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 Abstract - This paper was aimed at the continuous 

recognition of the upper limb multi-motion during the upper 

limb movement for rehabilitation training. The amplitude of the 

surface electromyographic ( sEMG ) signals change during 

movement of the upper limb and the features of sEMG signals 

are different with the changes. These variances in the features 

represent the different statuses of the upper limb. Recognizing 

the variances will lead to recognition of the upper limb motion. 

In this study, sEMG signals were recorded through five non-

invasive electrodes attached on the anatomy points of the upper 

limb and an autoregressive model was used to extract the 

features of the detected sEMG signals. After that the Back-

propagation Neural Networks was applied to recognize the 

patterns of the upper arm motion using the variant features as 

the training and input data. Three volunteers participated in the 

real-time experiment and the results stated that this method is 

effective for a real-time continuous recognition of the upper limb 

multi-motions. 

 
 Index Terms – Electromyography, Continuous recognition, 

Multi-motion, Rehabilitation. 

 

I.  INTRODUCTION 

 Aimed at solving the problems of increasing requirements 

for the therapy of rehabilitation because of the increasing 

number of hemiplegic patients, a robotic rehabilitation 

strategy, with the characteristic of more intensive, longer 

duration and higher-level training, was applied to therapy 

processes to help with conquering this situation. Many studies 

demonstrated that the robotic rehabilitation has a great 

potential for better therapeutic rehabilitation, such as the MIT-

MANUS, which is one of the most famous and earliest upper-

limb rehabilitation robot and has the ability to guide the 

movement of a subject’s or patient’s upper limb with 

impedance control[1]; and the MIME, which can perform 

bimanual robot-assisted recovery training at any impairment 

level and complete stereotyped movement patterns[2]. And 

also, there are many rehabilitation robots for hand and lower-

limb movement function restoration, such as the EMG-driven 

exoskeleton hand robotic training device, which is mounted on 

patient’s impaired hand and detects the sEMG signals as the 

driven signals[3]; the EMG-driven musculoskeletal model of 

the ankle, which combines the Hill-model and sEMG 

signals to estimate the forces of the triceps surae muscle 

and Achilles tendon[4]; and a real-time upper limb’s motion 

tracking exoskeleton device for active rehabilitation[5]. 

Among these rehabilitation robots, the recognition of the 

limbs or hands movement patterns is one of the most 

important issues. Generally, position sensors are attached on 

subjects’ or patients’ limbs[6-8], or a predefined trajectory 

was designed before a rehabilitation progress[9-10]. With the 

development of electromyography technology, the EMG 

signals have been applied to limbs movement pattern 

recognition. The EMG signals, which represent for the nature 

activation potentials of skeleton muscle, can provide a direct 

index to the status of whether the muscle is activated or not. 

There are mainly two kinds of EMG signals measurement: the 

surface EMG signals detection method using non-invasive 

surface electrodes and the invasive EMG signals detection 

method using fine wire electrodes. They have been applied on 

the control for prosthesis[11]. In many cases, a certain 

threshold is set for the value of the amplitude of the EMG 

signals to estimate the activation of the muscle, such as in the 

exoskeleton hand robotic training device, a 20% of the 

maximum voluntary contraction threshold was set[11]. This 

method is simple and useful but has its own disadvantage. The 

value of the threshold can only be set experientially, and with 

the different individual conditions, it is hard to find a proper 

value for all the subjects.  

In this study, a real-time continuous recognition of the 

upper limb multi-motion was realized with the implementation 

of autoregressive (AR) model and Back-propagation (BP) 

Neural Networks, without threshold set. As mentioned above, 

the amplitude of the sEMG signals change with the movement 

of upper limb and the features of the amplitude are different 

with the changes. Thus these variances in the features 

represent the different statuses of the upper limb. With the 

characteristic of the AR model, the coefficients of this model 

have potential to stand for the changes in the amplitude and 

the BP Neural Networks was used to train and recognize the 

movement patterns with these coefficients.  

II.  DESIGN OF THE MULTI-MOTION RECOGNITION METHOD 

 In this study, the upper limb multi-motion includes the 

upper arm flexion and extension, forearm pronation and 

supination and palmar flexion and dorsiflexion. As these three 

movements involve three pairs of muscles, which are biceps 

brachii and triceps brachii, pronator quadratus and pronator 

teres, extensor digitorum and flexor digitorum superficialis 

respectively, three pairs of surface electrodes were attached 

above the skin of these muscles to detect the three movements 



individually. And the multi-motion recognition is based on the 

combination of these individual movements recognition. 

A. Recognition of Individual Movements 

 The amplitude of sEMG signals changes during upper 

limb movement, given rise to the changes of the motor unit 

action potentials (MUAP), which reflect the magnitude of the 

muscle activation essentially. Fig.1 shows a normalization 

result of the detected raw sEMG signals from the biceps 

brachii during the upper arm flexion and extension, compared 

with the value of the elbow angle collected from a position 

sensor. It indicates that the trend change of the sEMG signals 

amplitude has a high correlation with the movement of the 

upper arm. 

 
Fig. 1 The angle degree of the elbow to the trend of sEMG amplitude 

 

 And the general flow chart for single movement 

recognition is presented in the following figure(fig.2), which 

includes four parts: the sEMG signal filtering, recording, 

feature extraction and BPNN recognition. 
 

 

Fig.2 A general flow chart for single movement recognition 

 

The autoregressive (AR) model was used to extract the 

feature of the filtered raw sEMG signals. In statistics and 

signal processing, an AR model is a type of random process 

which is often used to model and predict various types of 

natural phenomena. And AR model was first introduced to 

represent the muscle activation electrical behavior since 

1975[12]. The AR model is defined as following  

     ∑   
 
                                      (1) 

where 𝘱 is the order of the AR model;    is the value of the 

data;    is the coefficients;   is a constant and    is a white 

noise. 

 According to the function of the AR model, which is to 

predict a future output of a system based on the previous 

detected input, it is reasonable to consider the coefficients 

have some representativeness for the sequence of the input 

data. Fig.3 , in which the red line represents the second order 

of the AR model, provides some calculation results using the 

Burg method to fit a 4 order AR model to the raw sEMG 

signals. The changes of the coefficient follow the changes of 

the amplitude of the original signals. 

 
Fig.3 The change of AR model coefficients compared to the amplitude trend 

of sEMG signals 

 

 As Fig.2 showed, after feature extraction, the Back-

propagation Neural Networks (BPNN) was applied to realize 

the recognition of the upper limb movement. The activation 

function of the BPNN is described as following: 

 ( )   
 

      
 

where   is a constant coefficient and   is the summation of the 

input defined as following: 
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where    is weighted parameter to each input to the neural 

node. The learning method is the back propagation algorithm: 
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where   
 
 is the  th node weight coefficient of the  th hidden 

layer and    is the input of the  th hidden layer. The input 

matrix to the BP neural network is the combination of the 

coefficients vector of the AR model, which forms as follows: 

sEMG signal filtering 

sEMG signals recording 

BPNN recognition 

 

Feature extraction 
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where   is the number of the input vectors and   is the AR 

model order. The output matrix is the combination of the 

quantification of the upper limb movement classification and 

different classifications have unique combinations of zeros 

and one. As the following matrix shows: 
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where the row one and two belong to the same classification 

and row three and four belong to the different ones. The rank 

of the output matrix is the classification number of the upper 

limb movement. 

After the raw sEMG signals recorded from upper limb, 

they are fitted using the AR model with the Burg algorithm. 

Then the coefficients of the model are combined with the 

expected output column to be as the training data of the 

BPNN. And this well-trained BPNN is applied to the signal 

movement recognition.  

B. Recognition of Multi-motion 

 The multi-motion recognition is based on the single-

motion recognition. There are three individual BPNN to the 

three upper limb movements after single-motion recognition. 

Although the three pairs of muscles have coupling relationship 

during multi-motion, such as when doing the upper arm 

flexion while forearm pronating or supinating, the value of the 

sEMG signals amplitude is higher than the one in the single 

upper arm flexion movement, this coupling relationship just 

amplified the single movement function and the generalization 

ability of the BPNN makes it possible to classify them 

correctly in this range of amplification.  

Fig.4 shows a sketch of the multi-motion recognition: 

 

Fig.4 Multi-motion recognition 

where the BPNN1, BPNN2 and BPNN3 represent for the 

individual neural networks.  

The raw sEMG signals recorded from the different pairs 

of muscles are calculated using the AR model and send to the 

coordinate well-trained BPNN to finish the motion pattern 

recognition. Each recognition result is sent to the multi-motion 

classifier which combines the three recognition information to 

make out the final result. 

III.  EXPERIMENTS AND RESULTS 

A. Experimental System 

The sEMG signals were collected using the bipolar 

surface electrodes with 12mm in length, located 18mm apart, 

and the sampling rate is 3000Hz with differentially amplified 

( gain 1000 ) and common mode rejection ( 104dB ). The 

sampling data were pre-processed with a commercial filter 

box ( Oisaka Electronic Device Ltd. Japan. ) before recorded 

to the control program with the sampling rate of 1500Hz ( as 

the most frequency power of EMG signals are between 20 to 

150Hz ) through an AD board ( PCI3165, Interface Co. 

Japan). The surface electromyographic activities were 

monitored from the biceps brachii and triceps brachii.  

 

(a). The personal EMG filter box 

 

(b). The surface electrode 

Fig.5 The sEMG signals recording devices. 
 

The user interface was programmed using Visual C++ 

2010 ( Microsoft Co. USA ) which can collect A/D data from 

the AD board through the application programming interface 

and process the data with MATLAB ( MathWorks Co. USA ) 

via a communication from the custom interface to the 

commercial software running on a person computer with a 

2.8GHz quad-core processor ( Intel Core i7 860 ) and 4GB 

RAM. The general sketch of the custom GUI is showed in 

Fig.6 

BPNN1 

BPNN2 

BPNN3 

Raw signals 

Raw signals 

Raw signals 

Multi-motion 

classification 



 

Fig.6 The Custom GUI for application 

B. Experimental Protocol 

 Three healthy volunteers ( age from 22-26, all male, one 

left handed and two right handed ) participated in the 

experiment. Before placing the electrodes which were aligned 

parallel to the muscle fibres over the belly of the muscle and 

positioned following the recommendations, the skin was 

shaved, abraded and cleaned with alcohol in order to reduce 

the skin impedance. In order to generalization the upper limb 

movement of the volunteers, their motions were restricted as 

requirement directing by a video. In the experiment of upper 

arm flexion and extension, the volunteer were asked to sit on a 

chair started with upper limbs relaxed vertically fitting to the 

vertical pillar of the benchmark apparatus (as shown in Fig.7 

a) and then contracted their experimental upper forearm to the 

horizontal beam (as shown in Fig.7 b ). After a short stop 

keeping the forearm to the horizontal position, the volunteer 

was asked to extend the forearm to the initial vertical position. 

In the experiment of forearm pronation and supination, the 

upper arm kept vertical and volunteer only pronated with his 

forearm, keeping the upper arm still. There is a cross mark on 

the ground to be the benchmark for pronation and 

supination(as shown in Fig.8). In the experiment of palmar 

flexion and dorsiflexion, volunteer kept his forearm horizontal 

and flexed or dorsiflexed to the contracted bounds(as shown in 

Fig.9). 

Each volunteer repeated these three experiments fifteen 

times with a relaxation of one minute in every five tests. The 

raw sEMG signals were recorded separately from the three 

experiments and a special BP neural network coordinate to 

one experimenter would be trained using the collected data 

from the ten times repeated tests. After all the three volunteers 

finished their experiments, there were three independent 

neural networks belong to the different experimenters. The 

movement of each volunteer had been recognized with their 

own neural networks and the results were applied to the multi-

motion recognition.  

In the multi-motion experiments, there were three 

combination motions: the upper arm flexion while forearm 

pronation or supination, the forearm pronation while palmar 

flexion or dorsiflexion, and the upper arm flexion while 

palmar flexion or dorsiflexion. There is no strict restriction in 

the multi-motions but each part of the movement was 

followed the direct in the single motion experiment. Each 

volunteer repeated each experiment ten times. 
 

 

(a). The start position                         (b). The vertical position as 

of the experiment                   the keeping position in the experiment, 
from which forearm moves downward 

Fig.7 Experimental procedure A.  

  

          (a). The forearm pronation                       (b). The forearm supination 

Fig.8 Experimental procedure B.  

   

(a). The palmar flexion                             (b). The palmar dorsiflexion 

Fig.9 Experimental procedure C. 

C. Experimental Results 

There is a constraint that the AR model requires the 

predicted data to be wide-sense stationary. It has been 

indicated that the raw sEMG signals are non-stationary[13]. 

But with sufficient short time intervals, this nature electrical 

behavior could be considered stationary. In this study, the time 

interval was set as 33ms (every 50 samples at 1500Hz 

sampling rate ). And the Akaike Information Criterion ( AIC ), 

which is described as followed, was used to optimize the order 

of the AR model: 

   ( )     (  )   (   )                            (2) 

where    is the estimated linear prediction error variance for 

the model with order   and   is the number of input sEMG 

signal. The order which minimizes the AIC function results 

will be selected as the optimal one. The value of AIC method 



was represented in table 1 with the AR model order   from 1 

to 40 and Fig.10 describes a general trend of the changes and 

table 1 shows the detail value. 

 
Fig.10 The value of AIC algorithm to the increasing of order   

Fig.10 provides that the trend of the AIC value decreases 

gradually with small increasing during order 2 to 10. From 

order 10 to 15, there is a distinct decrease ( from 2.899x10
-4

 to 

1.237x10
-4

) and from 16 to 40 the decrease is not very overt 

ignoring little increasing during some ranges. Considering the 

calculation time cost, 15 was selected as the optimal order for 

the AR model. 

In the single movement recognition experiment, every 

volunteer repeated each movement 15 times, and each 

movement took about 4 to 5 seconds at the sampling rate of 

1500Hz in two channels. And about 225000 samples were 

recorded in each experiment for one volunteer. 10 in the 15 

groups samples were divided as the training data and the other 

5 as the test data for ANN. All the data was calculated with 

the time interval of 33ms. Table 2 lists the recognition 

accruace result, where the Group A, Group B and Group C 

mean the upper arm flexion and extension, palmar flexion and 

dorsiflexion and forearm pronation and supination 

respectively, and Fig.11 is the perfermances of these 

individual BPNNs.  

Table II. Accuracy of the BP artifical neural network 

Volunteer Group A (%) Group B (%) Group C (%) 

A 91.4 86.7 78.4 

B 95.0 85.9 78.8 

C 97.1 85.6 80.5 

    
(a)Group A of Volunteer A                      (b) Group A of Volunteer B 

      
(c) Group A of Volunteer C                     (d) Group B of Volunteer A 

     
     (e) Group B of Volunteer B                    (f) Group B of Volunteer B 

   
      (g) Group C of Volunteer A                  (h) Group C of Volunteer B 

 
(i) Group C of Volunteer C 

Fig.11 The confusion matrix of the performance, Group A, Group B and 

Group C mean the upper arm flexion and extension, palmar flexion and 

dorsiflexion and forearm pronation and supination respectively. 

 

 



Table II. The value of AIC algorithm to the increasing of order   

P 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

AIC 2.53 2.29 2.31 2.39 2.48 2.59 2.67 2.73 2.87 2.90 2.47 2.43 1.94 1.42 1.24 1.25 1.31 1.37 1.43 1.48 

P 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

AIC 1.08 1.12 1.06 0.83 0.86 0.75 0.77 0.82 0.80 0.86 0.88 0.88 0.94 0.78 0.80 0.56 0.55 0.61 0.57 0.63 

 

In the multi-motion recognition experiments, three 

combination of movments were performed by volunteers. 

They were the upper arm flexion while forearm pronation or 

supination, the forearm pronation while palmar flexion or 

dorsiflexion, and the upper arm flexion while palmar flexion 

or dorsiflexion. Total six electrodes were attached on 

volunteer’s upper limb and the sEMG signals of the six 

channels were recoded separately. Each pair of the signals was 

calculated simultaneously and sent to the correlative BPNN 

for recognition. Table 3 lists the recognition accruace result, 

where the Group A, Group B and Group C mean the upper 

arm flexion while palmar flexion or dorsiflexion, the palmar 

flexion while forearm pronation or supination, and the upper 

arm flexion while forearm pronation or supination 

respectively. 

Table III. Accuracy of the multi-motion recognition 
Volunteer Group A (%) Group B (%) Group C (%) 

A 89.4/84.4 83.7/80.0 90.2/72.4 

B 88.0/83.1 81.9/73.5 90.3/74.8 

C 90.1/80.0 81.6/77.3 89.5/73.5 

IV.  DISCUSSION 

 In this paper, a sEMG based continuous pattern 

recognition for upper limb multi-motion has been presented. 

In many cases, a certain threshold is set for the value of the 

amplitude of the EMG signals to estimate the activation of the 

muscle. In this study, no threshold is set and all the volunteers 

did the experiment in the natural and relaxed conditions and 

the motions are recognized without a threshold value. A 

BPNN was applied into the recognition of the motions. 

Considering the individual conditions between persons, 

different BPNNs are trained to estimate the movement 

patterns. The generalization ability of the BPNN can achieve a 

high recognition accuracy rate.  

 During the three single movement recognitions, the 

recognition of forearm pronation and supination is the lowest. 

In the experiment, the pronator quadratus which involves the 

forearm pronator is not very easy to be detected and the raw 

signals recoded during the forearm pronation were not clearly 

to be discriminated. There was no overt difference of the 

recognition accuracy between different volunteers in the same 

movement. But the personal inherent conditions, such as 

different tissue characteristics, are different individually, so 

the recognition accuracy of the same movement is not the 

same during volunteers. 

 The multi-motion recognition results are some like the 

ones in the single movement recognition. But in most the 

cases, the accuracy declines which may be given rise to the 

coordination of the muscle during multi-motion. Such as in the 

motion of upper arm flexion while forearm pronation, the 

biceps are activated during extension because of forearm 

pronation, which made it like the raw signals in the flexion 

movement.  
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