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Abstract

The portability, ease of use and improved accuracy of miniature inertial sensors

brought by current microelectromechanical system (MEMS) technology has inspired

researchers to develop human movement monitoring system with body-fixed sensors.

Although a large number of studies have attempted to explore the use of miniature in-

ertial sensors in estimating walking speed for the past two decades, there still remain

some questions regarding applying inertial sensors in estimating walking speed under

different walking conditions and for different subject populations. In this thesis, I

focus on evaluating and improving the performance of a shank-mounted mounted in-

ertial measurement unit (IMU) based walking speed estimation method. My research

can be divided into four parts. The first part was a systematic review regarding the

state of the art of current development of the inertial sensor based walking speed

estimation method. A total of 16 articles were fully reviewed in terms of sensor

specification, sensor attachment location, experimental design and spatial parameter

estimation algorithm. In the second part, a comprehensive performance evaluation

was conducted, which included the treadmill and overground walking experiments

with constraint on the walking speed, stride length and stride frequency. A system-

atic error was observed in the error analysis of this study, which was adjusted by

subtracting the bias by linear regression. In the third part, a post-stroke subject
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overground walking experiment was carried out with an improved walking speed es-

timation method that reduced the systematic error caused by previous false initial

speed assumption. In addition to walking speed estimation, the gait asymmetry for

post-stroke hemiparetic gait was also evaluated with the proposed method. The last

part was the sensor error model analysis. We elaborately analyzed and discussed the

estimation errors involved in this method in order to completely understand the sen-

sor error compensation in walking speed estimation algorithm design. Two existing

sensor error models and one newly developed sensor error model were compared with

the treadmill walking experiment, which demonstrated the effect of each sensor error

component on the estimation result and the importance of the sensor error model

selection.
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Chapter 1

Introduction

1.1 Motivation

Walking is the main form of human locomotion and the most frequently performed

daily activity, and human gait analysis is commonly utilized in biomechanical re-

search, clinical assessment of abnormal gait, development of prostheses, orthoses,

exoskeletons, and energy harvester. In many aspects of human gait studies, walking

speed has long been recognized as an essential measure of human walking performance

and widely used in pathological gait assessment. In clinical studies, the walking speed

is generally defined as the average velocity of human body in the direction of progres-

sion. Traditional instrumentation of measuring walking speed varies from stopwatch

to camera-based motion capture system, which suffer from either low accuracy or

complicated setup. Recent development of microelectromechanical system (MEMS)

offers the possibility of measuring gait parameters using body-fixed miniature iner-

tial sensors, i.e. miniature accelerometers and gyroscopes. With the acceleration

and angular velocity data collected by the inertial sensor, the motion of the specific
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Chapter 1: Introduction

body segment where the sensors are attached can be estimated accordingly, which

can further be used to determine the walking speed.

1.2 Objective

The primary objective of this research is to evaluate the performance of a shank-

mounted inertial sensor-based walking speed estimation method under different con-

strained walking conditions and with post-stroke hemiparetic gait. A secondary ob-

jective is to analyze the errors involved in this method and improve the performance

based on the error analysis.

1.3 Contributions

Since most of my researches have been published in, submitted to or in preparation

for conference proceedings or scientific journals, I summarize the contributions as

follows.

1.3.1 Systematic review for inertial sensor based walking speed

estimation method.

Focusing on inertial sensor based walking speed estimation method, a systematic

review was done in four major electronic engines/databases: PubMed, ISI Web of

Knowledge, SportDiscus and IEEE Xplore. The sensor specification, sensor attach-

ment location, experimental design and spatial parameter estimation algorithm were

completely reviewed. This work is in preparation for submission to a scientific journal.
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Chapter 1: Introduction

1.3.2 Validation of the shank-mounted IMU based walking

speed estimation method.

A comprehensive evaluation of a shank-mounted IMU based walking speed estima-

tion method was performed under constrained walking conditions, which included

both treadmill and overground walking experiments with different constraints on the

walking speed, step length and step frequency. This work has been partially re-

ported in the Proceedings of the 2010 IEEE/ASME International Conference on Ad-

vanced Intelligent Mechatronics (AIM) [1] and fully published in Computer Methods

in Biomechanics and Biomedical Engineering [2].

1.3.3 Investigation of the feasibility of applying the method

on post-stroke hemiparetic gait.

The concept of using two IMU’s, one on each shank, to estimate the walking speed

and the gait asymmetry information simultaneously was investigated with post-stroke

subjects in the 10-meter walking test (10MWT). Improvements of the algorithm was

made to correct the estimation error resulted from the approximation of the initial

sensor velocity. This work has been submitted to Medical Engineering & Physics [3].

1.3.4 Improvement of the accuracy of the algorithm and anal-

ysis of the sensor errors.

A comparison study between three sensor error models, including two common sensor

error models used in inertial sensor based gait analysis method and one newly devel-

oped sensor error model, was experimentally conducted to analyze the effect of the

3



Chapter 1: Introduction

sensor error compensation method on the estimation result. The selection of sensor

error model was elaborately discussed in this study. This work has been submitted

to Medical & Biological Engineering & Computing [4].

1.4 Organization of Thesis

The outline of the thesis is as follows. The next chapter first provides a complete

review of existing walking speed estimation methods from the literature. Chapter 3

evaluates a shank-mounted IMU based walking speed estimation algorithm from our

previous study. Chapter 4 investigates the feasibility of using an improved walking

speed estimation algorithm in the application of assessing post-stroke hemiparetic

gait. Different IMU sensor error models used in the algorithm are discussed and

evaluated in Chapter 5. Chapter 6 concludes and outlines future work.
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Chapter 2

Inertial Sensors in Human Walking

Speed Measurement: A Systematic

Review

Abstract

Self-selected walking speed is an important measure of the ambulation ability and the

gait rehabilitation level and commonly measured in various clinical gait experiments.

Miniature inertial sensors, i.e. accelerometers and gyroscopes, have been gradually

introduced to walking speed estimation and attracted a lot of attentions for the the

past two decades, because of their small size and low weight. With the intention

to understand the state of the art of current development, a systematic review was

done in the following electronic engines/databases: PubMed, ISI Web of Knowledge,

SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings

focusing on inertial sensor based walking speed estimation method were fully reviewed.
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Chapter 2: Systematic Review 2.1. Introduction

The existing methods can be categorized by sensor specification, sensor attachment

location, experimental design and spatial parameter estimation algorithm. Further

system development and performance evaluation is desired for practical applications.

2.1 Introduction

With the development of microelectromechanical system (MEMS), the use of minia-

ture inertial sensors, i.e. accelerometers and gyroscopes, in human biomechanical

studies has drawn huge attentions because of their portability, self-containedness and

promising performance in providing motion information [1]. Instead of measuring hu-

man gait features via traditional instruments with limited accuracy, e.g. stopwatch,

or complex camera based motion tracking system, inertial sensors with appropriate

algorithms are capable of accomplishing specific biomechanical research tasks, such

as physical activity monitoring and ambulatory ability assessment [2].

Self-selected walking speed has long been recognized as a proxy measure of am-

bulation quality and is used to quantify the progress of gait rehabilitation [3, 4, 5, 6].

Since 1990s, many studies have been conducted with the focus of estimating human

walking speed or stride length with inertial sensors. In 1995, Aminian et al. [7]

developed a walking speed estimation method based on the patterns present in the

body acceleration signals. Two neural networks were utilized to process the acceler-

ation signals collected from the back (3 orthogonal directions) and the heel (forward

direction). Although Aminian’s attempt successfully estimated a wide range of walk-

ing speeds with maximum error of 16%, large amounts of training time and training

data are required in order to achieve more accurate speed estimation. Later studies

focused more on processing the inertial sensor data based on physical principles. For
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Chapter 2: Systematic Review 2.1. Introduction

example, Miyazaki [8] proposed a gyroscope based stride length estimation method

using a symmetric single-segment human gait model. In this method, each leg was

simplified as a single segment while the angle of the leg segment was determined

by integrating the angular velocity measurement from the gyroscope attached to

the thigh. A walking speed estimation algorithm using both the accelerometer and

gyroscope measurements was first introduced by Tanaka et al. in 2004 [9]. Their

algorithm was basically the same as the method proposed by Miyazaki [8]; however,

in addition to the simplified gait model, Tanaka et al. used the thigh acceleration

to establish the initial condition for the thigh angle calculation. Instead of using

neural network or gait model, a direct walking speed estimation method is to obtain

comprehensive inertial information from an inertial measurement unit (IMU), con-

sisting of accelerometers and gyroscopes, and then directly integrate the measured

accelerations in global coordinate system. Based on the idea of direct integration,

Sabatini et al. [10] made use of the inertial data collected by an foot-mounted IMU

to estimate the average walking speed, while Li et al. [11] proposed an algorithm

with a shank-mounted IMU. In both studies, the sensor orientation was determined

by integrating the angular velocity measurement, and the acceleration measurements

were projected to the global coordinate system according to the sensor orientation.

As wide range of inertial sensors as well as configurations have been adopted in esti-

mating walking speed, it is certainly of interest to exam how they were utilized and

how well they could perform. This systematic review is focused on the use of inertial

sensors specifically for walking speed estimation, aiming to analyze and review the

existing techniques.
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Chapter 2: Systematic Review 2.2. Methods

2.2 Methods

2.2.1 Review Questions

We systematically reviewed the literature regarding the inertial sensor-based walking

speed estimation methods, and attempted to answer the following questions: (1)

What are the existing inertial sensor based walking speed estimation methods? (2)

What types of inertial sensors were used in related studies? (3) Where were the

inertial sensors attached? (4) How were the experiments conducted? and (5) How

was the performance of these studies?

In order to answer all the questions, we reviewed the literatures on inertial sensor

based walking speed, step length or walking distance estimation methods.

2.2.2 Article Selection

The research method is graphically depicted in Figure 2.1 for better understanding of

the procedure. We systematically searched for published journal articles and papers

in proceedings in PubMed (from 1950), ISI Web of Knowledge (Science Citation Index

Expanded, from 1899; Social Sciences Citation Index, from 1956; Art & Humanities

Citation Index, from 1975), SportDiscus (from 1950) and IEEE Xplore (from 1950)

at the first week of July in year 2011. These four electronic engines/databases were

chosen because of their popularity and their coverage of literature in engineering,

medicine and biomechanics. The searched keyword string was “(assessment OR esti-

mation OR calculation OR computation OR measurement) AND (inertial sensor OR

accelerometer OR gyroscope OR inertial measurement unit) AND (speed OR velocity

OR step length OR stride velocity OR stride length) AND (walking)” appeared in

9



Chapter 2: Systematic Review 2.2. Methods

title, abstract and keyword fields of the articles. The initial total number of identified

articles was 344. The title and the abstract of each article was read carefully for the

first selection stage, and unrelated and duplicated articles were excluded, which re-

duced the number of articles to 47. In the second selection stage, these 47 full articles

were retrieved from Queen’s University library system and completely reviewed. A

total of 16 full articles were ultimately included in this review. The inclusion criteria

were as follows: (1) The study involved inertial sensors, i.e. accelerometers and/or gy-

roscopes, and (2) The study reported walking speed, stride length or walking distance

estimation results. However, as this review focuss on method development, articles

only containing the following contents were excluded: (1) Performance evaluation of

commercial products, (2) Performance comparison between existing methods, and (3)

Applications based on previous reported methods.
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Chapter 2: Systematic Review 2.3. Results and Discussion

PubMed

73

ISI Web of Knowledge

89

Initial Search

SportDiscus

72

IEEE Xplore

110

1st Selection stage: title and abstract

Total Articles
47

2nd Selection stage: full article

Total Articles
16

Figure 2.1: Article review procedures. After the initial search, the title and abstract
were reviewed first to exclude unrelated articles. The full articles were
then retrieved and review with the detailed inclusion/exclusion criteria.
16 articles were finally included in this review.

2.3 Results and Discussion

2.3.1 Sensor Specification

Large varieties of inertial sensors are currently available in the market, ranging from

uniaxial accelerometer/gyroscope to IMU with 6 degree of freedom (6DOF). The

measuring range of the inertial sensors varies with the specifications, from ±2g to

±50g for accelerometers and from ±150◦/s to ±1000◦/s for gyroscopes, while the

inertial sensor measurements were sampled and filtered with different frequencies.

Depending on the purpose of the biomechanical study and the system design, different
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inertial sensors and sensor configurations were adopted. Table 2.1 shows detailed

specifications of the sensors used in these studies.
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Chapter 2: Systematic Review 2.3. Results and Discussion

2.3.2 Sensor Attachment Location

As the nature of human gait, most body motion in walking occurs on lower limbs;

therefore, most of the reviewed studies chose to attach the inertial sensors on the thigh

and the shank or the feet of the subjects. One study [17] attempted to capture the

motion with accelerometer attached to the chest. Four studies [7, 14, 18] utilized trunk

sensor to estimate the walking speed. One study additionally used the force/moment

sensor [19] as an aiding component in the system. Table 2.2 shows the sensor types

and the attachment positions used in the reviewed articles. We followed a similar

presentation method as proposed in [23].
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Table 2.2: Sensor Type and Attachment Position. Total nine different types of in-
ertial sensors, including uniaxial, biaxial and triaxial accelerometer and
gyroscope, were attached to 12 positions, including chest, trunk, thigh,
shank and foot.

a

C1

T1

Th1Th2

S2

H2

H1 F4

F3

F2

F1

1 2 33 2 1

a

a

S1

a

a

a

a

a

a

a
a

a
a

a

a

a

One-dimensional

Two-dimensional

Three-dimensional

Acceleration

Angular Velocity

Tx Trunk

Thigh

Shank

Foot

Heel

ChestCx

Thx

Sx

Fx

Hx

a

Sensor Unit

Position
References
1 2 3

C1 [17]
T1 [18] [14, 7]
Th1 [8]
Th2 [13] [18]
S1 [12]
S2 [13] [11]
F1 [10] [21]
F2 [15]
F3 [19]
F4 [16] [20]
H1 [7] [22]
H2 [19]
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2.3.3 Experimental Design

Most of the reviewed studies focused on method validation with healthy subjects.

Some studies aiming to apply their methods in age-related or pathological gait re-

searches chose to include elderly subjects [13, 22], spinal cord injured subject [12] or

patients with prostheses or hemiplegic gait [8] in their experiments. In some stud-

ies, the proposed methods were validated with only one subject [12, 15, 16, 20, 21].

Although single subject verification might not be sufficient to demonstrate the robust-

ness of the proposed method, the idea of the proposed method we clearly explained.

Two major forms of experiment were treadmill walking and overground walking at

either preferred speed or preset speed. For those studies that involved elderly or

impaired subjects [12, 8, 13, 22], the experiments were designed with care while pro-

viding reasonable comparison with young/healthy subjects. In terms of the motion

capturing capability, four out of 16 studies [16, 19, 20, 22] concentrated on inertial

sensor based personal navigation systems that were capable of monitoring the sub-

jects walking in 3D environments; 12 out of 16 studies focused on the motion of the

subjects in sagittal plane only, which is what most current gait studies are interested

in. The detailed experimental design information is shown in Table 2.3.
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Chapter 2: Systematic Review 2.3. Results and Discussion

2.3.4 Spatial Parameter Estimation Algorithm

The algorithms of using inertial sensors to estimate walking speed can be grouped

into three categories: (1) abstraction model (three studies: [7, 17, 18]), (2) gait model

(five studies: [8, 12, 13, 14, 9]) and (3) direct integration (eight studies: [10, 15, 16,

19, 20, 21, 11, 22]).

Abstraction Model

Instead of calculating the gait parameters following certain physical models, some

studies decided not to look into the details of the human walking biomechanics, but to

abstract the system and construct a hypothetical model for the complex relationship

between the inertial sensor data and the resulting walking speed from an information

processing point of view.

In 1995, Aminian et al. [7] proposed a walking speed estimation algorithm with

two artificial neural networks (ANNs) using four acceleration signals. In this study,

the system consisted of two two-layer ANNs, in which the input acceleration signals

were collected from the trunk (triaxial) and the heel (uniaxial), and the first ANN

generated the incline estimation result while the second ANN provided the walking

speed estimation result. Before the classification phase (walking speed estimation),

the training phase (learning process) of each ANN determined a set of 360 accel-

eration signal patterns through treadmill walking experiments, and associated the

acceleration signals with the actual walking speed by adjusting the weights and bi-

ases of the network to minimize the sum squared error. At the end of the training

phase, the weights and biases were fixed and later used in the classification phase to

18



Chapter 2: Systematic Review 2.3. Results and Discussion

process the acceleration signals for walking speed estimation, which achieved a maxi-

mum relative error of 16% from the overground walking experiments at the subjects’

preferred speed. Similar method was adopted by Song et al. [17] in their study. Song

employed a two-stage structure consisting of three ANN’s to process the accelera-

tion signals collected from an accelerometer (triaxial) attached to the chest. At the

first stage, the walking/running classification network classified the motion, either

walking or running; at the second stage, the walking neural network (NNW) and the

running neural network (NNR) processed the signals according to the classification

to provide speed estimation result. The overall root mean squared error (RMSE) was

0.54km/h based on walking/running experiments at various speeds between 4.7km/h

and 17.14km/h. Different from the ANNs used in these two studies, Yeoh et al. [18]

defined the average net acceleration (ANA) of the left and right thighs and estimated

the walking speed using a third-order polynomial model. Before the walking exper-

iment, sufficient amount of acceleration signal data at various walking speeds were

collected (training phase), and a polynomial model was determined by fitting the

mean value of ANA with respect to the walking speed using the least squares ap-

proach. This method was derived based on the fact that force exerted by an object is

directly proportional to the acceleration and the physical activity intensity (or walk-

ing speed) can be expressed as a function of acceleration. The overall mean squared

error (MSE) was 1.76km/h based on the walking trials at speed ranging from 1km/h

to 13km/h.

The implementation and the experimental results of these three studies clearly

demonstrated the feasibility of using abstraction model method to estimate walking

speed. Both the advantage and the disadvantage of this method are obvious. As the
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nature of the abstraction method, the complex biomechanical system is abstracted

as a set of parameters with different weights and biases, which guarantees that once

the system is successfully established through the training phase, the computation is

fast and highly simplified. Additionally, since no physical model is required in this

class of methods, a large variety of signals can be used as the input of the abstraction

model, which implies that the position and the type of inertial sensor is highly flexible,

e.g. attached to trunk and heel in [7] and to chest in [17]. However, due to the fact

that the abstraction model is an approximation of the actual physical system, the

accuracy of the estimation depends on the type of model and training data set, and

the accuracy of the estimation is generally low. Furthermore, the training phase can

be very time consuming, because (1) the abstraction model is subject-specific, thus

every subject need to go through the training phase, and (2) in order to achieve a

better performance, larger amount of training data need to be collected for the system

construction, as discussed in [7].

Gait Model

Some researchers chose to make use of the derived kinematic information along with

some predefined biomechanical gait models to estimate the spatial parameters, such

as stride length, since some aspects of the lower limb kinematics can be derived from

the measurements of the inertial sensors attached to the leg.

In early stages, most studies tried to employ a simplified gait model to avoid

complicated sensor configuration and to reduce the computation complexity. In 1997,

Miyazaki [8] proposed a stride length and walking speed estimation method using a

gyroscope (uniaxial) attached to the thigh and a symmetric gait model. In this
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method, each leg was modeled as one single segment, and the two legs were assumed

symmetrical; thus, at heel-strike, two legs and the distance between the feet formed a

isosceles triangle. The angle between the leg segments was calculated by integrating

the angular velocity measurement from the gyroscope attached to the thigh, and then

the distance between two feet (step length, one half of stride length) was calculated

using the properties of isosceles triangle. The overground walking experiment showed

that this simple gait model method achieved a relative error of 15%. Similar to

Miyazaki, Tong et al. [12] also modeled each leg as one segment and attached a

gyroscope (uniaxial) on the shank; however, when calculating the stride length, Tong

implicitly used a pendulum model in which the one-segment leg swing back and forth

about the hip joint during walking. The stride length was simply calculated as the

product of the leg segment inclination range (rad) and the leg segment length (m).

Another method of using the single segment gait model was proposed by Tanaka et

al. [9] in 2004; however, one additional accelerometer (biaxial) was attached to the

shank along with a gyroscope (uniaxial). The algorithm was basically identical to

Miyazaki’s method, but used the acceleration measurement to determine initial thigh

angle just before starting to walk. In 2002, Aminian et al. [13] utilized a foot switch

(to monitor temporal parameter) and two gyroscopes (uniaxial) to estimate walking

speed. Discarding the simplified gait model reported in [8, 12], Aminian et al. chose to

solve the complete gait model with separate shank and thigh segments with the same

assumption of symmetry between two legs. In this method, the rotation angle of the

shank and the thigh were tracked by two gyroscopes, and each stride cycle was divided

into stance phase and swing phase using the foot switch, where in each phase the stride

length was solved geometrically using the rotation angle and the length of the shank
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and thigh. Evaluated from both treadmill and overground walking experiments, the

overall RMSE was 0.06m/s(6.7%) for walking speed estimation and 0.07m(7.2%) for

stride length estimation. A different model of human gait was introduced by Zijlstra

et al. [14] in walking speed estimation. The proposed method, rather than using the

lower limbs, used the vertical displacement of the center of mass (CoM) to estimate

the walking speed. Since the CoM movements in sagittal plane follow a circular

trajectory about the foot during each single support phase, upon the determination

of the vertical displacement of the CoM, the step length can be derived geometrically.

The experimental results showed that the maximum relative error is about 16%.

Using predefined gait model along with inertial sensor measurement in the walking

speed estimation algorithm benefits from several aspects: (1) simple sensor setup,

(2) ease of use, and (3) relatively consistent accuracy. First, with the support of a

gait model, the inertial sensor measurement was usually used to provide only one

or two parameters of the whole system, for example, the shank/thigh angle [8, 12,

9, 13] and the vertical displacement of the CoM [14]. Since only one or two sensor

measurements were processed in this method, less effort was required to deal with

the inevitable sensor errors, i.e. noise and bias. Second, unlike the abstraction model

method, the gait model based method followed the physical principle to construct the

biomechanical system; thus, no subject-specific training phase was required before

the actual application. Third, the accuracy of the gait model based method was very

consistent since the results were calculated geometrically using a model constrained

by the lower limb segment lengths, which was also effective in correcting subject to

subject inconsistence. This method also has some disadvantages. The accuracy of

the gait model method highly relied on the validity of the model and meanwhile
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the gait model directly affected the complexity of the computation. Comparing the

performance of [8] and [13], the estimation error of the simplified gait model was about

twice as big as that of the complete gait model; however, for the better accuracy much

more complicated calculation procedures were required [13]. Also, subject-specific

measurement, i.e. lower limb segment length, must be taken in order to construct the

accurate gait model.

Direct Integration

In recent years, more and more studies started to use direct integration method to

calculate the sensor velocity/displacement during human walking. The components of

a generic direct integration algorithm include: (1) define a starting and ending point

of each stride cycle; (2) determine the orientation of the inertial sensor with respect

to the global coordinate system; (3) project the acceleration measurement into the

global coordinate system based on the instantaneous orientation of the inertial sensor

and remove the acceleration due to gravity from the projected sensor acceleration; and

(4) integrate the resulting acceleration in global coordinate system from the starting

point to obtain sensor velocity and displacement. The direct integration methods have

been developed for the purpose of biomechanical research and personal navigation.

Early studies using body-fixed inertial sensors mostly focused on biomechanical

research. In the reviewed articles, the first direct integration walking speed estima-

tion method was proposed by Sabatini et al. [10] in 2005, which uses an IMU (biaxial

accelerometer and biaxial of gyroscope) fixed on the instep of the foot. With a rea-

sonable assumption that the foot (with the shoe) was rigid enough, the estimated

sensor velocity could be viewed as the velocity of the foot. The foot flat (FF) was
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defined as the starting point of each stride cycle, and the angular velocity data were

used to detect the FF event in the stance phase. One important procedure in this

algorithm was the zero velocity update (ZUPT), which determined the initial sensor

orientation and estimated the sensor measurement offsets during the period of the

stride cycle when the sensor velocity is approximately zero, usually at the FF event

in the stance phase. This method achieved an overall RMSE of 0.18km/h based on

the treadmill walking experiments at various speeds ranging from 3km/h to 6km/h.

Alvarez et al. [15] used the same method to estimate the foot displacement over one

stride cycle; however, Alvarez utilized one IMU (triaxial accelerometer and uniaxial

gyroscope) on each foot and a data fusion algorithm to reduce the estimation error.

Although the experimental results (relative error 10.1 ± 6.2%) showed limited im-

provement from the results of [10], Alvarez extended Sabatini’s study and introduced

a method to combine the information obtained from multiple sensors that could po-

tentially increase the estimation accuracy. Attaching the sensor to the foot provided

a lot of benefits, such as the possibility to implement ZUPT at foot flat, but the

flexibility of the ankle joint brought concerns about the influence of the abnormal

gait on the inertial sensor data, such as out of plane motion [24]. To avoid such

issue, Li et al. [11] attached an IMU (biaxial accelerometer and uniaxial gyroscope)

to the lateral side of mid-shank and estimated the walking speed with direct integra-

tion method. Different from the sensor attached to the foot, ZUPT technique could

not be used for the sensor attached to the shank. Instead, they defined the shank

vertical as the starting point of each stride cycle (shank angle is zero), and made

use of the inverted pendulum model to assume that the initial sensor velocity was

zero. This assumption is based on the fact that the CoM was at its highest point
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and the kinetic energy was all transformed into potential energy at the shank ver-

tical event. In their study, a percentage RMSEs of 7% and 4% were obtained from

the treadmill and the overground walking experiments, respectively. These methods

[10, 15, 11] focused on walking speed estimation in the sagittal plane (or direction

of progression) only, since most biomechanical studies used walking speed evaluated

along a straight line, e.g. 10-meter walking test (10MWT) [25]. In 2010, Mariani

et al. [22] attempted to use an IMU (triaxial accelerometer and triaxial gyroscope)

attached to the back of the heel to estimate the stride length, stride velocity and

turning angle in three-dimensional space. Quaternion representation of the sensor

orientation in three-dimensional space was obtained by integrating the angular ve-

locity measurement. The acceleration measurement was then projected to the global

coordinate system based on the sensor orientation, and the acceleration due to gravity

was removed from the projected sensor acceleration measurement. After the double

integration of the projected sensor acceleration, the foot position in each stride was

expressed in a 3-dimensional space, while the stride length was the distance between

the positions of the foot at two adjacent FF’s. The stride length and stride velocity

estimation relative error were 1.3± 6.8% and 1.5± 5.8%, respectively.

Because of their portability, self-containedness and the capability of working in an

indoor environment, the miniature inertial sensors were considered as a potential sub-

stitute for satellite based personal navigation system. One attempt was conducted by

Ojeda and Borenstein [16]. They developed a navigation system using an IMU (triax-

ial accelerometer and triaxial gyroscope) attached to the lateral side of the foot. They

also used the quaternion representation of the sensor orientation with the triaxial an-

gular velocity measurement to determine the instantaneous sensor orientation. The

25



Chapter 2: Systematic Review 2.3. Results and Discussion

overall movement estimation was through a process call dead reckoning, with which

the current position was determined by using a previously determined position. The

travel distance estimation error was less than 2% as reported in [16]. In 2010, Martin

et al. [19] used an IMU’s (triaxial accelerometer and triaxial gyroscope) and two force

sensors attached beneath the heel and the forefoot. The force sensors were used to

detect the time instant of heel down (HD) that was defined as the starting point of

the stride cycle. The overall stride length estimation error obtained from the 10MWT

was 34.1 ± 2.7mm. Although the basic estimation procedure was the same, Huang

et al. [21] used the direction cosines representation to track the orientation of the

IMU (triaxial accelerometer and triaxial gyroscope) attached to the arch of the foot,

and achieved a walking distance estimation error of about 2%. Moreover, concerning

about the effect of the sensor noise in the estimation accuracy, Bebek et al. employed

extended Kalman filter (EKF) to reduce the sensor noise and bias through the stance

phase. A pressure sensor array was place between the heel of the shoe and the shoe

insole, and an IMU (triaxial accelerometer and triaxial gyroscope) attached to the

lateral side of the foot. The pressure sensor array was used to detect the zero velocity

period of the stride cycle, in which the ZUPT with EKF was applied. The relative

error of the system was 0.40%, evaluated in the outdoor walking experiments with an

average distance of 1215m.

The direct integration methods benefited from the increasing accuracy of the

miniature IMUs and the sophisticated new algorithms. Comparing to the abstrac-

tion model based method and the gait model based method, this class of methods

is easier to use without the troubles from the training process and subject specific

measurement/calibration. Currently, The IMU was attached to the foot or the shank
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in order to take the advantage of using the ground as a reference in the algorithm.

As discussed in many studies, two important components of the direct integration

method were the determination of the sensor orientation and the sensor error correc-

tion. Since the direct integration method solely used the IMU measurement in the

estimation and very little external information was available on-the-fly, the sensor

orientation determination heavily relied the angular velocity measurement and the

angle representation, such as Euler angle, quaternion and direction cosines. On the

other hand, the sensor noise and bias must be reasonably corrected in the estimation

process to ensure the accurate estimation results. One common sensor error correc-

tion technique was ZUPT. The sensor noise and bias were evaluated during the zero

velocity period of the stride cycle, and then compensated from the calculation. With

the direct integration method, three-dimensional motion monitoring was also made

possible [16, 22, 19, 20, 21]. Although most age-related or pathological gait research

studies still considered the straight line walking speed as the assessment criteria,

three-dimensional motion tracking capability significantly will definitely extend the

application of the inertial sensors in biomechanical research.

2.4 Conclusion

The development of MEMS highly increased the accuracy and usability of the inertial

sensors. For the past 15 years, a large amount of studies have attempted to use inertial

sensors for the purpose of estimating gait parameters. Because of their small size,

light weight, low cost and ease of use, miniature inertial sensor based human gait

analysis systems has been considered as a potential alternative to traditional camera

based gait analysis methods. Through this review, the overall experimental results
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of the inertial sensor based walking speed estimation methods are promising, even

though the performance of some of methods [12, 15, 16, 20, 21] was not clear due

to the small sample size. Since this systematic review is developed with a focus on

algorithm development, performance evaluation or system validation articles were

not included; there have been studies regarding the quantitative evaluation of these

developed algorithms [26, 27, 28], which are essential to put these systems eventually

into practice. For biomedical application, extended experiments should be conducted

to verify the performance of the system with different populations, walking conditions,

as well as abnormal gaits.

From the reviewed articles, a clear trend in walking speed estimation algorithm

development is that more and more methods rely on direct integration method with

6D IMUs. The integration process amplifies measurement error, leading to the re-

quirement of inertial sensors with higher accuracy. Although the sensor performance

has been ramped up dramatically in last 15 years, the inertial senor measurement

error is unavoidable, especially for miniature MEMS sensors. As one future research

direction, the development should focus on sensor error correction. Noise and bias in

the inertial sensor measurement can severely degrade the performance of the direct

integration based methods, and the behaviors are complex in nature. Without ex-

ternal reference such as GPS, completely removing the sensor errors is very difficult.

Based on some valid assumptions, current methods can somehow reduce the effect

of the errors; however, detailed investigation about the sensor error existing in the

system is needed in order to increase the speed estimation accuracy. Some studies

have already started to analyze the underlying assumption in algorithms, such as

zero-velocity assumptions in ZUPT [29, 30]. Another desirable development is the
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real-time implementation of the developed algorithms in a portable system. Most of

the studies used off line data processing and algorithm implementation while the in-

ertial sensors and associated peripheral devices only performed as the data recorder.

Off line data processing definitely presents some inconvenience and requires extra

work after the experiment, which hinders its practical applications such as in clinical

settings or personal navigation.
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Chapter 3

IMU-based Ambulatory Walking

Speed Estimation in Constrained

Treadmill and Overground Walking

Abstract

This study evaluated the performance of a walking speed estimation system based on

using an inertial measurement unit (IMU), a combination of accelerometers and gyro-

scopes. The walking speed estimation algorithm segments the walking sequence into

individual stride cycles (two steps) based on the inverted pendulum-like behaviour

of the stance leg during walking and integrates the angular velocity and linear accel-

erations of the shank to determine the displacement of each stride. The evaluation

was performed in both treadmill and overground walking experiments with various

constraints on walking speed, step length and step frequency to provide a relatively
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comprehensive assessment of the system. Promising results were obtained in provid-

ing accurate and consistent walking speed/step length estimation in different walk-

ing conditions. The overall percentage root mean squared error (%RMSE) of 4.2%

and 4.0% was achieved in treadmill and overground walking experiments, respec-

tively. With an increasing interest in understanding human walking biomechanics,

the IMU-based ambulatory system could provide a useful walking speed/step length

measurement/control tool for constrained walking studies.

3.1 Introduction

Walking is the main form of human locomotion and the most frequently performed

daily activity. People choose to use a variety of walking gaits based on their prefer-

ence and required locomotor tasks. In the past decades, the human gait analysis has

proved of great value in the diagnosis of lower limb joint diseases and in the assess-

ment and rehabilitation of pathological gait [1, 2, 3, 4]. Moreover, researchers have

conducted different studies to investigate the fundamentals of human walking biome-

chanics, for example, the analysis of the relationship between the walking speed, step

length and step frequency. The combinations of these walking parameters are com-

monly employed in the studies of the optimal walking gait. Sekiya et. al investigated

the optimal walking mechanism in terms of the variability in step length at different

walking speeds and found that the consistency of the walking gait was optimized at

the preferred walking speed with freely chosen step frequency [5]. Bertram et. al

predicted multiple relations between walking speed and step frequency based on the

assumption that people optimized a function of walking speed and step frequency
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that has a minimum at the preferred gait [6]. With an increasing interest in un-

derstanding human walking biomechanics, the demand for accurate measurement of

human walking speed is growing.

The essence of walking speed estimation is to determine the spatial displacement

of the human body and the time required for such displacement. Recent years, the

development of miniature inertial sensors, i.e. accelerometers and gyroscopes, made

it possible to develop ambulatory walking speed estimation system. Because of the

low cost and ambulatory capability of inertial sensors, the inertial-sensor-based walk-

ing speed estimation method has been considered as an effective alternative to the

walking speed measurement methods mentioned above [7, 8, 9, 10, 11, 12, 13]. One of

the walking speed measurement methods using inertial sensor is to calculate the dis-

placement of human body segment with direct measurement utilizing accelerometers

and gyroscopes. For example, Sabatini et. al proposed a method of using a foot-

mounted inertial measurement unit (IMU), an electronic device using a combination

of accelerometers and gyroscopes, to estimate spatio-temporal gait parameters and

obtained walking speed estimation results with an RMSE of 5% [14]. Most recently,

Li et. al used a shank mounted IMU to estimate walking speed and achieved compa-

rable results with an RMSE of 7% [8]. However, since most of the above mentioned

systems were tested under subjects’ preferred walking conditions, their performance

under constrained walking, as required in fundamental human walking studies or op-

timal walking [6, 5, 15], was unknown. Therefore, more experiments were desired to

provide a comprehensive performance assessment of these inertial-sensor-based walk-

ing speed estimation methods.
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This paper is focused on the evaluation of a walking speed and step length esti-

mation method, previously developed by Li et. al [8] using a shank-mounted IMU.

Based on the cyclical pattern exhibited in the characteristics of walking kinematics,

the walking speed estimation algorithm segments the walking sequence and analysed

each stride cycle individually to reduce the integration error associated with the in-

accuracies in the acceleration and angular velocity measurements. To validate the

applicability of the system in constrained biomedical experiments [6, 16], the per-

formance evaluation was conducted for both treadmill and overground walking with

different constraints on the walking speed, step length and step frequency.

3.2 Methods

3.2.1 Subjects

Sixteen volunteers were recruited for this study. Six female and three male subjects

(age: 27.0±8.0 years; height: 167.5±13.5 cm; tibia length: 40.0±5.0 cm) participated

in the treadmill walking experiment, and the other three female and four male subjects

(age: 23.5±1.5 years; height: 171.0±11.0 cm; tibia length: 40.0±2.0 cm) attended the

overground walking experiment. All subjects were healthy and exhibited no clinical

gait abnormalities to ensure that they were suitable for the walking exercises in the

experiment. All subjects gave their informed consent to participate in accordance

with university policy, and the study was approved by the Queen’s General Research

Ethics Board (GREB).
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3.2.2 Apparatus

The Inertia-Link (MicroStrain, Inc., Williston, VT, USA) is a IMU sensor that con-

sists of a triaxial accelerometer (±5g, where g is the gravitational acceleration) and

a triaxial gyroscope (±600◦/sec) with measurement errors in a range of ±0.005g and

±2.0◦/sec, respectively, in dynamic conditions. The linear acceleration and angular

velocity data were collected at 100Hz and sent to a USB base station receiver via

a built-in wireless communication system (2.45GHz IEEE 802.15.4). A customized

software (MicroStrain, Inc, Williston, VT, USA) was used to record the data in a

computer. A treadmill (NordicTrack, Inc., Logan, UT, USA) was used in treadmill

walking experiment.

3.2.3 Sensor Configuration

The IMU sensor was attached to the lateral side and located at the midway of the

left shank using double sided tape and athletic tape (Figure 3.1). As we only con-

sidered the shank motion in sagittal plane, the tangential and normal axes of the

accelerometer were pointing to the fore-aft and longitudinal directions of the shank,

respectively. One axis of the gyroscope measured the shank angular velocity in sagit-

tal plane (plane of progression). Shank angle, θ, was defined as the angle between the

normal axis of the accelerometer and the vertical axis of the world coordinate system.

The right hand rule defined the positive angular velocity as the clockwise rotation of

the shank in the coordinate system (Figure 3.1).

Before each experiment, the subjects were asked to stand still in the shank vertical

position (longitudinal axis of the shank is perpendicular to the floor) with the IMU

mounted on the shank, and the IMU was adjusted such that its normal and tangential
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axes were aligned to horizontal and vertical directions of the world coordinate system,

respectively. As such, the initial measurement of the IMU should showed roughly 0g

in tangential axis and 1g in normal axis.

x

y

t

θ

n

Figure 3.1: Sensor configuration: An IMU was attached to the shank in the sagittal
plane on the lateral side. The normal acceleration an was measured along
the n direction, and the tangential acceleration at was measured along the
t direction, while the axis of gyroscope was perpendicular to the sagittal
plane defined by n and t directions. The arrows indicated positive axes
for the corresponding sensor measurements. The world coordinate was
defined by the x and y axes, and the vertical axis y extended in a direction
parallel to gravity.

3.2.4 Experimental Method and Protocol

The treadmill walking experiment and the overground walking experiment were con-

ducted to evaluate the performance of the IMU-based walking speed and step length

estimation method. For each experiment, different constraints were applied to pro-

vide a comprehensive assessment. Following the simple relationship between walking

speed, step length and step frequency (Equation 3.1), the walking condition could be

controlled by constraining any two of these three gait parameters at the same time.
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walking speed = step length× step frequency (3.1)

In both treadmill and overground walking experiments, step frequency was con-

strained by requesting the subjects to follow the designated frequency indicated by

the beep sounds from a metronome. The walking speed constraint was applied in the

treadmill experiment, in which the subjects was instructed to walk on a treadmill at

constant pre-defined speeds. As a result, the step length was constrained simultane-

ously since both step frequency and walking speed were fixed (Equation 3.1). The

step length was directly constrained in the overground walking experiment, which

was implemented by labeling different distance with yellow adhesive tape markers on

the floor with the aid of a tape ruler, and the subjects were instructed to step on

the markers during walking trials. Similar walking parameter control techniques have

been described in [17] and used in the optimal walking study [6].

Treadmill Walking Experimental Protocol

Walking trials were performed at four different treadmill speeds (1.0, 1.2, 1.4 and

1.6 m/s). For each subject at a selected treadmill speed, we first determined the

subject’s preferred step frequency using the metronome. Five trials with different step

frequencies (80%, 90%, 100%, 110% and 120% of the preferred step frequency) were

then performed for each treadmill speed. The treadmill speeds and step frequencies

were applied in a random order to prevent subject adapting to a trend. The IMU

data in each walking trial were recorded for a duration of 90 seconds.
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Overground Walking Experimental Protocol

Four different step lengths (0.7m, 0.8m, 0.9m and 1.0m) were marked on the floor of

a flat hallway (35m). For each step length, three walking trials with different step

frequencies (90%, 100% and 110% of the preferred step frequency) were performed.

The reason why we did not apply step frequency at 80% and 120% of the preferred

step frequency as the treadmill walking experiment was that the subjects found it

difficult to follow the metronome at very low and very high step frequencies while

trying to step on markers on the hallway. The controlled step frequencies and step

lengths were applied in a random order to prevent the subject adapting to the trend.

The IMU data recording started from the 5th step to ensure that the subject’s walking

gait was stable, and ended when the subject reached the end of the marked hallway.

3.2.5 Walking Speed and step length Estimation

The walking speed and step length estimation algorithm was implemented in MAT-

LAB (The MathWorks, Natick, MA, USA). On average, about 5% data loss was

present in the wireless transmission. Before the data processing, one-dimensional

interpolation was used to reconstruct the missing data points of the IMU accelera-

tion and angular velocity. A second-order butterworth low-pass filter with a cut-off

frequency of 2.5 Hz was used to remove the noise from the interpolated data.

A coordinate transformation was used to compute the horizontal and vertical
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Figure 3.2: Characteristics of angular velocity, ω, during one gait cycle. The curve
was filtered by a second order Butterworth filter with a cut-off frequency
of 5Hz. At the mid-stance shank vertical event, the magnitude of the
angular velocity of the shank reached a local minimum with a value close
to zero. In symmetry, the left shank had the same angular velocity char-
acteristics as the right shank.

accelerations, ax(t) and ay(t), in the world coordinate system based on the IMU-

measured shank normal, tangential acceleration signals and the resulting instanta-

neous shank angle, an(t), at(t) and θ(t), respectively, ax(t)

ay(t)

 =

 − sin θ(t) cos θ(t)

cos θ(t) sin θ(t)


 an(t)

at(t)

−
 0

g

 . (3.2)

where θ(t) is the instantaneous shank angle and g is the acceleration due to the

gravity.

Our previous work developed the algorithms to segment the walking sequence into

a sequence of stride cycles. The segmentation algorithm defined the initial point of

each stride cycle as the mid-stance shank vertical event, when the shank was parallel to

the direction of gravity (Figure 3.2). Starting from the beginning of each stride cycle,
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the instantaneous shank angle θ was calculated by integrating the angular velocity

measured by the gyroscope. The horizontal and vertical displacement of the sensor

was then calculated by double integration of the resulting horizontal and vertical linear

acceleration from Equation 3.2. The average speed of each stride was eventually equal

to the vector sum of the displacements in horizontal and vertical directions divided by

the time period of the corresponding stride. The step length was one half of the shank

displacement over one stride cycle assuming the symmetry of left and right steps. All

integrations were reset at the beginning of each stride cycle. As only the motion in

the sagittal plane was considered, summing the vertical and horizontal displacements

could effectively reduce the error caused by the misalignment between the normal

axis of the IMU and the longitudinal direction of the shank. Interested reader may

refer to [8] for details.

3.2.6 Data Analysis

Treadmill Walking Experiment Data Analysis

For each treadmill walking trial, the mean walking speed was found by smoothing

the stride-to-stride walking speed estimates in a stable period from the 11th to the

45th stride. Estimation error at a given combination of the treadmill speed and

step frequency was calculated as the difference between the estimated walking speed

and the preset treadmill speed. The mean absolute estimation error (Mean) and

standard deviation (SD) were determined by averaging across all trials at each given

walking conditions. A root mean squared error (RMSE) was computed as RMSE =√∑
(Vestimated − Vactual)2/N , where N is the number of samples in the calculation.

The %RMSE was calculated as the ratio of RMSE and the actual value. For each given

44



Chapter 3: Constrained Walking 3.2. Methods

walking speed, a %RMSE was calculated for nine subjects across five different walking

frequencies (N = 45). For each given step frequency, a %RMSE was calculated for

nine subjects across four different walking speeds (N = 36). An overall %RMSE

was also calculated for nine subjects across all combination of treadmill speed and

step frequency (N = 180). The effects of the treadmill speed and step frequency

on the walking speed estimation error were tested using two-way ANOVA. With the

p-values of the two-way ANOVA tests larger than the significance level, 0.05, the

effects of walking speed and step frequency on the walking speed estimation error

were considered statistically insignificant.

Overground Walking Experiment Data Analysis

For each overground walking trial, about 30 to 40 stride cycles were recorded de-

pending on the designated step length. The mean step length was determined by

smoothing the stride-to-stride step length estimates in a stable period from the 12th

to 26th stride. Estimation error at a given combination of the step length and step

frequency was calculated as the difference between the estimated step length and the

designated step length. Similar to the treadmill walking experiment data analysis, the

mean absolute estimation error and SD were computed. For each given step length,

a %RMSE was calculated for seven subjects across three different step frequencies

(N = 21). For each given step frequency, a %RMSE was calculated for seven subjects

across four different step length (N = 28). An overall %RMSE was also calculated for

nine subjects across all combinations of step length and step frequency (N = 84). The

effects of the step length and step frequency on the step length estimation error were

tested using two-way ANOVA. With the p-values of the two-way ANOVA tests larger
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than the significance level, 0.05, the effects of the step length and step frequency on

the step length estimation error were considered statistically insignificant.

Systematic Error Analysis

To find the systematic error of the walking speed/step length estimation algorithm,

the relationship of the estimates and the actual values was evaluated by performing

linear regression for all combinations of walking speed and step frequency (N = 180)

in treadmill walking experiment, and for all combinations of step length and step

frequency (N = 84) in overground walking experiment. The linear regression created

a linear model (y = β ∗x+ε) to fit the known data points, where in our experiment y

was the estimate and x was the actual value. With the slope of the linear regression

curve, β, close to 1.00, the difference between the estimates and the expected values

remained constant for all treadmill speeds or step lengths. Thus, the y-intercept, ε,

of the linear regression curve was considered as a systematic error and was subtracted

from the walking speed estimation results such that the systematic error was removed.

The mean absolute estimation error and %RMSE were then calculated again on the

adjusted walking speed and step length estimation results.

3.3 Results

Consistent performance of the shank-mounted IMU walking speed/step length esti-

mation algorithm was obtained in the treadmill and overground walking experiments.

As shown in Table 3.1 and Table 3.2, the estimation results were with a %RMSE of

14.5% and 17.0% before adjustment and 4.2% and 4.0% after adjustment, respectively.
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3.3.1 Treadmill Walking Experiment Result

The walking speed estimation algorithm underestimated the treadmill walking speed.

The average walking speed estimates for all subjects at all the combinations of the

treadmill speed and step frequency are shown in Figure 3.3. A linear regression

function fitting the estimates was plotted to demonstrate the overall trend of the es-

timation result. The slope (β) of the resulting linear regression function equalled 1.00.

The y-intercept (ε) of the linear regression function equalled −0.18, which could be

subtracted from the walking speed estimates to obtain the adjusted estimated walk-

ing speeds. The largest deviation were observed at the lowest (1.0m/s) experiment

treadmill speed, and a few extreme outliers (about 40% lower than the treadmill

speed) were observed at treadmill speed 1.0m/s and 1.6m/s.

The adjusted average estimated walking speeds across all subjects in all the walk-

ing conditions are shown in Figure 3.4. Consistent average walking speed estima-

tions were obtained at all four treadmill speeds, where the overall RMSE between

the treadmill speed and the adjusted average estimated walking speed was 0.014m/s

within the analysed steps (11th to 45th step) across all treadmill speeds. The largest

inter-subject variability, quantified by the average standard deviation of the average

estimated walking speed of different subjects, was about 0.083m/s while the least

was less than 0.038m/s, which occurred at treadmill speed 1.0m/s and 1.4m/s, re-

spectively.

The mean absolute estimation errors and the standard deviations of the estima-

tion error before and after adjustment are summarised in Table 3.1. Relatively large

difference was observed in the walking speed %RMSE across different step frequen-

cies, which was in a range from 2.8% to 6.1%, while the walking speed %RMSE across
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Figure 3.3: Average estimated walking speed (m/s) versus controlled treadmill speed
(m/s) during treadmill walking at four treadmill speeds (1.0m/s, 1.2m/s,
1.4m/s and 1.6m/s) and five step frequencies (80%, 90%, 100%, 110%
and 120% of the self-chosen step frequency). The solid line is the plot
of the linear regression function that fitted the estimates (indicated with
circles). The diagonal dash line showes the reference where the estimated
walking speed and treadmill speed were equal. Each circle indicates an
average walking speed estimate of a subject at a combination of des-
ignated treadmill speed and step frequency. Since the treadmill speed
(horizontal axis) was controlled, the estimates (indicated with circles)
were distributed along vertical lines corresponding to the specific tread-
mill speeds. In total, 180 estimates were shown in this figure.

48



Chapter 3: Constrained Walking 3.3. Results

1.0 m/s

1.2 m/s

1.4 m/s

1.6 m/s

Reference

Estimated

Variability

Figure 3.4: Adjusted average estimated walking speed (m/s) during treadmill walk-
ing at four treadmill speeds (1.0m/s, 1.2m/s, 1.4m/s and 1.6m/s) across
five step frequencies (80%, 90%, 100%, 110% and 120% of the self-chosen
step frequency). The solid lines are the average estimated walking speed
across all subjects and all step frequencies at the specific treadmill speed.
The shadow regions are average estimated walking speed ± one stan-
dard deviation of estimates from all subjects, indicating the inter-subject
variability of the estimation results.
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different treadmill speeds showed less variation in a range from 3.8% to 4.6%. The

overall %RMSE of the adjusted walking speed estimation result was 4.2%. However,

statistical two-way ANOVA test showed that the estimation errors were not signifi-

cantly affected by the controlled treadmill speed during treadmill walking experiment

(P > 0.09) and the step frequency (P > 0.95). The joint effect of the treadmill

speed and the step frequency also showed insignificant effect on the estimation errors

(P > 0.88). As such, the performance of the walking speed estimation algorithm could

be considered consistent regardless of the tsreadmill speed and the step frequency.

50



Chapter 3: Constrained Walking 3.3. Results

Table 3.1: Treadmill walking speed estimation error and %RMSE at different tread-
mill speeds and step frequencies

Frequency
Speed (m/s)

1.0 1.2 1.4 1.6 %RMSE

Unadjusted 1

80% 4 0.205± 0.0973 0.155± 0.069 0.179± 0.045 0.181± 0.103 16.1%

90% 0.197± 0.086 0.155± 0.053 0.170± 0.042 0.159± 0.036 15.0%

100% 0.212± 0.091 0.154± 0.075 0.185± 0.054 0.171± 0.042 16.0%

110% 0.165± 0.070 0.162± 0.067 0.205± 0.061 0.190± 0.047 15.1%

120% 0.168± 0.086 0.157± 0.048 0.191± 0.046 0.199± 0.065 15.0%

%RMSE 5 20.7% 14.0% 13.7% 11.9% 15.4%

Adjusted 2

80% 0.065± 0.097 0.055± 0.069 0.036± 0.045 0.062± 0.103 4.6%

90% 0.059± 0.086 0.045± 0.053 0.030± 0.042 0.032± 0.036 3.8%

100% 0.061± 0.091 0.059± 0.075 0.031± 0.054 0.030± 0.042 4.2%

110% 0.055± 0.070 0.053± 0.067 0.053± 0.061 0.051± 0.047 4.2%

120% 0.065± 0.086 0.040± 0.048 0.040± 0.046 0.052± 0.065 4.2%

%RMSE 6.1% 4.2% 2.8% 2.8% 4.2%

∗ Analysis is based on the data collected from 9 subjects;

1 Unadjusted section shows the original step length estimation results before adjustment;

2 Adjusted section shows the step length estimation results adjusted according to the linear regression model;

3 Entry values are absolute Mean ± SD;

4 Step frequency is represented by percentage of the self-chosen step frequency;

5 %RMSE is RMSE divided by actual treadmill speed.

3.3.2 Overground Walking Experiment Result

Similarly, the step length estimation algorithm underestimated the step length. The

average step length estimates for all subject at all the combinations of the designated

step length and step frequency were shown in Figure 3.5. A linear regression function

fitting the estimates was plotted to demonstrate the overall trend of the estimation

result. The linear regression function had a slope (β) of 0.99 and a y-intercept (ε)
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of −0.13. The y-intercept value of the linear regression function was subtracted

from the estimates to obtain the adjusted results. Similar to the treadmill walking

speed estimation result, the largest deviation were observed at the shortest (0.7m)

designated step length while the estimates were less dispersive as the designated step

length increases.

The adjusted average estimated step lengths across all subjects in all the walking

conditions are shown in Figure 3.6. The overall RMSE between the designated step

length and the adjusted average estimated step length was 0.015m within the analysed

steps (12th to 26th step) across all step lengths. The largest inter-subject variability,

quantified by the standard deviation of the average estimated step length of different

subjects, was 0.043m while the least was 0.034m, which were corresponding to step

length 0.8m and 1.0m, respectively.

Table 3.2 summarises the mean absolute estimation errors and the standard de-

viations of the estimation error before and after adjustment. Across different step

frequencies, smaller variation was observed in the step length %RMSE comparing

to the walking speed %RMSE of the treadmill walking experiment, which was in a

range from 3.0% to 4.5%. Across different step length, the step length %RMSE was

in a range from 3.7% to 4.2%. Two-way ANOVA test showed that the estimation

errors were not significantly affected by the step length during overground walking

experiment (P > 0.2). However, the step frequency was considered to significantly

affect the estimation errors (P < 0.01), while the joint effect of the step length and

the step frequency showed insignificant effect on the estimation errors (P > 0.99).
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Figure 3.5: Average estimated step length (m) versus controlled step length (m) dur-
ing overground walking at four designated step length (0.7m, 0.8m, 0.9m
and 1.0m) and three step frequencies (90%, 100% and 110% of the self-
chosen step frequency). Each circle indicates an average step length es-
timate of a subject at a combination of designated step length and step
frequency. Since the step length (horizontal axis) was controlled, the esti-
mates (indicated with circles) were distributed along lines of specific step
length. The solid line is the plot of the linear regression function that fits
the estimates (indicated with circles). The diagonal dash line showes the
reference where the estimated step length and designated step length are
equal.
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Figure 3.6: Adjusted average estimated step length estimates (m) during overground
walking at four designated step length (0.7m, 0.8m, 0.9m and 1.0m)
across three step frequencies (90%, 100% and 110% of the self-chosen
step frequency). The solid lines are the average estimated step length
across all subjects and all step frequencies at the specific designated step
length. The shadow regions are average estimated step length ± one stan-
dard deviation of estimates from all subjects, indicating the inter-subject
variability of the estimation results.
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Table 3.2: Overground Walking Step Length Estimation Error and %RMSE at Dif-
ferent Designated Step Lengths and Step Frequencies

Frequency
step length (m)

0.7 0.8 0.9 1.0 %RMSE

Unadjusted 1

90% 4 0.141± 0.0393 0.172± 0.035 0.161± 0.031 0.154± 0.026 18.9%

100% 0.132± 0.044 0.155± 0.035 0.149± 0.028 0.135± 0.047 17.2%

110% 0.113± 0.047 0.128± 0.053 0.123± 0.044 0.117± 0.026 14.5%

%RMSE 5 18.4% 19.1% 16.1% 13.6% 17.0%

Adjusted 2

90% 0.029± 0.039 0.043± 0.035 0.038± 0.031 0.025± 0.026 4.2%

100% 0.026± 0.044 0.035± 0.035 0.026± 0.028 0.038± 0.047 3.7%

110% 0.038± 0.017 0.033± 0.053 0.035± 0.044 0.024± 0.026 4.1%

%RMSE 4.5% 4.6% 3.7% 3.0% 4.0%

∗ Analysis is based on the data collected from 7 subjects

1 Unadjusted section shows the original step length estimation results before adjustment;

2 Adjusted section shows the step length estimation results adjusted according to the linear regression model;

3 Entry values are absolute Mean ± SD;

4 Step frequency is represented by percentage of the self-chosen step frequency;

5 %RMSE is RMSE divided by actual step length value.

3.4 Discussion

The relationship in Equation 3.1 implies that the walking speed and the step length

can be easily derived with known step frequency. The walking speed and step length

estimation algorithm is equivalent in nature once the step frequency is fixed; thus,

we could compare the step length estimation results from the overground walking

experiment with the walking speed estimation results from the treadmill walking

experiment. Furthermore, the algorithm estimates the walking speed/step length

for each stride. The number of strides does not affect the estimation results and a
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minimum number of strides is not required in the estimation process. Underestimation

was observed in both treadmill and overground walking experiments for the proposed

walking speed/step length estimation algorithm; however, with a proper adjustment,

this algorithm could provide one of the most accurate estimations among previous

studies [7, 8, 9, 11, 14, 12].

3.4.1 Sources of Error

The main error observed in both treadmill and overground walking experiments is

a constant offset between the actual and the estimated values (Figure 3.4 and 3.6).

As the constant offset exists for all the subjects in all walking conditions, it could

presumably be considered as a systematic error.

The first cause of the systematic error could be the assumption of zero initial

conditions in the integrations of the algorithm, referring to [8]. The proposed esti-

mation algorithm uses the mid-stance shank vertical event as the start of each gait

cycle, which provides a convenient way to define some of the initial conditions. Zero

initial condition assumption were made for the shank linear velocities due to their

small amplitude at the mid-stance shank vertical event. However, the shank angular

velocity is evidently not exactly zero at the start of each stride cycle (Figure 3.2),

which results in a non-zero initial horizontal velocity since the the horizontal velocity

can be computed as the product of the angular velocity and the distance between

the location of the IMU and the ankle joint. Similar underestimation of the walking

speed was observed in [8] due to the same reason. However, higher walking speed

does not necessarily result in larger initial walking speed. Since at the shank vertical

event, the shank angular velocity reaches a local minimum, the difference between
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shank angular velocities under different walking speeds is small at this event. It is

reasonable to observe that the average systematic error over all subjects and all trials

presents a constant offset.

The second possible cause of the systematic error is related to the orientation of

the IMU on the shank. Since the shank is cylinder-like, the IMU cannot be attached

steadily on the lateral side of the shank with perfect alignment to the sagittal plane.

Our algorithm only considers the sagittal plane kinematics; thus, any misalignment

between the IMU axes and the sagittal plane may result in a small IMU tangential

acceleration measurement than actual value. Similarly, the angular velocity measure-

ment is smaller than actual value due to the misalignment of the rotation axis with

the angular velocity measurement axis. Figure 3.7 depicts the effect of the misalign-

ment on the horizontal acceleration measurement, viewing from the top. To verify the

effect, we simulated a simple situation with 10o misalignment between the sagittal

plane and the IMU axes. As a result, about 2.5% walking speed estimation error

could be introduced.

3.4.2 Effect of Step Frequency in Overground Walking

Statistical two-way ANOVA test shows that the step frequency constraint significantly

affected the step length estimation error in the overground walking experiment, with

P < 0.01. Since no significant effect of the step frequency constraint on the walk-

ing speed estimation error was observed in the treadmill walking experiment, with

P > 0.95, the difference possibly resulted from the increased attention demands in the

overground walking experiment. Compared with the constrained treadmill walking,

for which the only constraint that required subjects’ attention was the step frequency
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at

at

Figure 3.7: The effect of misalignment of the IMU axes with the Sagittal plane on
the shank-mounted IMU measurement. The black arrow indicates the
progression direction and acceleration magnitude. The circle indicates
the top-view of the shank segment, while the light gray rectangle shows
the IMU sensor at the designated position and the dark gray rectangle
shows the misaligned IMU. at in light gray color is the expected tangential
acceleration in the sagittal plane, and at in dark gray color is the tan-
gential acceleration measurement axis when the IMU is at the misaligned
position.
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indicated by the beep sounds from the metronome, the constrained overground walk-

ing required additional attention from the subjects. The subjects needed to watch for

the step markers and listen to the beep sounds from the metronome at the same time

during the overground walking trials. As discussed in [18], when the feet placement

was constrained the attention demands were greater than unconstrained walking. Fur-

thermore, cognitive tasks, such as listening to the beep sounds from the metronome

and watching the step markers on the hallway in our experiments, generally require a

certain level of attention during walking [19], which may distract the attention from

controlling posture during walking and keeping balance. The subjects in the over-

ground walking experiment also reported that while watching for the step markers

during walking it was difficult to follow the step frequencies that were too much lower

(−20%) and too much higher (+20%) than their preferred step frequencies. Further-

more, previous studies showed that when attention demanding tasks were performed

during walking, a more conservative gait pattern other than natural gait pattern was

adopted, implying an increase in the voluntary control of gait [20, 21]. However,

since the voluntary gait change is based on the subjects’ preference, large variation

is expected. Since applying both step length and step frequency constraints was sim-

ilar to a dual-task paradigm, referring to [19], the attention demands of the visual

and auditory tasks is most likely the direct cause of the variation of the step length

estimation error in overground walking experiment.

3.4.3 Inter-Subject Variability

The inter-subject variability of the estimation error, quantified by the standard de-

viation, was observed to be about 2% to 9% of the actual treadmill speed for the
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treadmill walking experiment (Figure 3.4), and 2% to 6% the designated step length

for the overground walking experiment (Figure 3.6). Depending on the leg length of

the subjects, different levels of effort might be required to walking at the controlled

treadmill speeds or designated step length. Especially for subjects with a shorter leg

length, trying to reach a relatively higher target walking speed or longer target step

length might have changed the subjects’ natural walking gait patterns and lower limb

kinematics. The subject-dependent kinematic changes, including the angular veloc-

ity and the linear acceleration, presumably affected the stride-to-stride displacement

estimation and consequently introduced differences in the calculation results, which

explains, at least partially, the observed inter-subject variability.

3.4.4 Limitations

In our study, the experiments were performed on healthy young subjects, for which

the performance is representative for the younger population. As a limitation, the

proposed method may not be directly applicable to older population or people with

gait deficiencies for two reasons. First, the proposed method underestimated the

walking speed/step length by a constant offset and a constant correction is required

to improve the accuracy of the estimation. However, the constant offset is possibly

different between subject groups, which may introduce inaccuracy to the performance

of the proposed method in other populations. Second, the applicability of the algo-

rithm depends on the shank kinematic characteristics. Because the shank kinematic

characteristics may not be the same for different subject groups, further experiment

is required before applying the method to elderly group or subjects with gait disorder.

The obtained error might be affected by the equipments and control methods we
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used in the experiments. When the subject was walking on the treadmill, certain

level of treadmill speed fluctuations were inevitable. As direct quantification of the

stride-to-stride treadmill speed fluctuations of a commercial treadmill is difficult, we

attempted to indirectly quantify the average treadmill speed fluctuations. We per-

formed a treadmill calibration procedure proposed by NASA [22] and found that

the maximum average treadmill speed variation over a period of time was around

±0.035m/s when a young subject (weight 75kg) was walking on the treadmill. This

fluctuation would at most account for 0.08% of the overall RMSE% observed in this

study, which is negligible. On the other hand, it was assumed that subjects in the

overground walking experiment stepped on the designated markers for each step;

however, the actual step length in each step may fluctuate as well. We expect the

variation of the actual step length to be ±2cm at maximum. At the worst case, the

fluctuation of the actual step length would account for 1.14% of the overall RMSE%.

Methods or equipments that can directly measure the instantaneous actual treadmill

speed/step length will be employed to eliminate associated error related to the ex-

perimental equipment. For example, we could apply a sensor mat, such as GAITRite

system (CIR System Inc. Havertown, USA), on the floor to track the exact position of

each step. A concurrent validation procedure similar to [23] could be used to evaluate

the performance of our method.

3.5 Conclusion

This study thoroughly evaluated the performance of an IMU-based ambulatory walk-

ing speed estimation system in both treadmill and overground walking experiments

under different combinations of walking conditions. Consistent walking speed/step

61



Chapter 3: Constrained Walking 3.6. Acknowledgements

length estimation results were achieved, and the estimation accuracy is comparable

with other inertial-sensor-based walking speed estimation systems. Moreover, since

the algorithm estimates the stride-to-stride walking speed and step length, in appli-

cation there is no learning process or requirement for a minimum number of strides

for the walking speed/step length estimation if the subject is from the same test

population. Although a certain level systematic error was found in the proposed

walking speed/step length estimation algorithm, it could be removed with a simple

adjustment. The inter-subject variability of the estimation error indicates that a

subject-specific calibration might be considered to improve the performance of the

system. Overall, the application of the system in constrained walking studies, includ-

ing optimal walking study, is promising.
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Chapter 4

An Ambulatory Spatio-Temporal

Analysis System for Post-Stroke

Hemiparetic Gait using

Shank-Attached IMUs

Abstract

Clinical gait analysis is an important component of the post-stroke rehabilitation pro-

cess. In this study we investigated the performance of an ambulatory spaio-temporal

analysis system for hemiparetic gait after stroke using inertial measurement units

(IMUs) attached to the shanks. For general clinical interest, two aspects of the

hemiparetic gait were analyzed: walking speed and gait asymmetry. The walking
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speed algorithm is based on the fact that walking is a cyclical motion with a distin-

guishable pattern. The shank kinematics provide sufficient information to assess the

spatio-temporal characteristics of hemiparetic gait. According to the kinematic char-

acteristics exhibited, the walking speed estimation algorithm used the shank angular

velocity to determine initial conditions for the integration and correct integration

drift errors. Gait asymmetry was quantified in terms of stride length ratio (SLR)

and the comparison of stance/swing ratio (SSR). The system evaluation was car-

ried out over the standardized 10 meter walking test (10MWT). The Bland-Altman

method showed good agreement between the mean walking speed measured by the

IMU-based system and a stopwatch method, with a mean difference of 0.01m/s and

0.00m/s and limit of agreement of ±0.09m/s and ±0.10m/s for the non-paretic and

the paretic legs, respectively. The gait asymmetry analysis produced results that were

comparable with previous reports.

4.1 Introduction

Stroke is a leading cause of adult disability in Western countries [1]. According to

World Health Organization estimates, 15 million people suffer stroke each year, of

which 5 million are permanently disabled [2]. A common disability after stroke is

hemiparesis: weakness on one side of the body. Due to muscle weakness, stroke

survivors either unintentionally or intentionally tend to limit the use of the paretic

leg, which consequently leads to asymmetrical gait and reduced mobility. Since gait

impairments and mobility disorders can negatively impact independence, assisting

the restoration of a normal gait and enabling safe community ambulation has been

considered a primary goal for stroke rehabilitation [3]. During the rehabilitation
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process, clinical gait analysis generally provides valuable outcome measures to assess

post-stroke recovery [4].

Both gait speed and gait asymmetry have been widely used in assessing post-

stroke gait [5, 6]. Self-selected walking speed has long been recognized as a proxy

measure of ambulation quality and is used to quantify the progress of gait rehabilita-

tion [7, 8, 9, 4]. A widely accepted clinical ambulation assessment of short duration

walking speed (m/s) is the standardized 10-Meter Walking Test (10MWT) [10, 11],

which makes use of a stopwatch and reflects general physical function [12]. On the

other hand, the degree of asymmetry of spatio-temporal gait parameters has been con-

sidered as a valuable indicator of hemiparetic gait recovery, since it is directly related

to the disturbances in motor coordination [13, 14]. Common spatio-temporal param-

eters used in the evaluation of gait asymmetry include the relative stance/swing ratio

(SSR) and the paretic/non-paretic leg stride length ratio (SLR) at preferred walk-

ing speed [15, 16, 17, 18]. Recently, the GAITRite system, a portable instrumented

electronic walkway, has been commonly utilized to record the spatio-temporal param-

eters, such as stride length, swing time and stance time [16, 19, 18]. The use of this

system however is restricted by its limited length and it is costly. An inexpensive

and easy-to-use system capable of assessing both walking speed and gait asymmetry

could be a cost-effective means of monitoring progressive changes during post-stroke

rehabilitation.

Previous studies have demonstrated that miniature inertial sensors are well suited

to evaluating the spatio-temporal parameters of human gait. They are lightweight,

very portable and easy to use. The walking speed estimation for healthy people

using inertial sensors has been developed and validated in the past several years
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[20, 21, 22, 23]; however, their application in post-stroke hemiparetic gait analysis is

mostly limited to using raw inertial information to detect gait events or count steps

[24, 25, 26, 27, 28, 29].

The objective of this study is to test an inertial sensor-based portable gait analysis

system that is capable of providing walking speed and quantifying gait asymmetries

of people with stroke simultaneously. A shank-attached IMU-based walking speed

estimation algorithm was previously reported by Li et. al [22] for healthy individuals;

however, because the algorithm requires a linear regression on the test data to correct

the systematic error [23], it may not be suited for stroke gait if the inter-subject

variability of the data is high. A novel walking speed estimation algorithm was

therefore developed in this study by considering the initial speed and compensating

the sensor drift error to minimize systematic error. The gait asymmetry quantification

is based on the stride length and swing/stance time associated with the non-paretic

and paretic legs. The gait events (heel-strike and toe-off) are determined from the

characteristics of the shank angular velocity of both legs, measured by gyroscopes.

4.2 Methods

4.2.1 Apparatus

The Inertia-Link (MicroStrain, Inc., Williston, VT, USA) is an IMU sensor that

consists of a triaxial accelerometer (±5g, where g is the gravitational acceleration)

and a triaxial gyroscope (±600◦/sec) with measurement errors in a range of ±0.005g

and ±2.0◦/sec, respectively, in dynamic conditions. Only two accelerometer axes and

one gyroscope axis were used as our focus was motion in the plane of progression (ie.
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sagittal plane). The linear acceleration and angular velocity data were collected at

100Hz and sent to a USB base station receiver via a built-in wireless communication

system (2.45GHz IEEE 802.15.4). Modified data acquisition software (MicroStrain,

Inc., Williston, VT, USA) was used to record the raw data for off-line analysis.

4.2.2 Sensor Configuration

An IMU sensor was attached at the midpoint of each shank on the lateral side us-

ing athletic tape. Before each experiment, subjects were asked to stand still with

the shank vertical (longitudinal axis perpendicular to the floor) and the IMU was

adjusted such that its normal and tangential axes were aligned to vertical and hori-

zontal directions of the world coordinate system, respectively (Figure 4.1). As such,

the initial measurement from the IMU showed approximately 0g in the tangential

axis and 1g in the normal axis of the IMU sensor.
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L

L

Figure 4.1: Sensor configuration: An IMU is attached to the shank in the sagittal
plane on the lateral side. Since only the shank motion in sagittal plane
was considered in the method, the normal acceleration an is measured
along the n direction, the tangential acceleration at is measured along
the t direction, and the axis of the gyroscope is perpendicular to the
sagittal plane defined by n and t directions. The arrows indicate positive
axes for the corresponding sensor measurements. L is the sensor-to-ankle
distance. The world coordinate system is defined by the x and y axes,
and the vertical axis y extends in a direction parallel to gravity.

4.2.3 Signal Conditioning

Signal processing was performed using MATLAB (The MathWorks, Natick, MA,

USA). On average, 5% of data loss was present in the wireless transmission between

the IMUs and the computer. Before data processing, one-dimensional interpolation

was used to reconstruct the missing data points. For the walking speed estimation

and the gait events detection algorithm, a second-order Butterworth low-pass filter

with cut-off frequency of 10Hz was used to remove noise from the raw acceleration

and angular velocity measurements. The cut-off frequency was selected to maximize

the resolution of the gyroscope characteristics for the gait events detection while
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removing the signal noise resulting both from sensor electronics and skin motion.

For the gait segmentation for walking speed estimation, a second-order Butterworth

low-pass filter with cut-off frequency of 2.5Hz was applied to the gyroscope signals.

The gait segmentation process was less time sensitive than the gait event detection

and the resultant smoothed signal reduced the complexity of the algorithm.

4.2.4 Walking Speed Estimation

Gait segmentation algorithm was implemented to divide the walking sequence into

stride cycles, and the average walking speed for each stride cycle was calculated in-

dividually. Therefore, integrations of the acceleration and angular velocity data over

time would cause large drift errors in the velocity and position estimation due to a

small offset in acceleration measurements. The use of gait segmentation effectively

avoided such drift errors and enabled stride-to-stride velocity drift error correction.

The starting point of each stride cycle was defined as the shank vertical event, when

the longitudinal direction of the shank was parallel to the direction of gravity [22].

This specific gait event could be determined by the characteristics of the shank angular

velocity (Figure 4.2). Starting from the beginning of each stride cycle, the instan-

taneous shank angle was computed by integrating the gyroscope measured angular

velocity. The shank angle was then used to transform the accelerometer measured ac-

celerations from the local coordinate system (sensor) to the global coordinate system.

The instantaneous shank velocities were calculated through direct time integration

of the accelerations in the global coordinate system, and then the walking speed was

calculated for the corresponding stride cycle (see [22] for details). Walking speed

estimation performed in this way yielded relatively high accuracy in treadmill and
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Figure 4.2: Characteristic of shank angular velocity, ω, during two consecutive stride
cycles. The angular velocity of the non-paretic leg (NP) is indicated by
the thick dashed curve, and the paretic leg (P) is indicatd by the thin
dashed curve. The stride cycle of the NP leg and the P leg was was
determined by the mid-stance shank vertical event, at which point the
magnitude of the angular velocity approached zero. The swing phase and
the stance phase of each leg were determined by the heel-strike (HS) and
toe-off (TO) gait events, which were identified by the negative peaks of
the shank angular velocity. The segmented stride cycles, the gait events
and gait phases were labeled according to the aforementioned criteria.

overground walking experiments [22]. However, further experiments identified sys-

tematic errors requiring a calibration process using linear regression to compensate

the error for a given subject population [23]. The calibration process required to de-

termine the appropriate correction constant hinders the practicability of the system.

Furthermore, the less fluid gait of stroke subjects and inter-subject variability render

the linear regression method of correction less useful. Hence, we have developed two

new strategies to compensate the systematic error and the sensor errors.

74



Chapter 4: Post-Stroke Gait 4.2. Methods

First, the initial speed at the beginning of each stride cycle was taken into con-

sideration in the algorithm. At shank vertical event, although the shank angular

velocity is minimal, it is not exactly zero (Figure 4.2). As an observation, the shank

could be modeled as an inverted pendulum rotating about the ankle joint; thus, the

inertial sensor velocity could be calculated as product of the rotation radius and the

shank angular velocity. The initial sensor velocity at shank vertical event (θ(0) = 0)

is calculated as

vt(0) = ω(0) · L, (4.1) vx(0)

vy(0)

 =

 cos θ(0)

− sin θ(0)

 · vt(0) =

 vt(0)

0

 , (4.2)

where vt(0) is the initial sensor velocity tangential to the shank, θ(0) is the shank angle

when vertical, vx(0) and vy(0) are the initial sensor horizontal and vertical velocities

in the global coordinate system, respectively. L is the distance from the sensor to

the ankle joint, which is approximately half of the total shank length (Figure 4.1).

These initial conditions, vx(0) and vy(0), are added to the calculation of instantaneous

sensor velocities,

v′x(t) =
∫ t

0
ax(τ)dτ + vx(0)

v′y(t) =
∫ t

0
ay(τ)dτ + vy(0),

(4.3)

where v′x(t) and v′y(t) are the instantaneous horizonal and vertical velocities obtained

from integrating the sensor accelerations. ax and ay are the horizontal and vertical

accelerations in the global coordinate system, transformed from the sensor accelera-

tions, at and an (Figure 4.1).
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Figure 4.3: a). A constant acceleration bias in global coordinate system observed in
the IMU acceleration measurement (solid line) in comparison with the
acceleration measurement (dashed line) with OptoTrak motion capture
system (OptoTrak, NDI, ON, Canada). The constant bias might vary
upon each reset of the IMU. This figure shows the shank acceleration
measurement for an entire stride cycle beginning with the mid-stance
shank vertical events. b). Velocity integrated from the measured acceler-
ation with a constant acceleration bias. The gray area indicates the drifts
of the velocity calculation due to the acceleration bias. A correction is
therefore required to obtain the actual shank velocity. V (0) is the initial
sensor velocity, V ′(T ) is the calculated sensor velocity in the end of the
stride cycle with drift error, and V (T ) is the corrected sensor velocity.
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Second, the shank angular velocity measurement was utilized to correct the walk-

ing speed estimation error associated with the acceleration measurement bias. The

accelerometer measurement bias is inevitable for low-cost IMU sensors [30], and the

direct consequence is velocity drift, resulting from the integration of biased acceler-

ation data over a period of time (Figure 4.3b). Although the long-term behavior of

the accelerometer measurement bias is difficult to predict, the bias can be approxi-

mated as a constant in a relatively short time interval. We confirmed this assumption

through a comparison between the accelerometer measured acceleration with a mo-

tion capture system measured acceleration (Figure 4.3a). To determine the constant

accelerometer bias, it requires a known reference velocity at the end of the stride

cycle. Given the angular velocity measurement and the inverted pendulum model at

the end of the stride cycle, the reference velocities are calculated as

vxref (T ) = ω(T ) · L

vyref (T ) = 0,
(4.4)

By comparing these reference velocities with the sensor velocities calculated from

Equation (4.3), v′x(t) and v′y(t), we calculated the constant accelerometer biases as

axbias = vx(T )−v′x(T )
T

aybias =
vy(T )−v′y(T )

T
,

(4.5)

The corrected sensor velocity was calculated by subtracting the velocity drift caused

by the constant accelerometer bias from the calculated instantaneous sensor velocities,

vx(t) = v′x(t)− axbias · t

vy(t) = v′y(t)− aybias · t,
(4.6)

where vx(t), vy(t) are the corrected instantaneous sensor horizontal and vertical ve-

locities in global coordinate system, respectively.
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After calculating the instantaneous shank velocity through Equations (4.1)-(4.6),

the stride length and time average of the shank velocity in horizontal and vertical

directions could be calculated over any selected stride cycle as

v̄x = 1
T
·
∫ T

0
vx(t)dt

v̄y = 1
T
·
∫ T

0
vy(t)dt,

(4.7)

where v̄x and v̄y are the average horizontal and vertical velocities over the correspond-

ing stride cycle in (0, T ], as defined by gait segmentation.

The walking speed over the stride was then calculated as v̄ =
√
v̄2
x + v̄2

y . The vec-

tor calculation eliminated error resulting from the misalignment of the accelerometer

normal and tangential axes with the shank longitudinal and fore-aft directions. The

stride length was defined as the shank displacement over one stride cycle starting

from initial shank vertical event to the next of the same leg. Thus, the stride length

(SL) of each stride cycle was calculated as SL = v̄ · T .

4.2.5 Gait Asymmetry

The temporal parameters and gait phases of hemiparetic gait were determined based

on the toe-off (TO) and the heel-strike (HS) gait events within a stride cycle, which

correspond to the start and the end of the swing phase, respectively (Figure 4.2).

Thus, the swing phase time is the time difference between TO and HS, and the

stance phase is the rest of the cycle. Using a shank mounted gyroscope to detect

these gait events has proven to be accurate and presents some advantages over foot

mounted inertial sensors due to the simplicity of the detecting algorithm [31, 27, 26].

The characteristics of the shank angular velocity and the gait phase definitions are

shown in Figure 4.2, where two negative peaks represent the TO and HS gait events
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[20, 31, 27, 26].

Upon the detection of TO and HS gait events, the swing phase and the stance

phase of each stride were determined for both paretic and non-paretic legs. The

percentage stance time (%Tst) and the percentage swing time (%Tsw) were defined

as the stance time (Tst) and the swing time (Tsw) divided by the total stride cycle

(Tsc) time, %Tst = Tst/Tsc and %Tsw = Tsw/Tsc, respectively. The stance/swing

ratio (SSR) was defined as the stance phase time divided by the swing phase time

of a stride cycle, SSR = Tst/Tsw. As the stride length has been estimated by the

proposed walking speed estimation algorithm, the stride length ratio (SLR) for each

subject was defined as the paretic stride length (SLP ) divided by the non-paretic

stride length (SLNP ), SLR = SLP/SLNP . The farther the ratio from 1, the more

severe the asymmetry.

4.2.6 Experimental Method

Subjects

Thirteen stroke subjects were recruited from the community forming a sample of

convenience including ten males and three females (age: 59.5 ± 10.3 years; height:

168.1± 8.1 cm; weight: 73.7± 16.1 kg; shank length: 37.0± 2.2 cm; time post-stroke:

23.4 ± 15.1 months). Eight had left hemiparesis and five had right hemiparesis.

All subjects were screened to ensure they: (1) had residual unilateral lower limb

weakness, (2) were able to walk independently, and (3) could follow instructions.

All subjects gave their informed consent to participate in accordance with university

policy, and the study was approved by the Queen’s Health Science Research Ethics

Board (HSREB).
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Protocol

Subjects were instructed to walk at a comfortable speed along a straight hallway

with yellow adhesive tape marking the 10-meter distance on the floor. Three trials

were performed and the time to cover the 10-meter distance was recorded using a

stopwatch. The average walking speed was calculated across the trials and was used

as the reference in the analysis. During the walking trials, IMU sensors were attached

laterally on each shank and data recorded for the entire walking trial.

4.2.7 Data Analysis

The Bland-Altman method was used to compare the walking speed measured with a

stopwatch to that estimated by the algorithm. A Bland-Altman plot visually demon-

strated the agreement between the measurements made by two different methods,

in which each data point is represented by the mean of two measurements (x-axis)

and the difference between two measurements (y-axis) [32], VStopWatch − VIMU . The

mean of the difference (Mean) and ±2 Standard Deviations (SD) were plotted to

illustrate the bias and the limits of agreement between the two methods. Since the

stopwatch could not provide the stride-to-stride walking speed, the mean estimated

walking speed for each walking trial was calculated by averaging the estimated stride-

to-stride walking speed. The spatio-temporal asymmetries were quantified using the

stance phase, swing phase and the stride length of the paretic and the non-paretic

legs. The stance/swing ratio (SSR) and the stride length ratio (SLR) were calculated

to provide direct comparison between the legs. Student’s t-tests were applied to the

spatio-temporal parameters to examine difference between paretic and non-paretic

sides, with p < 0.05 indicating the statistical significance. The mean and standard
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deviation (SD) of all the parameters described the inter-subject variability.

4.3 Results

The data from twelve subjects were included in the walking speed estimation analysis

and gait asymmetry analysis. One subject’s data were excluded due to the inability

of the algorithm to detect the gait events correctly. The mean self-selected 10MWT

speed (±1SD) was 0.93±0.20 m/s, which compares to other studies investigating mild

to moderately affected people with stroke [33, 18, 25]. Using the proposed walking

speed estimation algorithm, the systematic errors found in the original walking speed

estimation algorithm [23] were effectively removed as shown in the Bland-Altman plot

(Figure 4.4). Strong agreement between the walking speed estimated from the IMU

sensors and the reference walking speed from the 10MWT was clearly evident. The

mean difference was 0.01 m/s with limits of agreement from −0.08 to 0.09 m/s for the

non-paretic leg (Figure 4.4a), indicating that ±2SD of the measurements estimated

from the algorithm and by the stopwatch would correspond within −0.08 and 0.09

m/s for the population. Similarly, for the paretic leg, the mean difference was 0.00

m/s with limits of agreement from −0.10 to 0.10 m/s (Figure 4.4b).

The details of the gait asymmetry analysis results are summarized in Table 4.1.

The measured stride length from the paretic and the non-paretic legs were compa-

rable, and the SLR of 1.02 ± 0.03 reflected minimal asymmetry (p > 0.25). On the

other hand, the stance and swing phase times were significantly different between the

non-paretic leg (%Tst = 59.46 ± 2.86%; %Tsw = 40.54 ± 2.86%) and the paretic leg

(%Tst = 53.28 ± 3.70%; %Tsw = 46.72 ± 3.70%), p < 0.01. The stance/swing ratios

(SSR) were also different between the two legs (SSRNP = 1.48 ± 0.18; SSRP =
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1.15± 0.16), p < 0.01.
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Figure 4.4: Bland-Altman plots for the proposed walking speed estimation algorithm
and the original walking speed estimation algorithm [23]. (a). and (b).:
estimation results from the proposed algorithm; (c). and (d).: estimation
results from the original algorithm. The x-axis depicts the average walk-
ing speed (m/s) determined from the IMU sensor and stopwatch, and
the y-axis depicts the mean difference in average walking speed deter-
mined using both methods. Each circle represents one data point from a
single walking trial. The solid lines indicate the overall mean of the mea-
surement difference, and the dashed lines show the limits of agreement
(±2SD).
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Table 4.1: Asymmetry Analysis of Hemiparetic Gait

Variable Non-Paretic Leg1 Paretic Leg2 Mean

SL (m) 1.07± 0.19 1.08± 0.20 1.08± 0.20
SLR 1.02± 0.03

%Tst (%) 59.46± 2.86 53.28± 3.70†

%Tsw (%) 40.54± 2.86 46.72± 3.70†

SSR 1.48± 0.18 1.15± 0.16†
∗ Analysis is based on the data collected from 12 subjects;
∗∗ All results are presented as Mean±SD;
1 Analysis based on the IMU attached on the non-paretic leg;
2 Analysis based on the IMU attached on the paretic leg;
† p < 0.05; significant difference between NP and P legs.

4.4 Discussion

For both non-paretic and paretic legs, the walking speed estimated by the IMU am-

bulatory system showed strong agreement with the same measurement obtained with

a stopwatch over the standard 10MWT. For our study population very small bias

(non-paretic leg: 0.01 m/s; paretic leg: 0.00 m/s) was found as illustrated in the

Bland-Altman plots (Figure 4.4a and b), thus confirming that no offset adjustment

was required. The Bland-Altman plots also showed us that for about 95% of cases,

the measurement difference between the two methods would lie within the limits

of agreement (±2SD). In practice, clinical assessment based on self-selected walking

speed uses broadly defined categories to classify the abilities of people with stroke. For

example, Schmid et. al classified the ambulation ability (post-stroke) into household

ambulation, community ambulation and full community ambulation categories using

walking speed thresholds of 0.4m/s and 0.8m/s [9]. Other reported community am-

bulation classification thresholds vary from 0.8m/s to 1.3m/s [34]. Further, changes
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in walking speed averaging 0.14m/s have been associated with significant gains in

walking efficiency and improved gait kinetics [35, 36]. Therefore, the measurement

differences, within the limits of agreement (0.01 ± 0.08m/s for non-paretic leg and

0.00± 0.10m/s for paretic leg), was considered not clinically important, and the pro-

posed system could be used in place of the stopwatch in walking speed measurement

for post-stroke subjects.

The walking speed estimation algorithm took initial speed and drift error correc-

tion into consideration to enable accurate speed estimation. As a comparison, the

original walking speed estimation algorithm proposed in [23] showed a consistent un-

derestimation of speed with a systematic error (bias) of 0.12m/s for the non-paretic

leg and 0.13m/s for the paretic leg (Figure 4.4c and d). The bias could be corrected

by subtracting a constant, but additional measurements and calibrations are required

to determine the population-dependent constant. The acquisition of these additional

measurements would limit the clinical value of the ambulatory gait analysis system.
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Figure 4.5: Summary of shank angular velocity characteristics for non-paretic leg (a)
and paretic leg (b). The solid curves are the average shank angular veloc-
ity over a complete stride cycle for all walking trials across all subjects.
The shadow regions are the average shank angular velocity± one standard
deviation, indicating the inter-subject variability of the shank angular ve-
locity characteristics. Two negative peaks of the shank angular velocity
correspond to the toe-off (TO) and heel-strike (HS) gait events.

Although the biomechanics of hemiparetic gait differ from healthy gait, the con-

sistency in the pattern of the shank angular velocity [37] (Figure 4.2) ensures the
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applicability of the gait segmentation and the walking speed estimation algorithm.

The shank angular velocity characteristics of the paretic leg showed a lower amplitude

peak during swing compared to the non-paretic leg and greater inter-subject variabil-

ity (Figure 4.5). Despite this, the algorithm appropriately recognized key events

(shank vertical, TO and HS). Thus, the application of the algorithm from healthy

adults [22] to stroke subjects did not affect its performance. However, the gait seg-

mentation algorithm failed when the shank angular velocity characteristics deviated

markedly from the healthy group profile and the typical stroke profile (Figure 4.6).

Since the gait segmentation algorithm uses the negative peak of the shank angular

velocity in stance to determine the shank vertical event, the multiple negative peaks

present on both sides of this stroke subject prevented the algorithm from correctly

identifying key gait events. Observationally, this subject walked with a “stiff gait”

with limited knee mobility.
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in the corresponding stride cycle. The double positive peaks exhibited in
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prevented the gait event detection algorithm from locating the midpoint
of the swing phase. The non-paretic leg showed a near normal pattern
compared to the paretic leg, while more oscillations were observed during
the stance phase.

Gait asymmetry measurements obtained with the ambulatory gait analysis system

revealed that the temporal parameters showed more asymmetry than spatial param-

eters. These findings are consistent with previous studies [38, 39, 37]. Olney et. al

found that people with hemiparesis compensated for the weakness of the paretic leg

by spending significantly less time in stance on the paretic leg than on the non-paretic

leg [38]. The %Tst, %Tsw and SSR measured using IMUs (Table 4.1) provided a quan-

titative evaluation of the temporal asymmetry in hemiparetic gait without the need

for motion capture systems or costly commercially available gait analysis systems. A

normal SSR (1.48± 0.18) was observed for the non-paretic leg, while the percentage

of stride spent in stance on the paretic leg (53.28± 3.70%) was less than non-paretic

leg (59.46 ± 2.86%). This degree of inter-limb discrepancy is consistent with other
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studies [40]. On the other hand, the SLR exhibited greater symmetry than reported

elsewhere [41, 42]. This may be attributed to the degree of impairment amongst our

subjects since our results were comparable with those presented by Balasubramanian

et. al and Patterson et. al, in which subjects with mild or moderate hemiparesis

showed less spatial asymmetry than those more severely affected [18, 17]. Patterson

et. al also suggested that spatial step asymmetry was more likely to occur in stroke

subjects who exhibited severe temporal asymmetry [17], which is not the case for our

subject population.

The present study makes two major contributions. First, the proposed walking

speed estimation method abandoned the assumption of zero initial and end shank

velocities and utilized the sensor measured shank angular velocity to correct the effect

of accelerometer measurement bias on the walking speed estimation. The new method

effectively minimized systematic error without the requirement for population-based

calibration prior to the gait evaluation and/or systematic error correction after the

experiment. Second, the applicability of the proposed system in people with stroke

has been demonstrated in this study. To the best of our knowledge, no previous

study has proposed such a comprehensive ambulatory gait analysis system to assess

post-stroke hemiparetic gait in terms of walking speed and gait asymmetry.

One of the limitations of the study was that the actual stride-to-stride walking

speed variability was unknown because the reference walking speed was determined

over a distance of 10 meters (10MWT) and a gold standard measure of stance and

swing time and SL was not available in this study. It is the case that the values

obtained are consistent with the literatures; however, a validation study would confirm

the accuracy of the algorithm. Another limitation is that the applicability of the
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method has been demonstrated in people with mild to moderate hemiparesis only.

The test results from twelve of thirteen people with stroke were promising, but further

study involving a wide range of stroke-related mobility deficits would be desirable.
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Chapter 5

Inertial Sensors in Estimating

Walking Speed and Inclination: An

Evaluation of Sensor Error Models

Abstract

With the increasing interest of using inertial measurement units (IMU) in human

biomechanics studies, methods dealing with inertial sensor measurement errors be-

come more and more important. Pre-test calibration and in-test error compensation

are commonly used to minimize the sensor errors and improve the accuracy of the

estimation results. However, the performance of a given sensor error compensation

method does not only depend on the accuracy of the calibration or the sensor er-

ror evaluation, but also strongly relies on the selected sensor error model. The best

performance could be achieved only when the essential components of sensor errors

are included and compensated. Three sensor error models, with the concerns about
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sensor acceleration measurement biases and sensor attachment misalignment, were

evaluated in the shank-mounted IMU-based walking speed/inclination estimation al-

gorithm. With the treadmill walking experiment conducted at both level and incline

conditions, the comparison between these three sensor error models demonstrated

the importance of sensor error model on the spatio-temporal gait parameter estima-

tion performance. Accurate walking inclination estimation was also achieved using a

newly developed sensor error model.

5.1 Introduction

Microelectromechanical (MEMS) inertial sensors have long been used as an aiding

component in the navigation and control applications and offered promising perfor-

mance [1]. As the MEMS technology development, the application of miniature in-

ertial sensors has been gradually explored in the field of biomechanics. Conventional

camera-based motion tracking systems used in human mobility studies accurately

measure position and orientation information in a small area but inevitably suffer

from the range restriction, the complex laboratory setup and the lack of long-term

monitoring capability. In any case, the use of miniature MEMS inertial sensors has

become very attractive in human mobility studies due to their low-cost, small-size

features and capability of sensing the motion without additional equipments [2, 3].

The orientation and position of any given body segment can be derived based on

the measurements from a body-fixed inertial measurement unit (IMU), a combina-

tion of accelerometers and gyroscopes. Over the past decade, different algorithms

using the inertial data have been developed to estimate the spatio-temporal gait pa-

rameters of human gait, such as walking speed, stride length and stride frequency
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[4, 5, 6, 7, 8, 9, 10]. However, a common issue of utilizing low-cost IMU is the cu-

mulative calculation error resulting from sensor errors, such as the integration drift

caused by acceleration measurement bias, and considerable effort has been devoted

looking for ways to reduce such errors.

Two common methods to compensate the sensor errors in inertial sensor based

gait analysis systems are pre-test static/dynamic calibration and in-test compensa-

tion based on a specific sensor error model that describe the possible sensor error

involved in the data collection and algorithm implementation. With pre-test calibra-

tion approach, a off-line static (stand still) or a dynamic (standardized movement)

calibration process is carried out before each trial of an experiment in order to obtain

the sensor error characteristics [11, 12, 13], which is then corrected in the calcula-

tion. An in-test sensor error compensation is implemented in the algorithm and the

sensor errors are updated during a specific period of time, such as the zero-velocity

duration of the foot in the mid-stance phase, so called zero-velocity update (ZUPT)

[14, 10, 15], or the shank vertical event, when the shank segment is perpendicular to

the floor [6, 16]. However, no matter which compensation method is used and how

accurately the sensor error is evaluated, the performance of the inertial sensor based

system strongly relies on the sensor error model, the description of the sensor error

components in the system. For example, some studies made the assumption in their

sensor error model that the acceleration measurement bias was constant in the global

coordinate system [6, 15]. Although algorithms with this sensor error model achieved

accurate estimation results for some gait parameters, such as walking speed, stride

length and etc., it failed in estimating other gait parameters such as inclination of

walking. Therefore, it is important to understand the effect of sensor error model on
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the gait parameter estimation performance.

This study compared three sensor error models in estimating walking speed and

inclination using inertial sensors. Of the three models, one has been used in a shank-

mounted IMU-based walking speed estimation algorithm, previously reported by Li

et. al [6]. Two new sensor error compensation models were developed in this pa-

per for comparison. Treadmill walking experiments were conducted to evaluate the

performance of these three sensor error models.

5.2 Methods

5.2.1 IMU-based Walking Speed Estimation

The walking speed estimation method using shank-mounted IMU sensor was first

proposed by Li et. al [6]. This method is based on the fact that human walking is a

cyclic motion with distinct patterns in the inertial data that characterize shank kine-

matics and could be further used to determine spatio-temporal parameters including

stride cycle, stride length, stride frequency, walking speed and etc.. In particular, the

shank angular velocity characteristics clearly define several important gait events,

such as heel-strike, toe-off, shank vertical and etc. [4, 17, 18, 19]. The measured

sensor accelerations, an(t) in normal direction and at(t) in tangential direction of the

shank rotation, are first projected to the global coordinate system, ax(t) in horizontal

direction and ay(t) in vertical direction: ax(t)

ay(t)

 =

 cos θ(t) − sin θ(t)

sin θ(t) cos θ(t)


 at(t)

an(t)

−
 0

g

 , (5.1)
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where g is the acceleration due to gravity. θ(t) is the sensor orientation angle, which

is integrated from the measured shank angular velocity, ω(t) (Fig. 5.1).

The accelerations in the global coordinate systems are then integrated to deter-

mine the instantaneous sensor velocity in each axis of the global coordinate system,

vx(t) and vy(t). The average sensor velocities are the average of the instantaneous

sensor velocities over the corresponding stride cycle, while the walking speed is the

magnitude of the vector sum of the the averaged sensor velocities. Detailed descrip-

tion of the walking speed estimation method can be found in [6].

L

Figure 5.1: Sensor configuration (sagittal view): An IMU is attached to the midway
of the shank on the lateral side. The acceleration an is measured along the
normal direction, at is measured along the tangential direction, and the
angular velocity (ω(t)) is measured about the rotation of the shank in the
sagittal plane. The arrows indicate positive axes for the corresponding
sensor measurements. L is the sensor-to-ankle distance. θ is the shank
angle with respect to the vertical direction. The world coordinate system
is defined by the x and y axes.

Two strategies have been implemented to reduce the speed estimation errors re-

sulted from sensor measurement uncertainty. First, a walking sequence was segmented
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into a sequence of stride cycles. Specifically, in [6] the shank vertical event, when the

longitudinal direction of the shank is vertical to the floor, was used to segment the

walking sequence into stride cycles. Within each stride cycle, the walking speed was

estimated in order to reduce drift errors caused by long time integrations of sen-

sor measurement biases. Second, acceleration measurement bias-induced integration

drifts were further compensated in a given stride cycle by the aid of known reference

velocities. Li et. al [6] assumed that the initial and the final sensor velocities are

equal and both zero, which provided the reference boundary conditions for correcting

integration drifts. The compensated sensor velocities, vx comp(t) and vy comp(t), are

then used to calculate the average sensor velocities over one stride cycle,

v̄x = 1
T

∫ T

0
vx comp(τ)dτ ,

v̄y = 1
T

∫ T

0
vy comp(τ)dτ .

(5.2)

Thus, the estimated walking speed, V̄estimated, and inclination in percentage of grade,

Φ, can be calculated as

V̄estimated =
√
v̄2
x + v̄2

y
, (5.3)

Φestimated = v̄y
v̄x

100 . (5.4)
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5.2.2 Sensor Measurement Error Compensation
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Figure 5.2: Instantaneous sensor velocities for different sensor error models over one
stride cycle. The solid curve is the sensor velocity calculated by direct sen-
sor acceleration integration without any sensor error compensation start-
ing from the reference initial sensor velocities (vx ref (0) and vy ref (0)),
which ends up with the final sensor velocities (vx int(T ) and vy int(T )),
which are different from the reference final sensor velocities (vx ref (T )
and vy ref (T )). The dashed, dotted and dash-dot curves represent three
different sensor error compensation methods (CABGCS, CABSCS and
CABSCS plus SM). All methods attains the final reference sensor veloci-
ties but with different instantaneous velocities in the middle of the stride
cycle.

The goal of the compensation is to reduce the effect of the sensor measurement error on

the estimated walking speed and achieve an accurate estimation. There are two main

sources of sensor measurement error: (1) Sensor uncertainty including accelerometer

bias and gyroscope drift. (2) Uncertainty related to the procedure and algorithm such

as initial sensor orientation: it is unavoidable that there is a discrepancy between the

actual sensor orientation and the initial orientation used in the algorithm.

To achieve error compensation, it requires reference measurements which could
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be used to correct estimation error in the algorithm. There are two prerequisites for

the reference measurement. First, it should be available for each stride cycle. Sec-

ond, it should be relatively accurate and can be directly compared with results from

integration of the sensor accelerations. For the shank-mounted IMU-based walking

speed estimation algorithm [6], It used zero initial/final sensor velocities as reference

measurements for correcting integration drifts. However, a follow-up evaluation ex-

periment and analysis identified a systematic error associated with the zero velocity

assumption, which resulted in an underestimation of walking speed [7]. This is due to

the facts that initial and final velocities are not exactly zero. One remedy to achieve

accurate reference is to use the shank angular velocity measurements, ω(t), to cal-

culate initial/final velocities. During the mid-stance shank vertical events (i.e. the

beginning and the end of the stride cycle), the shank rotates around the ankle joint as

an inverted pendulum. Therefore, the sensor velocities can be accurately estimated

as the product of angular velocities and rotation radius,

vx ref (t) = ω(t) · L
t = 0, T

vy ref (t) = 0,
(5.5)

where vx ref (t) and vy ref (t) are the initial (when t = 0) and final (when t = T ) sensor

horizontal and vertical velocities in the global coordinate system, respectively, and T

is the period of the corresponding stride cycle. L is the distance from the sensor to

the ankle joint (Fig. 5.1).

As the reference measurements (sensor instantaneous velocities) are only avail-

able at limited time instants (e.g. the beginning and the end of a stride cycle), it

is not possible to compare the estimated instantaneous velocities from acceleration

integration with the reference velocities continuously. Instead, a sensor error model
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needs to be developed to account for the sensor measurement error compensation in

the middle of a stride cycle when the reference is not available. Even though the end

velocities are the same, the compensated sensor instantaneous velocities in the mid-

dle of a stride cycle are determined by the sensor measurement error compensation

model (Fig. 5.2). As the stride-by-stride velocities are calculated as the average of

the compensated sensor instantaneous velocities over one stride cycle (Eq. 5.2), the

difference between the instantaneous velocity paths in the middle of a stride will have

an impact on the estimated speed and inclination.

To determine the effects of sensor measurement error compensation model on the

estimated speed and inclination, three models are evaluated in this study:

• CABGCS - constant acceleration measurement biases in global coordinate sys-

tem

• CABSCS - constant acceleration measurement biases in sensor coordinate sys-

tem

• CABSCS plus SM - constant acceleration measurement biases in sensor coor-

dinate system plus sensor misalignment

CABGCS

CABGCS has been used in the previous studies [6, 7, 16] and achieved reasonable ac-

curacy in estimating walking speeds but unsatisfactory inclination estimation. This

sensor error model assumes a constant acceleration measurement bias in each axis

of the global coordinate system, ax bias and ay bias, such that the compensated sen-

sor acceleration in global coordinate system can be expressed as the original sensor
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acceleration (Eq. (5.1)) with added biases, ax(t)

ay(t)

 =

 cos θ(t) − sin θ(t)

sin θ(t) cos θ(t)


 at(t)

an(t)

−
 ax bias

ay bias

−
 0

g

 . (5.6)

The constant biases, ax bias and ay bias, in the sensor measurement model could be

determined using the reference end velocities,vx ref (T ) and vy ref (T ), obtained from

Eq. (5.5). The biases should be selected such that the velocities, integrating Eq.

(5.6) from time 0 to T reaches the reference end velocities, vx ref (T )

vy ref (T )

 =
∫ T

0


 cos θ(τ) − sin θ(τ)

sin θ(τ) cos θ(τ)


 at(τ)

an(τ)

−
 0

g


 dτ +

 vx ref (0)

vy ref (0)

−
 âx bias

ây bias

T ,
(5.7)

where vx ref (0) and vy ref (0) are the initial velocities determined using Eq. (5.5),

and âx bias and ây bias are the estimated sensor acceleration measurement biases in

the global coordinate system. To simplify the expression, the sensor velocities cal-

culated from direct integration without considering the acceleration measurement

biases, vx int(t) and vy int(t), are defined as, vx int(t)

vy int(t)

 =
∫ t

0


 cos θ(τ) − sin θ(τ)

sin θ(τ) cos θ(τ)


 at(τ)

an(τ)

−
 0

g


 dτ +

 vx ref (0)

vy ref (0)

 .

(5.8)

Combining Eq. (5.7) and (5.8), vx ref (T )

vy ref (T )

 =

 vx int(T )

vy int(T )

−
 âx bias

ây bias

T . (5.9)

Thus, the constant biases are calculated as âx bias

ây bias

 = 1
T


 vx int(T )

vy int(T )

−
 vx ref (T )

vy ref (T )


 . (5.10)
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Upon the determination of biases, the effect of the biases are compensated by sub-

tracting the velocity integration drift from the instantaneous sensor velocities over

the corresponding stride cycle, vx comp(t)

vy comp(t)

 =
∫ t

0


 cos θ(τ) − sin θ(τ)

sin θ(τ) cos θ(τ)


 at(τ)

an(τ)

−
 0

g


 dτ +

 vx ref (0)

vy ref (0)

−
 âx bias

ây bias

 t .
(5.11)

The implementation of this compensation algorithm benefits from its simplicity, and

has been reported in inertial sensor based gait analysis studies [15, 6].

CABSCS

Although CABGCS significantly improved the performance in estimating walking

speeds, we mush realize that accelerometer biases are physically with respect to the

measurement axes of the accelerometer, an and at, but not the global coordinate axes,

ax and ay.

Therefore, it makes better sense to develop a sensor error model that considers

the accelerometer biases in the measurement axes, at bias and an bias. The new sensor

error model, CABSCS, is developed as ax(t)

ay(t)

 =

 cos θ(t) − sin θ(t)

sin θ(t) cos θ(t)


 at(t)− at bias

an(t)− an bias

−
 0

g

 . (5.12)

The acceleration measurement biases in global coordinate system can then be isolated

and written as functions of time, t, ax(t)

ay(t)

 =

 cos θ(t) − sin θ(t)

sin θ(t) cos θ(t)


 at(t)

an(t)

−
 ax bias(t)

ay bias(t)

−
 0

g

 , (5.13)
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where  ax bias(t)

ay bias(t)

 =

 cos θ(t) − sin θ(t)

sin θ(t) cos θ(t)


 at bias

an bias

 . (5.14)

Thus, at the end of the stride cycle when t = T , vx ref (T )

vy ref (T )

 =
∫ T

0


 cos θ(τ) − sin θ(τ)

sin θ(τ) cos θ(τ)


 at(τ)

an(τ)

−
 0

g


 dτ +

 vx ref (0)

vy ref (0)

− ∫ T

0


 âx bias(τ)

ây bias(τ)


 dτ ,

(5.15)

where âx bias and ây bias are the estimated sensor accelerometer biases projected in

the global coordinate system. Similar to Eq. (5.6)-(5.10), the differences between the

reference velocities and the velocities through integration can be expressed as vx ref (T )− vx int(T )

vy ref (T )− vy int(T )

 =

 ∫ T

0
âx bias(τ)dτ∫ T

0
ây bias(τ)dτ


=

 ∫ T

0
cos(τ)dτ −

∫ T

0
sin(τ)dτ∫ T

0
sin(τ)dτ

∫ T

0
cos(τ)dτ


 ât bias

ân bias

 ,
(5.16)

where vx ref (T ), vy ref (T ), vx int(T ) and vy int(T ) are respectively calculated using Eq.

(5.5) and (5.8), and ât bias and ân bias are the estimated sensor acceleration measure-

ment biases in the sensor coordinate system.

Thus, the constant acceleration measurement biases can be calculated by solving

Eq. (5.15), ât bias

ân bias

 =

 ∫ T

0
cos(τ)dτ −

∫ T

0
sin(τ)dτ∫ T

0
sin(τ)dτ

∫ T

0
cos(τ)dτ


−1  vx ref (T )− vx int(T )

vy ref (T )− vy int(T )

.
(5.17)

Therefore, similar to Eq. (5.11), the compensated instantaneous sensor velocities over
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the corresponding stride cycle are calculated as vx comp(t)

vy comp(t)

 =
∫ t

0


 cos θ(τ) − sin θ(τ)

sin θ(τ) cos θ(τ)


 at(τ)− ât bias

an(τ)− ân bias

−
 0

g


 dτ .

(5.18)

CABSCS plus SM

Both the CABGCS and CABSCS are developed based on the assumption that the

sensor is perfectly aligned with the global coordinate system at the shank vertical

event with no error, i.e. θ(0) = 0; however, the exact orientation of the sensor, θ(0),

at the beginning of a stride cycle, most likely does not equal to zero. To account

for the measurement error in the sensor orientation angle, we developed the sensor

measurement model CABSCS plus SM. In the new sensor error model, we introduce

a constant bias to the measured sensor orientation angle, θ(0) = θ0, which describes

the sensor misalignment at the shank vertical event. In the mean time, we preserve

the fact that sensor acceleration measurement biases are in sensor coordinate system

(CABSCS ). With the initial sensor misalignment angle, θ0, the CABSCS plus SM is

given by ax(t)

ay(t)

 =

 cos θ0 − sin θ0

sin θ0 cos θ0


 cos θ(t) − sin θ(t)

sin θ(t) cos θ(t)


 at(t)− at bias

an(t)− an bias

−
 0

g

.
(5.19)

In this sensor error model, there are three constants, at bias, an bias and θ0, need to

be determined using the end reference velocity measurements. Because we only have

two equations with two reference end velocity measurements, we could only determine

two of the three constants. As the two acceleration measurement biases are small and

close to each other, we make a reasonable assumption as at bias = an bias = abias to
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reduce the number of unknowns to two as the accelerometer bias and the sensor

misalignment angle, abias and θ0. Integrating Eq. (5.19), and comparing with the

reference end velocities, vx ref (T )

vx ref (T )

 =
∫ T

0


 cos θ̂0 − sin θ̂0

sin θ̂0 cos θ̂0


 cos(τ) −sin(τ)

sin(τ) cos(τ)


 at(τ)− âbias

an(τ)− âbias

−
 0

g


 dτ,

(5.20)

where vx ref (T ), vy ref (T ) are calculated using Eq. (5.5), and θ̂0 and âbias are the

estimated sensor misalignment angle and sensor accelerometer measurement bias. To

solve Eq. (5.20), two methods, analytical and numerical, have been developed.

Analytical Solution In order to simplify and analytically solve the non-linear

equation, the small angle approximation was utilized based on the assumption that

the sensor misalignment angle is very small (< 5◦), such that Eq. (5.20) can be

re-written as vx ref (T )

vx ref (T )

 =
∫ T

0


 1 −θ̂0

θ̂0 1


 cos(τ) −sin(τ)

sin(τ) cos(τ)


 at(τ)− âbias

an(τ)− âbias

−
 0

g


 dτ.

(5.21)

Isolating the acceleration measurement bias and rearrange the equation, we get vx ref (T )

vx ref (T )

 =
∫ T

0


 1 −θ̂0

θ̂0 1


 cos(τ) −sin(τ)

sin(τ) cos(τ)


 at(τ)

an(τ)

−
 0

g


 dτ

−
∫ T

0


 1 −θ̂0

θ̂0 1


 cos(τ) −sin(τ)

sin(τ) cos(τ)


 âbias

âbias


 dτ

.

(5.22)
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Further, we decompose the approximated misalignment angle transformation matrix

into an identity matrix and an anti-diagonal matrix about θ̂0, vx ref (T )

vx ref (T )

 =
∫ T

0


 1 0

0 1


 cos(τ) −sin(τ)

sin(τ) cos(τ)


 at(τ)

an(τ)

−
 0

g


 dτ

+
∫ T

0


 0 −θ̂0

θ̂0 0


 cos(τ) −sin(τ)

sin(τ) cos(τ)


 at(τ)

an(τ)


 dτ

−
∫ T

0


 1 0

0 1


 cos(τ) −sin(τ)

sin(τ) cos(τ)


 âbias

âbias


 dτ

−
∫ T

0


 0 −θ̂0

θ̂0 0


 cos(τ) −sin(τ)

sin(τ) cos(τ)


 âbias

âbias


 dτ

.

(5.23)

Note that the first term of Eq. (5.23) is the same as the right side of Eq. (5.8), while

the last term can be rewritten as

∫ T

0


 sin(τ) + cos(τ)

cos(τ)− sin(τ)


 dτ · θ̂0 · âbias, (5.24)

which can be omitted since the magnitude of θ̂0 and âbias is very small and the product

of them is negligible. Thus, Eq. (5.23) is simplified to vx ref (T )

vx ref (T )

 =

 vx int(T )

vy int(T )


+
∫ T

0


 0 −θ̂0

θ̂0 0


 cos(τ) −sin(τ)

sin(τ) cos(τ)


 at(τ)

an(τ)


 dτ

−
∫ T

0


 1 0

0 1


 cos(τ) −sin(τ)

sin(τ) cos(τ)


 âbias

âbias


 dτ

.

(5.25)

111



Chapter 5: Sensor Error Model 5.2. Methods

We rearranged the equation such that θ̂0 and âbias are isolated, vx ref (T )− vx int(T )

vx ref (T )− vy int(T )

 =
∫ T

0


 −at(τ)sin(τ)− an(τ)cos(τ)

at(τ)cos(τ)− an(τ)sin(τ)


 dτ · θ̂0

−
∫ T

0


 cos(τ)− sin(τ)

sin(τ) + cos(τ)


 dτ · âbias

=

 ∫ T

0
(−at(τ)sin(τ)− an(τ)cos(τ))dτ

∫ T

0
(cos(τ)− sin(τ))dτ∫ T

0
(at(τ)cos(τ)− an(τ)sin(τ))dτ

∫ T

0
(sin(τ) + cos(τ))dτ


 θ̂0

âbias


.

(5.26)

Thus, we solved θ̂0 and âbias as θ̂0

âbias

 =

 ∫ T

0
(−at(τ)sin(τ)− an(τ)cos(τ))dτ

∫ T

0
(cos(τ)− sin(τ))dτ∫ T

0
(at(τ)cos(τ)− an(τ)sin(τ))dτ

∫ T

0
(sin(τ) + cos(τ))dτ


−1  vx ref (T )− vx int(T )

vx ref (T )− vy int(T )

 .
(5.27)

Numerical Solution Instead of determine the constants in the nonlinear equation

of Eq. (5.20) analytically based on first-order approximation, we solve the constants

numerically using MATLAB optimization routine FMINUNC. We first rearrange Eq.

(5.20) and form two functions (fx and fy) with respect to θ̂0 and âbias: fx(θ̂0, âbias)

fy(θ̂0, âbias)

 =

 vx ref (T )

vx ref (T )

− ∫ T

0


 cos θ̂0 − sin θ̂0

sin θ̂0 cos θ̂0


 cos(τ) −sin(τ)

sin(τ) cos(τ)


 at(τ)− âbias

an(τ)− âbias

 +

 0

g


 dτ.

(5.28)

Ideally, fx and fy should be zero when the exact value of θ0 and abias is found. We

use another function ferr as the criteria for the MATLAB optimization routine,

ferr(θ̂0, âbias) = f 2
x(θ̂0, âbias) + f 2

y (θ̂0, âbias). (5.29)

To start the optimization routine, an initial value is provided for the unknown mis-

alignment angle (θ̂0) and sensor acceleration measurement bias (âbias), and then FMI-

NUNC searches for the best value of θ̂0 and âbias such that ferr is minimized. The

resulting θ̂0 and âbias are the numerical solution for Eq. (5.20).
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Upon the determination of θ̂0 and âbias, the compensated instantaneous sensor

velocities in the stride cycle are simply calculated by plugging θ̂0 and âbias back to

Eq. (5.19) and integrating both sides, vx comp(t)

vy comp(t)

 =
∫ T

0


 cos θ̂0 − sin θ̂0

sin θ̂0 cos θ̂0


 cos θ(τ) − sin θ(τ)

sin θ(τ) cos θ(τ)


 at(τ)− âbias

an(τ)− âbias

−
 0

g


 dτ .

(5.30)

With the compensated instantaneous sensor velocities, vx comp(t) and vy comp(t), from

each sensor error model, the stride-by-stride walking speed and inclination are calcu-

lated according to Eq. (5.3) and (5.5).

5.2.3 Experimental Method

An IMU sensor was attached to the midway of the right shank on the lateral side.

The IMU sensor (Xsens Technology B.V., Netherlands) consists of a triaxial ac-

celerometer (±18g, where g is the gravitational acceleration) and a triaxial gyroscope

(±1200◦/sec). Since we are only interested in the shank movement in the progression

plane (sagittal plane), only the measurements from two accelerometer axes and one

gyroscope axis were used in the calculation. The acceleration and angular velocity

data were collected at 120Hz with MVN Studio (Xsens Technology B.V., Nether-

lands). The raw sensor acceleration measurement data were filtered using a second

order Butterworth low-pass filter with cut-off frequency 3Hz. The sensor-to-ankle

distance (L) was measured and recorded for the off-line algorithm implementation.

Before each walking trial, the subject was asked to stand still with the shank in ver-

tical direction and the IMU was adjusted such that its normal and tangential axes

were aligned as closely as possible to vertical and horizontal directions of the world

coordinate system, respectively (Fig. 5.1).

113



Chapter 5: Sensor Error Model 5.2. Methods

Two sets of experiments have been conducted to evaluate the performance of the

three sensor error models in estimating walking speeds and slopes. The first exper-

iment aims at the walking speed estimation performance comparison. Ten healthy

subjects without any history of orthopedic impairments were recruited from the uni-

versity community, including five males and five females (age: 21.0±0.5 years; height:

172.9±10.0 cm; weight: 68.9±12.4Kg; sensor-to-ankle distance: 27.6±3.2 cm). Five

different preset treadmill speeds (0.8, 1.0, 1.2, 1.4 and 1.6m/s) with 0% inclination

were performed. The second experiment aims at evaluating the performance in esti-

mating inclination of walking. Four healthy subjects without any history of orthope-

dic impairments were recruited, including 3 males and 1 female (age: 22.5±3.3 years;

height: 178.4 ± 13.5 cm; weight: 72.4 ± 16.6Kg; sensor-to-ankle distance: 30.9 ± 2.9

cm). The subjects were instructed to walk at three different preset treadmill inclines

(0%, 5% and 10%) with 1.0m/s treadmill speed. For each trial, the IMU data were

recorded for a duration of 60 seconds. The stride-by-stride walking speed and incli-

nation were estimated off-line with different sensor measurement error compensation

methods implemented in MATLAB (The MathWorks, Natick, MA, USA). Twenty

strides from the steady walking period of each trial were used in the error analysis.

Before experiment, subjects gave their informed consent to participate in accordance

with university policy, and the study was approved by the Queen’s General Research

Ethics Board (GREB).

5.2.4 Data Analysis

For the walking speed estimation performance comparison, estimation error of each

trial (20 strides from the steady walking period) was calculated as the difference
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between the average estimated stride-by-stride walking speed over 20 strides and the

corresponding preset treadmill speed. The mean absolute estimation error (Mean)

and standard deviation (SD) were determined for each treadmill speed across all the

subjects. A percentage root mean squared error (%RMSE) for each treadmill speed

was also computed by averaging the results over all subjects,

%RMSE =

√∑
(V̄estimated − Vtreadmill)2/N

Vtreadmill

100%, (5.31)

where N = 10 for each walking speed, V̄estimated is the average estimated walking speed

for each treadmill speed across all subjects, and Vtreadmill is the corresponding preset

treadmill speed. At each walking speed, the walking speed estimation error difference

between different sensor error models were tested using the one-way ANOVA. With

the p-values smaller than the significance level, 0.05, the performances of sensor error

models were considered different. The estimated horizontal, vertical sensor velocities

and estimated inclination were also analyzed separately using the one-way ANOVA.

For the walking inclination estimation performance comparison, the one-way ANOVA

was used to test the difference between the estimated inclination of different sensor

error models.

5.3 Results

Both CABSCS and CABSCS plus SM based walking speed estimation methods

achieved smaller absolute error and %RMSE than the previously used CABGCS,

as shown in Table 5.1. An improvement of overall %RMSE from CABSCS (3.7%)

and CABSCS plus SM (3.4% from numerical solution and 3.5% from analytical so-

lution) could be observed in comparison with that from CABGCS (4.1%). One-way
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Table 5.1: Walking Speed Estimation Errors Comparison between Methods

Walking Speed (m/s)
Overall %RMSE2

0.8 1.0 1.2 1.4 1.6

CABGCS
Error1 0.02± 0.01 0.06± 0.04 0.03± 0.02 0.05± 0.03 0.04± 0.03

4.1%
%RMSE 3.4% 7.2% 2.8% 3.9% 2.9%

CABSCS
Error 0.02± 0.01 0.06± 0.04 0.02± 0.02 0.04± 0.03 0.03± 0.03

3.7%
%RMSE 3.2% 6.9% 2.5% 3.5% 2.6%

CABSCS plus SM (numerical)
Error 0.02± 0.01 0.05± 0.04 0.02± 0.02 0.04± 0.03 0.03± 0.02

3.4%
%RMSE 2.8% 6.3% 2.3% 3.2% 2.3%

CABSCS plus SM (analytical)
Error 0.02± 0.01 0.05± 0.04 0.02± 0.02 0.04± 0.03 0.03± 0.02

3.5%
%RMSE 2.9% 6.5% 2.3% 3.3% 2.5%

p3 0.74 0.89 0.94 0.76 0.92
1 Entry values are absolute Mean ± SD of the average walking speed estimates of each treadmill walking trial;
2 %RMSE is RMSE divided by preset treadmill speed;
3 One-way ANOVA results between different methods, with p > 0.05 the difference is not statistically significant.

ANOVA showed that the estimation error difference between three error models were

not statistically significant.

The comparisons between estimated average horizontal and vertical sensor veloc-

ities with different sensor error models are shown in Fig. 5.3a. As the experiment

was carried out on the treadmill with 0◦ inclination, the horizontal sensor velocities

estimated with all three sensor error models approach the preset treadmill speeds;

however, much smaller vertical sensor velocities are obtained from CABSCS and

CABSCS plus SM, which are significantly different from CABGCS, where the ideal

estimated vertical sensor velocity should be zero. The estimated vertical velocities

in CABSCS plus SM are slightly better than those by CABSCS at lower walking

speeds (0.8m/s and 1.0m/s). However, as the treadmill speed increases, the differ-

ence becomes significant and CABSCS shows larger errors while CABSCS plus SM

still provides accurate estimates of vertical velocities. On the other hand, the com-

parison between numerical and analytical solutions for CABSCS plus SM in Fig.

5.3b indicates that the numerical method provided a better vertical sensor velocity

estimate. Significant difference is observed in the vertical sensor velocity estimation

under two out of five treadmill speeds, and the estimation variability is larger for the
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analytical solution.
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Figure 5.3: a). Estimated average sensor velocities (global coordinate system) under
different sensor error models. The light grey bars indicate the results with
CABGCS. The mid-grey bars show the results with CABSCS. The dark
grey bars show the results from CABSCS plus SM. The error bars rep-
resent ± one standard deviation, indicating the estimation inter-subject
variability. The asterisks (∗) indicate that the results are significantly
different between pairs. b). Comparison between the numerical and ana-
lytical solution of CABSCS plus SM method. The light grey bars indicate
the numerical solution, while the mid-grey bars represent the analytical
solution.
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In the inclination estimation experiment, the estimated inclination between any

two of the three sensor error models are significantly different, as shown in Fig. 5.4a,

where CABSCS plus SM provides the most accurate inclination estimates and the

performance of CABSCS is better than CABGCS. Significant difference is observed

in the inclination estimation results between the numerical and analytical solutions

for CABSCS plus SM, as depicted in Fig. 5.4b.
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Figure 5.4: a). Estimated inclinations between different sensor error models. The
light grey bars indicate the estimated average inclination with CABGCS.
The mid-grey bars show the estimated inclination with CABSCS. The
dark grey bars show the estimated inclination with CABSCS plus SM.
The error bars represent ± one standard deviation, indicating the esti-
mation inter-subject variability. The asterisks (∗) indicate that the re-
sults are significantly different between pairs. b). Comparison between
the numerical and analytical solution of CABSCS plus SM method. The
light grey bars indicate the numerical solution, while the mid-grey bars
represent the analytical solution.
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5.4 Discussion

Although accurate in estimating walking speeds for all three sensor error models,

only CABSCS plus SM with numerical implementation achieved accurate results in

estimating inclination. In the original shank-mounted IMU walking speed estimation

[6], the initial shank angle at the shank vertical event was assumed to be zero, θ(0) =

0◦; however, this requires perfect sensor initial sensor angle at the beginning of each

stride cycle, which can not be guaranteed. Although the walking speed estimation

results are accurate because of the small amplitude of the estimated vertical sensor

velocity, the walking inclination estimation is severely affected. Previous studies with

IMU attached to human body have attempted to estimate inclination during inclined

walking, but failed to provide accurate results [6, 15]. The unsuccessful estimation of

inclination is most likely due to the use of an sensor error model that is insufficient to

describe the sensor errors involved in the system. In Fig. 5.3a, CABSCS and CABSCS

plus SM do not present significant difference in the sensor vertical velocity estimation;

however, as the walking speed increases, the difference becomes significant, which to

some extent indicates that using shank angular velocity characteristics to determine

shank vertical event in high walking speed may not be as accurate as in low walking

speed. Comparing CABSCS and CABSCS plus SM in Fig. 5.5, it is obvious that

the vertical sensor velocity profile is very sensitive to shank angle changes and even

the small sensor misalignment angle (< 5◦) will make a big discrepancy. Therefore,

the inclusion of the misalignment angle in the sensor error model is essential for the

walking inclination estimation.
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Figure 5.5: Estimated sensor velocity comparison (global coordinate system) over one
stride cycle between different sensor error models. The solid curves rep-
resent the estimated horizontal and vertical sensor velocities without any
compensation. The dotted curves show the estimated velocities corrected
with CABGCS, the dashed curves represent the estimated velocities cor-
rected with CABSCS, and the dash-dot curves represent the estimated
velocities corrected with CABSCS plus SM.

The main difference between sensor error models lied in the instantaneous ver-

tical velocities between 25% and 80% of the stride cycle (Fig. 5.5). This duration

corresponds to the swing phase of a stride cycle when the accelerations of the shank-

mounted sensor becomes large. Since the sensor acceleration measurement biases are

independent of the orientation of the sensor and the direction of the acceleration, the

effect of the acceleration measurement biases in global coordinate system strongly

relies on the shank angle that is used in the acceleration projection. The constant ac-

celeration measurement bias model in global coordinate system applied in CABGCS

ignores such fact and uses a rough approximation in the calculation, CABSCS senses
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the shank angle changes and realistically model the projection of the biases in hori-

zontal and vertical directions, and CABSCS plus SM further takes care of the sensor

misalignment angle. Meanwhile, the contribution of the gravity on sensor coordi-

nate system also influences the calculated sensor acceleration measurement biases if

the shank angle is not accurate. Due to the consideration of relationship between

the shank angle and sensor error in global coordinate system, CABSCS observably

corrects the sensor velocity estimation in vertical direction, and CABSCS plus SM

significantly minimizes such error (Fig. 5.3a).

All in-test sensor error correction methods require some reference measurements

to determine the sensor acceleration measurement bias. For example, the ZUPT has

been used in foot-mounted IMU based algorithm [14, 10] and shank-mounted IMU

based algorithm [6] to correct sensor measurement error. CABGCS, CABSCS and

CABSCS plus SM all use the angular velocities measured during the end of stride

cycle to generate the reference measurements, which is easy to implement and much

simpler than other sensor fusion algorithms, e.g. Kalman filtering [10]. In comparison

with CABGCS [6, 15], CABSCS and CABSCS plus SM require the consideration of

sensor acceleration measurement biases for every sample collected in the walking trial,

i.e. describing the sensor errors in global coordinate system as a function of time,

and a relatively more complicated implementation is needed. We developed numer-

ical and analytical methods for CABSCS plus SM. Both methods obtained accurate

walking speed estimation results; however, the numerical solution performed better

in terms of the inclination estimation. The small angle approximations we used in

the derivation for the analytical solution are the main reason for the discrepancy

found between numerical and analytical methods. The omission of the term in (Eq.
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(5.24)) also accounts for part of the estimation error. As the vertical displacement

is relatively small, these approximations could introduce a small absolute error in

the estimated vertical displacement but relatively large percentage error. This will

ultimately cause the wrong inclination estimation. On the other hand, the numeri-

cally implemented CABSCS plus SM solve the nonlinear equation directly without

approximation, achieving accurate inclination estimation. One shortcoming of this

implementation is the computational complexity because it involves solving a nonlin-

ear equation in each stride cycle. In this study, we only conducted inclined walking

due to the limitation of treadmill, which can only be adjusted to positive inclinations.

The performance of these three sensor measurement error compensation methods un-

der declined walking conditions deserves further evaluation.

In summary, this study proposed two new sensor error models and evaluated the

performance in comparison with one sensor error model from previous study ([6]).

The results suggested that either method (CABSCS, CABGCS, or CABSCS plus

SM ) could be used to estimate walking speeds accurately. In the case of estimating

walking inclination, CABSCS plus SM with a numerical implementation will be the

best choice.
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Test-retest reliability of trunk accelerometric gait analysis. Gait & Posture,

19(3):288–297, 2004.

[10] O. Bebek, M.A. Suster, S. Rajgopal, M.J. Fu, X. Huang, M.C. Cavusoglu, D.J.

Young, M. Mehregany, A.JJ. van den Bogery, and C.H. Mastrangelo. Personal

navigation via high-resolution gait-corrected inertial measurement units. IEEE

Transactions on Instrumentation and Measurement, 59(11):3018–3027, 2010.

[11] S. Scapellato, F. Cavallo, C. Martelloni, and A.M. Sabatini. In-use calibration

of body-mounted gyroscopes for applications in gait analysis. Sensors and Ac-

tuators A: Physical, 123:418–422, 2005.

[12] JC Lotters, J. Schipper, PH Veltink, W. Olthuis, and P. Bergveld. Procedure

for in-use calibration of triaxial accelerometers in medical applications. Sensors

and Actuators A: Physical, 68(1-3):221–228, 1998.

126



References

[13] F. Ferraris, U. Grimaldi, and M. Parvis. Procedure for effortless in-field cal-

ibration of three-axis rate gyros and accelerometers. Sensors and Materials,

7(5):311–311, 1995.

[14] L. Ojeda and J. Borenstein. Non-gps navigation for security personnel and first

responders. Journal of Navigation, 60(03):391–407, 2007.

[15] A. M. Sabatini, C. Martelloni, S. Scapellato, and F. Cavallo. Assessment of

walking features from foot inertial sensing. IEEE Transactions on Biomedical

Engineering, 52(3):486–94, 2005.

[16] S. Yang, J.T. Zhang, A.C. Novak, B. Brouwer, and Q Li. An ambulatory spatio-

temporal analysis system for post-stroke hemiparetic gait using shank-attached

imus. Medical Engineering & Physics (Submitted), 2011.

[17] J.M. Jasiewicz, J.H.J. Allum, J.W. Middleton, A. Barriskill, P. Condie, B. Pur-

cell, and R.C.T. Li. Gait event detection using linear accelerometers or angular

velocity transducers in able-bodied and spinal-cord injured individuals. Gait &

Posture, 24(4):502–509, 2006.

[18] H. Lau and K. Tong. The reliability of using accelerometer and gyroscope for gait

event identification on persons with dropped foot. Gait & Posture, 27(2):248–

257, 2008.

[19] P. Catalfamo, S. Ghoussayni, and D. Ewins. Gait event detection on level ground

and incline walking using a rate gyroscope. Sensors, 10(6):5683–5702, 2010.

127



Chapter 6

Conclusions & Future Work

6.1 Conclusions

Capturing human movement is a common task in biomedical and biomechanical stud-

ies; however, the complex laboratory setting required for accurate measurement makes

it a headache to conduct the experiment. For recent years, miniature inertial sensors

have become widely adopted in an effort to simplify the equipments and procedures

required in biomedical and biomechanical experiments. This thesis fully investigates

the feasibility and the performance of using a shank-mounted IMU to estimate walking

speed for both the people with healthy gait and the people with post-stroke hemi-

paretic gait, where promising results have been obtained. In addition, a complete

error analysis is made to understand the aspects of the estimation errors, which can

help the future development of walking speed estimation methods.

128



Chapter 6: Conclusion & Future Work

6.2 Future Work

In order to make the shank-mounted IMU based walking speed estimation method a

practical system, further research and engineering work is required. To achieve such

goal, simplification and optimization of the current algorithm is needed and a proper

hardware system platform is desired to implement the algorithm.

On the other hand, as discussed in Chapter 2, although most biomedical and

biomechanical studies still focused on the measurement of the walking speed from

straight line walking trials, such as treadmill walking and 10MWT, the research

should start to focus on enabling the three-dimensional motion monitoring capa-

bility, for which some of the tools are already available, e.g. Euler angles, quaternion

and direction cosine rotation representations for inertial sensor orientation determi-

nation. This improvement will significantly extend the biomedical and biomechanical

researches and provide more accurate and comprehensive measurement, such as stride

width and walking path.
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Appendix A

Experimental Procedure

The research experiments presented in this thesis were carried out with two different

IMUs: Inertia-Link from MicroStrain and Xsens MVN from Xsens Technology. As

we only care about the raw inertial data provided by the IMUs, a simple calibration

procedure was implemented:

• The subject was instructed to stand still with the shank segment perpendicular

to the level floor;

• The IMU was attached to the mid-way of the shank on the lateral side using

rubber stripe or athletic tape (Figure A.1);

• The data acquisition program was running to provide the instantaneous IMU

measurement, and The IMU was adjusted such that the horizonal acceleration

measurement was approximately 0g and the vertical acceleration measurement

was approximately 1g.
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Appendix A: Experimental Procedure

Figure A.1: Shank-mounted IMU based walking speed estimation method sensor con-
figuration.
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Appendix B

Signal Processing

The sensor signal conditioning and data processing were all implemented in MATLAB

(The MathWorks, Natick, MA, USA). In general, the processing method was selected

as follows.

Table B.1: Signal Conditioning and Data processing.

Sampling rate 100Hz
Interpolation One-dimensional linear interpolation
Filtering Second order low-pass Butterworth filter with cut-off frequency 2.5 ∼ 10Hz∗

Integration Trapezoidal numerical integration
Optimization Unconstrained nonlinear minimization (FMINUNC)
∗ Cut-off frequencies are selected based on the fact that the human walking gait follow a stride
frequency of 1 to 2Hz, while the sensor noise is much high than that.
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Appendix C

Estimation Algorithm
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Figure C.1: Shank-mounted IMU based walking speed estimation algorithm
flowchart.
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flowchart.
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