
Tera-scale Computing

Volume 11 Issue 03 Published, August 22, 2007 ISSN 1535-864X DOI:10.1535/itj.1103.02

More information, including current and past issues of Intel Technology Journal, can be found at:
http://developer.intel.com/technology/itj/index.htm

Intel®
Technology
Journal

Accelerator Exoskeleton

http://developer.intel.com/technology/itj/index.htm

Accelerator Exoskeleton 185

Accelerator Exoskeleton

Perry Wang, Corporate Technology Group, Intel Corporation
Jamison Collins, Corporate Technology Group, Intel Corporation
Gautham Chinya, Corporate Technology Group, Intel Corporation

Hong Jiang, Mobility Group, Intel Corporation
Xinmin Tian, Software Solutions Group, Intel Corporation
Milind Girkar, Software Solutions Group, Intel Corporation

Lisa Pearce, Mobility Group, Intel Corporation
Guei-Yuan Lueh, Mobility Group, Intel Corporation

Sergey Yakoushkin, Corporate Technology Group, Intel Corporation
Hong Wang, Corporate Technology Group, Intel Corporation

ABSTRACT
To maximize performance and power efficiency, future
multi-core architectures may be heterogeneous,
incorporating some accelerator cores alongside the IA
cores. Accelerator Exoskeletons provide a shared virtual
memory heterogeneous multi-threaded programming
paradigm for these accelerators using novel CPU
instruction set extensions and software tool chains with an
Intel® Architecture (IA) look-n-feel. Firstly, we introduce
the proposed architectural extensions known as the
Exoskeleton Sequencer (EXO), which represents
heterogeneous accelerators as ISA-based MIMD
architecture resources, and a shared virtual memory
heterogeneous multi-threaded program execution model
that tightly couples specialized accelerator cores with
general-purpose CPU cores. Then we introduce the C for
Heterogeneous Integration (CHI) programming
environment that includes a compiler, runtime, debugger,
and performance-analysis tools. The CHI compiler
extends the OpenMP pragma for heterogeneous
multi-threading programming, and it produces a single fat
binary with code sections corresponding to different
instruction sets. The runtime can judiciously spread
parallel computation across the heterogeneous cores to
optimize performance and power.

INTRODUCTION
The relentless pace of Moore’s Law will lead to mainstream
multi-core microprocessor designs with extensive on-die
integration of a large number of cores [11]. Fundamentally,
to scale multi-core processor designs to incorporate a large
number of cores, ultra low Energy Per Instruction (EPI)
cores are essential [6]. One approach to improving EPI by
an order of magnitude is through heterogeneous multi-core

design, in which some cores vary in functionality,
instruction set (ISA), performance, power, and energy
efficiency [14]. The key challenge then becomes how to
accomplish such heterogeneous integration and achieve
high performance while still maintaining the look-n-feel of
the classic mainstream IA-based programming models and
software ecosystem.

In this paper we present an overview of EXOCHI:
Exoskeleton Sequencer (EXO), an architecture proposal to
represent heterogeneous accelerators as ISA-based MIMD
architectural resources, and C for Heterogeneous Integration
(CHI), a programming environment that supports tightly
coupled integration of heterogeneous cores. The EXO
architecture supports the familiar POSIX shared virtual
memory multi-threaded programming model for
heterogeneous cores. Architecturally, the heterogeneous
cores are exposed to the programmer as a new form
of sequencer resource. They can be regarded as
application-level MIMD functional units on which user-level
threads, or shreds, encoded in the accelerator-specific ISA
can execute. Having a shared virtual address space between
the IA sequencer and accelerator sequencers facilitates code
and data sharing and harmonizes cooperation between the
concurrent shreds of different ISAs. Such a program is said
to be multi-shredded.

The CHI integrated programming environment
allows an application developer to inline blocks of
accelerator-specific assembly or domain-specific language
with traditional C/C++ code. The CHI compiler produces
a single fat binary consisting of executable code sections
corresponding to the different ISAs. CHI further extends
the OpenMP pragmas [21, 23, 26] to allow the
programmer to express thread-level parallelism by
demarcating parallel regions of code targeting

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 186

heterogeneous accelerators. The CHI extensions to
OpenMP support both fork-join and producer-consumer
parallelism among the accelerator shreds and between the
IA shreds and the accelerator shreds. The CHI runtime
can judiciously spread the shreds across the
heterogeneous sequencers dynamically to maximize
throughput performance while minimizing power.

The rest of the paper is organized as follows. We first
briefly review related work. We then introduce the EXO
architecture that supports a shared virtual memory
heterogeneous multi-threaded programming model. We
then present an overview of the CHI integrated
programming environment that extends the Intel® C++
Compiler, runtime, and tool chains to provide the familiar
IA look-n-feel to program heterogeneous cores. To
prototype the EXO architecture, we describe potential
heterogeneous multi-core processors which combine an
Intel® Core™2 Duo processor [27] and two possible
accelerators: an 8-core 32-thread Intel® Graphics Media
Accelerator (GMA) X3000 [10] or the Datastream
Processing Engine (DPE) from a research Scalable
Communication Core (SCC) prototype [8]. We
demonstrate code examples and evaluate performance.

Figure 1: Alternate programming environments

RELATED WORK
There has been a rich body of research on heterogeneous
acceleration. In most published work, the execution
models usually fall into two classifications: (category 1)
an ISA-based tightly coupled approach or (category 2), a
device driver-based loosely coupled execution model.
An example of the tightly coupled approach is the
Software-configurable Processor (SCP) architecture [4] in
which a custom ISA extension represents the operations
implemented by a hardware accelerator attached to the
CPU. The CPU is then responsible for sequencing,
decoding, and dispatching each co-processor instruction,
stalling until the co-processor execution completes. This
approach resembles the classic x87 escape-wait style
co-processor instruction execution where the co-processor

does not sequence instructions independently from
the CPU.

Examples of the second category include most known
GPGPU infrastructures [1, 3, 5, 13, 15, 16, 17, 18, 19, 20,
22, 24, 25, 28]. As depicted in Figure 1(a), the CPU
resources (cores and memory) are managed by the
operating system (OS), and the GPU resources are
separately managed by vender-supplied device drivers.
Applications and device drivers run in separate address
spaces, and consequently, data communication and
synchronization between them is usually carried out in
coarse granularity through explicit data copying via
device driver APIs. In the EXOCHI framework depicted
in Figure 1(b), the EXO architecture supports an
execution model with a shared virtual address space and a
POSIX multi-threaded programming model for the
OS-managed IA sequencer and application-managed
non-IA accelerator sequencers.

EXO differs from the existing tightly coupled approaches
(category 1) by allowing independent sequencing and
concurrent execution of multiple instruction streams on
multiple sequencers within a single OS thread context.
EXO also differs from the loosely coupled, driver-based
approaches (category 2) by directly exposing the
heterogeneous sequencers to application programs and by
supporting a shared virtual address space amongst these
sequencers. EXOCHI’s user-level runtime can be used to
schedule shreds and coordinate light-weight inter-shred
data communication efficiently through shared virtual
memory.

In addition, by supporting the shared virtual memory
heterogeneous multi-threaded execution model, the CHI
integrated programming environment enables the
application developer to inline blocks of accelerator
specific assembly or domain-specific languages within
traditional C/C++ code. This allows performance
sensitive parts of an algorithm to be optimized for the
accelerator ISA just as Intel’s SSE ISA extensions are
traditionally used in implementing a high-performance
math library. CHI’s extensions to OpenMP allow
programmers to express the underlying thread-level
parallelism in a familiar parallel programming
environment.

EXO ARCHITECTURE
Architecturally, EXO extends the Multiple Instruction
Stream Processor (MISP) architecture [7] in three
significant ways: (1) MISP exoskeleton (2) Address
Translation Remapping (ATR), and (3) Collaborative
Exception Handling (CEH). With this architectural
support, EXO fundamentally enables a powerful shared
virtual memory heterogeneous multi-threaded

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 187

programming model, despite ISA differences between the
IA sequencer and the exo-sequencers.

MISP Exoskeleton
EXO provides a minimal architectural “wrapper,” or
exoskeleton, to make a non-IA heterogeneous accelerator
sequencer conform to the MISP inter-sequencer signaling
mechanism. With this exoskeleton, the accelerator
sequencer can be exposed as an application-managed
sequencer, even though it has a different ISA from the IA
sequencers. To distinguish from an application-managed
IA sequencer, we call such heterogeneous accelerator
sequencers exo-sequencers. The exoskeleton supports
interaction with the OS-managed IA sequencer through
either initiating or responding to inter-sequencer
user-level interrupts. With this enhancement, the code on
an OS-managed IA sequencer can use MISP’s SIGNAL
instruction to dispatch shreds of a non-IA ISA to run on
the exo-sequencers. This demands no additional OS
support beyond MISP’s requirements.

Figure 2: ATR and CEH between heterogeneous

sequencers

Microarchitecture Support

Address Translation Remapping
To support shared virtual memory between the
OS-managed IA sequencer and the exo-sequencers, EXO
provides an ATR mechanism to allow the IA sequencer to
handle page faults on behalf of the exo-sequencers.

Maintaining a shared virtual address space between two
sequencers requires the same virtual address to be
resolved to the same physical memory address on both
sequencers. Among sequencers of the same architecture,
this is accomplished by having the sequencers utilize the
same page table for address translation. In a
heterogeneous multi-core with IA sequencers and non-IA
exo-sequencers, however, the page table format
understood by each sequencer may differ. Directly
accessing the IA page table is not an option for the
exo-sequencers in such a case.

EXO solves this problem with its ATR mechanism. With
ATR, when an exo-sequencer incurs a translation miss, it
suspends shred execution and signals the IA sequencer to
request proxy execution in order to service that
Translation Lookaside Buffer (TLB) miss or page fault.
Like MISP, upon receiving the proxy request as a
user-level interrupt, the IA shred transfers control to a
proxy handler that will touch the virtual address on behalf
of the exo-sequencer. Once the page fault is serviced on
the IA sequencer, however, unlike MISP, ATR will
transcode the IA page table entry to the format of the
exo-sequencer’s page table entry before inserting the
entry into the exo-sequencer’s TLB. The exo-sequencer’s
TLB then points to the same physical page as the IA’s
TLB and can directly access the needed data. The
exo-sequencer then resumes execution. As shown in
Figure 2, an address translation remapping mechanism is
responsible for remapping the IA page entry to the native
format on the accelerator.

The shared virtual memory space for heterogeneous
sequencers provides many benefits over the alternative
approaches. It provides the essential architectural
foundation to extend the classic shared memory
multithreaded programming paradigm to heterogeneous
multi-core processors. With a shared virtual address
space, shreds from a single memory image executable
running on IA sequencers and exo-sequencers can
perform data communication and synchronization in
familiar and efficient ways, e.g., without having to
resort to explicit data copying as is necessary in the
loosely-coupled approach.

It is important to note that even though ATR provides the
necessary architectural support for a shared virtual
address space, ATR by itself does not guarantee or
require cache coherence between the IA sequencer and an
exo-sequencer. In the absence of hardware support for
cache coherence between the IA sequencer and an
exo-sequencer, it is the responsibility of the programmer
to use critical sections to protect other IA shreds from
reading or writing the data being processed by shreds on
the exo-sequencers. When an IA shred hands off a shared
data structure to a shred on an exo-sequencer to process,
the IA shred must first commit any dirty lines to main
memory. Similarly, when the exo-sequencer shred
completes its computation, it also needs to flush its cache
before releasing a semaphore to the IA sequencer.

Clearly, with full cache coherence support between the IA
sequencer and the exo-sequencer the programmer’s work
can be greatly eased. In particular, there is no need to use
critical sections to ensure mutual exclusion on reads to the
shared working set. This enables more concurrency
between shreds on the IA sequencer and the
exo-sequencer.

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 188

Collaborative Exception Handling
As with page faults, execution on the exo-sequencers
could potentially incur exceptions or faults that require
OS services. In conventional MISP, if an exception
occurs on an application-managed sequencer, the
instruction causing the exception can be replayed on
the OS-managed sequencer through proxy execution.
However, when the exception occurs on a non-IA
exo-sequencer, the faulting instruction cannot simply be
replayed on the IA CPU sequencer. Because the exo-
sequencer uses a different ISA, the faulting instruction
might have a data type that is not supported by IA ISA
directly, or the exo-sequencer may require a different
exception handling convention. To address this, EXO
adds hardware support for CEH and a software-based
exception handling mechanism, which allows faults or
exceptions that occur on the exo-sequencer to be handled
by the OS by proxy on the OS-managed IA sequencer.

Through CEH, an exception is handled in a similar
fashion to a TLB miss. For example, as shown in
Figure 2, when a double precision floating point vector
instruction on an exo-sequencer incurs an exception, the
exo-sequencer first signals the IA sequencer, as it does
with ATR. The IA sequencer then functions as the proxy
for the exo-sequencer by invoking an application-level
handler to emulate the faulting vector instruction or use
an OS service such as Structured Exception Handling
(SEH) to provide full IEEE-compliant handling of the
exception on the particular excepting scalar element.
Once the exception is handled on the IA sequencer, CEH
ensures the result is updated on the exo-sequencer before
resuming execution.

Accelerator Exo-Sequencer: Two Examples
Media Accelerator
One example of an exo-sequencer accelerator is the
integrated Intel Graphics Media Accelerator X3000 from
the Intel® 965G Express chipset [9]. Figure 3 shows a
high-level view of the GMA X3000 hardware. The GMA
X3000 contains eight programmable, general-purpose
graphics media accelerator cores, called Execution Units
(EU), each of which supports four hardware thread
contexts. From the programmer’s perspective, 32
exo-sequencers are available. We use a custom emulation
firmware that uses an IA CPU core as the OS-managed
sequencer and uses the 32 GMA X3000 sequencers as
exo-sequencers. The firmware implements all essential
architectural extensions required by the EXO architecture,
including MISP exoskeleton, ATR, and CEH.

A shred for the GMA X3000 exo-sequencer can be
created either by an IA shred or spawned from another
GMA X3000 shred. Once created, GMA X3000 shreds
are scheduled in a software work queue in shared virtual

memory like POSIX threads. The work queue can have a
far greater number of shreds than the number of GMA
X3000 exo-sequencers. The emulation firmware is
responsible for translating a shred descriptor, which
includes shred continuation information like instruction
and data pointers to the shared memory, into
implementation-specific hardware commands that the
GMA X3000 exo-sequencers can consume and execute.
The emulation layer hides all device-specific hardware
details from the programmer.

Figure 3: High-level view of the Intel GMA X3000

Communication Accelerator
Another example of the exo-sequencer accelerator is the
Scalable Communication Cores (SCC) [8]. SCC is a
research prototype designed for a reconfigurable radio
baseband that is capable of processing several wireless
standard protocols, such as WiFi, WiMax [12], or cellular
infrastructure, with a common set of hardware. The SCC
system architecture consists of a heterogeneous set of
coarse-grained, highly optimized baseband Processing
Elements (PEs).

One type of PE is the Data Processing Element (DPE)
core, which performs computationally intensive
operations, such as the Fast Fourier Transform (FFT) that
is commonly used in many standard protocols. The DPE
core structure consists of control and computation units
and several memory blocks. DPE cores are connected via
flexible interconnect matrices. Asynchronous data-path
swap units support commutations from any of four inputs
to any of four outputs. Reconfiguration of the data-path
can be done dynamically with interconnection
information and operation parameters stored in the
configuration cache.

Inside DPE, there is a configuration (CFG) queue that is
part of a special task scheduling mechanism. Each task
pointer that is pushed onto the CFG queue will be fetched
by the core engine. Each launched task becomes an
exo-sequencer running on DPE. The DPE can be
configured to use multiple CFG queues, thus implying a
multi-threaded implementation. This allows multiple
exo-sequencers to run concurrently on the DPE engine.

Command

Dispatcher

8 cores, 4 hw threads/core

(32 exo-sequencers)

Fixed

Function

units

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 189

CHI PROGRAMMING ENVIRONMENT
C for Heterogeneous Integration (CHI) is designed to
provide an IA look-n-feel programming environment
to support user-level multi-shredding on heterogeneous
sequencers. In the CHI infrastructure, we enhance the
Intel C++ Compiler to support accelerator-specific inline
assembly within the C/C++ source. In addition, we extend
OpenMP pragmas to support heterogeneous multi-
shredding and provide the related runtime support. The
runtime library is responsible for judiciously scheduling
heterogeneous shreds across the exo-sequencers. The
compiler can also embed debugging information for
different ISAs in a single binary. Such information can be
used by an enhanced version of the Intel Debugger (IDB)
to enable source-level debugging for both C/C++ code
on the IA CPU target and the accelerator-specific code on
the accelerator target. Figure 4 depicts the overall CHI
compilation infrastructure. Three new capabilities are
provided in the CHI compiler to allow programmers to
express multi-shredded computation for the
heterogeneous exo-sequencers in the C/C++ source code:

• A method to specify a region of accelerator-specific
computation in either inline assembly or domain-
specific language.

• A method to specify fork-join or producer-consumer
style shred-level parallel execution for the inline
accelerator-specific code region with OpenMP
pragmas.

• A method to specify input and output memory
regions and live-in values for the accelerator-specific
code region.

Inline Accelerator Assembly Support
C/C++ provides a facility to inline assembly code blocks
directly within the high-level source code. This capability
provides programmers access to new instructions or
processor features not exposed through the compiler and
allows the most performance-critical parts of a program to
be custom optimized in assembly. This inline assembly
construct can be naturally extended to provide
accelerator-specific inline assembly support.

Many variants of asm keyword and syntax exist. In CHI
we adopt the Microsoft MASM syntax, i.e.,

__asm {asm_statements;}

where brackets are used to enclose the assembly
statements. __asm is the keyword that indicates the
enclosed block of code is a special assembly block written
specifically for the given accelerator ISA. The
asm_statements enclosed in the ensuing brackets are
compiled into an accelerator-specific executable binary.
The target ISA for the asm_statements is specified

through the enclosing OpenMP pragma with the target
clause, which is described in this paper in the section
entitled “OpenMP Parallel Pragma Extension.” As shown
in Figure 4, a separate accelerator-specific assembler is
dynamically linked with the Intel compiler. Figure 5
shows an example of C code using the extended OpenMP
pragmas and CHI runtime APIs for a heterogeneous target
consisting of an IA32 sequencer and GMA X3000 exo-
sequencers.

Figure 4: CHI compilation flow

Similar to traditional inline assembly, this accelerator-
specific assembler generates code for the target ISA by
translating the inline assembly instructions enclosed in the
brackets into binary code and resolving symbolic names
for memory locations and other entities referenced within
the assembly block. After the assembler compiles the
assembly block, the resulting binary code is embedded in
a special code section of the executable indexed with a
unique identifier. The final executable is a fat binary,
consisting of binary code sections corresponding to
different ISAs.

Domain-specific Language Support
In addition to supporting accelerator-specific inline
assembly, the capability of the C/C++ compiler can
be further extended to provide a facility to inline
domain-specific language blocks directly within the high-
level source code. These domain-specific languages are
designed to utilize the accelerator-specific features not
exposed through the general C/C++ programming
environment. Therefore, the programmers can take
advantage of the full capability of the underlying

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 190

accelerators without programming the exo-sequencer
directly in assembly language.

To provide a uniform programming interface to
programmers, we adopt the format similar to that of the
asm syntax, i.e.,

__<language keyword> {domain-specific
language statements;}

where brackets are used to enclose the domain-specific
language statements. __<language keyword> can
be any language that is supported by CHI. Upon parsing
the particular language keyword, the C/C++ compiler
invokes the corresponding domain-specific compiler
plug-ins to generate the accelerator-specific binary,
similar to how it is done with the inline assembly support
as described in the section entitled “Inline Accelerator
Assembly Support.”

Figure 6 shows an example of the domain-specific
language support to the Data-stream Programming
Language (DPL) that is specifically designed for the
retargetable SCC-DPE accelerator. DPL provides
essential high-level functions to exploit the inner
microarchitecture of the DPE systolic arrays. The
programmers can embed DPL code within the brackets
preceded by the __dpl keyword.

OpenMP Parallel Pragma Extension
CHI extends the OpenMP parallel pragma. The
construct for generating heterogeneous shreds of an
accelerator-specific instruction set is outlined in
Figure 7(a). The target clause specifies the particular
accelerator instruction set used within the parallel region.
The compiler inserts appropriate calls to the CHI runtime
layer to enable judicious dynamic shred scheduling and
dispatching onto the targeted exo-sequencers. When the

main IA shred encounters an accelerator-specific
parallel construct with the target(targetISA)
clause, the IA shred spawns a team of num_threads
heterogeneous shreds for the parallel region, where each
shred eventually executes the enclosed assembly block on
an exo-sequencer.

Figure 6: Example inline DPL code using CH

By default, the main IA shred waits at the end of
the construct until it is notified by the CHI runtime of the
completion of all heterogeneous shreds. Similar to
the traditional nowait clause, an optional
master_nowait clause allows the main IA shred to
continue execution past the construct after spawning the
team of heterogeneous shreds, without having to wait for
their completion. This allows concurrent execution on
both the IA sequencer and its exo-sequencers. The CHI
runtime is responsible for asynchronously notifying the
IA sequencer of the eventual completion of all
heterogeneous shreds.

OpenMP Work-Queuing Extension
In order to support concurrent threads with intricate
dynamic inter-thread dependencies (e.g., due to the use of
irregular data structures), the Intel C++ Compiler supports
irregular parallelism through two special OpenMP
pragmas, taskq and task [23]. In CHI, we further
enhance the compiler and runtime to support inter-shred
dependencies among heterogeneous shreds using these
pragmas. The parallel taskq construct and the
task construct for an exo-sequencer are outlined in
Figure 7(b) and Figure 7(c).

 int *A = malloc(n);
 int *B = malloc(n);
 int *C = malloc(n);

 A_desc = chi_alloc_surface(A, X3000_INPUT, n, 1);
 B_desc = chi_alloc_surface(B, X3000_INPUT, n, 1);
 C_desc = chi_alloc_surface(C, X3000_OUTPUT, n, 1);
 #pragma omp parallel target(x3000) shared(A,B,C)
 descriptor(A_desc,B_desc,C_desc) private(i)
 {
 for (i=0; i<n/8; i++)
 __asm
 {
 shl.1.w vr1 = i, 3
 ld.8.dw [vr2..vr9] = (A, vr1, 0)
 ld.8.dw [vr10..vr17] = (B, vr1, 0)
 add.8.dw [vr18..r25] = [vr2..vr9], [vr10..vr17]
 st.8.dw (C, vr1, 0) = [vr18..vr25]
 }
 }
 #pragma omp parallel for shared(D,E,F) private(i)
 {
 for (i=0; i<n; i++)
 F[i] = D[i] + E[i];
 }

Figure 5: Example GMA X3000 inline assembly
i C

float Vin[4];
float Vout[4];

void *in_desc = (void *)chi_alloc_buffer_desc
 (DPE_INPUT_BUFFER, Vin, 4, 1);
void *out_desc = (void *)chi_alloc_buffer_desc
 (DPE_OUTPUT_BUFFER, Vout, 4, 1);

#pragma omp parallel target(dpe)
 shared(Vin,Vout)
descriptor(in_desc,out_desc)
{
 __dpl {
 configuration[1] cfgMult(vector val[1],
 vector coeff[1])
 {
 result bs(mull(val, coeff), 13);
 }
 flow[4] multiFlow(vector vec[4],
 vector coeffs[4])
 {
 vector ret[4]; result out;
 selector[iter : 4] sel[1] = {{ iter }};
 selector[iter : 4] selRev[1] = {{ 3 - iter
}};
 ret[sel] = cfgMult(vec[sel], coeffs[selRev]);
 }
 vector cf[4] = { 0.5 + I * 0.0 };
 program dlMain()
 {
 Vout = multiFlow(Vin, cf);
 }
 }
}

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 191

Figure 7: CHI extensions to OpenMP pragmas

CHI Runtime Support
The CHI runtime is a software library that translates the
programmer-specified OpenMP directives into primitives
to create and manage shreds that can carry out parallel
execution on the heterogeneous multi-core target. Like
conventional OpenMP runtimes, the CHI runtime layer
provides a layer of abstraction that hides the details of
managing the exo-sequencers from the programmer.

In order to allow the accelerator more efficient access to
the C/C++ variables specified by the shared data
clause, programmers can use the CHI runtime APIs to
convey accelerator-specific access information through
data structures known as descriptors. Descriptors are used
by the accelerator to interpret the attributes of the
shared variables that are accessed by the shreds.

EXOCHI PROTOTYPE
The EXOCHI framework described in this paper has
already been deployed within Intel for successful
development of production-quality, GMA X3000
media-processing kernels and other workloads of growing
importance [2]. Figures 8 and 9 provide examples of the
use of how an IA look-n-feel allows familiar development
tools and environments to be used in writing
heterogeneous multi-shredded code. Figure 8 shows the
use of familiar legacy development tools (Microsoft
Visual Studio*) for development and debugging of

heterogeneous multi-shredded code. Figure 9 illustrates
the compilation and execution of such a program.

Figure 8: IA Look-n-Feel IDE (Microsoft Visual

Studio) for application development

Figure 9: IA Look-n-Feel compilation and execution

Performance Evaluation
To evaluate the performance of our EXOCHI prototype
we select a representative subset of the kernels that have
been developed. These kernels exhibit a significant
amount of data- and thread-level parallelism and thus,
readily lend themselves to efficient execution on the
GMA X3000 exo-sequencers.

Implementation of these kernels is made easy due to
special GMA X3000 ISA features optimized for media
processing. The key ISA features include wide SIMD
instructions, predication support, and a large register file
of 64 to 128 vector registers for each GMA X3000
exo-sequencer. With CHI, programmers can directly use
the GMA X3000 ISA features via inline assembly in
C/C++ code as if they are traditional ISA extensions to
IA, such as SSE. By providing such IA look-n-feel, CHI
enables highly productive development of heterogeneous
multi-shredded code.

All benchmarks are compiled with the enhanced version
of the Intel C++ Compiler using the most aggressive
optimization settings (–fast –Qprof_use). These compiler
optimizations include auto-vectorization, profile-guided
optimization, and tune specifically for the Intel Core 2
Duo processor used in the EXO prototype system.
LinearFilter, SepiaTone and FGT make use of
the optimized and SSE-enhanced Intel IPP library, and
the other benchmarks were manually tuned and
SSE-optimized. Performance results measure the wall
clock execution time.

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 192

1
2
3
4
5
6
7
8
9

10
11
12

Lin
earF

ilte
r (6

40x
480

)

Lin
earF

ilte
r (2

000
x2

00
0)

Sep
iaT

one
 (6

40
x4

80)

Sep
iaT

one
 (2

00
0x

200
0) FGT

Bicu
bic

Kalm
an

 (5
12x

256
)

Kalm
an

 (2
048

x1
02

4)
FMD

Alph
aB

len
d

BOB
ADVDI

Proc
Amp

Harm
on

ic
Mea

nFa
ct

or
 S

pe
ed

up
 o

ve
r I

A
32

 S
eq

ue
nc

er

Figure 10: Speedup from execution on GMA X3000

exo-sequencers over IA sequence

Performance Speedup on GMA X3000 Exo-
sequencers over IA Sequencer
Figure 10 shows the speedup achieved over IA sequencer
execution by executing media kernels on the GMA
X3000 exo-sequencers. Significant speedup is achieved,
ranging from 1.41X for BOB up to 10.97X for Bicubic.
Two factors are crucial in achieving this high throughput
performance on the GMA X3000 exo-sequencers. Most
important is the availability of abundant shred-level
parallelism. As each GMA X3000 exo-sequencer
supports only in-order execution within a shred, the
accelerator relies on the presence of multiple concurrent
shreds to cover up stalls incurred in one shred by
switching to another shred. A second, but related issue, is
the need to maximize cache hit rate and memory
bandwidth utilization. The GMA X3000 supports
simultaneous execution of 32 hardware threads, each of
which might be reading and writing multiple data streams.
The CHI runtime allows programmers to carefully
orchestrate shred scheduling to ensure shreds accessing
adjacent or overlapping macroblocks are ordered closely
together in the work queue so as to take advantage of
spatial and temporal localities.

Other than support for thread-level parallelism, the GMA
X3000 ISA also provides strong support for data-level
parallelism. It features significantly wider SIMD
operations (8- to 16-wide vector) than the SSE on today’s
IA CPU.

0

1

2

3

4

5

6

7

8

9

10

11

12

Lin
ea

rFi
lter

 (6
40

x4
80

)

Lin
ea

rFi
lter

 (2
00

0x
20

00
)

Sep
iaT

on
e (

64
0x

48
0)

Sep
iaT

on
e (

20
00

x20
00

)
FGT

Bicu
b ic

Kalm
an

 (5
12

x2
56

)

Kalm
an

 (2
04

8x10
24

)
FMD

Alph
aB

len
d

BOB
ADVDI

Proc
Amp

Harm
on

ic
Mean

Fa
ct

or
 S

pe
ed

up
 o

ve
r I

A
32

 S
eq

ue
nc

er Data Copy (3.1GB/s)

Non-CC Shared

CC Shared

Figure 11: Impact of shared virtual memory

Impact of Data Copying Versus Shared
Virtual Address Space
In general, the performance improvement achieved by
using an accelerator is determined not only by the
accelerator architecture but also by the overhead of data
communication between the CPU and accelerator. This
overhead varies greatly depending on the memory model
between the CPU and the accelerator. Figure 11 shows
overall performance improvement achieved with a cache
coherent shared virtual memory model between the IA
sequencer and the GMA X3000 exo-sequencers. In the
absence of cache coherence or shared memory, the data
communication overhead can significantly degrade the
speedup achieved from accelerating the computation. In
Figure 11 we contrast performance impacts for three
memory model configurations.

The first configuration, Data Copy, assumes a model
without shared virtual memory and no cache coherence
between the IA sequencer and the GMA X3000 exo-
sequencers. Consequently, data communication between
IA shred and GMA X3000 shreds requires explicit data
copying, for which we assume a 3.1GB/s data copy rate.
This corresponds to an aggressive data copy rate using an
SSE-enhanced memory copy routine when copying data
from a cacheable memory source to a destination region
marked as uncacheable, write-combining memory. The
Intel Core 2 Duo processor features special write-
combining buffers that allow aggressive burst mode
transfers when copying from cacheable memory to write-
combining memory. Due to the lack of shared virtual
memory, the inter-shred communication between the IA
shred and GMA X3000 shreds resembles that of
traditional message passing communication between
processes from different address spaces.

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 193

The second configuration, Non-CC Shared, assumes a
shared virtual address space but without cache coherency
between the IA sequencer an the GMA X3000
exo-sequencers. Data copying can be avoided in this case as
both the IA sequencer and GMA X3000 exo-sequencers can
access the identical physical memory location for the same
virtual address. Memory writes performed by the IA
sequencer or the GMA X3000 exo-sequencers may not be
visible to the other until after a cache flush operation, which
forces any dirty cache lines to be written back to main
memory. However, data communication can still be
accomplished by passing a pointer to a shared data structure
between the IA sequencer and a GMA X3000
exo-sequencer as long as cache flush operations are
appropriately invoked. Due to the lack of cache coherence,
the IA shred and the GMA X3000 shreds need to use critical
sections to enforce mutually exclusive access to shared data
structures. The semaphore on the critical section will not be
released until the GMA X3000 exo-sequencers completely
flush the dirty lines to memory.

The first configuration, Data Copy, assumes a model
without shared virtual memory and no cache coherence
between the IA sequencer and the GMA X3000
exo-sequencers. Consequently, data communication
between IA shred and GMA X3000 shreds requires
explicit data copying, for which we assume a 3.1GB/s
data copy rate. This corresponds to an aggressive data
copy rate using an SSE-enhanced memory copy routine
when copying data from a cacheable memory source to
a destination region marked as uncacheable,
write-combining memory. The Intel Core 2 Duo
processor features special write-combining buffers that
allow aggressive burst mode transfers when copying from
cacheable memory to write-combining memory. Due to
the lack of shared virtual memory, the inter-shred
communication between the IA shred and GMA X3000
shreds resembles that of traditional message passing
communication between processes from different
address spaces.

The third configuration, CC Shared, models a
cache-coherent shared virtual address space, which is the
configuration assumed in Figure 10. In this model, data
communication between the IA shred and the GMA
X3000 shreds becomes much more efficient. Similarly,
the synchronization on mutual access to shared data
structure is also made much easier for programmers. For
example, while critical sections are still necessary to
provide mutual exclusion on writes to a shared variable,
one shred can always read the shared variables that are
updated by the other shreds. This allows more execution
concurrency between shreds.

The performance data in Figure 11 demonstrate the
benefits of a shared virtual address space compared to

data copying. While significant performance
improvement is still possible even with data copying, for
computationally intensive kernels (e.g., bicubic and
ADVDI), the gains are significantly reduced from the
original CC Shared configuration in cases such as
LinearFilter and BOB. For benchmarks in which the
GMA X3000 performs little computation on the loaded
input data, the time to copy data between separate address
spaces represents a significant fraction of the processing
time. Even with a highly optimized implementation on the
latest IA Intel Core 2 Duo processor, the data copying
achieves only 70.5% of that seen for a coherent shared
virtual address space.

The cost of copying data can be ameliorated if the IA
sequencer and the GMA X3000 exo-sequencers operate
within a shared virtual address space, even if cache
coherency is not supported. The time required to flush
caches is still nontrivial, however, and the lack of
coherency (Non-CC Shared) still yields 85.3% of the
performance achieved with full cache coherency. Support
for cache coherence improves performance because the
cache flush operation is not needed to synchronize
memory accesses.

For the Non-CC Shared configuration, when an IA shred
spawns GMA X3000 shreds, it may appear necessary to
flush the IA sequencer’s cache fully before any GMA
X3000 shred can be launched. In reality the majority of
the cache flush operation on the IA sequencer can be
overlapped with parallel shred execution on the GMA
X3000 exo-sequencers if cache flush operations and shred
launches can be interleaved. As each exo-sequencer shred
only reads and writes a tiny portion of each data buffer
(e.g., a 16 pixel by 16 pixel macroblock), as long as those
data have been flushed back to memory by the IA
producer shred, the exo-sequencer consumer shred for
that macroblock can be launched and can execute safely.
Additional cache flush operations can then proceed in
parallel with useful work being performed in parallel on
the exo-sequencers.

CONCLUSION
In this paper we present the EXO MIMD extension to
the IA ISA to expose heterogeneous cores as application-
level architecture resources and provide shared virtual
memory to support the classic multi-shredded
programming model for heterogeneous multi-core
processors. The EXO architecture allows application
programs to directly use heterogeneous hardware as
MIMD functional units while requiring minimal
additional dependency on the existing OS ecosystem. In
addition, in order to take advantage of the rich ecosystem
legacy for IA software development, the CHI
programming environment provides an IA look-n-feel by

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 194

extending the Intel C++ Compiler, OpenMP runtime, and
debugger toolchains to support user-level heterogeneous
multi-shredding. Since its development, EXOCHI has
been used in Intel’s production media kernel
development. Based on extensive feedback from
developers, there is strong evidence that the IA
look-n-feel of the programming environment has
significantly improved productivity over prior device
driver-based development environments.

ACKNOWLEDGMENTS
We thank Nick Yang, Porus Khajotia, Prasoonkumar
Surti, Bob Dreyer, Sang-hee Lee, Katen Shah, Mike
Dwyer, Yi-jen Chiu, Lian Tang, Igor Kozintsev, Xintian
Wu, Bevin Brett, Susan Macchia, Ping Liu, Nenad
Ukropina, Todd Schwartz, Jenny Nieh, David Sehr, Wei
Li, and Sanjiv Shah for the productive collaboration
throughout the EXOCHI project. We also appreciate the
support from Shekhar Borkar, Joe Schutz, Tom Piazza,
Justin Rattner, Jim Held, Steve Pawlowski, Kevin J.
Smith, Bill Savage, Ketan Paranjape, Raj Hazra, Alan
Crouch, Bryant Bigbee, Wilf Pinfold, Dave Shinsel, Ajay
Bhatt, Doug Carmean, Per Hammarlund, Dion Rodgers,
Steve Whalley, Avi Mendelson, and Prashant Sethi. In
addition, we thank Anne Bracy, Ethan Schuchman, Ankur
Khandelwal, Marian Lacey, and the anonymous reviewers
whose valuable feedback has helped the authors greatly
improve the quality of this paper.

REFERENCES
[1] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M.

Houston, and P. Hanrahan, “Brook for GPUs: Stream
Computing on Graphics Hardware,” in ACM Transactions
on Graphics, 23(3): 777–786, 2004.

[2] P. Dubey, “Recognition, Mining and Synthesis
Moves Computers to the Era of Tera,”
Technology@Intel Magazine, February 2005.

[3] GLSL–OpenGL Shading Language, in
www.wikipedia.org/wiki/GLSL*

[4] R. Gonzalez, “A Software-configurable Processor
Architecture,” IEEE Micro, Sept./Oct. 2006, pp. 42–51.

[5] GPGPU: General Purpose Computation using
Graphics Hardware, at www.gpgpu.org*

[6] E. Grochowski, M. Annavaram, “Energy per
Instruction Trends,” in Intel® Microprocessors.
Technology@Intel Magazine, March 2006, at
http://www.intel.com/technology/magazine/research/
energy-per-instruction-0306.pdf

[7] R. Hankins, G. Chinya, J. Collins, P. Wang, R.
Rakvic, H. Wang and J. Shen, “Multiple Instruction
Stream Processor, in Proceedings of the 33rd

International Symposium on Computer Architecture,
June 2006.

[8] J. Hoffman, D. A. Ilitzky, A. Chun, A. Chapyzhenka,
“Architecture of Scalable Communication Core,” in First
International Symposium on Networks-on-Chip, 2007.

[9] Intel Corp., Intel G965 Express Chipset, at
http://www.intel.com/products/chipsets/g965/prod_brief.pdf

[10] Intel Corp., “Intel’s Next Generation Integrated
Graphics Architecture – Intel Graphics Media
Accelerator X3000 and 3000,” White Paper, 2006.

[11] Intel Corp., “Tera-scale Research Prototype:
Connecting 80 Simple Sores on a Single Test Chip,”
ftp://download.intel.com/research/platform/tera-
scale/tera-scaleresearchprototypebackgrounder.pdf

[12] Intel Corp., “WiMAX,” in Intel Technology Journal
Vol. 8 Issue 3, at
ftp://download.intel.com/technology/itj/2004/volume
08issue03/vol8_iss03.pdf.

[13] U. Kapasi, S. Rixner, W. Dally, B. Khailany, J. Ahn,
P. Mattson and J. Owens, “Programmable Stream
Processors,” in IEEE Computer, 2003.

[14] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi,
and K. Farkas, “Single-ISA Heterogeneous Multi-
Core Architectures for Multi-threaded Workload
Performance,” in Proceedings of the 31st
International Symposium on Computer Architecture,
June 2004.

[15] F. Labonte, P Mattson, W. Thies, I. Buck, C.
Kozyrakis, and M. Horowitz, “The Stream Virtual
Machine,” in Proceedings of the 13th International
Conference on Parallel Architectures and
Compilation Techniques, 2004.

[16] W. Mark, R. Glanville, K. Akeley, and M. Kilgard,
“Cg: A System for Programming Graphics Hardware
in a C-like Language,” ACM Transactions on
Graphics 22, 3, 896–907.

[17] M. McCool and S. Toit, Metaprogramming GPUs
with Sh, A K Peters, Ltd., Wellesley, MA, 2004.

[18] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J.
Krüger, A. Lefohn, and T. Purcell, “A Survey of
General-Purpose Computation on Graphics
Hardware,” Eurographics, August 2005.

[19] PeakStream Inc., “The PeakStream Platform: High
Productivity Software Development for Multi-core
Processors,” White Paper, 2006.

[20] RapidMind Inc., “Performance Evaluation of GPUs
using the RapidMind Development Platform,”
Supercomputing’06.

[21] S. Shah, G. Haab, P. Petersen, J. Throop, “Flexible
control structures for parallelism in OpenMP,” in

http://www.wikipedia.org/wiki/GLSL
http://www.intel.com/technology/magazine/research/energy-per-instruction-0306.pdf
http://www.intel.com/technology/magazine/research/energy-per-instruction-0306.pdf
http://www.intel.com/products/chipsets/g965/prod_brief.pdf
ftp://download.intel.com/technology/itj/2004/volume08issue03/vol8_iss03.pdf
ftp://download.intel.com/research/platform/terascale/tera-scaleresearchprototypebackgrounder.pdf
www.gpgpu.org

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 195

Proceedings of the First European Workshop on
OpenMP, Sept. 1999.

[22] M. Segal and M. Peercy, “A Performance-Oriented
Data Parallel Virtual Machine for GPUs,”
SIGGRAPH, 2006.

[23] E. Su, X. Tian, M. Girkar, G. Haab, S. Shah, and P.
Petersen, “Compiler Support of the Workqueuing
Execution Model for Intel SMP Architectures,” in
EWOMP, 2002.

[24] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator:
Using Data Parallelism to Program GPUs for
General-Purpose Uses,” in Proceedings of the
Twelfth International Conference on Architectural
Support for Programming Languages and Operating
Systems, Oct. 2006.

[25] W. Thies, M. Karczmarek, and S.
Amarasinghe,“StreamIt: A Language for Streaming
Applications,” CC, 2002.

[26] X. Tian, M. Girkar, S. Shah, D. Armstrong, E. Su,
and P. Petersen, “Compiler and Runtime Support for
Running OpenMP Programs on Pentium- and
Itanium-Architectures,” in Proceedings of the 17th
International Symposium on Parallel and Distributed
Processing, April 2003.

[27] O. Wechsler, “Inside Intel Core Microarchitecture:
Setting New Standards for Energy-efficient
Performance,” Technology@Intel Magazine, 2006.

[28] D. Zhang, Z Li, H. Song, and L. Liu, “A
Programming Model for an Embedded Media
Processing Architecture,” SAMOS, 2005.

AUTHORS’ BIOGRAPHIES
Perry Wang is a Senior Staff Engineer with Intel’s
Corporate Technology Group. His work involves research
on processor architecture, microarchitecture and compiler
optimization techniques. Perry has been with Intel for 12
years and holds a master’s degree in Computer
Engineering from the University of Michigan.

Jamison Collins is a Staff Engineer with Intel’s
Corporate Technology Group. His work involves
exploring and prototyping future Intel processor
architecture and microarchitecture. Jamison has been with
Intel for four years and holds a Ph.D. degree in Computer
Science and Engineering from UC San Diego.

Gautham Chinya is a Senior Staff Engineer with Intel’s
Corporate Technology Group. His work involves
exploring future processor system architecture and
interaction with operating systems. Gautham has been
with Intel for eight years and holds a master’s degree in
Computer Engineering from Purdue University.

Hong Jiang is a Senior Principal Engineer with Intel’s
Mobility Group. He is Intel’s lead architect specializing in
video technology. Hong has been with Intel for ten years
and holds a Ph.D. degree in Electrical Engineering from
the University of Illinois at Urbana-Champaign.

Xinmin Tian is a Principal Engineer with Intel’s
Software Solutions Group. He is Intel’s lead compiler
architect specializing in compiler parallelization,
OpenMP, vectorization, and transactional memory
compiler development projects. Xinmin has been with
Intel for eight years and holds a Ph.D. degree in
Computer Science from Tsinghua University.

Milind Girkar is a Principal Engineer with Intel’s
Software Solutions Group. He is Intel’s lead compiler
architect specializing in compiler parallelization and is
responsible for planning the compiler requirements
for future Intel processors. Milind has been with Intel for
twelve years and holds a Ph.D. degree in Computer
Science from the University of Illinois at Urbana-
Champaign.

Lisa Pearce is the software engineering manager with
Intel’s Mobility Group responsible for media
development and content protection for all Intel integrated
graphics solutions. Lisa has been with Intel for ten years
and holds a bachelor’s degree in Computer Science from
Virginia Tech.

Guei-yuan Lueh is a Principal Engineer with Intel’s
Mobility Group. He leads the development of advanced
compiler and runtime technology for Intel graphics
solutions. Guei-yuan has been with Intel for 10 years and
holds a Ph.D. degree in Computer Science from Carnegie
Mellon University.

Sergey Yakoushkin is a Software Engineer in the Intel
Corporate Technology Group. His work involves the
development of software tools for emerging embedded
platforms for communication acceleration, hardware-
software co-design, and language design for data-
streaming processing systems. Sergey has been with Intel
for two years and holds an honours MS degree in
Computer Science from St. Petersburg State University.

Hong Wang is a Senior Principal Engineer with Intel’s
Corporate Technology Group. His work involves research
on future processor architecture and microarchitecture.
Hong has been with Intel for twelve years and holds a
Ph.D. degree in Electrical Engineering from the
University of Rhode Island.

BunnyPeople, Celeron, Celeron Inside, Centrino,
Centrino logo, Core Inside, FlashFile, i960, InstantIP,
Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2,
IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside
logo, Intel. Leap ahead., Intel. Leap ahead. logo,

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 196

Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel
SingleDriver, Intel SpeedStep, Intel StrataFlash,
Intel Viiv, Intel vPro, Intel XScale, IPLink, Itanium,
Itanium Inside, MCS, MMX, Oplus, OverDrive,
PDCharm, Pentium, Pentium Inside, skoool, Sound Mark,
The Journey Inside, VTune, Xeon, and Xeon Inside are
trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

Intel’s trademarks may be used publicly with permission
only from Intel. Fair use of Intel’s trademarks in
advertising and promotion of Intel products requires
proper acknowledgement.

*Other names and brands may be claimed as the property
of others.

Microsoft, Windows, and the Windows logo are
trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Bluetooth is a trademark owned by its proprietor and used
by Intel Corporation under license.

Intel Corporation uses the Palm OS® Ready mark under
license from Palm, Inc.

Copyright © 2007 Intel Corporation. All rights reserved.

This publication was downloaded from
http://www.intel.com.

Additional legal notices at:
http://www.intel.com/sites/corporate/tradmarx.htm.

Copyright © 2007 Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information visit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm
www.intel.com/sites/corporate/tradmarx.htm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 100
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 100
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

