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Abstract. Walking on irregular surfaces and in the presence of unexpected events is a challenging problem for bipedal machines.
Up to date, their ability to cope with gait disturbances is far less successful than humans’: Neither trajectory controlled robots,
nor dynamic walking machines (Limit Cycle Walkers) are able to handle them satisfactorily. On the contrary, humans reject gait
perturbations naturally and efficiently relying on their sensory organs that, if needed, elicit a recovery action. A similar approach
may be envisioned for bipedal robots and exoskeletons: An algorithm continuously observes the state of the walker and, if an
unexpected event happens, triggers an adequate reaction. This paper presents a monitoring algorithm that provides immediate
detection of any type of perturbation based solely on a phase representation of the normal walking of the robot. The proposed
method was evaluated in a Limit Cycle Walker prototype that suffered push and trip perturbations at different moments of the
gait cycle, providing 100% successful detections for the current experimental apparatus and adequately tuned parameters, with
no false positives when the robot is walking unperturbed.
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1. Introduction22

Research on gait synthesis constitutes a constructive23

manner to increase our understanding of the principles24

underlying human walking. This knowledge is useful25

in two types of applications: human–centered applica-26

tions, and robotics–centered applications. The former27

include the design of improved rehabilitation devices28

such as robotic exoskeletons or prostheses, Pons [23],29

Au and Herr [3], whereas the latter will translate into30

the development of humanoid robotic companions and31

caretakers, entertainment robots, and social interaction32

robots in general, Sakagsmi et al. [27], Ishida [16].33

∗Corresponding author. E-mail: gallego@iai.csic.es.

Unfortunately, taking these systems from the labs to 34

our daily context is yet not entirely possible, because 35

our real world is full of non expected events that may 36

lead the walker to a fall, e.g. obstacles, ground irregu- 37

larities, slope changes, and collisions with other robots 38

or humans. Therefore, recovery from gait perturbations 39

and balance control emerge as major topics in bipedal 40

walking. 41

Concerning to the rejection of perturbations, humans 42

cope with this problem in a quite successful man- 43

ner choosing among a reduced repertoire of strategies, 44

which are adapted to the specific context, Schillings 45

et al. [28], Forner-Cordero et al. [10]. When a pertur- 46

bation takes place, multiple sensory receptors trigger 47

a certain reaction, trying to avoid a fall, Eng et al. 48
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[8]. In fact, stumbling reactions or biological recovery49

motions to keep the human body stable during walking,50

are -partially-modulated by peripheral afferent signals,51

Duysens and van deCrommert [7]. Thus, kinesthetic52

information needs to be fedback in order to update53

the central motor program, which can be regarded54

as a modulated closed system, Llinás [20]. Consid-55

ering this, it seems interesting to investigate a similar56

solution for robotic walkers and exoskeletons: An algo-57

rithm continuously monitors the state of the biped58

and, if necessary, triggers a recovery reaction. This is59

the final objective of EU project ESBiRRo (IST–61–60

045301–STP), which aims at developing biomimetic61

recovery reactions for gait control that will be imple-62

mented into an autonomous biped robot and a robotic63

exoskeleton. This paper focuses on a general method64

for detection of any type of external gait perturbation65

in robotic walkers.66

It is hypothesized that the human cerebellum gen-67

erates a series of forward and inverse models, which68

represent the normal behavior of the motor system in69

response to ongoing motor commands, and the neu-70

ral command required to generate a given trajectory71

respectively, Wolpert et al. [32]. Regarding to forward72

representations, different structures and/or functions73

are attributed to them, such as output prediction, state74

estimation or distal teaching, Kawato [18]. Functional75

brain imaging studies signal that the cerebellum is76

involved in signalling the discrepancy between the77

predicted and actual sensory consequences of move-78

ment Blakemore et al. [5]. Moreover, in a recent work,79

Ahmed et al. [1], it is hypothesized that a nominal80

forward internal model combined with probabilistic81

error monitoring is employed by the Central Nervous82

System to detect a loss of balance and precedes any83

observable compensatory response.84

On the other hand, gait synthesis as understood in85

the framework of Limit Cycle Walking, relies on keep-86

ing in the neighborhood of the limit cycle prescribed87

by the robot state during a stride. Indeed, it has been88

have proven that optimization of the system dynam-89

ics makes exponentially stable, efficient, and natural90

gait emerge, Westervelt et al. [31], and that simple91

torque control provides the biped with the ability to92

cope with varying walking speeds, ground slopes, and93

push perturbations, Braun and Goldfarb [6]. This hap-94

pens because the limit cycle prescribed by a system is95

enveloped by a surface known as basin of attraction,96

which contains all the states that bring the system “nat-97

urally” back to its limit cycle. However, the basin of98

attraction is not analytically computable for systems 99

with such a large number of state variables as a walk- 100

ing robot, Strogatz [29]. According to this, the problem 101

of detecting whether the walker is undergoing or not a 102

perturbation that will lead to a fall equals to estimating 103

whether it is inside or outside the basin of attraction. 104

On the basis of these two ideas, we propose a 105

method for instability detection in Limit Cycle Walk- 106

ers, which consists in estimating the deviation between 107

the actual and expected robot state as provided by sen- 108

sory signals, to subsequently compare it with a linear, 109

probabilistic approach to the basin of attraction. 110

Regarding to the state of the art, research on pertur- 111

bation detection in biped robots has focused on tailor 112

made techniques, which detect a well defined pertur- 113

bation in order to implement some reflex, recovery 114

strategy, or balance control mechanism to avoid a fall. 115

In Nakanishi et al. [21], a method to detect a push in the 116

trunk by observing the upper body acceleration in the 117

antero-posterior direction is proposed. In a more recent 118

work, Prahlad et al. [24], they implement ankle con- 119

trol to permit a small walking robot adapting to both 120

continuous perturbations (slope changes, addition of 121

mass) and pushes. The latter are simply detected with 122

a force sensor attached at the back of the robot. 123

Looking at more general detection and classifica- 124

tions paradigms, an algorithm to predict the fall of a 125

prototype due to moderate ground irregularities is pro- 126

posed in Karssen and Wisse [17]. This method relies 127

on monitoring the whole state of the robot and is vali- 128

dated with a limit cycle prototype, providing successful 129

detection in the last heel strike before the fall. A method 130

for instability detection during omnidirectional walk- 131

ing to trigger a reflex mechanism is proposed in Renner 132

and Behnke [26]. Perturbations are classified in one of 133

two groups according to their strength, and a differ- 134

ent reflex is executed based on this identification. The 135

method is validated with a real prototype that stum- 136

bles over a wall. In Höhn and Gerth [14] a probability 137

based algorithm is employed to classify the robot state 138

in viable (i.e. keep walking), perturbed (a reflex mech- 139

anism may avoid the fall) or unavoidably leading to a 140

fall. A similar approach is presented in Ogata et al. [22] 141

where the mean deviation from normal walking during 142

a whole step is employed to activate a shock-reducing 143

motion if a fall is foreseen. 144

This paper is organized as follows: first the method 145

for detection of perturbations in robotic walkers is 146

described. Next Section 3 presents an example of ap- 147

plication in the real prototype, whereas Section 4 148
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includes the discussion and an outline of future149

research. Finally, some conclusions summarizing the150

main results are provided.151

2. Detection of perturbations based152

on the Nearest Neighbor Gait Index153

This section describes a novel algorithm for pertur-154

bation detection in robotic walkers. It is based on a155

normal walking pattern, allowing for real-time imple-156

mentation and negligible detection delay.157

The algorithm is executed in two steps, Fig. 1. First,158

it calculates the state in a normal walking pattern (the159

Reference Limit Cycle, RLC) that best represents the160

real state of the robot (what we call the Nearest Neigh-161

bor Gait Index, NNGI), and afterwards it computes the162

(weighed) deviation between this expected state and163

the actual state of the walker. The weighed deviation164

(D-statistic) provides an experimental approximation165

to whether the robot is inside or outside the basin of166

attraction based on a threshold.167

Before running the algorithm, the normal walking of168

the robot, the Reference Limit Cycle, must be defined169

offline. Afterwards, during its execution, the first part170

of the algorithm, the application of the NNGI is sub-171

divided in two steps: 1) the selection of a subset of172

possible states in the RLC, the Ensemble of Candi-173

date Neighbors (ECN), in order to save computational 174

burden, and 2) the search of the point within the afore- 175

mentioned subset that represents best the current state 176

of the walker, the Selection of the Nearest Neighbor 177

(NN), Fig. 1. As said, during the second step, the 178

algorithm computes the weighed distance between the 179

NN and the current state of the walker (Section 2.2). 180

Comparing it with a threshold corresponds to a linear 181

approach to being inside or outside the basin of attrac- 182

tion. The complete procedure is described in detail in 183

the next paragraphs. 184

2.1. The Nearest Neighbor Gait Index (NNGI) 185

The NNGI looks for the state in the normal walking 186

pattern, the RLC, that matches best the current state of 187

the robot. 188

2.1.1. Definition of the Reference Limit Cycle 189

(RLC) 190

The RLC provides the normal walking of the biped. 191

It is obtained off-line by averaging a series of sta- 192

ble runs on a surface with small disturbances. The 193

disturbances should be large enough to cause varia- 194

tion between strides (cycles) without making the robot 195

collapse. Notice that an analytical frontier between 196

small and large perturbations cannot be established, 197

because the former are those that do not make the 198

Fig. 1. Block diagram summarizing the proposed method. First the current state of the walker Q(k) is processed to obtain q(k). Afterwards,
based on timing information, an Ensemble of Candidate Neighbors (ECN) is selected. The ECN is a subset of the Reference Limit Cycle that
represents the normal walking of the robot. Next a Nearest Neighbor search to find the state in the ECN that matches best the current state
of the robot, q̂(k), is performed. Finally, the deviation between the expected and current state of the walker is calculated, the D-statistic. This
constitutes, together with the NNGI, the output of the algorithm.
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walker collapse whereas the latter do, and this would199

require computing analytically the basin of attraction,200

which is, as stated above not possible for a Limit Cycle201

Walker. Hence, we consider a perturbation to be small202

if it causes no (even visually) remarkable deviation203

from the normal gait pattern on flat terrain. In practice,204

small perturbations during calculation of the RLC are205

applied by making the biped walk on a carpeted floor,206

which light irregularities may be assimilated to white207

noise.208

Because of the underactuated nature of Limit Cycle209

Walking, inter-stride variations in both duration and210

joint trajectories (and velocities) take place, Hobbe-211

len and Wisse [11]. Therefore, to obtain the RLC the212

first step is to scale joint angles and angular rates to213

stride percentage. Next, to take the range of each joint214

into account and to avoid problems related to units,215

phase variables (joint angles and angular rates) Qj(k),216

j = 1, . . . , 2n are divided by their respective max-217

ima, max(|Qj|), j = 1, . . . , 2n, (1). Like this, RLC218

variables at every instant k vary within [−1,1]. It219

must be noted that the resultant scaled phase space is220

unbounded, i.e. any variable can be outside the [−1,1]221

interval, for example, when the robot suffers a pertur-222

bation.223

qj(k) = Qj(k)

max(|Qj|) (1)224

Once phase variables have been averaged to percent-225

age and scaled, the 2n-dimensional RLC is obtained226

as the mean trajectory q of each variable for the p227

recorded strides, (2). The standard deviation σ of each228

variable at each point of the RLC is also calculated, (3),229

because it will be used in the measure of deviation.230

Afterwards qj(k) and σj(k) are resized to a number231

of samples that corresponds to the average duration232

of a stride, r. Note that the mean stride duration will233

provide an estimate of the state in the RLC that cor-234

responds to the current state of the walker as will be235

discussed below.236

qj(k) =
p∑

j=1

qj(k)

p
, k = 1, . . . , 100 (2)237

238

σj(k) =
⎛
⎝ 1

p − 1

p∑
j=1

(qj(k)−qj(k))2

⎞
⎠

1/2

, k=1, . . . , 100239

(3)240

2.1.2. Determination of the Ensemble 241

of Candidate Neighbors (ECN) 242

Limit Cycle Walking is a nominally periodic 243

sequence of strides, which means that in the absence 244

of (large) perturbations each stride is almost an exact 245

mapping of the previous one, Hobbelen and Wisse [11]. 246

Therefore at time t in step number s, the walker will 247

be in a state very close to the the one it was in at time 248

t during step s − 1. Assuming this, in order to look for 249

the state of the RLC at which the robot is at time t, 250

we can select an interval of m points (the Ensemble of 251

Candidate Neighbors, ECN) around the expected state 252

at time t: If the robot has not suffered a disturbance its 253

state will be within this interval. This is illustrated in 254

Fig. 2: the walker is in the state q(k) and the algorithm 255

expects it to be in the plotted interval based solely on 256

time information. However, if the walker has under- 257

gone a perturbation, it will deviate very quickly from 258

its expected state. The convergence time of the NNGI is 259

equal to the number of samples of the RLC, r, divided 260

by the length of the ECN, m. This is the first (out of 261

two) parameter the designer has to adjust. 262

It must be noted that disturbances in limit cycles 263

can be assessed in the directions tangential and trans- 264

verse to the cycle, i.e. we can distinguish between those 265

perturbations that make the system “advance” (or “go 266

back”) in the limit cycle, and those that cause a devia- 267

tion in an orthogonal manifold, Ali and Menzinger [2]. 268

Therefore, if the ECN is too long the algorithm will not 269

detect perturbations that manifest in an abrupt change 270

in the tangential direction, or it will detect them slower 271

than with an ECN that comprises less states. Subsection 272

3.2 summarizes the tuning process for a Limit Cycle 273

Walking prototype. 274

2.1.3. Selection of the Nearest Neighbor (NN) 275

The last part of the NNGI consists of finding the 276

state of the RLC that matches best the current state 277

of the walker. In order to reduce computational cost, 278

and because during normal walking the correspondent 279

state must be within the ECN, we perform a Nearest 280

Neighbor (NN) search on there. The NN algorithm is 281

a widely extended method for finding closest points in 282

Euclidean spaces: it will provide directly the most sim- 283

ilar state in the normal walking pattern. It has already 284

been applied in off-line analysis of human gait, Forner- 285

Cordero et al. [10]. 286

The NN, q̂(k) = q̂j(k), j = 1, . . . , 2n at sample k is 287

simply defined as the point within a metric space (the 288

m points qi, i = 1, . . . , m in the ECN subset in our 289
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Fig. 2. 3-Dimensional abstraction of a limit cycle (solid line) together with its basin of attraction (enveloping surface). The Ensemble of
Candidate Neighbors (ECN) is represented as slices in the limit cycle.

case) with the least Euclidean distance Vi(k) to the290

query point, obtained after preprocessing the state291

of the walker with equation 1, q(k) = qj(k), j =292

1, . . . , 2n, (4), (5).293

294

Vi(k) =
⎛
⎝

2n∑
j=1

(qj(k) − qj,i(k))2

⎞
⎠

1/2

, i = 1, . . . , m295

(4)296

NN(k) = min{V1(k), V2(k), . . . , Vm(k)} (5)297

2.2. Calculation of the deviation from normal298

walking299

Once the NNGI has been selected q̂(k), the state in300

the RLC most similar to the actual state of the biped,301

q(k), a perturbation may be detected by measuring their302

relative distance and estimating whether the walker is303

inside or outside its basin of attraction. However, the304

selection of an adequate measurement is not straight-305

forward. It must be considered that a given amount of306

deviation does not have the same effect on dynamic307

stability if it takes place in different variables (i.e. pro-308

cessed joint angles or velocities) or even at different309

gait phases because the basin of attraction changes its 310

shape and size at every point of the limit cycle. There- 311

fore a good metric must include different weighs for 312

each variable and time instant. 313

The D-statistic proposed in Karssen and Wisse [17] 314

takes both aspects into account. It consists in the 315

squared error (between the actual and expected state 316

of the robot) weighed by the standard deviation at that 317

instant and variable, (6). The standard deviation quan- 318

tifies the variability of a given variable during normal 319

gait, which is related to the basin of attraction. The idea 320

is to select a threshold for the D-statistic that separates 321

the stable and unstable walking regions of the phase 322

space, Dth, mimicking the basin of attraction. This is 323

the second parameter the designer has to tune, sub- 324

section 3.2. Note that if the designer chooses a small 325

value for Dth, the algorithm will detect perturbations 326

that could be rejected naturally, but if its too large, it 327

will fail to detect that the robot is being perturbed, or 328

it will not provide a sufficiently fast detection. 329

D(k) = 1

2n − 1

2n∑
j=1

1

σj(k)2 (qj(k) − q̂j(k))2 (6) 330

where (qj(k), q̂j(k)), j = 1, . . . , 2n stand for the cur- 331

rent state of the biped and its NN respectively. σj(k) 332



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

6 J.A. Gallego et al. / Detection of gait perturbations based on proprioceptive information

is the standard deviation of each RLC variable q̂j at333

sample k.334

2.3. Interpretation of the algorithm335

The algorithm proposed in this paper provides two336

output variables that are interesting to evaluate the337

dynamic stability of a walker. On the one hand, the338

NNGI relates the actual state of the biped to one state339

in its average limit cycle, the RLC. On the other hand340

the D-statistic is a weighed measure of the deviation341

between them and constitutes a linearized estimate342

of the basin of attraction. They can be plotted as in343

Fig. 3. The upper panel shows the NNGI (dashed344

line) and the RLC (solid line). When the robot is345

walking stably the NNGI will track the RLC very346

closely (two first strides in the figure). However, if it347

suffers a perturbation the NNGI will deviate as hap-348

pens in the third stride. The lower panel provides the349

D-statistic (solid line), the deviation measurement. Its350

interpretation is straightforward: The larger it is, the351

further the robot is from its limit cycle. Based on a352

series of stable and perturbed walking experiments353

the designer can select a threshold for the D-statistic354

(Dth, dashed line) that establishes whether the robot355

is about to suffer a fall, or it will continue walk-356

ing stably, mimicking the concept of the basin of357

attraction.358

3. Evaluation of the NNGI for detection of 359

perturbations in a Limit Cycle Walker 360

prototype 361

This section presents the evaluation of the proposed 362

technique with a Limit Cycle Walker prototype. After 363

an overview of the robot, we summarize how the 364

parameters of the algorithm were selected. At last, 365

experimental results of stable and perturbed walking 366

are provided. 367

3.1. System overview of Meta 368

Meta is a “four-legged biped” developed at Delft 369

University of Technology, Hobbelen and Wisse [12]. 370

Mechanical coupling between inner and outer leg pairs 371

makes it walk in an almost straight line, i.e. the dynamic 372

behavior of the walker is almost two-dimensional. The 373

prototype has seven body parts (an upper body, two 374

upper legs, two lower legs, and two feet) and the same 375

amount of DoF, located at the body (external DoF), 376

hips, knees, and ankles, Fig. 4a. 377

Meta has four powered DoF, both ankles and hips, 378

actuated with DC motors placed close to the hip. This 379

configuration keeps the limbs inertia low. Series Elastic 380

Actuation interfaces ankle joints with their actuators, 381

Pratt and Williamson [25], reducing the interface stiff- 382

ness, enhancing shock tolerance and decreasing the 383

The Nearest Neighbor Gait Index

N
N

Sample number

D
−

st
at

is
tic

 (
·)

A perturbation
is happening

A complete stride

Fig. 3. An example of the execution of the proposed method. The upper panel shows the NNGI (dashed line) and the RLC (solid line). The
lower panel shows the D-statistic (solid line) and its threshold Dth (dashed line).
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Fig. 4. Limit Cycle Walker Meta: Appearance, schematic representation, and joint angles during normal walking. (a) Appearance and schematic
representation depicting the DoF of Meta. Because of the coupling between the inner and outer pairs of legs the walker may be thought of as
two dimensional. (b) Joint angles (rad) for the hip, knee, ankle, and body tilt of 10 (out of 28) strides employed to calculate the RLC of Meta.
Data sampled at 500 Hz. The black and grey lines represent the inner and outer legs respectively.
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amount of reflected inertia. Moreover, ankle joints can384

be torque controlled measuring the elongation of the385

elastic element. The passive knees are equipped with386

a solenoid–driven latch which unlocks the knee at the387

start of the swing phase.388

Angles of the six joints are measured with incremen-389

tal encoders. They provide a resolution of 4 × 10−4rad390

for the hip, 3×10−4rad for the knee, and 2 × 10−4rad391

for the ankle joints. Body tilt is obtained with a vestibu-392

lar organ that consists of three accelerometers and three393

gyroscopes. Ground contact is detected by one switch394

placed underneath each foot. Sensory data is sampled395

at 500 Hz rate. Meta is controlled with a PC/104 stack396

that includes a 400 MHz processor. The gait controller397

consists in a state machine that provides both feedback398

and feedforward commands.399

3.2. Preliminary calculations and selection400

of parameters401

Limit Cycle Walkers rely on reduced sensory infor-402

mation for gait control. Usually, as in Meta, angular403

rate is obtained by numeric differentiation of the404

encoder signals employed to measure joint angles,405

a procedure that amplifies high frequency noise.406

Considering that limit cycle walking requires low407

bandwidth, high frequency noise can be removed by408

low-pass filtering. To allow for fast detection of per-409

turbations the filter selected must introduce no delay.410

We have chosen the Benedict-Bordner filter, a tracking411

algorithm that provides an optimal trade-off between412

signal smoothing and tracking, Benedict and Bordner413

[4], because achieves good filtering with zero phase.414

Before running the NNGI, the normal walking pat-415

tern of the robot (RLC) must be obtained. In this case416

we made Meta walk 14 runs on a carpet, Fig. 4b. Only417

two of the last strides of each run were considered418

to avoid transient effects. Signals were processed as419

described in Section 2.2.1 and next joint velocities were420

Benedict Bordner filtered; afterwards the RLC and its421

standard deviation for a stride of average duration,422

1.711s (standard deviation 0.073s), were obtained. The423

RLC has a length r = 855 samples at 500 Hz.424

As explained above, the perturbation detection425

method has two parameters that need to be tuned426

because they depend on the characteristics of the robot.427

These parameters are:428

• The length of the Ensemble of Candidate Neigh-429

bors (ECN), m. The number of states within the430

ECN is related to the inter-stride variability, and 431

depends on the duration of a complete stride, the 432

sensors sampling rate, and the capability of the 433

onboard computer of the walker. As said in Sec- 434

tion 2.1.2, if m is too large the algorithm may 435

ignore the occurrence of a perturbation, while 436

if it is too small it may provide false positives. 437

Figure 5b shows an example of the influence of 438

m: If m ≥ 60 the algorithm fails detecting a (tan- 439

gential) perturbation that causes a fall; neither 440

the NNGI deviates from the RLC, nor the D- 441

statistic increments its value. On the contrary, if 442

the designer chooses an ECN too short, the algo- 443

rithm can provide false detections, as it does in 444

Fig. 5a, b when m = 30. However for m ≥ 40 it 445

provides the same results, showing that the robot 446

is walking stably. From the execution of the pro- 447

posed algorithm with all the available trials, we 448

observe that it achieves an optimal performance 449

(no false detections, and a 100% detections) for a 450

value m = 50. 451

• The threshold on the D-statistic, Dth. As said in 452

subsection 2.2 this threshold is an experimental 453

approach to being inside or outside the basin of 454

attraction. If the designer chooses a small value for 455

Dth, the algorithm will detect perturbations that 456

could be rejected naturally, but if its too large, 457

it will fail to detect that the robot is being per- 458

turbed, or it will not provide a sufficiently fast 459

detection. Again it must be tuned after executing 460

a number of trials with and without perturbations. 461

From the experiments presented in this paper, we 462

conclude that a threshold Dth = 100 avoids false 463

detections because the highest value of D during 464

normal walking is D = 60.80. 465

Table 1 summarizes the results for different values 466

of m. In the table P stands for a push perturbation and 467

T for a trip, the number represents the trial. After the 468

tuning processed, it is concluded that the value of Dth 469

has little influence in the performance of the algorithm 470

compared with m. It only affects the detection delay. 471

Once we have selected a value that avoids false posi- 472

tives during normal walking, the detection delay varies 473

less than 5 ms if D ≤ 2000. 474

3.3. Stable walking experiments 475

First, we executed the algorithm during a series of 476

stable walking trials. As expected, the NNGI tracked 477
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Fig. 5. Selection of the parameters of the algorithm: The length of the Ensemble of Candidate Neighbors, m (top), and the threshold for the
D-statistic, Dth (bottom). (a) Execution of the NNGI in one stable run of Meta. Top: The solid black line represents the RLC, the NNGI for
different values of m is shown as dashed gray lines. Botton: Dashed and dotted black lines represent different values of m, the dashed gray line
the D-statistic. (b)Execution of the NNGI during trip trial 1 (which ended in a fall). Top: The solid black line represents the RLC, the NNGI for
different values of m is shown as dashed gray and black lines. Bottom: The four black lines represent different values of m, the dashed gray line
the D-statistic.
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Table 1
Influence of parameter m perturbation detection performance

m False positives No detection?

30 Always Always
40 P22, T22 –
50 – –
60 – P3, T1, T3
70 – P11, P3, T1, T3, T4
80 – P11, P3, P41, T1, T3, T4
100 – P11, P3, P41, T1, T3, T4

1 During the perturbation the D-statistic reaches a peak value not
much larger than in normal walking, e.g. below 200. This threatens
successful detection.

2 The robot suffered a perturbation but did not deviate from its
limit cycle, which indicates that it kept inside the basin of attraction.

considerably close the RLC, but with subtle differences478

in joint trajectories, velocities, and stride duration.479

Figure 6 shows an example of how the NNGI and480

the D-statistic evolve during three stable strides. It is481

observed that the NNGI (dashedline) tracks closely482

the RLC, with only negligible deviations, indicating483

that the biped is following its RLC. Concerning to484

the D-statistic, lower panel in the figure, it presents485

peaks of 56.04, 31.34, and 47.74 around samples num-486

ber 250, 1100, and 2000 respectively. This corresponds487

to the heel strike of the outer legs. Table 2 depicts the488

peak values of the D-statistic for 10 stable strides. All489

of them appear also when the outer legs impact the 490

ground. The reason for this is two fold: First, that the 491

synchronization of the outer legs happens just before 492

heel strike (originating the most considerable inter- 493

stride variation), and second, because of an insufficient 494

sampling frequency of the RLC, which does not let the 495

algorithm record a state more similar (closer) to the 496

current one. Nevertheless, increasing the amount of 497

points of the RLC would require an excessive amount 498

of memory and computational resources of the onboard 499

computer; as said, it is more effective to ignore these 500

peaks selecting a value for the D-statistic threshold 501

Dth = 100. 502

Figure 7 shows the calculation of the NN during the 503

whole experiment. It represents the Euclidean distance 504

at every point during the walk. As the prototype is walk- 505

ing stably the NN follows the RLC, which implies that 506

the point with least distance to the current state of the 507

walker (solid black line) is always in the neighborhood 508

of the expected state, i.e. candidate number 0; thus the 509

robot is walking in a limit cycle. 510

3.4. Perturbed walking experiments 511

Together with the stable walking experiments, a 512

series of trials where the walker suffered a push or 513
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Fig. 6. Upper panel: the dotted line represents the NN for three consecutive stable strides as provided by the NNGI. The solid line corresponds
to the RLC, the dashed line to the NNGI. The lower panel shows the D-statistic (solid line) and the selected threshold Dth (dashed line).
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Table 2
D-statistic for 10 stable walking strides

Stride 1 2 3 4 5
Max(D-st) 56.04 31.34 47.74 30.04 36.96

Stride 6 7 8 9 10
Max(D-st) 60.80 41.07 16.09 49.76 30.64

a trip were performed. They served to validate the pro-514

posed technique and, as explained before, to select the515

adequate value for the parameters. Trip experiments516

consisted in an obstacle made of steel placed on the517

path of the robot, so that the biped stumbled with it at518

different gait phases. Pushes where gently applied by519

an experimenter at the body of the robot, also at dif-520

ferent moments in the gait cycle. Figure 8 shows the521

execution during a push experiment. As a result of the522

disturbance the walker deviates dramatically from its523

RLC, as it can be observed in the upper plot; more-524

over, the D-statistic reaches to a high value, 5600.5,525

about one hundred times larger than in stable walk-526

ing. In spite of this, the biped is able to recover from527

the perturbation by putting its swinging leg quickly on528

the floor, performing a so-called “lowering strategy”529

in humans, Forner-Cordero et al. [9]. Table 3 summa-

rizes the peak values of the D-statistic during four trip 530

and push experiments. The D-statistic overpasses the 531

selected threshold (Dth = 100) for all the experiments 532

in which the robot falls, but it provides three “false 533

alarms” when the robot suffers a push (experiments 534

number 1, 2, and 4). In two of these cases (experi- 535

ments 1 and 4) the robot almost fails to perform the 536

subsequent ankle push off, which is the major cause of 537

falling in the ensemble of push and trip experiments; 538

therefore it would be preferable to trigger a recovery 539

reaction to avoid a potential fall. This is shown in Fig. 540

9a where we observe that the ankle angle of the inner 541

leg at push-off after the perturbation is abnormally 542

small (for experiment 1). Experiment 2, on the other 543

hand, exhibits no noticeable differences in leg angles 544

with respect to unperturbed trials, only decreased for- 545

ward tilt in the stride after the perturbation, Fig. 9b. 546

Since joint angles (the other state variables) follow 547

normal profiles, the D-statistic keeps low values, not 548

indicating the occurrence of the perturbation. Related 549

to experiment 3, the peak in the D-statistic happens 550

8 milliseconds after the heel strike of the outer legs, 551

thus it could be related to the small peaks that happen 552

at that moment in normal walking but amplified by the 553

push. 554

Fig. 7. Calculation of the NN during a stable walking experiment. The surface represents the Euclidean distance to every candidate neighbour
at every sample of the trial, the black solid line the NN.
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Fig. 8. Upper panel: the dahsed line represents the NN for push trial 3 (the robot kept walking) as provided by the NNGI. The solid line corre-
sponds to the RLC, the dashed line to the NNGI. The lower panel shows the D-statistic (solid line) and the selected threshold Dth (dashed line).

Table 3
D-statistic for 8 perturbed experiments

Push trial 1 2 3 4
Max(D-st) 5600.5 63.17 4967.8 6227.4
Fall? No1 No No No1

Trip trial 1 2 3 4
Max(D-st) 18074 54.40 2523.3 6487.0
Fall? Yes2 No Yes2 Yes3

1 The robot experiences notable problems to perform ankle push
off after the perturbation, but it succeeds.

2 The fall is caused because the heel strike after the perturbation
is not performed with the legs completely outstretched.

3 Ankle push off after the perturbation is not executed adequately;
the walker falls backwards.

4. Discussion555

This paper focuses on a new method to monitor the556

stability of a Limit Cycle Walker based on a normal557

walker pattern (the RLC) and a static measurement of558

dynamic stability (the D-statistic). It can be applied not559

only to detect gait perturbations, but also to quantify560

dynamic stability. A brief discussion on these topics is561

provided next.562

4.1. Application to perturbation detection563

The experimental results presented in Section 3 indi-564

cate that the implementation of the proposed algorithm565

provides a technique to detect the occurrence of an 566

unexpected event that may lead the robot to a fall. 567

In fact, for the selected set of parameters, the algo- 568

rithm provides no false detections when the robot is 569

walking stably, and it also has a 100% success rate 570

detecting perturbations that cause a fall. Three pushes 571

(push experiments 1, 3 and 4) that did not make the 572

robot collapse where identified as perturbations, but it 573

was observed that the robot experienced serious dif- 574

ficulties avoiding a backwards fall in the subsequent 575

stride in experiments 1 and 4 and that in experiment 3 576

the “false alarm” happens because the push amplifies 577

the variations that always happen at heel strike of the 578

outer legs. 579

Related to the delay in perturbation detection, it must 580

be pointed out that in the current setup the occurrence 581

of the perturbation was recorded with a conventional 582

camera that provides 30 Hz sampling rate. Thus, the 583

moment at which the perturbation happens can be 584

estimated with roughly 17 ms error. This error was 585

partially compensated assuming that the perturbation 586

happens when the monotonic increase in the D-statistic 587

(just before when the perturbation is detected) begins. 588

The average delay was estimated as 45.2 ms (standard 589

deviation 3 ṁs) therefore comparable to short latency 590

reflexes in humans, typically estimated to be around 591

35 ms van der Linden et al. [30] Note that humans 592

serve as reference in biomimetic gait control research. 593
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(a) Joint angles during push trial 1.
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(b) Joint angles during push trial 2.

Fig. 9. Joint angles (rad) for the hip, knee, ankle, and body tilt during push trials 1 and 2. Data sampled at 500 Hz. The black and grey lines
represent the inner and outer legs respectively. The moment at which the perturbation is applied is indicated by an arrow in the body tilt plot.



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

14 J.A. Gallego et al. / Detection of gait perturbations based on proprioceptive information

Table 1 summarizes the performance in perturbation594

detection based on different values of m. The second595

parameter Dth only affects in detection time in always596

less than 5 ms above the value that avoids false posi-597

tives during normal walking (60.80) and below 2000.598

Thus it is not thoroughly described. Current work on599

the implementation of the NNGI in a new bipedal robot600

and its simulation model will provide a more precise601

measure of the detection delay and the influence of the602

parameters Dth and m in the final results.603

Moreover, we are working on the validation of604

our perturbation detection algorithm in the novel605

ESBiRRo exoskeleton, a hip–knee–ankle–foot ortho-606

sis (HKAFO) based on the concept of Limit Cycle607

Walking, Fig. 10. The ESBiRRo exoskeleton consists608

of variable stiffness ankle and knee joints and active609

hip joints, driven by flat DC motors. Like this, the610

exoskeleton has most of the weight distributed prox-611

imally, not influencing the subjects dynamics, and612

letting the human–robot system settle naturally into613

a Limit Cycle.614

Fig. 10. Lateral view of ESBiRRo HKAFO exoskeleton depicting
DC flat motors at the hip, and variable stiffness actuators at knee and
ankle.

4.2. A novel tool to assess dynamic stability 615

Although this paper focuses on perturbation detec- 616

tion, the core of the proposed method is to provide a 617

linearized measurement of the dynamic stability of a 618

walker. As reviewed in the introduction, the stability of 619

Limit cycle Walkers has been traditionally assessed in a 620

step-to-step basis, i.e. slicing the limit cycle at one fixed 621

point (for example at heel strike of a given leg) and cal- 622

culating the inter-stride variation in this fixed Poincaré 623

section. The way to measure this variation changes 624

with the technique; it can be based, for example, on the 625

calculation of Floquet Multipliers, Hurmuzlu [15], or 626

on a series of gait indicators, Hobbelen and Wisse [11]. 627

However, these methods ignore what is happening in 628

all the other states of the gait cycle. 629

The application of the proposed method to a walk- 630

ing prototype yielded some insight into its inherent 631

dynamic stability. Notice that the dynamic stability of 632

the walker is influenced not only by its walking con- 633

troller, but also by its mechanical design. Our major 634

discoveries in Meta were: 1) during unperturbed walk- 635

ing, the largest inter-stride variation happened at heel 636

strike of the outer legs because of their synchroniza- 637

tion mechanism, 2) perturbations at mid and late swing 638

cause a “fast advance” in the tangential direction of the 639

limit cycle (a so-called lowering strategy in humans 640

Forner-Cordero et al. [9]), but the robot does not fall 641

if it can perform a sufficiently powerful ankle push 642

off afterwards (this agrees with previous experiences 643

demonstrating the role of ankle push off in walking sta- 644

bility and energetics, Hobbelen and Wisse [13], Kuo 645

[19]), and 3) perturbations at early swing make the 646

robot fall because the swinging legs land not com- 647

pletely stretched, making the knees collapse. These 648

results suggest that the application of the NNGI method 649

may help us to understand how different factors affect 650

the dynamic stability of a given robot. Moreover, with 651

help of an adequate benchmark, the NNGI could be 652

used to compare the stability of different walking 653

machines or control techniques, measuring how the 654

same perturbation affects them. 655

5. Conclusions 656

This paper presents a method for detection of gait 657

perturbations in bipedal walkers, both humanoid robots 658

and exoskeletons. The algorithm monitors online the 659

state of the robot and decides whether a perturbation is 660
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happening based on a phase representation of the nor-661

mal walking of the biped. It presents the advantages of662

having low computational cost and avoiding the need663

of a model of the robot dynamics, just a reference gait664

pattern. Moreover, the algorithm has only two param-665

eters the designer needs to tune; among them only one666

has a large influence in the performance of the algo-667

rithm, thus it is quickly to adjust. This is done with data668

from a reduced number of stable and perturbed walking669

trials. The proposed method was validated with a Limit670

Cycle Walker prototype providing a 100% success rate671

in perturbation detection for the current experimental672

apparatus and adequately tuned parameters, with no673

false positives when the robot is walking unperturbed.674

The average delay in disturbance detection is 45ms,675

comparable to short latency reflexes in humans.676
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