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ABSTRACT 
To maximize performance and power efficiency, future 
multi-core architectures may be heterogeneous, 
incorporating some accelerator cores alongside the IA 
cores. Accelerator Exoskeletons provide a shared virtual 
memory heterogeneous multi-threaded programming 
paradigm for these accelerators using novel CPU 
instruction set extensions and software tool chains with an 
Intel® Architecture (IA) look-n-feel. Firstly, we introduce 
the proposed architectural extensions known as the 
Exoskeleton Sequencer (EXO), which represents 
heterogeneous accelerators as ISA-based MIMD 
architecture resources, and a shared virtual memory 
heterogeneous multi-threaded program execution model 
that tightly couples specialized accelerator cores with 
general-purpose CPU cores. Then we introduce the C for 
Heterogeneous Integration (CHI) programming 
environment that includes a compiler, runtime, debugger, 
and performance-analysis tools. The CHI compiler 
extends the OpenMP pragma for heterogeneous  
multi-threading programming, and it produces a single fat 
binary with code sections corresponding to different 
instruction sets. The runtime can judiciously spread 
parallel computation across the heterogeneous cores to 
optimize performance and power. 

INTRODUCTION 
The relentless pace of Moore’s Law will lead to mainstream 
multi-core microprocessor designs with extensive on-die 
integration of a large number of cores [11]. Fundamentally, 
to scale multi-core processor designs to incorporate a large 
number of cores, ultra low Energy Per Instruction (EPI) 
cores are essential [6]. One approach to improving EPI by 
an order of magnitude is through heterogeneous multi-core 

design, in which some cores vary in functionality, 
instruction set (ISA), performance, power, and energy 
efficiency [14]. The key challenge then becomes how to 
accomplish such heterogeneous integration and achieve 
high performance while still maintaining the look-n-feel of 
the classic mainstream IA-based programming models and 
software ecosystem. 

In this paper we present an overview of EXOCHI: 
Exoskeleton Sequencer (EXO), an architecture proposal to 
represent heterogeneous accelerators as ISA-based MIMD 
architectural resources, and C for Heterogeneous Integration 
(CHI), a programming environment that supports tightly 
coupled integration of heterogeneous cores. The EXO 
architecture supports the familiar POSIX shared virtual 
memory multi-threaded programming model for 
heterogeneous cores. Architecturally, the heterogeneous 
cores are exposed to the programmer as a new form  
of sequencer resource. They can be regarded as  
application-level MIMD functional units on which user-level 
threads, or shreds, encoded in the accelerator-specific ISA 
can execute. Having a shared virtual address space between 
the IA sequencer and accelerator sequencers facilitates code 
and data sharing and harmonizes cooperation between the 
concurrent shreds of different ISAs. Such a program is said 
to be multi-shredded. 

The CHI integrated programming environment  
allows an application developer to inline blocks of 
accelerator-specific assembly or domain-specific language 
with traditional C/C++ code. The CHI compiler produces 
a single fat binary consisting of executable code sections 
corresponding to the different ISAs. CHI further extends 
the OpenMP pragmas [21, 23, 26] to allow the 
programmer to express thread-level parallelism by 
demarcating parallel regions of code targeting 
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heterogeneous accelerators. The CHI extensions to 
OpenMP support both fork-join and producer-consumer 
parallelism among the accelerator shreds and between the 
IA shreds and the accelerator shreds. The CHI runtime 
can judiciously spread the shreds across the 
heterogeneous sequencers dynamically to maximize 
throughput performance while minimizing power. 

The rest of the paper is organized as follows. We first 
briefly review related work. We then introduce the EXO 
architecture that supports a shared virtual memory 
heterogeneous multi-threaded programming model. We 
then present an overview of the CHI integrated 
programming environment that extends the Intel® C++ 
Compiler, runtime, and tool chains to provide the familiar 
IA look-n-feel to program heterogeneous cores. To 
prototype the EXO architecture, we describe potential 
heterogeneous multi-core processors which combine an 
Intel® Core™2 Duo processor [27] and two possible 
accelerators: an 8-core 32-thread Intel® Graphics Media 
Accelerator (GMA) X3000 [10] or the Datastream 
Processing Engine (DPE) from a research Scalable 
Communication Core (SCC) prototype [8]. We 
demonstrate code examples and evaluate performance. 

 
Figure 1: Alternate programming environments 

RELATED WORK 
There has been a rich body of research on heterogeneous 
acceleration. In most published work, the execution 
models usually fall into two classifications: (category 1) 
an ISA-based tightly coupled approach or (category 2), a 
device driver-based loosely coupled execution model.  
An example of the tightly coupled approach is the 
Software-configurable Processor (SCP) architecture [4] in 
which a custom ISA extension represents the operations 
implemented by a hardware accelerator attached to the 
CPU. The CPU is then responsible for sequencing, 
decoding, and dispatching each co-processor instruction, 
stalling until the co-processor execution completes. This 
approach resembles the classic x87 escape-wait style  
co-processor instruction execution where the co-processor 

does not sequence instructions independently from  
the CPU. 

Examples of the second category include most known 
GPGPU infrastructures [1, 3, 5, 13, 15, 16, 17, 18, 19, 20, 
22, 24, 25, 28]. As depicted in Figure 1(a), the CPU 
resources (cores and memory) are managed by the 
operating system (OS), and the GPU resources are 
separately managed by vender-supplied device drivers. 
Applications and device drivers run in separate address 
spaces, and consequently, data communication and 
synchronization between them is usually carried out in 
coarse granularity through explicit data copying via 
device driver APIs. In the EXOCHI framework depicted 
in Figure 1(b), the EXO architecture supports an 
execution model with a shared virtual address space and a 
POSIX multi-threaded programming model for the  
OS-managed IA sequencer and application-managed  
non-IA accelerator sequencers.  

EXO differs from the existing tightly coupled approaches 
(category 1) by allowing independent sequencing and 
concurrent execution of multiple instruction streams on 
multiple sequencers within a single OS thread context. 
EXO also differs from the loosely coupled, driver-based 
approaches (category 2) by directly exposing the 
heterogeneous sequencers to application programs and by 
supporting a shared virtual address space amongst these 
sequencers. EXOCHI’s user-level runtime can be used to 
schedule shreds and coordinate light-weight inter-shred 
data communication efficiently through shared virtual 
memory.  

In addition, by supporting the shared virtual memory 
heterogeneous multi-threaded execution model, the CHI 
integrated programming environment enables the 
application developer to inline blocks of accelerator 
specific assembly or domain-specific languages within 
traditional C/C++ code. This allows performance 
sensitive parts of an algorithm to be optimized for the 
accelerator ISA just as Intel’s SSE ISA extensions are 
traditionally used in implementing a high-performance 
math library. CHI’s extensions to OpenMP allow 
programmers to express the underlying thread-level 
parallelism in a familiar parallel programming 
environment. 

EXO ARCHITECTURE 
Architecturally, EXO extends the Multiple Instruction 
Stream Processor (MISP) architecture [7] in three 
significant ways: (1) MISP exoskeleton (2) Address 
Translation Remapping (ATR), and (3) Collaborative 
Exception Handling (CEH). With this architectural 
support, EXO fundamentally enables a powerful shared 
virtual memory heterogeneous multi-threaded 
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programming model, despite ISA differences between the 
IA sequencer and the exo-sequencers. 

MISP Exoskeleton 
EXO provides a minimal architectural “wrapper,” or 
exoskeleton, to make a non-IA heterogeneous accelerator 
sequencer conform to the MISP inter-sequencer signaling 
mechanism. With this exoskeleton, the accelerator 
sequencer can be exposed as an application-managed 
sequencer, even though it has a different ISA from the IA 
sequencers. To distinguish from an application-managed 
IA sequencer, we call such heterogeneous accelerator 
sequencers exo-sequencers. The exoskeleton supports 
interaction with the OS-managed IA sequencer through 
either initiating or responding to inter-sequencer  
user-level interrupts. With this enhancement, the code on 
an OS-managed IA sequencer can use MISP’s SIGNAL 
instruction to dispatch shreds of a non-IA ISA to run on 
the exo-sequencers. This demands no additional OS 
support beyond MISP’s requirements.  

 
Figure 2: ATR and CEH between heterogeneous 

sequencers 

Microarchitecture Support 

Address Translation Remapping 
To support shared virtual memory between the  
OS-managed IA sequencer and the exo-sequencers, EXO 
provides an ATR mechanism to allow the IA sequencer to 
handle page faults on behalf of the exo-sequencers.  

Maintaining a shared virtual address space between two 
sequencers requires the same virtual address to be 
resolved to the same physical memory address on both 
sequencers. Among sequencers of the same architecture, 
this is accomplished by having the sequencers utilize the 
same page table for address translation. In a 
heterogeneous multi-core with IA sequencers and non-IA 
exo-sequencers, however, the page table format 
understood by each sequencer may differ. Directly 
accessing the IA page table is not an option for the  
exo-sequencers in such a case. 

EXO solves this problem with its ATR mechanism. With 
ATR, when an exo-sequencer incurs a translation miss, it 
suspends shred execution and signals the IA sequencer to 
request proxy execution in order to service that 
Translation Lookaside Buffer (TLB) miss or page fault. 
Like MISP, upon receiving the proxy request as a  
user-level interrupt, the IA shred transfers control to a 
proxy handler that will touch the virtual address on behalf 
of the exo-sequencer. Once the page fault is serviced on 
the IA sequencer, however, unlike MISP, ATR will 
transcode the IA page table entry to the format of the  
exo-sequencer’s page table entry before inserting the 
entry into the exo-sequencer’s TLB. The exo-sequencer’s 
TLB then points to the same physical page as the IA’s 
TLB and can directly access the needed data. The  
exo-sequencer then resumes execution. As shown in 
Figure 2, an address translation remapping mechanism is 
responsible for remapping the IA page entry to the native 
format on the accelerator.  

The shared virtual memory space for heterogeneous 
sequencers provides many benefits over the alternative 
approaches. It provides the essential architectural 
foundation to extend the classic shared memory 
multithreaded programming paradigm to heterogeneous 
multi-core processors. With a shared virtual address 
space, shreds from a single memory image executable 
running on IA sequencers and exo-sequencers can 
perform data communication and synchronization in 
familiar and efficient ways, e.g., without having to  
resort to explicit data copying as is necessary in the 
loosely-coupled approach.  

It is important to note that even though ATR provides the 
necessary architectural support for a shared virtual 
address space, ATR by itself does not guarantee or 
require cache coherence between the IA sequencer and an 
exo-sequencer. In the absence of hardware support for 
cache coherence between the IA sequencer and an  
exo-sequencer, it is the responsibility of the programmer 
to use critical sections to protect other IA shreds from 
reading or writing the data being processed by shreds on 
the exo-sequencers. When an IA shred hands off a shared 
data structure to a shred on an exo-sequencer to process, 
the IA shred must first commit any dirty lines to main 
memory. Similarly, when the exo-sequencer shred 
completes its computation, it also needs to flush its cache 
before releasing a semaphore to the IA sequencer. 

Clearly, with full cache coherence support between the IA 
sequencer and the exo-sequencer the programmer’s work 
can be greatly eased. In particular, there is no need to use 
critical sections to ensure mutual exclusion on reads to the 
shared working set. This enables more concurrency 
between shreds on the IA sequencer and the  
exo-sequencer. 
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Collaborative Exception Handling 
As with page faults, execution on the exo-sequencers 
could potentially incur exceptions or faults that require 
OS services. In conventional MISP, if an exception 
occurs on an application-managed sequencer, the 
instruction causing the exception can be replayed on  
the OS-managed sequencer through proxy execution. 
However, when the exception occurs on a non-IA  
exo-sequencer, the faulting instruction cannot simply be 
replayed on the IA CPU sequencer. Because the exo-
sequencer uses a different ISA, the faulting instruction 
might have a data type that is not supported by IA ISA 
directly, or the exo-sequencer may require a different 
exception handling convention. To address this, EXO 
adds hardware support for CEH and a software-based 
exception handling mechanism, which allows faults or 
exceptions that occur on the exo-sequencer to be handled 
by the OS by proxy on the OS-managed IA sequencer.  

Through CEH, an exception is handled in a similar 
fashion to a TLB miss. For example, as shown in 
Figure 2, when a double precision floating point vector 
instruction on an exo-sequencer incurs an exception, the 
exo-sequencer first signals the IA sequencer, as it does 
with ATR. The IA sequencer then functions as the proxy 
for the exo-sequencer by invoking an application-level 
handler to emulate the faulting vector instruction or use 
an OS service such as Structured Exception Handling 
(SEH) to provide full IEEE-compliant handling of the 
exception on the particular excepting scalar element. 
Once the exception is handled on the IA sequencer, CEH 
ensures the result is updated on the exo-sequencer before 
resuming execution. 

Accelerator Exo-Sequencer: Two Examples 
Media Accelerator 
One example of an exo-sequencer accelerator is the 
integrated Intel Graphics Media Accelerator X3000 from 
the Intel® 965G Express chipset [9]. Figure 3 shows a 
high-level view of the GMA X3000 hardware. The GMA 
X3000 contains eight programmable, general-purpose 
graphics media accelerator cores, called Execution Units 
(EU), each of which supports four hardware thread 
contexts. From the programmer’s perspective, 32  
exo-sequencers are available. We use a custom emulation 
firmware that uses an IA CPU core as the OS-managed 
sequencer and uses the 32 GMA X3000 sequencers as 
exo-sequencers. The firmware implements all essential 
architectural extensions required by the EXO architecture, 
including MISP exoskeleton, ATR, and CEH. 

A shred for the GMA X3000 exo-sequencer can be 
created either by an IA shred or spawned from another 
GMA X3000 shred. Once created, GMA X3000 shreds 
are scheduled in a software work queue in shared virtual 

memory like POSIX threads. The work queue can have a 
far greater number of shreds than the number of GMA 
X3000 exo-sequencers. The emulation firmware is 
responsible for translating a shred descriptor, which 
includes shred continuation information like instruction 
and data pointers to the shared memory, into 
implementation-specific hardware commands that the 
GMA X3000 exo-sequencers can consume and execute. 
The emulation layer hides all device-specific hardware 
details from the programmer. 

 
Figure 3: High-level view of the Intel GMA X3000 

Communication Accelerator 
Another example of the exo-sequencer accelerator is the 
Scalable Communication Cores (SCC) [8]. SCC is a 
research prototype designed for a reconfigurable radio 
baseband that is capable of processing several wireless 
standard protocols, such as WiFi, WiMax [12], or cellular 
infrastructure, with a common set of hardware. The SCC 
system architecture consists of a heterogeneous set of 
coarse-grained, highly optimized baseband Processing 
Elements (PEs).   

One type of PE is the Data Processing Element (DPE) 
core, which performs computationally intensive 
operations, such as the Fast Fourier Transform (FFT) that 
is commonly used in many standard protocols. The DPE 
core structure consists of control and computation units 
and several memory blocks. DPE cores are connected via 
flexible interconnect matrices. Asynchronous data-path 
swap units support commutations from any of four inputs 
to any of four outputs. Reconfiguration of the data-path 
can be done dynamically with interconnection 
information and operation parameters stored in the 
configuration cache.   

Inside DPE, there is a configuration (CFG) queue that is 
part of a special task scheduling mechanism. Each task 
pointer that is pushed onto the CFG queue will be fetched 
by the core engine. Each launched task becomes an  
exo-sequencer running on DPE. The DPE can be 
configured to use multiple CFG queues, thus implying a 
multi-threaded implementation. This allows multiple  
exo-sequencers to run concurrently on the DPE engine. 

Command 
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CHI PROGRAMMING ENVIRONMENT 
C for Heterogeneous Integration (CHI) is designed to 
provide an IA look-n-feel programming environment  
to support user-level multi-shredding on heterogeneous 
sequencers. In the CHI infrastructure, we enhance the 
Intel C++ Compiler to support accelerator-specific inline 
assembly within the C/C++ source. In addition, we extend 
OpenMP pragmas to support heterogeneous multi-
shredding and provide the related runtime support. The 
runtime library is responsible for judiciously scheduling 
heterogeneous shreds across the exo-sequencers. The 
compiler can also embed debugging information for 
different ISAs in a single binary. Such information can be 
used by an enhanced version of the Intel Debugger (IDB) 
to enable source-level debugging for both C/C++ code  
on the IA CPU target and the accelerator-specific code on 
the accelerator target. Figure 4 depicts the overall CHI 
compilation infrastructure. Three new capabilities are 
provided in the CHI compiler to allow programmers to 
express multi-shredded computation for the 
heterogeneous exo-sequencers in the C/C++ source code: 

• A method to specify a region of accelerator-specific 
computation in either inline assembly or domain-
specific language.  

• A method to specify fork-join or producer-consumer 
style shred-level parallel execution for the inline 
accelerator-specific code region with OpenMP 
pragmas.  

• A method to specify input and output memory 
regions and live-in values for the accelerator-specific 
code region.  

Inline Accelerator Assembly Support 
C/C++ provides a facility to inline assembly code blocks 
directly within the high-level source code. This capability 
provides programmers access to new instructions or 
processor features not exposed through the compiler and 
allows the most performance-critical parts of a program to 
be custom optimized in assembly. This inline assembly 
construct can be naturally extended to provide 
accelerator-specific inline assembly support.  

Many variants of asm keyword and syntax exist. In CHI 
we adopt the Microsoft MASM syntax, i.e.,  

__asm {asm_statements;}  

where brackets are used to enclose the assembly 
statements. __asm is the keyword that indicates the 
enclosed block of code is a special assembly block written 
specifically for the given accelerator ISA. The 
asm_statements enclosed in the ensuing brackets are 
compiled into an accelerator-specific executable binary. 
The target ISA for the asm_statements is specified 

through the enclosing OpenMP pragma with the target 
clause, which is described in this paper in the section 
entitled “OpenMP Parallel Pragma Extension.” As shown 
in Figure 4, a separate accelerator-specific assembler is 
dynamically linked with the Intel compiler. Figure 5 
shows an example of C code using the extended OpenMP 
pragmas and CHI runtime APIs for a heterogeneous target 
consisting of an IA32 sequencer and GMA X3000 exo-
sequencers. 

 
Figure 4: CHI compilation flow 

Similar to traditional inline assembly, this accelerator-
specific assembler generates code for the target ISA by 
translating the inline assembly instructions enclosed in the 
brackets into binary code and resolving symbolic names 
for memory locations and other entities referenced within 
the assembly block. After the assembler compiles the 
assembly block, the resulting binary code is embedded in 
a special code section of the executable indexed with a 
unique identifier. The final executable is a fat binary, 
consisting of binary code sections corresponding to 
different ISAs.  

Domain-specific Language Support 
In addition to supporting accelerator-specific inline 
assembly, the capability of the C/C++ compiler can  
be further extended to provide a facility to inline  
domain-specific language blocks directly within the high-
level source code. These domain-specific languages are 
designed to utilize the accelerator-specific features not 
exposed through the general C/C++ programming 
environment. Therefore, the programmers can take 
advantage of the full capability of the underlying 
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accelerators without programming the exo-sequencer 
directly in assembly language. 

 

To provide a uniform programming interface to 
programmers, we adopt the format similar to that of the 
asm syntax, i.e.,  

__<language keyword> {domain-specific 
language statements;}  

where brackets are used to enclose the domain-specific 
language statements. __<language keyword> can 
be any language that is supported by CHI. Upon parsing 
the particular language keyword, the C/C++ compiler 
invokes the corresponding domain-specific compiler 
plug-ins to generate the accelerator-specific binary, 
similar to how it is done with the inline assembly support 
as described in the section entitled “Inline Accelerator 
Assembly Support.” 

Figure 6 shows an example of the domain-specific 
language support to the Data-stream Programming 
Language (DPL) that is specifically designed for the 
retargetable SCC-DPE accelerator. DPL provides 
essential high-level functions to exploit the inner 
microarchitecture of the DPE systolic arrays. The 
programmers can embed DPL code within the brackets 
preceded by the __dpl keyword.  

OpenMP Parallel Pragma Extension 
CHI extends the OpenMP parallel pragma. The 
construct for generating heterogeneous shreds of an 
accelerator-specific instruction set is outlined in 
Figure 7(a). The target clause specifies the particular 
accelerator instruction set used within the parallel region. 
The compiler inserts appropriate calls to the CHI runtime 
layer to enable judicious dynamic shred scheduling and 
dispatching onto the targeted exo-sequencers. When the 

main IA shred encounters an accelerator-specific 
parallel construct with the target(targetISA) 
clause, the IA shred spawns a team of num_threads 
heterogeneous shreds for the parallel region, where each 
shred eventually executes the enclosed assembly block on 
an exo-sequencer.  

Figure 6: Example inline DPL code using CH 

By default, the main IA shred waits at the end of  
the construct until it is notified by the CHI runtime of the 
completion of all heterogeneous shreds. Similar to  
the traditional nowait clause, an optional 
master_nowait clause allows the main IA shred to 
continue execution past the construct after spawning the 
team of heterogeneous shreds, without having to wait for 
their completion. This allows concurrent execution on 
both the IA sequencer and its exo-sequencers. The CHI 
runtime is responsible for asynchronously notifying the 
IA sequencer of the eventual completion of all 
heterogeneous shreds.  

OpenMP Work-Queuing Extension 
In order to support concurrent threads with intricate 
dynamic inter-thread dependencies (e.g., due to the use of 
irregular data structures), the Intel C++ Compiler supports 
irregular parallelism through two special OpenMP 
pragmas, taskq and task [23]. In CHI, we further 
enhance the compiler and runtime to support inter-shred 
dependencies among heterogeneous shreds using these 
pragmas. The parallel taskq construct and the 
task construct for an exo-sequencer are outlined in 
Figure 7(b) and Figure 7(c).  

  int *A = malloc(n); 
  int *B = malloc(n); 
  int *C = malloc(n); 
 
  A_desc = chi_alloc_surface(A, X3000_INPUT, n, 1); 
  B_desc = chi_alloc_surface(B, X3000_INPUT, n, 1); 
  C_desc = chi_alloc_surface(C, X3000_OUTPUT, n, 1); 
  #pragma omp parallel target(x3000) shared(A,B,C)  
      descriptor(A_desc,B_desc,C_desc) private(i) 
  { 
    for (i=0; i<n/8; i++) 
       __asm 
       { 
          shl.1.w    vr1 = i, 3 
          ld.8.dw    [vr2..vr9] = (A, vr1, 0) 
          ld.8.dw    [vr10..vr17] = (B, vr1, 0) 
          add.8.dw   [vr18..r25] = [vr2..vr9], [vr10..vr17] 
          st.8.dw    (C, vr1, 0) = [vr18..vr25] 
       } 
  } 
  #pragma omp parallel for shared(D,E,F) private(i) 
  { 
     for (i=0; i<n; i++) 
        F[i] = D[i] + E[i]; 
  } 
 

Figure 5: Example GMA X3000 inline assembly 
i C

float Vin[4]; 
float Vout[4]; 
 
void *in_desc  = (void *)chi_alloc_buffer_desc 
 (DPE_INPUT_BUFFER,  Vin, 4, 1); 
void *out_desc = (void *)chi_alloc_buffer_desc 
 (DPE_OUTPUT_BUFFER, Vout, 4, 1); 
 
#pragma omp parallel target(dpe)  
       shared(Vin,Vout) 
descriptor(in_desc,out_desc) 
{  
  __dpl { 
    configuration[1] cfgMult( vector val[1],  
           vector coeff[1] ) 
    { 
      result bs( mull(val, coeff), 13 ); 
    } 
    flow[4] multiFlow( vector vec[4],  
   vector coeffs[4]) 
    { 
      vector ret[4]; result out; 
      selector[iter : 4] sel[1] = {{ iter }}; 
      selector[iter : 4] selRev[1] = {{ 3 - iter 
}}; 
      ret[sel] = cfgMult(vec[sel], coeffs[selRev]); 
    } 
    vector cf[4] = { 0.5 + I * 0.0 }; 
    program dlMain()  
    {  
      Vout = multiFlow(Vin, cf);  
    } 
  } 
} 
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Figure 7: CHI extensions to OpenMP pragmas 

CHI Runtime Support 
The CHI runtime is a software library that translates the 
programmer-specified OpenMP directives into primitives 
to create and manage shreds that can carry out parallel 
execution on the heterogeneous multi-core target. Like 
conventional OpenMP runtimes, the CHI runtime layer 
provides a layer of abstraction that hides the details of 
managing the exo-sequencers from the programmer.  

In order to allow the accelerator more efficient access to 
the C/C++ variables specified by the shared data 
clause, programmers can use the CHI runtime APIs to 
convey accelerator-specific access information through 
data structures known as descriptors. Descriptors are used 
by the accelerator to interpret the attributes of the 
shared variables that are accessed by the shreds.  

EXOCHI PROTOTYPE 
The EXOCHI framework described in this paper has 
already been deployed within Intel for successful 
development of production-quality, GMA X3000  
media-processing kernels and other workloads of growing 
importance [2]. Figures 8 and 9 provide examples of the 
use of how an IA look-n-feel allows familiar development 
tools and environments to be used in writing 
heterogeneous multi-shredded code. Figure 8 shows the 
use of familiar legacy development tools (Microsoft 
Visual Studio*) for development and debugging of 

heterogeneous multi-shredded code. Figure 9 illustrates 
the compilation and execution of such a program.   

 
Figure 8: IA Look-n-Feel IDE (Microsoft Visual 

Studio) for application development 

 
Figure 9: IA Look-n-Feel compilation and execution 

Performance Evaluation 
To evaluate the performance of our EXOCHI prototype 
we select a representative subset of the kernels that have 
been developed. These kernels exhibit a significant 
amount of data- and thread-level parallelism and thus, 
readily lend themselves to efficient execution on the 
GMA X3000 exo-sequencers. 

Implementation of these kernels is made easy due to 
special GMA X3000 ISA features optimized for media 
processing. The key ISA features include wide SIMD 
instructions, predication support, and a large register file 
of 64 to 128 vector registers for each GMA X3000  
exo-sequencer. With CHI, programmers can directly use 
the GMA X3000 ISA features via inline assembly in 
C/C++ code as if they are traditional ISA extensions to 
IA, such as SSE. By providing such IA look-n-feel, CHI 
enables highly productive development of heterogeneous 
multi-shredded code. 

All benchmarks are compiled with the enhanced version 
of the Intel C++ Compiler using the most aggressive 
optimization settings (–fast –Qprof_use). These compiler 
optimizations include auto-vectorization, profile-guided 
optimization, and tune specifically for the Intel Core 2 
Duo processor used in the EXO prototype system. 
LinearFilter, SepiaTone and FGT make use of 
the optimized and SSE-enhanced Intel IPP library, and 
the other benchmarks were manually tuned and  
SSE-optimized. Performance results measure the wall 
clock execution time.  
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Figure 10: Speedup from execution on GMA X3000 

exo-sequencers over IA sequence 

Performance Speedup on GMA X3000 Exo-
sequencers over IA Sequencer 
Figure 10 shows the speedup achieved over IA sequencer 
execution by executing media kernels on the GMA 
X3000 exo-sequencers. Significant speedup is achieved, 
ranging from 1.41X for BOB up to 10.97X for Bicubic. 
Two factors are crucial in achieving this high throughput 
performance on the GMA X3000 exo-sequencers. Most 
important is the availability of abundant shred-level 
parallelism. As each GMA X3000 exo-sequencer 
supports only in-order execution within a shred, the 
accelerator relies on the presence of multiple concurrent 
shreds to cover up stalls incurred in one shred by 
switching to another shred. A second, but related issue, is 
the need to maximize cache hit rate and memory 
bandwidth utilization. The GMA X3000 supports 
simultaneous execution of 32 hardware threads, each of 
which might be reading and writing multiple data streams. 
The CHI runtime allows programmers to carefully 
orchestrate shred scheduling to ensure shreds accessing 
adjacent or overlapping macroblocks are ordered closely 
together in the work queue so as to take advantage of 
spatial and temporal localities.  

Other than support for thread-level parallelism, the GMA 
X3000 ISA also provides strong support for data-level 
parallelism. It features significantly wider SIMD 
operations (8- to 16-wide vector) than the SSE on today’s  
IA CPU.  
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Figure 11: Impact of shared virtual memory 

Impact of Data Copying Versus Shared 
Virtual Address Space 
In general, the performance improvement achieved by 
using an accelerator is determined not only by the 
accelerator architecture but also by the overhead of data 
communication between the CPU and accelerator. This 
overhead varies greatly depending on the memory model 
between the CPU and the accelerator. Figure 11 shows 
overall performance improvement achieved with a cache 
coherent shared virtual memory model between the IA 
sequencer and the GMA X3000 exo-sequencers. In the 
absence of cache coherence or shared memory, the data 
communication overhead can significantly degrade the 
speedup achieved from accelerating the computation. In 
Figure 11 we contrast performance impacts for three 
memory model configurations. 

The first configuration, Data Copy, assumes a model 
without shared virtual memory and no cache coherence 
between the IA sequencer and the GMA X3000 exo-
sequencers. Consequently, data communication between 
IA shred and GMA X3000 shreds requires explicit data 
copying, for which we assume a 3.1GB/s data copy rate. 
This corresponds to an aggressive data copy rate using an 
SSE-enhanced memory copy routine when copying data 
from a cacheable memory source to a destination region 
marked as uncacheable, write-combining memory. The 
Intel Core 2 Duo processor features special write-
combining buffers that allow aggressive burst mode 
transfers when copying from cacheable memory to write-
combining memory. Due to the lack of shared virtual 
memory, the inter-shred communication between the IA 
shred and GMA X3000 shreds resembles that of 
traditional message passing communication between 
processes from different address spaces.  
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The second configuration, Non-CC Shared, assumes a 
shared virtual address space but without cache coherency 
between the IA sequencer an the GMA X3000  
exo-sequencers. Data copying can be avoided in this case as 
both the IA sequencer and GMA X3000 exo-sequencers can 
access the identical physical memory location for the same 
virtual address. Memory writes performed by the IA 
sequencer or the GMA X3000 exo-sequencers may not be 
visible to the other until after a cache flush operation, which 
forces any dirty cache lines to be written back to main 
memory. However, data communication can still be 
accomplished by passing a pointer to a shared data structure 
between the IA sequencer and a GMA X3000  
exo-sequencer as long as cache flush operations are 
appropriately invoked. Due to the lack of cache coherence, 
the IA shred and the GMA X3000 shreds need to use critical 
sections to enforce mutually exclusive access to shared data 
structures. The semaphore on the critical section will not be 
released until the GMA X3000 exo-sequencers completely 
flush the dirty lines to memory.  

The first configuration, Data Copy, assumes a model 
without shared virtual memory and no cache coherence 
between the IA sequencer and the GMA X3000  
exo-sequencers. Consequently, data communication 
between IA shred and GMA X3000 shreds requires 
explicit data copying, for which we assume a 3.1GB/s 
data copy rate. This corresponds to an aggressive data 
copy rate using an SSE-enhanced memory copy routine 
when copying data from a cacheable memory source to  
a destination region marked as uncacheable,  
write-combining memory. The Intel Core 2 Duo 
processor features special write-combining buffers that 
allow aggressive burst mode transfers when copying from 
cacheable memory to write-combining memory. Due to 
the lack of shared virtual memory, the inter-shred 
communication between the IA shred and GMA X3000 
shreds resembles that of traditional message passing 
communication between processes from different  
address spaces.  

The third configuration, CC Shared, models a  
cache-coherent shared virtual address space, which is the 
configuration assumed in Figure 10. In this model, data 
communication between the IA shred and the GMA 
X3000 shreds becomes much more efficient. Similarly, 
the synchronization on mutual access to shared data 
structure is also made much easier for programmers. For 
example, while critical sections are still necessary to 
provide mutual exclusion on writes to a shared variable, 
one shred can always read the shared variables that are 
updated by the other shreds. This allows more execution 
concurrency between shreds. 

The performance data in Figure 11 demonstrate the 
benefits of a shared virtual address space compared to 

data copying. While significant performance 
improvement is still possible even with data copying, for 
computationally intensive kernels (e.g., bicubic and 
ADVDI), the gains are significantly reduced from the 
original CC Shared configuration in cases such as 
LinearFilter and BOB. For benchmarks in which the 
GMA X3000 performs little computation on the loaded 
input data, the time to copy data between separate address 
spaces represents a significant fraction of the processing 
time. Even with a highly optimized implementation on the 
latest IA Intel Core 2 Duo processor, the data copying 
achieves only 70.5% of that seen for a coherent shared 
virtual address space. 

The cost of copying data can be ameliorated if the IA 
sequencer and the GMA X3000 exo-sequencers operate 
within a shared virtual address space, even if cache 
coherency is not supported. The time required to flush 
caches is still nontrivial, however, and the lack of 
coherency (Non-CC Shared) still yields 85.3% of the 
performance achieved with full cache coherency. Support 
for cache coherence improves performance because the 
cache flush operation is not needed to synchronize 
memory accesses. 

For the Non-CC Shared configuration, when an IA shred 
spawns GMA X3000 shreds, it may appear necessary to 
flush the IA sequencer’s cache fully before any GMA 
X3000 shred can be launched. In reality the majority of 
the cache flush operation on the IA sequencer can be 
overlapped with parallel shred execution on the GMA 
X3000 exo-sequencers if cache flush operations and shred 
launches can be interleaved. As each exo-sequencer shred 
only reads and writes a tiny portion of each data buffer 
(e.g., a 16 pixel by 16 pixel macroblock), as long as those 
data have been flushed back to memory by the IA 
producer shred, the exo-sequencer consumer shred for 
that macroblock can be launched and can execute safely. 
Additional cache flush operations can then proceed in 
parallel with useful work being performed in parallel on 
the exo-sequencers. 

CONCLUSION 
In this paper we present the EXO MIMD extension to  
the IA ISA to expose heterogeneous cores as application-
level architecture resources and provide shared virtual 
memory to support the classic multi-shredded 
programming model for heterogeneous multi-core 
processors. The EXO architecture allows application 
programs to directly use heterogeneous hardware as 
MIMD functional units while requiring minimal 
additional dependency on the existing OS ecosystem. In 
addition, in order to take advantage of the rich ecosystem 
legacy for IA software development, the CHI 
programming environment provides an IA look-n-feel by 
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extending the Intel C++ Compiler, OpenMP runtime, and 
debugger toolchains to support user-level heterogeneous 
multi-shredding. Since its development, EXOCHI has 
been used in Intel’s production media kernel 
development. Based on extensive feedback from 
developers, there is strong evidence that the IA  
look-n-feel of the programming environment has 
significantly improved productivity over prior device 
driver-based development environments.  
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