are correlated by high speed computers to track objects. The 

processing time of the image is a major limiting factor here along with the cost of high 

speed image processing hardware. 

 

2.4.4 External Skeletal Devices (EXOS) 

            An Exo-skeletal Device is a metallic structure worn at the back of the hand. A 

typical exo-skeletal device is made up of rotatory potentiometers to measure the position 

of fingers and hand. 

            There are several problems associated with the system, such as large size 

causing tiredness to the user, and limitations to the natural fingers operation. The device 

also ranks low on the accuracy measure due to the position of the sensors. The sensors  
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are not placed on the joints causing a high degree of inaccuracy in the measurement. The 

wire used for haptic feedback suffers from friction, expansion and contraction thus 

compromising the accuracy of the measurements (Tatsuya et. al, 2002).  

 

2.5 Anthropomorphic Telemanipulator 

            The most important criteria for an ideal teleoperator system is the dexterity of 

the telemanipulator. In order to control the remote environment, the actions of the human 

operator should be exactly copied by the telemanipulator system. Such kind of 

telemanipulator is called as an anthropomorphic telemanipulator (Sheridan, 1992). A 

telemanipulator provides the necessary input to the user to remotely control the 

environment. It would sense the environment with sensors resembling eyes (e.g. camera), 

manipulate objects by mechanical arms that resemble hands and move with parts 

resembling legs.  

            Anthropomorphic telemanipulator has wide-ranging applications in the field 

where a human operator cannot perform with high degree of effect, and where the safety 

of a human operator can be compromised, such as nuclear reactors, mining and military 

operations. Some of the applications of an anthropomorphic telemanipulator include 

surgical simulations and telesurgery.   

            The overall performance of the telesurgery system is largely dictated by a 

reliable, robust and error free human interface device. However, all of the mentioned 

systems have several drawbacks including rigid command configuration, limited range of 

activity, inconvenient to use during long hours of operations and susceptibility to external  
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noise. Bio-control of the telemanipulator involving physiological signals like 

Electroencephalograph (EEG), Electro-oculograph (EOG) and Electromyograph (EMG) 

is thought to be an alternative and very useful way of eliminating most of the drawbacks 

of commercially available systems. Electro-oculograph (EOG) is an electrical signal 

generated by the vertical and horizontal eye movements. However, the use of EOG is 

limited to vision based control of telemanipulators. Also, the utility value of an EOG 

signal is limited because of its low range of information content and uneasiness to the 

user. EEG represents electrical activity of the brain. Several researchers have attempted 

to track brain functions using EEG signals, but due to extreme complexity of the signal, 

they were able to achieve only a two stage control in a much selected subject population. 

Electromyograph on the other hand is a direct representation of the muscle activity and 

hence is the most natural signal for the synergetic control of the telemanipulator systems. 

Out of these physiological signals, EMG is the most promising and maybe the most 

appropriate for controlling an anthropomorphic teleoperator. 

 

2.6 EMG 

            The myoelectric signal is the electrical manifestation of the neuromuscular 

activation associated with a contracting muscle. The myoelectric signal is an extremely 

complicated signal. It is greatly affected by the anatomical and physiological properties 

of the muscles and the control scheme of the peripheral nervous system. The quality of 

detection of a myoelectric signal largely depends on the characteristics of the instrument 

that is used to detect and observe the signal (De Luca, 1979). The  electrical  activity  can  
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be measured by using either needle electrodes (Palmer et. al, 1991; Perlman et. al, 1989)  

or surface electrodes (Gupta et. al, 1996). Needle electrodes are used to measure the 

electrical activity of specific muscle, while surface electrodes are used to measure the 

gross activity from a group of muscles. The electrical activity measured is called 

electromyograph. The amplitude of the EMG is the resultant integration of all electrical 

activities of a muscle at a particular instant of time (Cromwell et. al, 1980). The 

amplitude of EMG is stochastic in nature and can be reasonably represented by a 

Gaussian distribution function. The amplitude of the signal can range from 0 to 10 mV 

(peak to peak) or 0 to 1.5 mV (RMS)   (Carlo J. De Luca, 2002).  The useful energy of 

EMG is limited to the range of 30 to 300 Hz. EMG is currently used for several 

applications such as 

• Kinesiology:  To monitor muscle function performance 

• Gait Analysis 

• Biomechanics:  To monitor the muscle activities during movement 

• Myoelectric control of prosthesis 

• Rehabilitation 

• Diagnosis of neuromuscular disorders 

            EMG is the result of the contractions of the muscle, and the basic structural unit 

of contraction is a muscle fiber. The fibers always contract in group and the collective 

contraction of these muscle fibers produces resultant EMG. The muscle fibers are 

supplied by the terminal branches of one nerve fiber, whose cell body is in the anterior 

horn of the spinal grey matter.  These  muscle  fibers,  along  with  the   innervating  axon  
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running down the motor nerve and its terminal branches, constitute a motor unit. The 

number of fibers innervated by a single motor unit differs according to the location of 

muscle. Generally, muscles controlling fine movements have smallest number of muscle 

fibers per motor unit (e.g. Muscles of eyeball or larynx). On the other hand, coarse acting 

muscles have larger number of muscle fibers per motor unit. The contraction of a 

voluntary muscle is under the control of nerves and they contract only when the nerve 

impulse reaches the muscle. The contraction of a muscle is all or none phenomenon i.e., 

so long as simulation is sufficient to cause a contraction, there is only one degree of 

contraction and that is maximal. When an impulse reaches the motor endplate, a wave of 

contraction spreads over the fiber resulting in a brief twitch, followed by rapid and 

complete relaxation. The duration of the twitch and relaxation varies from few msec to 

0.2 secs.  The muscle fibers of a motor unit do not contract at the same time, and hence 

the electrical potential developed by a single twitch of all the fibers in the motor unit is 

prolonged to about 5 to 12 msec (Guyton, 1971). Figure 1.2 shows the plot of the raw 

SEMG taken from the Flexor Digitorium Superficialis (FDS) of the subject when the 

index finger was relaxed.  

 

2.7 EMG Analysis 

            EMG signals have been a very effective research tool since decades. Sukhtankar 

and Reddy (1993) used SEMG to control Finite Element Models of hand. The EMG is 

extensively used for muscle function assessment, pathology identification and pattern 

classification  (Duchene and Goubel, 1993).  Farry et. al (1995)  have  shown  that  EMG 
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Fig 2.2 Raw EMG of the subject taken from Flexor Digitorum Superficialis and 

filtered at 30-300 Hz. 
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can be used for the teleoperation of a complex anthropomorphic robotic hand, by 

converting the myoelectric signal into robot commands replicating the motion. Their 

research used EMG for switching on pre-programmed motions of the robotic hand, such 

as chuck and key grasp primitives. Since, the motions were pre-programmed therefore, 

the operator had limited freedom in the use of this technique. 

           Other researches such as Utah/MIT dexterous hand (Jacobsen et. al, 1986) have 

used EMG to design a 4-DOF robotic finger and 4-DOF robotic thumb. EMG signals 

have often been used as control signals for prosthetic hands. Wiener (1948) proposed the 

concept of an EMG- controlled prosthetic hand. EMG signals have been used as control 

signals for prosthetic hands such as Waseda hand (Kato et. al, 1967) and Boston arm 

(Jerard et. al, 1974).  

 However, these prosthetic hands are seldom used by the amputees for two main 

reasons. First, the hardware device has problems such as motor noise and excessive 

weight. Second, there is a problem of interfacing the human and the device (Fakuda et. al, 

2002). 

            EMG signals have been analyzed either in time or the frequency domain to 

characterize the muscle activity (Merletti and LaConte, 1995). Bilodeau et. al (1992) 

performed time and frequency analysis of EMG signals of homologous elbow flexors and 

extensors. Power spectral analysis has been performed in the frequency domain on the 

EMG signals to determine the frequency pattern of the signal in normal and pathologic 

muscles (Ronager et. al, 1989). EMG signals have been high pass, low pass and band 

pass filtered to eliminate the effect of noise (Kenemans et. al, 1991). 
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Surface EMG is a direct result of the muscle activities and therefore, considered 

to be the most useful physiological data to be used in a bio-control interface. However, 

the relation between EMG and arm dynamics in the presence of motion has not been fully 

understood. The EMG signal pattern depends on several factors such as velocity of 

movement, amplitude of movement, position of the arm and the condition of the subject. 

Recent studies by Suryanarayan and Reddy (1997) have successfully employed the use of 

surface EMG from the biceps muscle to predict the joint angle of the elbow at different 

speeds. Gupta (1997) have used SEMG from the FDS muscle and the Flexor Carpi 

Ulnaris (FCU) muscle to manipulate anthropomorphic computer models of two fingers 

and wrist teleoperators at constant speed. However, the pattern of surface EMG is also 

affected by the velocity of the movement. Therefore, the question remains whether 

SEMG can be used to accurately predict the finger angle at different speeds. The purpose 

of the research was to address this question. 

 

2.8 Choice of the muscle 

            Preliminary experiments and previous studies have shown that the SEMG 

acquired from the Extensor Digitorum Superficialis (EDS) shows better linearity when 

plotted against the joint angle of the index finger, as compared to the SEMG from the 

FDS muscle and the FCU muscle, during the motion of the index finger. Therefore, in the 

present study we made use of EDS for gathering the SEMG for rhythmic flexion and 

extension of the index finger.  The EDS arises from the common extensor origin on the 

anterior aspect of the lateral epicondyle of the humerus. It occupies most of the posterior 
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region of the forearm. It divides into four tendon slips proximal to the wrist. These pass 

under the extensor retinaculum within a common synovial sheath. The tendons end into 

the extensor expansions of the fingers. Tendons to the ring and the little finger often fuse. 

EDS is supplied by nerves C7 and C8. The EDS enables the extension of wrist and index 

finger, along with other fingers.  

            It is a well known phenomenon that EMG is a non-linear signal as is the case 

with most of the physiological signals. Attempts to relate the EMG with the joint 

variables in the presence of arbitrary movements have met with little success. EMG 

signal pattern depends on lot of parameters including speed of movement, amplitude of 

movement, load on the joint and number of muscles activated at one point of time. It also 

depends on the position of measuring electrodes with respect to the activated muscle. The 

dependence of the SEMG on these factors makes it extremely difficult to predict the joint 

angle of the index finger, using normal signal processing techniques. Therefore, an 

Artificial Neural Network (ANN), with its ability to predict the output from non-linear 

signals, might be a useful tool for the prediction of the joint angle of the index finger. 

 

2.9 Neural Networks 

           The structure of an ANN is inspired by the organization of human brain and 

therefore, to understand an ANN we need to understand the basics of human brain.  A 

human brain is a highly developed data processing module capable of analyzing a vast 

amount of visual, auditory and sensory information. It is superior to even the most 

advanced AI system based on the fastest supercomputer  designed  for  the  recognition of  
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objects and faces. A human brain typically consists of a very complex structure of around  

100 billion neurons that are densely interconnected to 1000 to 10000 connections per 

neuron. The switching times of the fastest neuron in a human brain are known to be of the 

order of 10-3 seconds, and are quite slow compared to computer switching speeds of 10-10 

seconds. Yet, humans are able to make surprisingly complex decisions, surprisingly 

quickly, in the order of 10-1 seconds. It is quite evident that the neurons firing sequence in 

10-1 seconds cannot be more than a few hundred steps, even though the efficiency is 

extremely high as compared to a computer. This observation has led many to speculate 

that the information-processing abilities of biological neural systems must follow from 

highly parallel processes operating on representations, which are distributed over many 

neurons. This highly efficient functioning of the brain is the prime motivation for the 

design of a parallel processing system based on human brain (Mitchell, 1997). A neuron 

is a basic processing unit of brain, which animals use to detect the outside environment, 

the internal environment of their own bodies, to formulate behavioral responses to those 

signals, and to control their bodies based on the chosen responses. All neurons have a 

body called a Soma. The Soma contains the nucleus and all of the other organelles that 

are needed to keep the cell alive and functioning. Neurons also have directionality to 

them. On one side of the neuron are the dendrites. The dendrites serve as the input 

gateway to a neuron.     

            The dendrites are branching structures, and connect with the outputs of other 

neurons. They typically spread over a wide area in the immediate vicinity of the neuron. 

This allows the neuron to get inputs from a number of different synapses. The  other  end  
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of neuron is the 'output' end containing an axon. The axon is usually quite long compared 

 to the rest of the neuron. Neuron activity is typically excited or inhibited through 

connections to other neurons. The output of the neuron is produced only when the 

combine input of all the dendrites is high enough to fire the neuron. The output is then 

channelised through the axon, which is connected to numerous dendrites of other neurons 

through synapses containing a neurotransmitter. Synapses usually connect to the 

dendrites of other neurons or are connected directly to muscles. The transmission of the 

signals across these synapses is electro-chemical in nature and the magnitude of the 

signal depends on the synaptic strength of the synaptic junction. The strength of the 

conductance of a synaptic junction is modified every time the brain learns. This process 

can be best illustrated by the example of driving on a new road. The first timer always 

finds it difficult to drive on a new road. On the contrary, the person who has driven on the 

same road for many times even remembers the potholes on the road. Human brain always 

associates a particular event or picture to a similar event that has happened in the past, or 

the picture he has seen before and passes the judgment based on the past experience. 

           An ANN is a highly organized structure of parallel processing units called as 

neurodes, the organization of which is inspired by the architecture of cerebral cortex 

portion of human brain. Neurodes are analogous to neurons in the brain as they have 

inputs (dendrites) and the output is the weighted function of the input. Neurodes are 

sequentially arranged in different layers with full or random connection between layers. 

The figure 2.3 shows a McCulloch and Pitts model (MCP) neuron in a neural network. 
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Mathematically, a neuron is described by the following equations (Hertz et.al., 1991) 

∑
=

=
m

j
jkjk xwu

1
 

)( kkk buy += ϕ  

where x1, x2,……..xm are the inputs to the neuron and wkm  are the synaptic weights of the 

neuron, uk  is the weighted output of the neuron which is then given to the transfer 

function ϕ . The final output of the neuron is yk which is obtained by adding a bias bk to 

the neuron output uk, and passed through the transfer functionϕ . 

 

Figure 2.3 McCulloch and Pitts model (MCP) neuron. I1 through In are the inputs 

and W1 through Wn are the corresponding weights attached to the inputs. 
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A typical neural network consists of one input layer, one output layer and one or 

more hidden layers. Figure 2.4 shows the diagram of a typical neural network. Each 

neurode is unidirectional and connected to the other neurode of the next layer through 

synapses. This type of architecture is called as feed forward network. A fully connected 

network is the one in which every neurode in one layer is connected to every neurode in 

the subsequent layer. The output of the each neurode is the weighted function of the 

inputs. The output is subjected to a nonlinear transfer function which is usually a 

threshold function or bias, and the output is generated only when the weighted sum 

exceeds the bias value. The operation of a neural network involves two stages, training 

and recall. Training is a process by which the desired input and outputs are given to the 

neural network and the network adjusts the connection weights in order to give the 

desired output. 

The learning process is governed by a learning algorithm. Recall is the process of 

evaluation of a neural network response to new inputs. 

 

2.9.1 Transfer Functions 

           The input output function, also called as transfer function or activation function, 

along with the weight of each unit, greatly affects the learning process and the output of 

the neurode. This function typically falls into one of three categories:  

• linear  

• threshold 

• sigmoid 
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Figure 2.4 A typical two layer Neural Network 
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For a linear unit, the output is proportional to the total weighted input. The output value 

ranges from +inf. to –inf.  

            For a threshold unit, the output is set at one of two levels, depending on whether 

the total input is greater than or less than some threshold value. The output value of the 

neurode ranges from 1 to 0.  

            For a sigmoid unit, the output varies continuously, but not linearly as the input 

changes. A sigmoid transfer function is a smooth and continuous thresholding function of 

the type  

S(x) = 1 axe−+1
1  

Figure 2.5 shows the graphical representation of the input and output relation in a 

sigmoid transfer function. 

For large a, the function approaches a Heaviside step function at x = 0. The 

sigmoid is frequently used as a transfer function in ANN. All the three transfer functions 

are rough approximations of the neurode but Sigmoid units bear a greater resemblance to 

real neurons than do linear or threshold units. The choice of the appropriate transfer 

function depends on the application of the neural networks. 

 

2.9.2 Learning Process 

            The learning of the neural network is the determination of appropriate weights 

of neurodes for predicting the output of an unseen quantity. The learning process of a 

network is carried out in the following three different steps. 
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Figure 2.5 Input and output relation in a sigmoid transfer function 
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1. Present the network with the training examples consisting of the input pattern and 

the desired output for those patterns. The choice of the training data is very important for 

the efficient learning of a neural network. The data should cover all the pattern 

possibilities for the network to predict the correct output in even extreme situations. 

Based on the type of the data provided to the neural network, the network can be trained 

for either associative mapping, in which the network is trained for recognizing a 

particular pattern in the input data, or regularity mapping, in which the network learns to 

respond to the particular properties of the inputs and thereby giving a unique response of 

each input unit.  

2. Find the error between the desired output and the output predicted by the network. 

3. Change the weight of each neurode unit so that the network predicts the output with 

better approximations between the predicted and desired output. 

The learning methods are broadly classified in two different categories. 

1. Supervised learning 

            Supervised learning incorporates an external teacher, and each output unit is 

informed about the desired output for a particular input pattern. During the learning 

process, global information may be required. Paradigms of supervised learning include 

error-correction learning, reinforcement learning and stochastic learning.  

2. Unsupervised learning 

           Unsupervised learning uses no external teacher and is based upon only local 

information. It is also referred to as self-organization, in the sense that it self-organizes 

data presented to the network and detects their emergent collective properties. Paradigms  
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of unsupervised learning are, Hebbian learning and competitive learning. Most of the 

practical problems use back propagation learning algorithms for training. Back 

propagation method works on error correction learning. 

 

2.9.3 Back Propagation Learning  

            Back propagation learning works on the error correction method, in which the 

error is calculated and compared with the desired output during every iteration. The 

weight of each neurode is then recalculated to reduce the error, and the next iteration is 

performed. This process is repeated till the output error is steady. Following are the 

conditions in which back propagation may be a very useful algorithm. 

• A large amount of input/output data is available but there is no definite relation 

between input and output. 

• The problem appears to have overwhelming complexity however, there is clearly a 

solution.  

• It is easy to create a number of examples of the correct behavior.  

• The solution to the problem may change over time, within the bounds of the given 

input and output parameters. 

• Outputs can be fuzzy, or non-numeric.  

 

2.9.4 Applications of ANN 

ANNs have been widely applied in the following fields: 

1. Pattern recognition 
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2. Image processing and segmentation 

3. Forecasting 

4. Smart engineering systems designs 

            Neural networks are ideal in recognizing diseases and hence they find wide 

ranging applications in the field of medicine. Reddy et. al(1995) demonstrated the use of 

redundant neural networks and implemented them in the diagnosis of dysphagia. 

Salchenberger et. al (1997) used back propagation and radial basis functions for the 

diagnosis of breast implant rupture using ultrasound. The results showed that radial basis 

functions performed better in this case, as compared to back propagation techniques. At 

the same time Laffey (2003) used back propagation method for the prediction of residual 

neuromuscular block.  Another application of neural networks in pattern classification is 

gait analysis. Su et. al (2000) used supervised feed forward back propagation neural 

networks for the assessment of gait patterns. Neural network can also be a very useful 

tool for the pattern classification of myoelectric signals (MES). Kelly et. al (1990) 

demonstrated the use of discrete Hopfield network for calculating the time series 

parameters for a moving average myoelectric signal model. They applied a second neural 

network for classification of a single site MES based on two parameters, time series 

parameter and the signal power. Abel et. al, (1996) investigated the performance of 

neural networks for analysis and classification of healthy subjects and patients with 

myopathic and neuropathic disorders, using EMG signals at maximum contraction from 

right biceps. Suryanarayan (1996) successfully used neural networks and fuzzy logic for 

the prediction of elbow joint angle using SEMG. A neural network committee can also be  
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employed for the task instead of a single neural network. The committee comprises 

neural networks which are selected from several trained neural networks with least errors. 

Palreddy (1993) used multiple, differently trained networks to improve the decision 

making process of the neural networks. Reddy and Buch (2003) used committee neural 

networks for speaker verifications using speech signals. Das et. al (2001) used committee 

neural network for the classification of normal from artifact signals for swallow 

acceleration. Prabhu et. al, (1994) used committee neural networks for automated 

recognition of acceleration signals due to dry swallowing and coughing. Shah et. al, 

(2005) used committee neural network for the classification of arthritis base on the finger 

joint acceleration signals. Researchers have shown that, with the careful selection of the 

training algorithm and training parameters, any non- linear signal can be classified using 

a committee neural network.    
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CHAPTER III 

 
METHODOLOGY 

 

            The objective of the present investigation was to develop a neural network based 

artificial intelligent system for tracking the movement of the index finger at three 

different speeds. The SEMG signal was acquired from the extensor muscle (EDS) located 

at the posterior side of the forearm of the right hand, while the subject performed 

rhythmic flexion-extension rotation of the index finger at three different frequencies. A 

pre amplifier was specifically designed for the amplification of SEMG. The SEMG was 

amplified and filtered by the pre-amplifier and an instrumentation amplifier with inbuilt 

notch filter and band pass filter.  The root mean square (RMS) of the SEMG was 

calculated and then was filtered using a ButterWorth low pass filter. Parameters were 

extracted from the RMS of the SEMG for the training of neural networks. ANNs were 

trained using extracted parameters as inputs, and actual angles as targets. Six types of 

networks were trained, which were specialized to handle the three different speeds of 

finger rotation. Two committees for each speed (one each for the upward and downward 

movement of finger) were selected for predicting the joint angle. The neural network 

committees were evaluated using data from subjects not used for training. The RMS 

errors were calculated between the actual  angle  and  the  calculated  angle. These  errors 
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Figure 3.1: Overall Flow chart of the methodology 
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were used to determine the efficiency of the committee networks for predicting the angles 

of finger rotation. Figure 3.1 shows the overall flow chart of the project. 

 

  3.1 Instrumentation 

            A two stage differential pre-amplifier with a gain of 4000 was specially 

designed and developed to provide a milivolt output from microvolt input. Further 

instrumentation included an amplifier (Gould Inc, Universal amplifier, Model number 13-

4615-58) with a built-in notch filter at 60 Hz and a band pass filter. 

 

3.1.1 Differential Pre-Amplifier 

            The pre-amplifier designed for this project was a two stage, two channels 

differential pre-amplifier. The first stage was a bipolar differential precision 

instrumentation amplifier (INA 122) for accurate, low noise differential signal 

acquisition, with CMRR of 83. The gain of the first stage was 400. The amplifier 

operated on ± 9 volts provided by two 9 volts alkaline batteries.  The output of 

instrumentation amplifier was DC coupled for the prevention of any DC signal passing 

through the circuit.  

           The second stage was a non inverting operational amplifier (µA 741). The gain 

of the second stage was 10. The net gain of pre-amplifier was 4000. The output was 

provided to an isolation amplifier (ISO 124P). This stage provided protection to the 

subject against power line current. 
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3.1.2 Amplifier 

           Amplifier stage consisted of an instrumentation amplifier (Gould Inc, Universal 

amplifier, Model number 13-4615-58) with a band limit capacity from 0-10K Hz. The 

amplifier provided a variable gain from 0.5-240. The table 3.1 shows the technical 

specifications of the system. Figure 3.2 shows the block diagram of the instrumentation 

system.  

 

3.2 Location and Placement of Electrodes 

            The SEMG signal was measured using silver/silver chloride SEMG electrodes 

(Myotronics-Noromed, Inc., DUO-TRODE) with an inter-spacing of 21±1 mm. A pair of 

electrodes was attached over EDS on the posterior side of the forearm. The muscle was 

identified by palpation. Some of the precautions taken during the placement of electrodes 

include: 

• Before the placement of electrodes, the skin was properly cleaned and 

moistened using alcohol swabs. 

• The muscle was carefully palpated by asking the subject to rhythmically flex 

and extend the index finger.  Electrodes were placed along the longitudinal midline of the 

muscle. The longitudinal axis of the electrode (which passes through both detection 

surfaces) should be aligned parallel to the length of the muscle fibers. 
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Table 3.1: The technical specifications of the system. 

 

Amplification 96000 

Input Impedance 50 MΩ 

CMRR 85db –(100 Hz) 

System Noise <7μV- (RMS) 

Resolution 0.5μV 

Bandwidth 30 - 300Hz 

Power Consumption 0.045μW 
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Figure 3.2: Block Diagram of the Instrumentation System 
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Figure 3.3: Locations and Placement of Electrodes on the Posterior Forearm of the 

Subject 
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3.2.1 Placement of reference electrodes 

            It is necessary that the reference electrode is as far as possible from the active 

electrodes and does not interfere with the SEMG acquired from the active electrode. The 

reference electrode was placed on the bony surface of the metacarpal near little finger.  

Figure 3.3 shows the placement of electrodes on the forearm of the subject. 

 

3.3 Choice of Subjects 

             Subjects without any known history of any neuromuscular disorder were 

chosen for the study. The subjects were within the age group of 20-28 years .The study 

was approved by the Institutional Review Board (IRB) at The University of Akron. 

Participation of the subject was completely voluntary. The subjects were verbally 

explained the purpose and the procedure of the study, and were asked to sign a consent 

form (A-2). The subjects were free to withdraw from the study at any point of the time 

during the study. 

            In total, 15 subjects were used for the study. Six subjects were used to train the 

neural networks. Two subjects were used for initial testing of neural networks. Further, 

the neural networks were evaluated using 7 different subjects.   

 

3.4 Protocol 

           The subject was asked to rest the right arm on the table with forearm in vertical 

direction and the wrist and phalangeal joints folded, and index finger in horizontal 

direction. An ultra miniature accelerometer was taped on the index finger of the subject at  
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two inches from the metacarpophalyngeal joint of the index finger. The EDS was 

identified on the posterior forearm of the subject by palpation. The skin was moistened 

using an alcohol swab. A pair of SEMG electrodes was attached to the skin over the 

muscle such that the longitudinal axes of the electrodes were parallel to the longitudinal 

axis of the muscle. The subject was asked to rest the thumb on a platform raised on the 

stand. The height of the platform was adjustable and it was adjusted according to the 

comfort of the subject. This arrangement ensured that the thumb of the subject did not 

move. Also, the arrangement reduced the strain on the muscle during measurements.  

           Two sets of data were recorded. The first set of the data was used for calibration 

of the system and normalization of the data. The second set of data was used for 

prediction of the joint angle. During the data acquisition for the calibration, the subject 

was initially asked to relax the muscle. Then, the subject was asked to move index finger 

at three different constant speeds from full flexion to full extension without applying any 

force (figure 3.4-3.5). The speeds used for the calibration were 0.4 Hz, 0.8 Hz and 1.2Hz. 

The speed of the movement was controlled by an audio feedback generated by a beep 

sound. The subject was asked to complete one cycle in between two beep sounds. The 

SEMG was recorded for approximately 20 seconds for each speed. Maximum and 

minimum SEMG of the subject was calculated, which was later used for the 

normalization of the SEMG during angle prediction. In the second set, SEMG and 

accelerometer data was recorded after the subject was fully relaxed after the first set of 

data. There was no change in the settings during the first and second set of data 

acquisition.  The subject was asked  not  to  move  other  fingers   and   wrist   during   the 
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acquisition of data for each set.  The second set of data was also recorded for three 

different speeds, 0.4 Hz, 0.8 Hz and 1.2 Hz.  

 

3.5 Data Acquisition 

            The SEMG signal from the surface electrodes was fed to a differential two stage 

preamplifier with the first stage gain of 400 and second stage gain of 10. The signal was 

filtered and amplified in the instrumentation amplifier (Gould Inc, Universal 

amplifier,Model number 13-4615-58). The signal was band limited from 30 Hz to 300 

Hz. The signal was notch filtered by an inbuilt notch filter and amplified by a factor of 

24. Thus, the overall gain of the system was 96000. 

             The amplified signal was digitized at a sampling rate of 1 KHz using a 12 bit 

A/D converter (Dataq,WINDAQ, DI 200) and acquired onto a PC using data acquisition 

software (WindaqPro) . The data acquisition interface used by WINDAQ was DI-205. 

The resolution of the WINDAQ system was 0.0048 V.  Signal from the accelerometer 

was directly fed to the A/D converter and sampled at a rate of 1 KHz.    

 

3.6 Signal Processing 

            The signals acquired from the A/D converter were subjected to further 

processing.  
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Figure 3.4: The full extension position of the index finger. 
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Figure 3.5: The full flexion position of the index finger. 
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 3.6.1 Processing of SEMG signals 

3.6.1.1 RMS EMG 

             A 10 data point moving window RMS of the digitized signal was obtained 

using the equation given below. 

RMSEMG (n) =  ∑
=

−
N

k
knx
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Where: 

x = SEMG measured 

N = number of data points of SEMG used 

n = present SEMG data point. 

3.6.1.2 Filtration 

            The RMS signal was then low pass filtered using a second order digital 

ButterWorth low pass filter at a cutoff frequency of two Hz. The equation of the filter is 

given as (Pashtoon, 1987) 
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Where: 

a, b are coefficients of the filter.  

3.6.1.3 Calibration calculations 

            The system was calibrated for each subject. The subject was asked to move the 

finger at all the three speeds. The RMS of the SEMG was calculated and the RMS was  
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filtered using the filter described above. This data set was used to find the maximum and 

minimum values of SEMG. These values were used for the normalization of the data 

recorded for actual calculations. 

3.6.1.4 Normalization of the signal 

           Maximum and minimum values of SEMG were used for the normalization of the 

SEMG during actual calculations of the joint angle. 

Normalized SEMG (NRMS) = 
GMinimumSEMGMaximumSEM

GMinimumSEMiSEMG
−

−)(  

     Where:  

     SEMG (i) = filtered SEMG 

     MaximumSEMG = Maximum SEMG acquired during calibration 

     MinimumSEMG = Minimum SEMG acquired during calibration 

Figure 3.6 shows the block diagram for the data acquisition. 

 

3.6.2 Parameters Extraction 

            Several parameters from the NRMS of the signal were extracted to be fed to the 

neural networks. The different parameters extracted were: 

1.  Present value of the signal, NRMS (i) 

2.  Immediate past NRMS (i-1) value (PRMS). 

3.  Distant past NRMS (i-4) 

4.  Slope of the NRMS (i – (i-1)) 

5.  Five points moving average of the slope of the  NRMS signal , where every point 

  represents the average of last 5 points of the slope of the NRMS signal  
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6.  Square of the magnitude of the NRMS (i*i). 

These parameters were given as inputs to the neural network. The output of the neural 

network was the joint angle.  During training, the desired output was the actual angle 

measured by the accelerometer. 

 

3.7 Processing of Accelerometer Data 

          The output data from the miniature accelerometer was subjected to a 10 point 

moving average window. 

Avgaccel(i) =  ∑
=

−
10

1
)(1

k
kiterAccelerome

N
 

Where: 

Avgacccel(i) = present averaged value of the accelerometer data. 

Accelerometer (i – k) = past 10 values of the accelerometer. 

N = 10, length of the moving window. 

The accelerometer data was then low pass filtered by a 2nd order ButterWorth filter 

(Pashtoon, 1987). Several trials were performed to determine the appropriate cut off 

frequency for the low pass filter between 1 to 10 Hz. Preliminary results showed that the 

best results could be achieved for the cut off frequency of 2 Hz and hence 2 Hz was 

chosen as the cut off frequency. 
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Figure 3.6: Block diagram of the data acquisition system. 
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3.7.1 Determination of the angle from accelerometer voltages 

             The corresponding angle from the accelerometer voltage was determined on the 

basis of the accelerometer calibration data. These angle values were used as the target 

parameter for the training of the neural networks.  

 

3.7.2 Accelerometer Calibration 

            A miniature single axis- accelerometer was used for the measurement of the 

actual joint angle of the movement of the index finger. The output of the neural network 

was compared to the output of the accelerometer for calculation of the RMS errors. The 

accelerometer was a gravity based tilt sensor. The specifications of the accelerometer are 

tabulated in table 3.2. The output of the accelerometer was voltage and therefore, it was 

calibrated for the corresponding angle of rotation.  

For calibration, the accelerometer was mounted on the protractor, on a movable platform. 

The height of the platform was adjustable, representing the actual measurement 

conditions. Following steps were performed for the calibration of accelerometer. 

1. The accelerometer was fixed on the horizontal aluminum plate, parallel to the arm 

of the protractor.  

2. The protractor arm was moved every five degrees and the output voltage of the 

accelerometer was recorded using WINDAQ data acquisition system. 

3. Six datasets were acquired using the same step as step two, and the average 

measurement at every five degrees was used for the calculation of corresponding angle. 
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4. Voltage change per degree was calculated for every five degrees and the 

corresponding voltage for every degree of angle was calculated. 

5. Step two and step three were repeated for different positions of the accelerometer 

on the aluminum arm. 

6. Step two and step three were repeated for different heights of the adjustable stand. 

7. The range of measurement was -40 degrees to 60 degrees with zero degrees as the 

neutral position. 

            Measured angle was plotted against the measured voltage and a regression 

analysis was performed. The linearity for the accelerometer angle Vs accelerometer 

voltage was found to be 0.9988. Figure 3.7 shows the plot of Accelerometer Voltage Vs 

Angles.  

 

3.8 Development and Training of Neural Network 

                The development of the neural network was a very important step in the 

prediction of the joint angle. Following were the steps followed for the development of 

the neural networks. 

1. Training of the neural network. 

The neural networks were trained by the six parameters extracted from the SEMG.  

The data was divided in six different groups  

• Slow up  

This group included the data from subjects when they were moving the index finger from 

flexion region to the extension region at 0.4 Hz. 
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Table 3.2: The technical specifications of the accelerometer 

 

Length 5mm x 5mm x 2mm 

Resolution 1mg-(60Hz) 

Sensitivity 1000mV/g 

Bandwidth 10Hz 

Operating Range 3-6V 

Power 700 μV-(Vs = 5V) 

Temperature Range -40°C to 125°C 
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• Slow down 

This group included the data from subjects when they were moving the index finger from 

extension region to the flexion region at 0.4 Hz. 

• Medium up 

This group included the data from subjects when they were moving index finger from 

flexion to extension region at 0.8 Hz. 

• Medium down 

This group included the data from subjects when they were moving the index finger from 

extension to the flexion region at 0.8 Hz. 

• Fast up 

This group included the data from subjects when they were moving the index finger from 

flexion to extension region at 1.2 Hz. 

•   Fast down 

This group included the data from subjects when they were moving the index finger from 

extension to flexion region at 1.2 Hz. 

             Data from six different subjects were used for the training of the neural networks. 

Training was performed using MATLAB (MathWorks).  20 neural networks were trained 

for each group, with extracted parameters as inputs and output angles from accelerometer 

data as targets. Several different training algorithms were tried before deciding on 

‘trainrp’. The parameters that influenced the decision included convergence and speed of 

the convergence. The up data were separated from down data by the slope of NRMS. Up  

data had positive slope while  the  down  data had  negative   slope. The  networks  were 
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Figure.3.7: Plot of the Voltage output of the accelerometer and the angle. 
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trained with different number of hidden layers (1-2), different initial weights, and 

different number of neurons in the hidden layer (5-15). Different activation functions 

(tansig, logsig) were tried for the training of the networks. 

2.   Committee recruitment 

           Each network was subjected to initial testing for its performance. Data from two 

new subjects was used for the initial evaluation of the networks. The results of the 

evaluations were used for the selection of best five networks from each group for their 

inclusion in the respective committees.  

In all, six committees, one for each data group, were formed based on the performance of 

the networks using data from the two new subjects.  

3.   Final Evaluation of the datasets 

            Data from nine subjects was used for the final evaluation of the committee. The 

respective committee for each group was subjected to the data from each individual 

subject. The output of the committee was the average of all the networks in the 

committee. Two outliers were first eliminated and the final output was the average output 

of the remaining networks. The final output was compared with the actual angle 

measured by accelerometer output.  

 

3.9 Analysis of the results 

           The output angles predicted by the committee neural networks were compared 

with the actual angles measured by the accelerometer. RMS errors were calculated 

between the measured and the predicted angle. 
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CHAPTER IV 

RESULTS 
 

           The present study demonstrated the use of the SEMG from extensor muscle for 

the prediction of joint angle of the movement of index finger at three different speeds. 

The SEMG signal along with joint angle was successfully obtained from 15 normal 

subjects during dynamic flexion and extension rotation at three different frequencies. Six 

committees of neural networks were trained and recruited to predict index finger angle 

using parameters extracted from NRMS. Committee evaluation showed RMS errors in 

the range of 3% - 25% (Table 4.1).  

 

4.1 Results from Data Acquisition 

            Each subject was asked to perform rhythmic flexion and extension of the index 

finger with thumb, wrist and all other fingers stationary, at three different speeds of 0.4 

Hz, 0.8 Hz and 1.2 Hz. Figures 4.1, 4.2 and 4.3 show the raw SEMG at 0.4 Hz, 0.8 Hz 

and 1.2 Hz respectively. 

The figure 4.4 shows the filtered RMS EMG and figure 4.5 shows corresponding 

accelerometer outputs when the finger was rotated at 0.4 Hz. Similarly, figure 4.9, 4.10, 

4.14, and 4.15 show RMS EMG and corresponding accelerometer output for 0.8 Hz and  

1.2  Hz. The  RMS  EMG  was  normalized  by  maximum  and  minimum  SEMG 
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Figure 4.1: Raw SEMG acquired from EDS when the subject was performing rhythmic 

flexion and extension of index finger at 0.4 Hz 
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Figure 4.2: Raw SEMG acquired from EDS when the subject was performing rhythmic 

flexion and extension of the index finger at 0.8 
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Figure 4.3: Raw SEMG acquired from EDS when the subject is performing rhythmic 

flexion and extension of index finger at 1.2 Hz 
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measured during the calibration, when the subject was asked to perform flexion and 

extension of index finger at all the speeds. Accelerometer output was converted to the 

corresponding angle. This angle was then normalized by dividing with 90 degrees, which 

corresponded to the maximum range of rotation (-30-60 degrees). The figures 4.6, 4.11 

and 4.16 show the plot of actual angles as measured by accelerometer for 0.4 Hz, 0.8 Hz 

and 1.2 Hz respectively. Figures 4.7, 4.12 and 4.17 show the plot of normalized SEMG 

and angles plotted simultaneously as a function of time for 0.4 Hz, 0.8 Hz and 1.2 Hz 

respectively. The plots clearly show that the SEMG leads over the angle for all the 

speeds. Synchronization can be achieved between the SEMG and the angles if SEMG is 

delayed by 0.2 seconds. The figures 4.8, 4.13 and 4.18 show the plots of normalized 

SEMG plotted over the normalized angle when the SEMG was shifted by 0.2 seconds. 

Figure 4.19, 4.20 and 4.21 show the plot of NRMS plotted against normalized angles for 

0.4 Hz, 0.8 Hz and 1.2 Hz. The plots of NRMS Vs normalized angles show hysterisis for 

all the speeds. This trend prompted the use of different neural networks for up and down 

movement of finger.  

 

4.2 Results from CNN 

           The filtered SEMG along with the extracted parameters were fed to the committee 

neural networks, trained for predicting the angle at different speeds. The plots 4.22, 4.23 

and 4.24 show the predicted angles with respect to the actual angles for one cycle of 

rotation for 0.4 Hz , 0.8 Hz and 1.2 Hz respectively. These graphs are plotted  against 

SEMG.  It   can   be   seen   that   the   SEMG   leads   over   both   the   actual   angle   as 
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Figure 4.4: Plot of RMS SEMG Vs time for 0.4 Hz. The raw SEMG was subjected to 

RMS window of length 10 and was filtered with 2 Hz ButterWorth filter. 
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Figure 4.5: Plot of Accelerometer values plotted against time. The accelerometer was 

mounted on the proximal metacarpophalyngeal joint of the index finger. The 

accelerometer  values increases as finger moves from extensor to flexor. 
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Figure 4.6: Corresponding plot of angles calculated from accelerometer values. 
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Figure 4.7: Plot of Normalized SEMG and Normalized angles plotted against time 

when the subject was rotating the finger at 0.4 Hz. The SEMG leads the angle plot by 

0.2 seconds. 
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Figure 4.8: Plot of shifted NRMS and Normalized angles against time when the 

subject performed rhythmic flexion and extension of index at 0.4 Hz. 
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Figure 4.9: Plot of RMS SEMG Vs time for 0.8 Hz. The raw SEMG was subjected to 

RMS window of length 10 and was filtered with 2 Hz ButterWorth filter. 
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Figure 4.10: Plot of Accelerometer values plotted against time. The accelerometer was 

mounted on the proximal metacarpophalyngeal joint of the index finger. The 

accelerometer  values increases as finger moves from extensor to flexor. 
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Figure 4.11: Corresponding plot of calculated angles from accelerometer values 

when the subject performed rhythmic flexion and extension of index finger at 0.8 

Hz. 
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Figure 4.12: Plot of NRMS and normalized angle plotted against time for 0.8 Hz. The 

average value of SEMG increases with increase in the velocity of rotation. 
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Figure 4.13: Plot of shifted NRMS and normalized angles plotted against time for the 

rotation of finger at 0.8 Hz. 
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Figure 4.14: Plot of SEMG Vs time for the rotation of the index finger at 1.2 Hz. 
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Figure 4.15: Plot of accelerometer voltages against time when the subject is rotating the 

finger at 1.2 Hz. 
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Figure 4.16: Plot of calculated angles from the accelerometer voltages when the subject 

performed rhythmic flexion and extension of index finger at 1.2 Hz. 
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Figure 4.17: Plot of NRMS and normalized angles with respect to time when the subject 

performed rhythmic flexion and extension of index finger at 1.2 Hz. The maximum value 

of SEMG with respect to the maximum angles, indicating the effect of velocity on the 

SEMG. 
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Figure 4.18: Shifted NRMS and normalized angles plotted against time when the subject 

performed flexion and extension of finger at 1.2 Hz. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

73 



 
 
 
 
 
 

NRMS Vs Normalized Angles

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Normalized Angles

N
R

M
S

 
 
Figure 4.19: NRMS plotted against normalized angles for 0.4 Hz speed of flexion and 

extension of index finger. Upper part of the curve indicates the SEMG when the subject 

moved finger from flexor to extensor region and lower part represents SEMG when the 

finger was moved from extensor to flexor region. 
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Figure 4.20: NRMS plotted against normalized angles for the rotation speed of 0.8 Hz. 
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Figure 4.21: NRMS plotted against normalized angles for the rotation speed of 1.2 Hz. 
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well as predicted angle. Data from six subjects were used to train the neural networks. 

The neural networks were trained for different training algorithms, with different hidden 

layers and different training functions.  Two committees were formed for each speed, one 

for flexion and one for extension. These committees were recruited based on the 

evaluation of networks by data from two new subjects.  Best five networks were selected 

for the recruitment in the committee. Data from nine new subjects were used for the 

performance evaluation of the committees. The committee was subjected to evaluation by 

data from each subject. A difference was found between each output predicted by the 

member of the committee and the average output predicted by the committee. Based on 

these values, two outliers were eliminated and an average of the remaining three 

networks was taken as the output of the committee. The angles predicted by the 

committee were used for finding the RMS errors between the predicted and actual angles.  

Table 4.1 shows the RMS errors for each subject at different speeds. 

 

4.3 Statistical Analysis  

An anova performed on the RMS errors showed significant statistical difference 

between errors when subject performed finger rotation at 1.2 Hz, and errors when subject 

performed finger rotation at 0.8 Hz and 0.4 Hz (p<0.05). Appendix B shows detail 

analysis of the anova performed. An anova was also performed between errors when the 

finger was rotating from flexion to extension (up) and when the finger was moving from 

extension to flexion (down). The results show a significant difference in the errors 

(p<0.05) (Appendix B). 
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Figure 4.22: NRMS, actual normalized angle and predicted normalized angle plotted 

against time for one cycle of rotation of index finger at 0.4 Hz. 
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Figure 4.23: NRMS, Actual normalized angles and Predicted angles plotted against time 

for one cycle of rotation of index finger at 0.8 Hz. 
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SEMG Vs Joint Angle at 1.2 Hz
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Figure 4.24: Plot of NRMS, Actual angle and Predicted angle with respect to time for the 

rotation of index finger at 1.2 Hz. The errors associated with the higher speed are less as 

compared to the errors associated with medium and lower speeds. 
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Table 4.1:  RMS errors for the prediction of the joint angle by CNN. 

 
 

Subjects RMS Errors 

 Slow Up Slow Down Medium Up Medium 
Down Fast Up Fast 

Down 
1 0.16517 0.14783 0.13452 0.158157 0.0990 0.09123
2 0.13670 0.13549 0.071392 0.104468 0.0769 0.09855
3 0.16141 0.148953 0.09492 0.149022 0.0642 0.09311
4 0.13017 0.089692 0.054939 0.119592 0.035618 0.07087
5 0.12799 0.15293 0.116979 0.151545 0.10848 0.11014
6 0.19030 0.2724 0.17490 0.176401 0.14293 0.09460
7 0.11829 0.12253 0.057852 0.1814 0.058993 0.07262
8 0.1227 0.214634 0.192727 0.25016 0.124073 0.15047
9 0.17292 0.179743 0.085727 

 
0.2304 0.0527 0.10209

Mean 0.14729 
 

0.162689 
 

0.1093 
 

0.169016 
 

0.0847 
 

0.09819 
 

SD 0.02561 0.05386 
 

0.049699 
 

0.047424 
 

0.035857 
 

0.02339 
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CHAPTER V 

 
DISCUSSION 

 
           The present study has demonstrated the use of the SEMG from EDS in 

tracking the index finger movement at different speeds. The potential application of this 

study includes the biocontrol of anthropomorphic telemanipulators and VR environments. 

The study was also first of its kind to demonstrate the use of Committee Neural Networks 

(CNN) in a control prediction problem. The SEMG decreased as the finger moved 

towards the thumb and correspondingly increased as the finger moved away from the 

thumb (Figures 4.7,4.12,4.17), thus supporting the first alternate hypothesis of the study 

that there exists a definite relationship between the surface EMG of EDS during the 

flexion and extension of the index finger (failed to accept the first null hypothesis).  

CNNs well predicted the angle using the SEMG signals (RMS errors 0.128, Table 4.1, 

Figures 4.22-4.24). Therefore, it can be said that the SEMG from the EDS along with 

neural networks can be used for the prediction of the joint angle of rotation of the index 

finger in extensor as well as the flexor region.  

          The overall RMS error for the prediction of the joint angle by CNN was 

0.128547 ± 0.051054 (Table 4.1) which was considerably less than 0.2. Hence, the results 

support the second alternate hypothesis that SEMG from EDS along with CNNs can be 

used to predict the joint angel of finger during flexion  and  extension  at  varying   speeds  
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(failed to accept the second null hypothesis). The predicted angle followed the actual 

angle measured by the accelerometer for all the three speeds (Figures 4.22, 4.23 and 

4.24). The errors in the present study were less than the previous studies (<0.2) conducted 

by Suryanarayan and Reddy (1997) for prediction of elbow joint angles during flexion 

and extension of the arm in vertical plane, and by Devavaram (2003) on the prediction of 

the joint angle of the index finger using SEMG from Flexor Carpi Ulnaris (average error 

of 4.79º in a range of 20º which translates to RMS error of 0.24). Devavaram (2003) 

trained one committee for each individual subject. Moreover, the testing data as well as 

training data were derived from the same subject. In the present study, same CNNs were 

used for all subjects. In addition, the training data were obtained from different subjects 

and the testing data were obtained from entirely different subjects. The present 

investigation used two committees for each speed as compared to the use of one 

committee for every subject by Devavaram (2003). This decreased the computational 

complexities and time required for calibration and prediction of the angle. Another study 

conducted by Koo and Mak (2005) on the feasibility of EMG driven 

neuromusculoskeletal model for prediction of dynamic movement of the elbow showed 

the error of 34.49º ± 6.05º for the unloaded elbow flexion protocol and 22.27 º ± 4.07º for 

the unloaded voluntary elbow extension protocol. Therefore, the present study marks a 

very prominent improvement in the use of SEMG for direct biocontrol problems.  

           The RMS errors were less during extension as compared to flexion (Table 

4.1). The average RMS error when the finger was extending was 0.11377 ± 0.045217 

which was less as compared to the average errors when the finger was flexing (0.1422 ±  

83 



0.0531). This shows that EDS is better in predicting the angle during extension when 

compared to flexion.  Such trends were also observed by Suryanarayanan and Reddy 

(1997) where they used SEMG from flexor muscle (biceps) for the prediction of the 

elbow joint angle and the errors were high during extension as compared to flexion. 

Perhaps, the use of SEMG from extensor muscle during extension and flexor muscle 

during flexion may improve the performance of the system. 

            There exists a complex relation between the SEMG, angle of rotation, 

velocity of rotation and direction the rotation. The SEMG increases with the velocity and 

changes according to the joint angle. Increase in velocity increases the collective firing of 

the underlying neurons and therefore, increased activity and increased SEMG. SEMG 

have higher peaks with respect to the angle for 1.2 Hz as compared to other two speeds 

(Figures 4.4, 4.9 and 4.14). The committees were better in predicting the joint angle at the 

faster speed as compared to the slower speeds (Table 4.1). The average RMS error at 1.2 

Hz was 0.091476 ± 0.03103 while the average RMS errors at 0.8 Hz and 0.4 Hz were 

0.13917 ± 0.05624 and 0.1549 ± 0.0416 respectively. The complex relation between the 

SEMG and the angle of rotation is highlighted by the fact that SEMG leads over joint 

angles for all the three speeds (Figures 4.4, 4.9 and 4.14). The reason for this behavior of 

SEMG can be traced to the origin of SEMG. EMG is a result of the electrical activity of 

the muscle and it represents the collective action potential of the neurons at a particular 

instance of time. The resting potential of a cell is -70mV. This resting potential is 

established by the active transport of Na+ and K+ ions in the cell. The cell contraction 

takes place when the action potential reaches 35mV. The change in the action potential is  
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caused by the nervous stimulus. This causes the cell to contract and the collective 

contraction of the cells causes a muscle to contract. A lot of chemical and mechanical 

process takes place after the generation of action potential, which delays the contraction 

of the muscles by a few milliseconds. A delay of 0.2 seconds would synchronize the 

SEMG and angle of rotation (Figures 4.5, 4.10 and 4.15).  SEMG from EDS also depends 

on the direction of the rotation of the index finger. For a given joint angle, the SEMG 

generated when the finger was extending, was higher as compared to when the finger was 

flexing. This led to the hysterisis. The plots (Figures 4.19 to 4.21) show a hysterisis with 

the upper part of the curve representing the SEMG when the finger was extending and the 

lower part of the curve representing the SEMG when the finger was flexing. This 

phenomenon can be explained by the fact that the muscle has to work against the gravity 

while going away from the thumb as a result the effort is more, resulting in higher 

SEMG. The hysterisis was the main reason for choosing different neural networks for 

predicting the joint angle during extension and flexion.  

           The results of the CNNs depend on several factors, including the choice of 

the muscle, quality of the signal and signal processing algorithms. 

EDS was chosen for three reasons: 

1. Previous studies for the tracking of index finger movement using SEMG were 

conducted using the FDS muscle (Devavaram, 2003). The results showed a lot of 

scope for improvement. Preliminary results conducted on the EDS showed very 

encouraging results. 

2. EDS is one of the most superficial muscles on the forehand. Being a superficial  
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muscle, it was very easy to palpate.  

3. EDS is directly connected to the index finger. This reduced the interference of 

SEMG from other muscles during the rotation of index finger.  

                    The fidelity of the EMG signal acquired at the source dictates the 

information content of the signal, and its subsequent effectiveness in prediction of the 

joint angle. It is desirable to acquire the SEMG signal with maximum information content 

and least noise interference due to motion artifacts or power line interference. There were 

two main sources of motion artifact: one from the interface between the detection surface of the 

electrode and the skin, the other from movement of the cable connecting the electrode to the 

amplifier. Both of these interferences can be minimized by proper placement of electrodes 

and employing a proper circuitry. Placement of electrodes plays a very important role in 

acquisition of the SEMG signals. Proper placement of electrodes insures the maximum 

amplitude of the SEMG due to desired muscle group with maximum signal to noise ratio. 

The electrodes used for the acquisition of the SEMG were silver/silver chloride 

electrodes with inter-electrode spacing of 21 mm. The amplitude of the SEMG is directly 

proportional to the inter-electrode distance (Basmijian, 1985). For maximum amplitude, 

the inter-electrode distance should be more. Conversely, if the inter-electrode distance is 

more, the chances of cross talk increase. Hence, there should be a trade of between inter-

electrode distance and desired amplitude. The experiments have shown that an inter-

electrode spacing of 21 mm gives sufficient amplitude of the detected SEMG signal from 

EDS.  Apart from inter-electrode distance, other factors such as employing conductive 

surface between the skin and the electrode, removal of dead dermis from the surface and  
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placement of the electrode parallel to the muscle, are also responsible for the greater 

amplitude and hence maximum signal to noise ratio of the SEMG.  Care was taken while 

placing the electrodes that most of the factors mentioned above were satisfied.  

                     The reference electrode was placed on the bony surface of the 

metacarpophalyngeal joint of the little finger. This bone was the best available location 

for the placement of reference electrode, since it is farthest from the index finger and the 

activity of the EDS has little effect on the movement of little finger. 

           The other problem which was encountered while measuring the SEMG 

was that of capacitance coupling at the input of the differential amplifier. The source of 

the problem was the high input impedance of the differential amplifier. The problem was 

solved by reducing the distance between the differential amplifier and the location of the 

measurement of the SEMG. 

            The instrumentation system used for the data acquisition is the other 

important factor which governs the signal to noise ratio of the system. A two stage, two 

channels pre-amplifier was specially designed for the present study. The first stage of the 

preamplifier was a bipolar differential precision instrumentation amplifier. The two 

important criteria for judging an amplifier are its efficiency and impedance. The 

efficiency of the amplifier refers to the amount of power consumed by the amplifier 

which should be as low as possible. High input impedance ensures that the input will not 

overload the source of the signal and reduce the strength (voltage) of the signal by a 

substantial amount.  The SEMG signal measured at the source was of the order of µV. 

Therefore,  for  keeping  intact  the  fidelity  of  the  measured  signal, the  pre-amplifier  
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required very high input impedance. The input impedance of the pre-amplifier designed 

was >2M and the power consumed was less than 1mW. 

            The gain of the pre-amplifier was chosen to be 4000 to convert the µV 

signal into an mV signal. The output of the pre-amplifier was isolated from the subject by 

an isolation amplifier. This ensured the safety of the subject from direct contact with 

power line. The signal was then fed to an amplifier with an inbuilt notch filter and 

bandpass filter. The notch filter prevented any distortion of the signal by 60 Hz noise. 

The power density function of the SEMG signals has very little contributions outside the 

range of 20-450 Hz (Basmijian, 1985).   Therefore, the higher and lower cutoff 

frequencies for the bandpass filter were chosen as 300 and 30 Hz respectively. 

Frequencies lower than 30 Hz mainly constitute the noise due to motion artifacts and 

frequencies above 300 Hz contribute to the environmental noise. The digitization of the 

signal was done by a 16 bit A/D converter with the measurement range of +/- 10 V. 

Therefore, the resolution of the system was 0.0048 V. This made the resolution of the 

overall system to be 0.05 µV.  The signal was sampled at 1000 Hz. The minimum 

sampling rate required for the satisfaction of Nyquist criteria was 600 Hz. The sampling 

rate satisfied the Nyquist criteria and therefore, prevented any aliasing.  

           The raw EMG has a random component which is present because of the 

large number of neuron firing at any time, and is unpredictable. This random component 

makes the processing of the raw EMG unsuitable. Several different techniques have been 

used for the processing of raw EMG signals, including rectification of the signal and then 

smoothing of the signal using a low pass filter. This process is  called  as  linear  envelop  
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detection.  Another method used for the envelop detection, which was used in this project 

for the processing of SEMG is Root Mean Square (RMS) value. RMS gives the overall 

shape of the SEMG signal pattern. The shape and the amplitude of the envelope gave an 

account of the activity performed by the muscle. The amplitude of the envelope of SEMG 

for the rotation of the index finger can be related to the velocity and the force applied 

during the rotation. The RMS of the SEMG was found by a moving window of fixed 

length. The length of the window determines the computing time and the resolution of the 

system. As the length of the window (>200) increases, the computation time decreases. 

However, the resolution of the system also decreases. Similarly, decreasing the length of 

the window (<5) will increase the resolution but will increase the computation time. The 

tradeoff between the resolution and the computation time was achieved by using the 

window length of 10. The RMS SEMG still had some fluctuations which were making 

the model unstable. These fluctuations were removed by further low pass filtering the 

RMS SEMG using a 2nd order ButterWorth low pass filter.  

            The SEMG varies with various factors such as time, temperature, 

humidity. The SEMG of the same person may be different at different times. Therefore, it 

is very necessary to normalize the SEMG signal so that all the data sets can be evaluated 

based on a single platform. There are many ways of normalizing a signal. The present 

investigation used normalization with minimum and maximum SEMG of the subject 

recorded during the calibration process. This assumed a linear relation between SEMG 

and the angle of rotation. This enabled the data sets of different individuals to be 

evaluated on the same platform. 
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            The intelligent system developed for this study acts likes a black box 

model with SEMG as the input and the predicted angle as the output. The neural 

networks were trained in MATLAB using different training functions, different training 

algorithms, different hidden layers and different neurons in the hidden layer. It was 

observed that the training algorithm ‘trainrp’ works best for this problem; therefore, all 

the networks used in the committee were trained using this training function. In present 

study, the number of hidden layers was limited to two. As the number of hidden layer 

increases, the network has more weights to describe the relation between input and 

output. However, increase in the number of hidden layer also increases the complexity of 

the network and considering that the network would be used for the real time, the hidden 

layers were limited to two.  

            Biocontrol using SEMG provides unrestricted finger movements. 

Currently available systems are worn externally and restrict the motion of the fingers. 

Other devices like Magnetic Trackers require isolation. The present study visualizes a 

significant step forward for dynamic biocontrol of telemanipulators and VR environments 

using SEMG signals. The applications of the present study are telemanipulation, video 

games industry and in real world simulation. The present study also demonstrates the use 

of CNNs for control related prediction problems. One of the drawbacks of the study was 

that, it didn’t consider the effect of muscle loading. An improved algorithm and 

intelligent system would be required for the prediction of the joint angle when the muscle 

is loaded. With further improvements, the technique can be developed into an ideal and 

synergistic control for telemanipulators and VR environments.   

90 



 

 

 

CHAPTER VI 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

            The conclusions of the study were: 

1. SEMG signals were successfully measured from the EDS during the flexion and 

extension of index finger at three different speeds.  

2. ANNs were trained for different speeds for the prediction of the joint angle from 

the extracted parameters. 

3. CNNs, comprising of five best networks were recruited for the prediction of the 

joint angle. 

4. Performance of the system was evaluated by calculating the RMS error between 

the measured angle and the predicted angle. The average error was found to be 

0.128547 ± 0.051054.  

5. The results of the study concluded that we fail to accept both the null hypotheses 

of the study. Results support the alternate hypotheses that:- 

• There exists a definite relation between the SEMG from Extensor Digitorum 

muscle (EDS) and the joint angle of the finger movement at various speeds. 

• SEMG along with Committee Neural Networks (CNN) can be used for 

predicting the joint angle of the finger movement at various speeds 
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6.2 Recommendations for the future work 

1. The study did not take into account the loading effect of the muscle. More 

investigations can be carried out to study the effect of loading on the SEMG when 

the finger is rotating at various speeds. 

2. The study can be extended to the movement of the other fingers along with the 

index finger. 

3. SEMG from Flexor muscle can be combined with SEMG from EDS for better 

prediction of the joint angle of the finger during flexion and extension. 

4. The study can be integrated with similar studies on the static measurement of the 

SEMG for control problems for integrating the system for static as well as 

dynamic movement of the finger. 

5. A hybrid intelligent system can be developed for the better prediction of the 

angle, involving CNNs and Fuzzy Logic. 
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APPENDIX A 
 

ACCELEROMETER READINGS 
 
 

Table A-1: The accelerometer voltage output at different angles. The voltage output  of 
the accelerometer during clockwise movement (up) and anticlockwise movement (down) 

 

 
Data 
set-1  

Data 
set-2  

Data 
set-3   

Angle Up(V) Down(V) Up(V) Down(V) Up(V) Down(V) Mean 
-40 2.9977 3.0022 2.9969 3.002 3.0272 3.0301 3.00935 
-35 2.9352 2.9461 2.9298 2.9441 2.9634 2.9704 2.948167
-30 2.8731 2.8888 2.867 2.8833 2.832 2.9101 2.875717
-25 2.809 2.8294 2.8061 2.8225 2.8338 2.8494 2.825033
-20 2.7462 2.7722 2.816 2.7689 2.7663 2.7853 2.775817
-15 2.6797 2.7094 2.6815 2.711 2.7019 2.7203 2.700633
-10 2.6174 2.6461 2.6176 2.6482 2.6348 2.6555 2.6366 
-5 2.5539 2.5797 2.5524 2.5822 2.5719 2.5868 2.57115 
0 2.4865 2.5061 2.4878 2.5153 2.518 2.5162 2.504983
5 2.4434 2.4436 2.4288 2.4495 2.4427 2.4447 2.442117
10 2.3627 2.3707 2.3579 2.3795 2.369 2.3776 2.369567
15 2.2922 2.3012 2.2879 2.3053 2.297 2.3059 2.29825 
20 2.2255 2.2327 2.2195 2.2335 2.2254 2.2368 2.2289 
25 2.1589 2.1647 2.1542 2.1652 2.1562 2.1675 2.161117
30 2.0912 2.0973 2.0888 2.0994 2.0888 2.0984 2.093983
35 2.0283 2.0315 2.0261 2.0382 2.0235 2.0311 2.029783
40 1.97 1.9681 1.964 1.975 1.9603 1.9674 1.967467
45 1.907 1.9096 1.906 1.9147 1.9016 1.9065 1.907567
50 1.8565 1.8548 1.8508 1.8576 1.8451 1.8493 1.85235 
55 1.8003 1.8034 1.8036 1.8169 1.7943 1.7963 1.802467
60 1.7559 1.7577 1.7582 1.7593 1.7472 1.748 1.754383
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APPENDIX B 

STATISTICAL ANALYSIS 

B-1 Student-Newman-Keuls Test for Different Speeds 
 
NOTE: This test controls the Type I experiment wise error rate under 
the complete null hypothesis but not under partial null hypotheses. 
 
 
Alpha                        0.05 
Error Degrees of Freedom       51 
Error Mean Square        0.001937 
 
 
Number of Means              2              3 
Critical Range        0.029454      0.0354156 
 
 
Means with the same letter are not significantly different. 
 
          Mean      N    speed 
 
A       0.15499     18    1 Slow (0.4 Hz) 
A 
A       0.13916     18    2 Medium (0.8 Hz) 
 
B       0.09148     18    3 Fast (1.2 Hz) 
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B-2  Student-Newman-Keuls Test for different directions 
 
NOTE: This test controls the Type I experimentwise error rate under 
the complete null hypothesis but not under partial null hypotheses. 
 
 
Alpha                        0.05 
Error Degrees of Freedom       52 
Error Mean Square        0.002431 
 
 
Number of Means              2 
Critical Range       0.0269264 
 
 
Means with the same letter are not significantly different. 
 
          Mean      N    direction 
 
A       0.14329     27    2 (When the finger is moving up) 
 
B       0.11379     27    1 (When the finger is moving down) 
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APPENDIX C 

IRB APPROVAL  
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APPENDIX D 

INFORMED CONSENT 

 

Name of the project: Direct Biocontrol of Telemanipulators and VR environments using 

Non-Invasive Surface EMG and Intelligent Systems. 

 

Investigator:  Nikhil Shrirao, Graduate student, Department of Biomedical Engineering, 

The University of Akron. 

 
Purpose: The purpose of this project is to develop a technique for direct biocontrol of 

computer model of finger using non-invasive Surface Electromyogram (SEMG). This 

study is conducted towards the partial fulfillment of the requirements for a Master’s 

Thesis. 

 

Method:  One pair of electrodes would be taped to your right/left hand on the posterior 

side of the forearm. One electrode will be taped over the bony structure of the wrist 

(reference electrode). An angle-measuring instrument (sensor) would be taped on the 

index finger. The experiment is divided in two sections. First you will be asked to 

maintain the finger at three specific locations. The recordings at each location would be 

taken for 20 seconds. In the second part of the experiment you will be asked to move the 

finger from complete flexion to full extension at 3 different speeds of 0.5 Hz, 1 Hz and 

1.5 Hz. The surface electromyogram and the angle would be recorded at each speed for 

20 seconds. Your participation in the study will require approximately 20 to 30 minutes. 
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Benefits. You should view your participation in this project as providing information for 

the development of the technique and should not expect any personal gain from your 

participation to the project. 

 

Risks: There is minimal risk Taping the electrodes to the skin may cause minor skin 

irritation or discomfort. Also a slight discomfort would be felt while the tape is being 

removed. 

 

Participation: Participation in the project is entirely voluntary and you will not be 

penalized in any way if you choose not to participate at any time. You can withdraw from 

the study at anytime without any penalty. No cost for you will result in your participation 

in the study. 

 

Compensation: You would not be provided any compensation for the participation in the 

study. 

 

Confidentiality: All information provided by you will be kept confidential. The data will 

be coded and only the investigators will use the information. The coding would be 

destroyed after the completion of the study. 

You can obtain information on policy regarding the research and subject's rights by 

contacting the office of the Institutional Review Board (Office of the Research Services, 

tel: 330-972-7666) at the University Of Akron. If you have any questions regarding the 

procedures used in the study, please contact Narender P. Reddy, PhD, at 330-972-6653 

for clarification.  

Your signature below indicates that you understand the purpose of this study and that you 

of your own free will agree to participate in this project. 

 
 
____________________      ______________ 
(Participants Signature)       (Date) 

104 


