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ABSTRACT
Lifting patients is a demanding task for care providers. In

addition, the number of patients is rising and the number of peo-
ple with obesity is expanding. Current lifting aids are single pur-
pose and time consuming to use. Exoskeletons can fulfill the
demand for a versatile and easy to use lifting aid. A drawback
of a typical exoskeleton is that in order to function correctly the
axes need to be aligned to the human joints, which is time con-
suming. Furthermore, an exoskeleton for healthcare must reduce
the reaction forces in the user while lifting. It is chosen to de-
sign an exoskeleton, which requires no adjustment and can cope
with power enhancement. The goal of this paper is to design
an exoskeleton that is fast, easy to use and reduces the reaction
forces in the user. A design is proposed which easily fits different
sized users. In addition the reaction forces in the human skeleton
are eliminated. The model is tested by means of a demonstra-
tor. Elastic tension elements are used as a gravity compensator.
By reducing the potential energy fluctuation the required exter-
nal input is reduced. Optimizing a number of design parameters
leads to a calculated moment reduction of 98.8% and moment
fluctuation reduction of 96.8%. This is the first exoskeleton to
combine fast to use design with high-energy efficiency gravity
compensation.

Keywords: exoskeleton, passive adaptation, power enhance-
ment, lifting aid

1 INTRODUCTION
The demand for healthcare is growing. The number of pa-

tients will rise substantially the coming years [1]. Furthermore,
the number of people with obesity is expanding. This implies

a need for lifting mechanisms to assist the care providers. Cur-
rent lifting mechanisms are single-purpose and time consuming
to use. Robotics, in particularly exoskeletons can fulfill the de-
mand for a versatile and easy to use lifting mechanism. With the
use of exoskeletons in healthcare to assist the care provider, the
quality of healthcare can be maintained with fewer people [2].

To create a new lifting aid it is chosen to focus on an upper-
body exoskeleton to assist the care provider. Exoskeletons can
be used more versatile than current lifting aids. In addition, exo-
skeletons follow the human movements.

There are three prominent applications for exoskeletons; re-
habilitation [3, 4], teleoperation [5] and power enhancement [6].
Assisting a care provider to lift a patient is considered as power
enhancement. Therefore the exoskeleton must be competent for
power enhancement.

A drawback of a typical exoskeleton is that in order to func-
tion correctly, their axes need to be closely aligned to the anatom-
ical axes of the human joints. Without correct alignment the exo-
skeleton can feel uncomfortable and create reaction forces in the
human joints [7,8]. For an exoskeleton to be successful in health-
care it must be fast to use. To align a typical exoskeleton for
usage can take 5 to 15 minutes [4] which is too long.

To align the exoskeleton to the human joints is difficult be-
cause the anthropometrics differ between people. Moreover, hu-
man joints are seldom simple hinges. In addition, the exact lo-
cations of the human joints are difficult to determine without the
help of imaging devices. Even when the setting for previous us-
age are saved, final adjustment is required before every usage [9].

We propose to design an exoskeleton which requires no ac-
tive alignment adjustment and can cope with power enhance-
ment. This design combines the easy to use benefit of an exo-
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skeleton with the strength of a current lifting mechanism. This
design can also be used to assist the care provider in other de-
manding tasks in healthcare.

Current exoskeletons have different approaches for solving
joint misalignment. For example, the DAMPACE [10] and the
exoskeleton of the European Space Agency [7] require no joint
alignment. This is achieved by making the exoskeleton passively
adapting. However the DAMPACE is designed for rehabilitation
and the European Space Agency exoskeleton is designed for tele-
operation. Both systems are not capable to be used as a power
enhancement exoskeletons, since both systems rely on the human
skeleton to counteract the load forces.

The first goal of this paper is to design the mechanical part of
an exoskeleton for the lower arm which requires no active joint
alignment. The second goal is to reduce the reaction forces in the
user caused by the load.

This paper will have the following structure. Section 2 will
discuss the method used. In Section 3 the conceptual design
is addressed. An analytical model and evaluation of the final
concept are discussed in Section 4. Section 5 will address the
demonstrator build. In Section 6 an optimization for gravity com-
pensation is addressed. Section 7 contains the discussion and the
conclusions are presented in Section 8 .

2 METHOD
A method was adapted [11] and used to design a mechanical

system which realizes the design goals. For this project a number
of assumptions were made.

• The system was evaluated in the two dimensional plane.
• One arm was evaluated.
• A limited range of motion was chosen.
• It was assumed that the shoulder and elbow joints are simple

hinges, because of the 2D plane assumption combined with
the limited range of motion.
• The system was analyzed in a quasi-static fashion. A quasi-

static analysis is based on the assumption that the kinetic en-
ergy changes and dynamic forces are negligible compared to
the potential energy changes and the static forces. Addition-
ally a quasi-static system is regarded as time independent,
which makes calculation of every individual position possi-
ble.
• No action was taken in designing the connection between

the user and the system. Only the function of the connection
was assessed.

2.1 Function
For this paper a lifting motion was chosen as design case.

A functional case is assessed in which the care provider lifts a
patient in a lying position from a bed to a shower bed. Following
are the steps in this design case.

1. Care Provider (CP) sets up the shower bed and the Exo-
Skeleton (ES)

2. CP puts on the ES
3. CP activates the ES
4. CP places his/her arms with the ES underneath the patient
5. CP lifts the patient
6. CP rotates to the shower bed
7. CP lays down the patient
8. CP removes his arms from underneath the patient
9. CP deactivates the ES

10. CP takes off the ES

One of the design goals was to design a system that fits different
users. This goal returns in step 2 of the function description. Step
4 implies a compact design. If the system is too large, it obstructs
the movement of the care provider. Furthermore, step 4 gives an
indication of the range of motion needed for this design case. In
step 5 the weight of the patient is in the arms of the care provider.
Here, the corresponding reaction forces in the user needs to be
reduced.

2.2 Requirements
For the system to function properly as a lifting aid, it needs

to fulfill a number of design requirements.These requirements
follow from the design case. Figure 1 shows a schematic repre-
sentation of a human arm with the essential parameters. Tabel 1
summarizes the values of the requirements.

The first two requirements were based on the fact that the
exoskeleton must not constrain the users movements (function
steps 4 and 8). For the shoulder a small range of motion (θ ) is
sufficient [ π

4 : π
2 ] . The elbow (γ) is rotated more during lifting

and requires [0: π
2 ].

The third requirement involves the reaction forces in the user
(function step 5). For low frequency lifting tasks without a lifting
aid a load of 23 [kg] is accepted [12]. Therefore the maximum
reaction force in the user was selected at 115 [N], since this paper
focusses on one arm.

The fourth and fifth requirement concern the difference be-
tween the users (function step 2). Every person has different
anatomical properties. Allowing the majority of the population
to use the system is a key feature. The P05-P95 norm was used to
determine the range of adjustment needed. The upper arm varies
between 0.295-0.398 [m] and the length from the elbow to the
hand palm ranges between 0.297-0.385 [m] [13].

The sixth requirement involves the space below the lower
arm (function steps 4 and 8). Lifting a patient requires the user
to move his arm underneath the patient. This invokes the need
for a compact system. Extending the hand to its limit position,
the perpendicular distance from the fingertips to the center of the
lower arm is approximately 0.12 [m]. This was chosen as the
design space for the lower arm. There are no hard restrictions set
for the design space around the upper arm.
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FIGURE 1: 2D schematic representation of a human arm. The
range of motion of the lower and upper arm, position of the re-
action force, the load and the design space of the lower arm are
indicated. The gray area underneath the lower arm is the space
the exoskeleton is allowed to occupy. For the upper arm no hard
limitations are set on the design space. In Tab. 1 the values of
the given parameters are listed.

TABLE 1: Design requirements for the mechanical system. RoM
stands for Range of Motion.

Parameter Quantity Unit

RoM Shoulder θ [ π
4 : π

2 ] rad

RoM Elbow γ [0: π
2 ] rad

Max Reaction Force User Joint Fr 115 N

Length Upper Arm [13] Lupp [0.295-0.398] m

Length Elbow to Palm [13] Llow [0.297-0.385] m

Design Space ∆ 0.12 m

In addition to these hard requirements there are a number of
soft requirements. These indicate the characteristics of an ideal
system. It is preferred to have a light, compact, cheap and sim-
ple system with minimal movement restriction to the user. It is
preferred to use elastic elements for gravity compensation.

3 CONCEPTUAL DESIGN
The design method explains the general design steps. In this

section the generation, analysis and the evaluation of the con-
cepts are addressed in the corresponding sequence.

The concepts are constructed out of a number of basic ele-
ments. The function of these basic elements are indicated. Table
2 lists a number of basic elements.

Although these basic elements and their functions are gener-

TABLE 2: Basic elements with their key function. All elements
listed here are used in the concepts shown in Fig. 2.

Element Function

Link Rigid connection between two or more

points inline

Joint Locks the two translation DoF between

two ore more elements

Body connection Creates connection between the user and

the system

Extension Spring Affects force depending on its elongation

Linear guide Allows one translation and prevents other

DoF

Cable Can only transfer tensile force

Pulley Guides a cable around a constant radius

ally acknowledged, this breakdown provides a structural method
to generate concepts. Most element functions can be achieved
by the combination of other elements in a certain way. This ap-
proach is used to create new concepts and to eliminate the weak-
nesses of others. Figure 2 displays four concepts.

3.1 Analysis
During the analysis of the concepts a difference of adjust-

ment is found. The concepts are divided into three categories.

System adjustment
These concepts adjust to the user by changing the complete
geometry.
Hinge adjustment
These concepts adjust the geometry of the hinge to adapt to
the user.
No adjustment
The system is designed to fit all users without changing the
system.

Concept I (Fig. 2a) uses system adjustment. The benefit of
this type of adjustment is that the whole system works to adapt to
the user. This implies a smaller system as a drawback, when the
system is scaled, the adjustment range also changes. Concepts
II and IV (Fig. 2b, 2d) are categorized as hinge adjustment. An
advantage of this adjustment is that the hinge can be used as an
add-on to existing exoskeletons. However, achieving a large ad-
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(a) Concept I (b) Concept II

(c) Concept III (d) Concept IV

FIGURE 2: All concepts show two different sized users. The top
image is the P95 user and the bottom the P05 user. The middle
image shows the error between the concept setup for the P95 user
and a P05 user with exception of (c). (a) This concept uses a ro-
tation of the whole system to adapt to its user. (b) In this concept
a lockable double hinge is used to adjust the length of the lower
arm. (c) The system is designed to fit the smallest and largest
person without adjustment. (d) Based on the system designed by
Stienen et al. [3] including a linear guide.

justment a bulky hinge is required. Finally concept III (Fig. 2c)
has no adjustment. If there is no adjustment, the resulting sys-
tem is simple and robust. The main drawback is that the shape is
non-optimal for different sized users.

3.2 Evaluation
This section addresses the evaluation of the concepts shown

in Fig. 2.
The breakdown into basic elements is used to evaluate the

concepts. The elements are compared on their relative complex-
ity to each other. In addition, the number of elements per concept
are counted. Finally the systems are tested in dynamic software
package to assess if the systems can transmit load forces and
adapt to different users.

Concept I is shown in Fig. 2a and uses the rotation of multi-
ple elements to adapt to it is user. A drawback is that the system
must adjust it self during motion.

Concept II (Fig. 2b) depends on a rotating body to which the
lower link is connected. The main drawback of this approach is
that the rotating body must be locked to prevent movement. This
implies a locking mechanism which may not be desired.

Concept III shown in Fig. 2c differs from the rest because
it is designed to fit different user with out any adjustment. This
concept uses a large spring to generate a force. A cable is used to
control the elongation of the spring. The resulting force is used
to counteract part the load forces. A drawback is that the spring
can obstruct the user to move over objects like a bed. This results
in a loss in range of motion. Moreover, the use of a large spring
may result in a hazardous situation in case of malfunction.

Concept IV is shown in Fig. 2d and is based on the design
made by Stienen et al. [3]. The limitation here is that the system
can not counteract the reaction force in all positions. In addi-
tion, the force transmitted through cables limits the design of a
compact system.

3.3 Final Concept
With the features of concepts I and III a final concept is de-

signed. The following two features are used for this final con-
cept. The use of relative movement between the exoskeleton and
the user in concept I for adjustment. This working principle is
the most promising feature to design a system which requires no
active adjustment to the user. The second feature use is the rigid
connection between the lower arm and the exoskeleton as in con-
cept III. A degree of freedom analysis shows that a rigid connec-
tion is needed to transfer the load force to the environment. The
corresponding design is shown in Fig. 3.

The final system lets the user’s elbow move with respect to
the system, which eliminates the need for alignment. The reac-
tion forces are eliminated by rigidly connecting the lower arm
to the exoskeleton. Detailed analysis is done in the section that
follows. This concept has two key features.
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FIGURE 3: The final concept which fulfills both design goals.
The elbow and shoulder can move relative to the exoskeleton
which eliminates the need for alignment. The rigid connection
between the lower arm and the exoskeleton transfers all load
forces to the environment.

Rigid connection to the lower arm
Connecting the lower arm to the system makes it possible to
transfer all load force to the environment.
Disconnected shoulder joint and one connection to the
upper arm
This makes it possible to eliminate the reaction forces in the
user’s elbow and allows the elbow to move with respect to
the system.

4 DETAILED DESIGN
The chosen concept in the previous section provides the ba-

sis for a detailed design. To this end the actuation of the system
was not discussed. It is chosen to investigate the potential to use
springs for gravity compensation. The design is shown in Fig. 4
with all relevant design parameters.

The introduction of an additional rigid element in the sys-
tem results in a translational motion between link JN and DH
that depends on β . This translation can be used to store the po-
tential energy change by the mass due to the change of height.
The connection between the lower arm and system can be placed
arbitrary.

A spring is modeled for gravity compensation. The poten-
tial energy in the system is used to assist in the designing of the
system. To calculate the potential energy, all kinematics are de-
termined. Hence an analytical model is made that calculates all
positions that correspond with input angles α and β .

4.1 Analytical Model
With the use of a software package an analytical model is

created. The model is based on a kinematic chain algorithm
which starts at the base connection A. Point A is chosen as start
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FIGURE 4: Schematic representations of the end design. The
masses ml and mb are located at the center of the corresponding
bodys. (a) Connections points displayed. Link EK is parallel
to GM. Link JN is parallel to DH. The dashed box indicated
the points used for the four-bar calculation. (b) Ωx,Ωy and Ωφ
quantify the alignment error of the lower arm. δ1 and δ2 are
used to position the connection to the upper arm. k is the spring
stiffness.

point because it is the base point, which does not depends on α
and β . α and β are used as input for this model, since these are
the angles the actuator acts upon.

The location of the joint D is depending on |AD| and α .

Dx(α) = |AD|cosα (1)
Dy(α) = |AD|sinα (2)

Point H can be calculated with the location of point D and the
additional relative position.

Hx(α,β ) = Dx + |DH|cos(α−β ) (3)
Hy(α,β ) = Dy + |DH|sin(α−β ) (4)
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FIGURE 5: Schematic representation of the model to calculate
ϕr and ϕV . By moving link KE a virtual four-bar is made where
|DE| = |DE|− |JK| and |EJ| = |EK|. The points C, D, E, K, J
and angle β correspond with Fig. 4 indicated with a dashed box.

Such a kinematic chain can be constructed for B, C, E, F and G
in a similar way. To calculate the other points the dependence of
ϕV , ϕr with respect to β is expressed.

A five-bar mechanism is defined by the following points C,
D, E, K and J. The dashed box in Fig. 4a indicates the five-
bar mechanism. Figure 5 shows the five-bar mechanism in more
detail.

Calculating a five-bar mechanism is difficult, because there
are multiple configurations possible with the same input angle.
However link DE and link JK are parallel. This is due to the
parallelogram made by points E, G, M and K. Link EK can be
placed arbitrary if the link is kept parallel to link GM. This par-
allelogram property is used to move link EK untill K coincides
with J, see Fig. 5. This movement results in a four-bar mecha-
nism CD, DE, EJ and JC.

The four-bar mechanism is calculated with the use of the
’Freudenstein Equation’ [14]. This equation is used to numeri-
cally calculate the two outputs (τ1,τ2) that correspond to the input
angle (ψ). On account of the fact that a four-bar mechanism will
always have two possible configurations for a given input angle.

The ’Freudenstein Equation’ is based on the principle of a
closed vector loop notation.

~CD+ ~DE = ~CJ+ ~JE (5)

The closed vector loop is divided into two components.

x : |CD|cosρ + |DE|cosψ = |CJ|cosτ + |JE|cosω (6)
y : |CD|sinρ + |DE|sinψ = |CJ|sinτ + |JE|sinω (7)

The reference frame is chosen equal to direction of vector ~CD
which results in ρ = π . Furthermore, with the use of the
’Pythagorean formula’ (cos2 ω + sin2 ω = 1) variable ω is elim-
inated. This results in the ’Freudenstein Equation’

R1 cosτ−R2 cosψ +R3 = cos(τ−ψ) (8)

where

R1 =
|CD|
|DE| (9)

R2 =
|CD|
|CJ| (10)

R3 =
|CD|2 + |CJ|2 + |DE|2−|JE|2

2|CJ||DE| (11)

ψ =2π−β . (12)

With the use of the tangent half-angle formulas Eq. 13 the
’Freudenstein Equation’ is rewritten to a quadratic formula.

z = tan
τ
2
, cosτ =

1− z2

1+ z2 , sinτ =
2z

1+ z2 (13)

τ is replaced with z according to the tangent half-angle formula.

R1
1− z2

1+ z2 −R2 cosψ +R3 =cosψ
1− z2

1+ z2 + sinψ
2z

1+ z2 (14)

Equation 14 is rewritten to a standard quadratic notation

az2 +bz+ c = 0 (15)

where

a =(R1 +1)cosψ +R3−R2 (16)
b =−2sinψ (17)
c =(R1−1)cosψ +R2 +R3. (18)
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The output τ is used to express the two angles ϕV and ϕr.

ϕr(β ) =arccos
|JE|2 + |CD|2−|JE|2

2|JE||CD| (19)

ϕV (β ) =π− τ (20)

The quadratic formula results in two solutions for the given four-
bar mechanism. So for every β there are two corresponding ϕV
and ϕr.

This model is used to calculate every position illustrated in
Fig. 4a. This in return is used to determine if the system can
adapt to its user. Additionally the mechanical potential energy in
the system is evaluated in section 4.4.

4.2 Kinematics
The first goal is to design an exoskeleton that fits all users.

With the use of the analytical model, three properties are evalu-
ated.

• Adapting to the P05-P95 norm.
• Range of motion.
• Relation between the system (α ,β ) and user (θ ,γ) angles.

The relation between the user angles and the system is important
for the actuation of the system.

To check the three properties, a parameter set is chosen and
is listed in Tab. 3. Figure 6 shows four plots of the analytical
model.

Figure 6a and 6b shows the P05 size user. The chosen pa-
rameter set and design is capable to fit the P05 user. Figure 6c
and 6d shows the P95 size user. With the same dimensions, the
P95 user fits the exoskeleton. Hence, the exoskeleton can adapt
to the P05-P95 norm.

The requirements state that the elbow must have a range of
motion [0 : π

2 ]. In Fig. 6a and 6c the γ = π
2 position is shown.

Figure 6b and 6d show the extended position γ = 0. This in-
dicates that the range of motion for γ is reached. The range of
motion for the shoulder is closely related to α . It can be con-
cluded that this design does not limit the range of motion of the
shoulder, so both requirements are met.

The difference between the system angles for the same user
angles is clearly visible in Fig. 6b and 6d. Therefore it is con-
cluded that the relation between θ , γ and α , β depends on the
size of the user.

It is found that the design fulfills the requirements for a wide
range of design parameters. There are a number of selection cri-
teria that can be used to fulfill the soft requirements.

• Movement of the shoulder (O) with respect to the base (A).
• Movement of the elbow (P) with respect to the exoskeleton

hinge (D).
• Design space under the lower arm.

0 0.2 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

(a) P05 in fully flexed position

0 0.2 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

(b) P05 in fully extended position

0 0.2 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

(c) P95 in fully flexed position

0 0.2 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

(d) P95 in fully extended position

FIGURE 6: Plots of the system based on the analytical model.
All values are in meters. The base point is located at (0,0). The
pink lines indicate the user. The blue and red lines shows the exo-
skeleton. The green line shows the spring inside the exoskeleton.
The black dot indicates the load.

• Range of β with respect to the required range of γ .
• Range of α with respect to the required range of θ .

A demonstrator is constructed to verify the results of the an-
alytic model. Section 5 will address the kinematic demonstrator
in more detail.

Optimization is used to fulfill the soft requirements. It is
chosen to focus on the spring gravity compensation of the sys-
tem. This is discussed in Section 6.

4.3 Force Analysis
The second design goal is to reduce the reaction force in the

human joint. Figure 7 displays an exploded view of the exo-
skeleton with the force directions. The reaction force Fr must be
lower then the specified 115 [N].

It is proven that the system can have equilibrium without
forces and moments in points O and P. The moments Mβ and Mα
are introduced to define the moments that need to be delivered
by actuators. The spring is excluded, since it is not needed for an
equilibrium.

The force and moment equilibria for each element are eval-
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TABLE 3: Parameters of analytical model and the demonstrator

Parameter Quantity Unit

|AD| 0.3 m

|AB| 0.049 m

|BI| 0.083 m

|CD| 0.06 m

|CJ| 0.09 m

|DH| 0.25 m

|DE| 0.05 m

|EF | 0.15 m

|EK| 0.075 m

|JK| 0.06 m

|JN| 0.25 m

y
x

F r
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F load
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x2F EKFCJ
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F D
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F load : x 2
F load : y2C

N

FIGURE 7: Free body diagram of the exoskeleton. The spring is
excluded. There are 4 main bodies numbered from 1 to 4 and 4
links. Body is 1 is the upper arm of the user. Body 2 is the lower
arm of the user and link JN of the exoskeleton. Body 3 is the
lower part of the exoskeleton and body 4 is the upper part of the
exoskeleton. The four links are BI, CJ, EK, and GM.

uated. In the 2D plane there are three equilibrium equations that
need to be fulfilled.

∑Fx∗ = 0, ∑Fy∗ = 0, ∑M = 0 (21)

Where x∗ and y∗ direction can be chosen per element if y∗ is
perpendicular to x∗.

Selecting element BI with y∗ is the longitudinal direction. A

link connected with two joints can only achieve equilibrium in
the y∗ direction, if the connected joints do not apply a moment.
A force in another direction or a moment does not result in equi-
librium. Therefore all links with two joint connections have a
force direction in there longitudinal direction as shown in Fig. 7.

The force and moment equilibria of body 1are evaluated.
The direction of the force in link BI is equal to its direction. No
force is present in point O as stated before. To achieve the two
force equilibria, Fr must be in the same direction as the link BI.
However, no moment equilibrium can be reached if Fr 6= 0.

From the previous statement it follows that Fr = 0. There are
three forces acting on body 2. The directions of the correspond-
ing forces are known. Setting y∗ in the longitudinal direction of
the links EK and GM results in the local frame of reference x2,
y2. Dividing the load force Fload into the x2 and y2 components
will result in FCJ as the following equations state.

~Fload:x2 · ~FEK =0 (22)
~Fload:x2 · ~FGM =0 (23)
~Fload:x2 · ~FCJ 6=0 (24)

Using the moment equilibrium and following the force equilib-
rium in the y2 direction leads to FEK and FGM .

There are three forces acting on body 3. The force FD must
be in the same direction as FEK and FGM . Mβ must be applied for
moment equilibrium.

Finally body 4 is evaluated. Body 4 transfers the forces FD,
FCJ to the environment. Mα is used for moment equilibrium.

The system can be in equilibrium while preventing a reac-
tion force in the elbow. There is one condition that needs to be
fulfilled.

~CJ× ~EK 6= 0 (25)

If this condition is not satisfied no force equilibrium of body
2 can be reached. This must be considered during design.

4.4 Energy Analysis
Using the kinematic model, the potential energy in the sys-

tem is assessed. If the potential energy is constant over the range
of motion, the system can be moved almost effortless [15]. A
helical spring inside the exoskeleton is proposed to keep the po-
tential energy fluctuation small. A helical extension spring is
chosen because it is widely available and has a high energy stor-
age density [16].

The gravitational potential energy of a mass Em only de-
pends on the relative height with respect to a chosen reference
[17]. In addition, elastic potential energy of a helical extension
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spring Ek depends on the spring stiffness k and the elongation of
the spring u.

Em(α,β ) =mgh (26)
Ek(β ) =1/2ku2 (27)

where g is the gravity field, m the mass and h the relative height.
The total potential energy in the system is the sum of ener-

gies

Ep =
n

∑
i=1

mighi +
m

∑
j=1

1/2k ju2
j (28)

where n is the amount of mass bodies in the system and m the
number of springs. Figure 8 shows the mechanical potential en-
ergy in the system.

Using the relationship between the potential energy and the
moment, the resulting moments are calculated [18].

Mθ =−∂Ep

∂θ
(29)

The combination of the potential energy and the moments give a
prediction of the system’s behavior. This can be used to design
an actuator for the system.

5 DEMONSTRATOR
A demonstrator is constructed to check if the system can

passively adapt to its user. Furthermore, the demonstrator is used
to verify the mathematical model. Table 3 lists the design pa-
rameters used for the demonstrator. The system is made out of
wood, aluminum and steel. For the connection to the user Velcro
is used.

The demonstrator consists out of two segments. These two
segments are connected in the out of plane direction. The dis-
tance between the segments is 0.12 [m].

5.1 Evaluation
Two wooden mock-ups which have the maximum and min-

imum dimensions as listed in Tab 1 where made. The mock-ups
represent the human bodies made by OP and PQ shown in Fig.
4. These mock-ups were used to verify if the kinematics allow
passive alignment. Furthermore the mock-ups are used to test the
range of motion in the 2D plane. Figure 9 shows the mock-ups
in the demonstrator.

With the chosen design parameters the exoskeleton does not
exceed the 0.12 [m] design space.

0
0.5

1
1.5

0.8
1

1.2
1.4

200

300

400

500

α [rad]β [rad]

E
p [J

]

FIGURE 8: The mechanical potential energy in the system cal-
culated with the analytical model. α and β are the angles of the
exoskeleton. The P05 sized user is modeled in this plot. The base
point Ay, as shown in Fig. 4 is 1 meter from the reference plane.
The load is chosen as 40 kilogram. Furthermore, the mass of the
exoskeleton is included and are estimated at mb = 1,5 kilogram
and ml = 2 kilogram.

Both the P05 and P95 mock-up fit in the demonstrator with-
out any adjustment. The requirement to adapt to its user is ful-
filled.

The photos in Fig. 9 show that the elbow does not reach
the required π

2 . This is because the elements which make up the
demonstrator are in the same plane and collide. So the range of
motion of the demonstrator is too limited to proved the required
range of motion for the user.

6 Optimization
The analytical model provides a basis to numerically opti-

mize the design parameters. The goal is to minimize the poten-
tial energy fluctuation in the system, since this will lead to an
energy efficient system. In addition, a constant moment is pre-
ferred since this leads to predictable behavior for the user.

The spring in the proposed design only affects Mβ . It is
chosen that the optimization focuses on β and α is set on π

4 . A
design vector s is chosen.

s = [|CJ|,k, lk0, |JK|, |DF |] (30)

A genetic algorithm (GA) is used to find sets of parameters
within design vector s that give a desired outcome. A GA tests
a large number of parameter sets and returns the parameter sets
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(a) P05 in fully flexed position

(b) P05 in fully extended position

(c) P95 in fully flexed position (d) P95 in fully extended position

FIGURE 9: Photos of the demonstrator with two wooden mock-
ups. The mock-up represents the user indicated by points O,P
and Q.

which is closest to the desired goal. The benefit of GA is that it
can cope with complex fitness functions. A drawback is that GA
can give a local minimum as outcome. As a result it is unknown
if the outcome is the absolute optimum.

A fitness function is formulated to achieve the optimization
goal. Equation 31 shows the fitness function.

min
s

(
λ1 · fMβ (s)+λ2 · fEp(s)

)
(31)

where

fMβ (s) =
∫ π

2

0

[
Mβ (s,β )− M̄β (s)

]2dβ (32)

fEp(s) =
∫ π

2

0

[
Ep(s,β )− Ēp(s)

]2dβ (33)

The function is constructed out of two sub functions. Sub func-
tion fMβ relates to the moment fluctuation. The sub function fEp

relates to the potential energy change in the system. M̄β and Ēp
are the mean values of the corresponding moment and potential
energy.

Minimizing the sub function fEp results in near constant po-
tential energy, which in result leads to an energy efficient system.
However, a minimal value of fEp can still contain large moment
fluctuations. Sub function fMβ effects the fluctuation of the mo-
ment. It is preferred to have a constant moment since this leads
to predictable system behavior for the user. Two weight factor
λ1, λ2 are to used combine these two sub functions.

There are two evaluation criteria used to indicate the perfor-
mance of the gravity compensation. Both evaluation criteria are
based on the moment Mopti. Mopti is the moment around β with
the optimized gravity compensation. In the evaluation criteria
Mβ ,0 indicated the moment around β without gravity compensa-
tion.

∆M =100− max |Mopti|−min |Mopti|
max |Mβ ,0|−min|Mβ ,0|

·100[%] (34)

∆E =100− max |Mopti|
max |Mβ ,0|

·100[%] (35)

Equation 35 indicates the reduction of the maximum slope in the
energy change which is the moment. If the potential energy is
constant ∆E = 100 %. ∆M shows the amount of moment fluc-
tuation reducing achieved. If the resulting moment is constant,
∆M = 100 %.

The potential energy in the system depends on the masses
in the system listed in Tab. 4. The begin design parameters are
chosen the same as the demonstrator listed in Tab. 3.

It is chosen to select the weight factor in so that the influence
of fEp and fMβ are near equal. The moment fluctuates around
30 [Nm] and the potential energy varies around 130 [J] before
optimization. The weight factor are set at λ1 = 4 and λ2 = 1.

Figure 10 shows the moments with and without gravity com-
pensation. The two reductions are ∆E = 98.8% and ∆M = 96.8%.
The corresponding parameter values from the optimization are
listed in Tab. 5. Figure 11 shows the system with the optimized
parameters.
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TABLE 4: Masses used for the optimization. The load mload is
based on a patient of 80 kilogram. For one arm the load is se-
lected 40 kilogram. The mass of the exoskeleton are estimated

Parameter Quantity Unit

ml 2 kg

mb 1.5 kg

mload 40 kg

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

20

40

60

80

100

120

M
β [N

m
]

β [rad]

FIGURE 10: Moment around β with the optimized gravity com-
pensation. The masses are listed in Tab. 4. For this plot α = π

4 .
The dashed line is the moment without gravity compensation
Mβ ,0. The solid line is the moment with the optimized gravity
compensation Mopti.

TABLE 5: Parameters output from the optimization.

Parameter Quantity Unit

|CJ| 0.0562 m

k 8531 N
m

Lk0 0.0143 m

|JK| 0.0502 m

|DF | 0.1828 m

0 0.1 0.2 0.3 0.4 0.5
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

y 
[m

]

x [m]

FIGURE 11: Plot of the design with the optimized parameters.
The green dashed line indicates the spring within the system.
The pink lines indicate the P05 sized user. The blue and red
lines shows the exoskeleton. The exoskeleton is connected to the
environment at the base point (0,0).

7 DISCUSSION
This section addresses a number of topics of the design

process. The design, the connection between the user and the
system, the optimization of the system and two DoF gravity
compensation are discussed. Finally recommendations for future
research and development are made.

7.1 Design
The current design has a connection hinge between the up-

per arm and the exoskeleton. The force analysis showed that
there is no force in the connecting link BI. The link BI is only
used to make a closed kinetic chain between the user and the
exoskeleton. If the user does not follow the movement of the
exoskeleton a reaction force in the shoulder, elbow and the con-
nection link BI will arise.

Removing this link results in an under constrained system.
A benefit of removing the connecting link BI is that the shoulder
can move freely. In addition, the chance of reaction forces in the
elbow is reduced. The angles of the user and the exoskeleton do
not depend on the user angles. This difference can be a drawback
for actuation and gravity compensation.

To design this exoskeleton within a 3D environment brings
some difficulties. The gravity compensation is design in the as-
sumption that the exoskeleton is alway underneath the users arm.
If the exoskeleton is not in line with the gravity field the exo-
skeleton will not work. To prevent the exoskeleton to move out
of line with the gravity field two solutions are proposed. One
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solution is to limit the range of motion of the user so the exo-
skeleton will stay upright. A second solution is to design a hinge
mechanism that allow the exoskeleton to be in the line of the
gravity field in depended of the position.

When the exoskeleton will be used, the loads lifted will vary.
Adjusting the gravity compensation is desired to maintain an en-
ergy efficient exoskeleton. This can be achieved by changing the
relative angle of the springs which results in a different energy
curve. Another approach is to use multiple springs which then
can be activated or deactivated. This will change the effective
stiffness of the system.

This project focuses on a lifting case. Increasing the range of
motion this design can assist the care providers in other demand-
ing tasks. In addition, this design can be used in various other
application fields which are demanding on the human body.

This exoskeleton design is the first elastic gravity compen-
sated design. Using springs an energy efficiency of over 90% is
reached. The unique combination of springs and fit shape leads
to a new field of exoskeletons.

7.2 Connection between user and system
In this paper no steps were taken into designing the connec-

tion between the user and the system. In the proposed system
the force of the load is applied to the user. Transferring the force
from the user to the system must be done through the skin. A
risk is present that the forces will damage the skin. In particular
shear forces can cause damage to the skin [19]. There is a rela-
tion between the duration and the amplitude of the force acting
on the skin

αP ·β t = c (36)

where P is the amplitude of the force in N/m2, t the duration of
the force in seconds and α , β , c are experimental constants. The
value of α , β and c vary by experiment [19].

In the presented lifting case the duration of the load (t) is
short which in result allows a greater load (P), nevertheless the
skin is a limiting factor. When using the system for high loads it
is preferred to transfer the load force directly to the system. This
results in an end-point manipulator, which has a different design
space then an exoskeleton.

7.3 Optimization
The optimization used in this paper focusses on the potential

energy in the system for gravity compensation. There are more
soft requirements like; a compact, light, cheap and simple system
with minimal movement restrictions. If these soft requirements
are quantified, they can be included in the fitness function. In
addition, selecting another design vector can be used to fulfill
the soft requirements.

The optimization in this paper is used to show gravity com-
pensation in the proposed design. To test the gravity compen-
sation with a demonstrator a number of issues must be solved.
It is hard to find a spring with the exact properties given by
the optimization. To overcome this issue the design vector can
be changed to optimize around an existing spring. Since the
spring is located in a parallelogram the effective stiffness can
be achieved by multiply springs. Furthermore, dimensional tol-
erance introduce variations to a demonstrator. To determine the
allowed tolerance, the robustness to variations of the design pa-
rameters must be analyzed.

Now a standard helical tension spring is modeled. Using
other types of springs, a different energy curve can be reached.
composite springs can be constructed in various shapes with dif-
ferent energy curves. Furthermore, composite springs can reach
a higher energy per mass storage. Designing the exoskeleton to-
gether with a composite spring can lead to a lighter, compact and
better preforming design.

7.4 Two degrees of freedom

The spring in the current exoskeleton design only influences
one degree of freedom. An exoskeleton that has gravity com-
pensation for both degrees of freedom needs to overcome two
difficulties. The upper part of the exoskeleton is not balanced
and the gravity compensation of the lower part depends on angle
α .

There are a number of ways to balance the upper part. One
solution is by repeating the working principle of the lower part to
the upper part of the exoskeleton. For the lower arm the gravita-
tion compensation needs to change according to α . A solution is
to change the length |CD| relative to α . The influence of |CD| to
the gravity compensation is sufficient to maintain a good moment
reduction.

7.5 Recommendations

To achieve a light compact system with good gravity com-
pensation properties it is recommended to investigate the use of
composite springs. Further research must indicate if the ability
to combine the spring and the rigid elements together, can lead to
a compliant mechanism. Compliant mechanisms have a number
of benefit over conventional mechanisms [20].

To use this exoskeleton design in other application fields,
further research is needed on the requirements bases on other
applications fields. For example, a car mechanic can use this
exoskeleton to lift heavy car parts over his head while working
underneath the car. This sets different requirements to the exo-
skeleton.
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8 CONCLUSION
This project had the goal to design a mechanical system for

the lower arm, which should fulfill two design goals. The first
goal was that the system fits every user without active adjust-
ment. The second goal was to reduce the reaction forces in the
user. Both goals have been met. In addition, a start was made for
gravity compensation using springs.

• A kinematic design has been proposed which easily fits the
stated range of users.
• The kinematic design removes reaction forces from the

body.
• A demonstrator was built and it was shown that it fits the

P05-P95 range of users.
• The demonstrator constructed did not achieve the required

range of motion of the elbow joint.
• Optimization showed that gravity compensation by use of a

spring is feasible.
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Appendix A

Concepts

A.1 Basic elements

Number: 1
Name: Link
Function: Make static connection between multiple points.
Graphical Representation:

Number: 2
Name: Joint
Function: Creates point of rotation between multiple body’s.
Graphical Representation:

Number: 3
Name: Linear Guide
Function: Translating DoF between to points.
Graphical Representation:

Number: 4
Name: Body Connection
Function: Connection between body segment and system.
Graphical Representation:

Number: 5
Name: Cable
Function: Transfers a pulling force between to points.

Flexible in all other directions.
Graphical Representation:
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Number: 6
Name: Pully
Function: Guiding a cable.
Graphical Representation:

Number: 7
Name: Tread spindel
Function: Transfer rotation motion to linear motion.
Graphical Representation:

Number: 8
Name: Flex-Rigid
Function: Same as 1 (Link) but can change position between points.

Transform from rigid body to flexible body and vise versa.
Graphical Representation:

Number: 9
Name: Foam
Function: Make contact between two surfaces by elastic deformation.
Graphical Representation:

Number: 10
Name: Foam-solid
Function: Same as 9 but can become a solid body.
Graphical Representation:

Number: 11
Name: Octoarm
Function: Make controllable curve (Paul Breedveld).
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Graphical Representation:

Number: 12
Name: Extension Spring
Function: Apply a force propositional to its elongation.
Graphical Representation:

Number: 13
Name: Torsion Spring
Function: Apply a force propositional to its rotation.
Graphical Representation:
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A.2 Concepts

The concepts which are evaluated.

(a) Concept I (b) Concept II

(c) Concept III (d) Concept IV

Figure A.1: Schematic representation of the first four concepts.
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(a) Concept V (b) Concept VI

(c) Concept VII (d) Concept VIII

Figure A.2: Schematic representation of concepts V to VIII.
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(a) Concept IX (b) Concept X

Figure A.3: Schematic representation of concepts IX to X.
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A.3 Evaluation

In this section the evaluation of the concepts given in the previous section are discussed.
First the number of basic elements is assessed and are listed in Tab. A.1.

Table A.1: Number of basic elements used in the concepts showed in Fig. A.1 - A.3.

Concept I II III IV V VI VII VIII IX X

Link 2 2 2 3 1 4 2 2 2 2
Joint 2 1 5 3 1 4 2 2 1
Linear Guide 1 2
Body Connection 2 2 4 2 2 2 2 2 2 4
Cable 4 1 1 12 2
Pulley 3 6
Thread Spindel 2
Octoarm 2
Extension spring 1
Rigid body 1 2

Total 14 7 11 8 7 11 24 8 7 9

For each basic element a weight function is assigned (Tab. A.2). The higher number are
less preferred then lower numbers.

Table A.2: Weight values used for evaluation.

Complex Mass Cost Size

Link 1 4 4 3
Joint 1 1 5 1
Linear Guide 4 3 7 4
Body Connection 2 2 5 4
Cable 1 1 3 1
Pulley 2 3 4 3
Thread Spindel 3 6 7 4
Octoarm 7 4 20 4
Extension spring 2 5 6 5
Rigid body 2 4 7 3
Total Weight factor 1 1 1 2
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Table A.3: Values form the valuation.

Concept I II III IV V VI VII VIII IX X

Amount of parts 14 7 11 8 7 11 24 8 7 9
Complex 22 15 15 10 11 13 24 12 15 17
Mass 31 21 21 19 19 25 36 22 18 29
Cost 59 37 53 37 35 49 64 42 44 47
Size 33 23 27 20 21 25 38 22 20 31

The best values are set on 1 the worst are 0. In this way a normalized grade is found. This
is add up to find the best concept.

Table A.4: The normalized values for the given property.

Concept I II III IV V VI VII VIII IX X

Amount of parts 0.4 1.0 0.6 0.9 1.0 0.6 0.0 0.9 1.0 0.8
Complex 0.3 0.6 0.6 1.0 0.9 0.8 0.0 0.9 0.6 0.5
Mass 0.4 0.8 0.8 0.9 0.9 0.6 0.0 0.8 1.0 0.4
Cost 0.4 0.9 0.4 0.9 1.0 0.5 0.0 0.8 0.7 0.6
Size 0.8 1.7 1.2 2.0 1.9 1.4 0.0 1.8 2.0 0.8
Type 2.0 0.0 2.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0
Total size 0.8 2.0 1.6 0.8 0.0 0.4 0.8 2.0 1.6 2.0
Total 5.1 7.0 7.2 6.5 5.7 4.0 2.8 7.2 6.9 5.1

There are five concepts with have a higher score then the rest. II, III, IV, VIII and IX.
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Appendix B

Four-bar calculations

This appendix discusses the calculation on a four-bar mechanism in more detail then the
paper. The ’Freudenstein Equation’1 is used is these equations.
Starting a vector loop over the four-bar mechanism is constructed (Fig. B.1). The connec-

tion between a and b is the origin (A). The vector loop as follows

AB +BC = AD +DC (B.1)

The above equation can be made for the x and y components. Link a is positioned in the
negative x direction, therefore θ = π

x : b cosα+ c cosϕ =a cos θ︸︷︷︸
=−1

+d cosβ (B.2)

y : b sinα+ c sinϕ =a sin θ︸︷︷︸
=0

+d sinβ (B.3)

Rewriting.

c cosϕ =− b cosα− a+ d cosβ (B.4)

c sinϕ =− b sinα+ d sinβ (B.5)

1A., Ghosal, The Freudenstein Equation: Desing of Four-Link Mechanisms, Resonance, Vol. 15, No. 8,
pp. 699-710, Bangalore, India, August 2010.
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Figure B.1: Schematic four-bar used for the calculation.
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Using the ’Pythagorean formula’ [cos2 ϕ+ sin2 ϕ = 1] the variable ϕ is eliminated.

c2 cos2 ϕ =[−b cosα− a+ d cosβ]2 (B.6)

c2 sin2 ϕ =[−b sinα+ d sinβ]2 (B.7)

Combing the above equations Eq. B.6 and Eq. B.7 result in;

c2 (cos2 ϕ+ sin2 ϕ)︸ ︷︷ ︸
=1

=[−b cosα− a+ d cosβ]2 + [−b sinα+ d sinβ]2 (B.8)

Determining the two square expressions of the right hand terms in Eq. B.8.

[−b cosα− a+ d cosβ]2 =b2 cos2 α+ 2ab cosα− 2bd cosα cosβ + d2 cos2 β

− 2ad cosβ + a2 (B.9)

[−b sinα+ d sinβ]2 =b2 sin2 α− 2bd sinα sinβ + d2 sin2 β (B.10)

Substituting equations B.9, B.10 into equation B.8.

c2 =b2 (cos2 α+ sin2 α)︸ ︷︷ ︸
=1

+d2 (cos2 β + sin2 β)︸ ︷︷ ︸
=1

+2ab cosα− 2ad cosβ

− 2bd(cosα cosβ + sinα sinβ) + a2 (B.11)

Having one equation with one output variable β the equation is written as the ’Freudenstein
equation’

a2 + b2 − c2 + d2

2bd
+
a

d
cosα− a

b
cosβ = cosα cosβ + sinα sinβ︸ ︷︷ ︸

=cos(α−β)

R1 cosα−R2 cosβ +R3 = cos(α− β) (B.12)

where

R1 =
a

d

R2 =
a

b

R3 =
a2 + b2 − c2 + d2

2bd
.

Equation B.12 is the ’Freudenstein equation’. Using the half tangent rules (Eq. B.13) Eq.
B.12 is rewritten to a exponential function.

x = tan
β

2
, cosβ =

1− x2
1 + x2

, sinβ =
2x

1 + x2
(B.13)

R1 cosα−R2 cosβ +R3 = cosα cosβ + sinα sinβ

R1 cosα−R2
1− x2
1 + x2

+R3 = cosα
1− x2
1 + x2

+ sinα
2x

1 + x2

R1 cosα+R3 =(cosα+R2)
1− x2
1 + x2

+ sinα
2x

1 + x2

(R1 cosα+R3)(1 + x2) =(cosα+R2)(1− x2) + 2x sinα

R1 cosα+R3 + (R1 cosφ+R3)x2 = cosα+R2 − (cosφ+R2)x2 + 2x sinα (B.14)

Equation B.14 is rewritten into a quadratic function.

[(R1 + 1) cosα+R3 +R2]x2 + [−2 sinα]x+ [(R1 − 1) cosα+R3 −R2] = 0 (B.15)
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Using the half-tan rules equation B.12 is now expression in a simple quadratic expression

āx2 + b̄x+ c̄ =0 (B.16)

where

ā =(R1 + 1) cosα+R3 +R2

b̄ =− 2 sinα

c̄ =(R1 − 1) cosα+R3 −R2

Using equations B.13 the new introduces variable x can be expressed in β

β1,2 = 2 arctanx1,2 (B.17)

where

x1,2 =
−b̄±

√
b̄2 − 4āc̄

2ā
. (B.18)
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Appendix C

Matlab code of the analytical
model

There are a number of files used to make the analytical model.

• Runner.m

• Energy cal.m

• Fourbar.m

• Fourbar2.m

• Plotter runner.m

1 tic
2 %% Clearing the workspace
3 clc
4 clear all
5 close all
6 %% Define value for the parameters
7 %Mass
8 Mass=struct('g',9.81,...
9 'EU',5,...

10 'EL',5,...
11 'EB',1,...
12 'AL',0,...
13 'AU',0,...
14 'Load',10);
15 %lenght
16 Length=struct('x0',0,'y0',1,...
17 'Lb',0.25,...
18 'Lu',0.45,...
19 'Ll',0.25,...
20 'Llow',0.297,...
21 'Lupp',0.295);
22 %Concections
23 Con=struct('V',0.09,...
24 'R',0.075,...
25 'omegaY',0.02,...
26 'omegaX',−0.02,...
27 'LV',0.06,...
28 'Lr1',0.05,...
29 'Lr1 ',0.06,...
30 'Lr2',0.10,...
31 'LT',0.05,...
32 'T',0.083,...
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33 'Load',0,...
34 '∆',0.1);
35

36 %spring
37 Spring=struct('k1',0*4.6079e+04,...
38 'L01',0.088,...
39 'PL1',0.2,...
40 'PB1',0.1,);
41

42 %Number of points in the plot in both directions
43 step=25;
44

45 Par=struct('Mass',Mass,...
46 'Spring',Spring,...
47 'Length',Length,...
48 'Con',Con,...
49 'step',step);
50 %% Range of motion
51 l range=linspace(0,pi/2,step);
52 u range=linspace(−pi/2,−pi/4,step);
53 ll range=repmat(l range,step,1);
54 uu range=repmat(u range',1,step);
55 %% Calculated the energy
56 [Em,Es,Ls,Pos]=energy cal(Par,ll range,uu range);
57 t=Em.EU+Em.EL+Em.EB+Em.AL+Em.AU+Em.Load+Es.V1+Es.TV1+Es.V2+Es.V3;
58 save Runner data.mat

1 function [Em,Es,Ls,Positie]=energy cal(Par,ELsigma,EUsigma)
2 %% Calculaed the value of the positions and energy of the exoskeleton
3 [phiV,phiR]=...
4 fourbar(Par.Con.Lr1,Par.Con.LV,Par.Con.V,Par.Con.R,ELsigma);
5 %angles
6 phi1=EUsigma;
7 phi2=ELsigma+EUsigma;
8 phi3=phi2+phiR;
9 phi4=phi1+phiV;

10 %positions
11 EU1=[Par.Length.x0,Par.Length.y0];
12 EU2x=EU1(1)+Par.Length.Lu*cos(phi1);
13 EU2y=EU1(2)+Par.Length.Lu*sin(phi1);
14

15 EUTx=EU1(1)+Par.Con.LT*cos(phi1);
16 EUTy=EU1(2)+Par.Con.LT*sin(phi1);
17

18 EL1x=EU2x;
19 EL1y=EU2y;
20 EL2x=EL1x+Par.Length.Ll*cos(phi2);
21 EL2y=EL1y+Par.Length.Ll*sin(phi2);
22

23 ELR1x=EL1x+Par.Con.Lr1*cos(phi2);
24 ELR1y=EL1y+Par.Con.Lr1*sin(phi2);
25 ELR2x=ELR1x+Par.Con.Lr2*cos(phi2);
26 ELR2y=ELR1y+Par.Con.Lr2*sin(phi2);
27

28 EBR1x=ELR1x+Par.Con.R*cos(phi3);
29 EBR1y=ELR1y+Par.Con.R*sin(phi3);
30 EBR2x=ELR2x+Par.Con.R*cos(phi3);
31 EBR2y=ELR2y+Par.Con.R*sin(phi3);
32

33 EB1x=EBR1x−Par.Con.Lr1 *cos(phi2);
34 EB1y=EBR1y−Par.Con.Lr1 *sin(phi2);
35 EB2x=EB1x+Par.Length.Lb*cos(phi2);
36 EB2y=EB1y+Par.Length.Lb*sin(phi2);
37

38 EUVx=EU2x−Par.Con.LV*cos(phi1);
39 EUVy=EU2y−Par.Con.LV*sin(phi1);
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40

41 EBVx=EUVx+Par.Con.V*cos(phi4);
42 EBVy=EUVy+Par.Con.V*sin(phi4);
43

44 AL1x=EB1x−Par.Con.omegaY*sin(phi2)+Par.Con.omegaX*cos(phi2);
45 AL1y=EB1y+Par.Con.omegaY*cos(phi2)+Par.Con.omegaX*sin(phi2);
46 AL2x=AL1x+Par.Length.Llow*cos(phi2);
47 AL2y=AL1y+Par.Length.Llow*sin(phi2);
48

49 Ldx=AL2x−Par.Con.Load*cos(phi2);
50 Ldy=AL2y−Par.Con.Load*sin(phi2);
51

52 Delta=(Par.Con.R*sin(phiR));
53

54 PS1x1=EL1x+Par.Spring.PL1*cos(phi2);
55 PS1y1=EL1y+Par.Spring.PL1*sin(phi2);
56 PS1x2=EB1x+Par.Spring.PB1*cos(phi2);
57 PS1y2=EB1y+Par.Spring.PB1*sin(phi2);
58

59 %Spring lenght
60 Lv1=sqrt((PS1x1−PS1x2).ˆ2+(PS1y1−PS1y2).ˆ2);
61 Uv1=Lv1−Par.Spring.L01;
62 Ls=struct('Lv1',Lv1,'Uv1',Uv1);
63 %% tussenstap
64 %Detimening value for the second four−bar mechanism.
65 x=(AL1x−EL1x);
66 y=(AL1y−EL1y);
67 lamda=sqrt(x.ˆ2+y.ˆ2);
68 alpha=(atan(y./x)−(phi1));
69 % atan y/x is the same for a positive and negastive x so the secting makes
70 % sure that a disticution is made.
71 test=find(x>0);
72 sizetest=size(test);
73 if sizetest(1) == 0
74 alpha=pi+alpha;
75 elseif sizetest(1) == Par.step
76 alpha=alpha+pi;
77 else
78 Trans=find(x<0);
79 alpha(test)=(alpha(test)−pi);
80 alpha=pi−alpha;
81 end
82 TtoV=(Par.Length.Lu−Par.Con.LT);
83 %% Calculaed the value of the positions and energy of the user
84 [phiT,Ephi,error2]=...
85 fourbar(lamda,TtoV,Par.Con.T,Par.Length.Lupp,(alpha+pi));
86 phi5=phi1+phiT;
87 AUTx=EUTx+Par.Con.T*cos(phi5);
88 AUTy=EUTy+Par.Con.T*sin(phi5);
89 AU1x=AUTx;
90 AU1y=AUTy;
91

92 X=(AL1x−AU1x);
93 Y=(AU1y−AL1y);
94 AUnu=atan(X./Y)−pi/2;
95 phi6=EUsigma+AUnu;
96 AU2x=AU1x+Par.Length.Lupp*cos(AUnu);
97 AU2y=AU1y+Par.Length.Lupp*sin(AUnu);
98 %% Step to calaculet the resulting moment at the human elbow
99 epson=−AUnu+phi2;

100 %% Setting all the calculated data in one structe array.
101 Positie=struct('EU1',EU1,...);
102 'EU2x',EU2x,'EU2y',EU2y,...
103 'EUTx',EUTx,'EUTy',EUTy,...
104 'EL1x',EL1x,'EL1y',EL1y,...
105 'EL2x',EL2x,'EL2y',EL2y,...
106 'ELR1x',ELR1x,'ELR1y',ELR1y,'ELR2x',ELR2x,'ELR2y',ELR2y,...
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107 'EBR1x',EBR1x,'EBR1y',EBR1y,'EBR2x',EBR2x,'EBR2y',EBR2y,...
108 'EB1x',EB1x,'EB1y',EB1y,...
109 'EB2x',EB2x,'EB2y',EB2y,...
110 'EUVx',EUVx,'EUVy',EUVy,...
111 'EBVx',EBVx,'EBVy',EBVy,...
112 'AL1x',AL1x,'AL1y',AL1y,...
113 'AL2x',AL2x,'AL2y',AL2y,...
114 'AUTx',AUTx,'AUTy',AUTy,...
115 'AU1x',AU1x,'AU1y',AU1y,...
116 'AU2x',AU2x,'AU2y',AU2y,...
117 'Ldx',Ldx,'Ldy',Ldy,...
118 'phiR',phiR,...
119 'Ephi',Ephi,...
120 'phiV',phiV,...
121 'Lv1',Lv1,'Lv3',Lv3,...
122 'PS1x1',PS1x1,'PS1y1',PS1y1,'PS1x2',PS1x2,'PS1y2',PS1y2,...
123 'Delta',Delta,'alpha',alpha,'x',x,'y',y,'phiT',phiT,'AUnu',AUnu,...
124 'phi2',phi2,'epson',epson,'error',error,'phi1',phi1,...
125 'phi3',phi3,'phi4',phi4,'phi5',phi5);
126 %% Defining the potential energy of the exoskeleton
127 energyEU=Par.Mass.g*Par.Mass.EU*(EU1(2)+0.5*Par.Length.Lu*sin(phi1));
128 energyEL=Par.Mass.g*Par.Mass.EL*(EL1y+0.5*Par.Length.Ll*sin(phi2));
129 energyEB=Par.Mass.g*Par.Mass.EB*(EB1y+0.5*Par.Length.Lb*sin(phi2));
130 energyAL=Par.Mass.g*Par.Mass.AL*(AL1y+0.5*Par.Length.Llow*sin(phi2));
131 energyAU=Par.Mass.g*Par.Mass.AU*(AUTy+0.5*Par.Length.Lupp*sin(phi6));
132 energyLd=Par.Mass.g*Ldy*Par.Mass.Load;
133 Em=struct('EU',energyEU,'EL',energyEL,'EB',energyEB,'AL',energyAL,...
134 'AU',energyAU,'Load',energyLd);
135 %spring
136 energyV1=0.5*Par.Spring.k1*Uv1.ˆ2;
137 Es=struct('V1',energyV1));

1 function [phiV,phiR] = fourbar(a,b,c,d,beta)
2 phi=2*pi−beta;
3 R1=a./d; R2=a./b; R3=(a.ˆ2+b.ˆ2−c.ˆ2+d.ˆ2)./(2.*b.*d);
4 A=(1−R2).*cos(phi)+R3−R1;
5 B=−sin(phi)*2;
6 C=−(1+R2).*cos(phi)+R3+R1;
7 x= (−B−sqrt(B.ˆ2−4.*A.*C))./(2.*A);
8 phiV=pi−atan(x)*2;
9 lamda=(b.*cos(phiV)−a).ˆ2+(b*sin(phiV)).ˆ2;

10 phiR=acos((c.ˆ2+d.ˆ2−lamda)./(2*c.*d));

1 function [phiV,phiR] = fourbar2(a,b,c,d,beta)
2 phi=2*pi−beta;
3 R1=a./d; R2=a./b; R3=(a.ˆ2+b.ˆ2−c.ˆ2+d.ˆ2)./(2.*b.*d);
4 A=(1−R2).*cos(phi)+R3−R1;
5 B=−sin(phi)*2;
6 C=−(1+R2).*cos(phi)+R3+R1;
7 x= (−B−sqrt(B.ˆ2−4.*A.*C))./(2.*A);
8 phiV=pi−atan(x)*2;
9 lamda=(b.*cos(phiV)−a).ˆ2+(b*sin(phiV)).ˆ2;

10 phiR=acos((c.ˆ2+d.ˆ2−lamda)./(2*c.*d));
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Appendix D

Force analysis

Figure D.1 shows an exploded view of the design. Figure D.2 shows all the points used to
define the positions and lengths. It is addressed in the paper that there are no forces in
points O and P . This implies that there are no force on body 1.
Body 2 has four forces acting on it where the Fload is know.

Fload:x2 = Fload sin θ (D.1)

Fload:y2 = Fload cos θ (D.2)

Addressing the forces in the x2 direction.

∑
Fx2 = 0 (D.3)

FV :x2 = Fload:x2 (D.4)

bx = −FV :x2
cos θ2 (D.5)

by = −FV :x2
sin θ2 (D.6)

Calculating the FV and FV :y2 a set or linear equations is used (see Fig. D.3). ϕV :g is the
ϕV with respect to the global reference plane.

x = A−1b (D.7)
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Figure D.1: Free body diagram of the design without the spring.
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Figure D.2: Schematic representation of the final concept with all points indicated.

where

A =

[
cosϕV :g − cos θ2
sinϕV :g − sin θ2

]
(D.8)

b =

[
−FV :x2

cos θ2
−FV :x2

sin θ2

]
(D.9)

x =

[
FV
FV :y2

]
(D.10)

Selecting the moment around point K.
∑

MK =0 (D.11)

FV :y2 · |JK|+ Fr2 · |KM |+ Fload:y2 · |JQ| =0 (D.12)

−FV :y2 · |JK| − Fload:y2·|JQ|
|KM | =Fr2 (D.13)

Taking the sum of all froces in the y2 direction the last force can be calculated.
∑

Fy2 =0 (D.14)

FV :y2 + Fr1 + Fr2 + Fload:y2 =0 (D.15)

−FV :y2 − Fr2 − Fload:y2 =Fr1 (D.16)

There are three forces and one moment (Mβ) acting on body 3.
∑

Fy2 =0 (D.17)

FD + Fr1 + Fr2 =0 (D.18)

−Fr1 − Fr2 =FD (D.19)

To find a moment equilibrium Mβ must counteract the moment exerted by Fr1 and Fr2. To
determine the resulting moment the local force vector perpendicular to the body must be
calculated.

Fr1:y =Fr1 cosϕr (D.20)

Fr2:y =Fr2 cosϕr (D.21)

With the two acting force the moment is calculated around point D.
∑

MD =0 (D.22)

Fr1:y · |DE|+ Fr2:y · |DF |+Mβ =0 (D.23)

−Fr1:y · |DE| − Fr2:y · |DF | =Mβ (D.24)
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Figure D.3: Detailed schematic representation of body 1 to illustrated the calculation of FV

Body 4 is the last body where the equilibrium must be calculated.

FV :y4 =FV sinϕV (D.25)

FV :x4 =FV cosϕV (D.26)

To determine the longitudinal and perpendicular force of FD the relative angle must be
expressed (ϕD).

ϕD =β + ϕr (D.27)

FD:y4
=FD sinϕD (D.28)

FD:x4
=FD cosϕD (D.29)

The three equilibrium are calculated. The forces is the y4 direction.

∑
Fy4

=0 (D.30)

FD:y4
+ FV :y4

+ Fa:y4
=0 (D.31)

−FD:y4
− FV :y4

=Fa:y4
(D.32)

The Forces in the x4 direction.

∑
Fx4

=0 (D.33)

FD:x4
+ FV :x4

+ Fa:x4
=0 (D.34)

−FD:x4
− FV :x4

=Fa:x4
(D.35)

The moment around point a.

∑
Ma =0 (D.36)

Mβ + FV :y4
· |AC|+ FD:y4

· |AD|+Mα =0 (D.37)

−FV :y4
· |AC| − FD:y4

· |AD| −Mα =Mβ (D.38)
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Appendix E

Prototype

This appendix addresses the demonstrator in more detail.

E.1 Dimension

The design parameters are listed in Tab. F.3. There are two types of joints created.

Table E.1: Parameters of the demonstrator

Parameter Quantity Unit Material Size Unit
|AD| 0.3 m wood 0.021×0.029 m
|AB| 0.049 m - - -
|BI| 0.083 m aluminium 0.003×0.026 m
|CD| 0.06 m - - -
|CJ | 0.09 m aluminium 0.003×0.026 m
|DH| 0.25 m wood 0.021×0.029 m
|DE| 0.05 m - - -
|EF | 0.15 m - - -
|EK| 0.075 m aluminium 0.003×0.026 m
|JK| 0.06 m - - -
|JN | 0.25 m steel 0.004×0.02 m

Table E.2: Bolts used as joints

Joints B, C, D, E, G J , K, M

M8 × 40 [mm] M5 × 16 [mm]
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E.2 Photos

Figure E.1: Photo of the demonstrator in fully flexed position.

Figure E.2: Photo of the demonstrator in between extension and flex position.
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Figure E.3: Photo of the demonstrator in fully extended position.

Figure E.4: Photo of the demonstrator.
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Figure E.5: Photo of the demonstrator the main joint of the exoskeleton.
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Appendix F

Optimalisation of test setup

To achieve a good gravity compensation an optimization is done. The following design vector
is chosen. The corresponding points are indicated in Fig F.1. Table F.1 list the design space
for the design vector.

s = [|CJ |, k, lk0, |JK|, |DF |] (F.1)

To achieve the optimization goal a fitness function is formulated. Equation F.2 shows the
fitness function. The moment Mβ is acting on the joint indicated by point D. M̄β and Ēp
are the main values of the corresponding moment and potential energy.

min
s

(
λ1 · fMβ

(s) + λ2 · fEp(s)
)

(F.2)

where

fMβ
(s) =

∫ π
2

0

[
Mβ(s, β)− M̄β(s)

]2
dβ (F.3)

fEp(s) =

∫ π
2

0

[
Ep(s, β)− Ēp(s)

]2
dβ (F.4)

The function is constructed out of two sub function. Sub function fMβ
relates to the moment

Mβ . The sub function fEp relate to the potential energy change in the system. Two weight
factors λ1, λ2 are used combine these sub functions.
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Figure F.1: Schematic representation of the final concept with all points indicated.

37



Table F.1: The design space for the design vector.

Parameter Minimum Maximum Unit

|CJ | 0.03 0.09 m
k 1000 10000 N

m
Lk0 0 0.12 m
|JK| 0.05 0.07 m
|DF | 0 0.25 m

Table F.2: Masses used for the optimization

Parameter Quantity Unit

ml 2 kg
mb 1.5 kg
mload 10 kg

There are two evaluation criteria used which are based on the moment with the optimized
gravity compensation Mopti.

∆E =100− max |Mopti|
max |Mβ |

· 100[%] (F.5)

∆M =100− max |Mopti| −min |Mopti|
max |Mβ | −min|Mβ |

· 100[%] (F.6)

The potential energy in the system depends on the masses of the system. The masses were
estimated and are listed in Tab. F.2. The design parameters are chosen and are listed in
Tab. F.3.

Table F.3: Parameters of analytical model and the demonstrator

Parameter Quantity Unit

|AD| 0.3 m
|AB| 0.049 m
|BI| 0.083 m
|CD| 0.06 m
|CJ | 0.09 m
|DH| 0.25 m
|DE| 0.05 m
|EF | 0.15 m
|EK| 0.075 m
|JK| 0.06 m
|JN | 0.25 m

38



Table F.4: Parameters output from the optimization for different values for λ1 and λ2.

λ1 = 3 λ2 = 1
Parameter Quantity Unit

|CJ | 0.0522 m
k 2392 N

m
Lk0 0.0469 m
|JK| 0.0505 m
|DF | 0.2108 m

∆E 96 %
∆M 90 %

λ1 = 1 λ2 = 3
Parameter Quantity Unit

|CJ | 0.0505 m
k 2666 N

m
Lk0 0.0435 m
|JK| 0.0512 m
|DF | 0.189 m

∆E 95 %
∆M 83 %

λ1 = 1 λ2 = 0
Parameter Quantity Unit

|CJ | 0.039 m
k 6202 N

m
Lk0 0.0488 m
|JK| 0.0518 m
|DF | 0.0673 m

∆E 58 %
∆M 96 %

λ1 = 0 λ2 = 1
Parameter Quantity Unit

|CJ | 0.0467 m
k 3222 N

m
Lk0 0.027 m
|JK| 0.0548 m
|DF | 0.1380 m

∆E 92 %
∆M 64 %

Figure F.2 shows the system without gravity compensation. Figures F.3 to F.6 show the
energy and moment with gravity compensation optimized with the corresponding λ1 and λ2
values. Table F.4 lists the parameters and the achieved ∆E and ∆M .
The results show that λ1 results in a focus on ∆M and λ2 results is a focus on ∆E . Choosing
the weight factors so that the influence of fMβ

and fEp is near equal is the most preferred.
This results in the lowest spring constant and the best moment reduction and moment
fluctuation reduction.
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Figure F.2: The energy and the moment around β.
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Figure F.3: The energy and the moment around β.
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Figure F.4: The energy and the moment around β.
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Figure F.5: The energy and the moment around β.
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Figure F.6: The energy and the moment around β.

F.1 Matlab code

There are two main .m files that define the optimization.

• Runner opti.m
This file defines the optimization.

• Opti function.m
This file defines the finiteness function.

1 %% Runner opti.m
2 close all
3 clear all
4 clc
5 %% Defining the parameters
6 global Mass Length step l range u range
7 %Mass in [kg]
8 Mass=struct('g',9.81,...
9 'EU',3,...

10 'EL',2,...
11 'EB',1.5,...
12 'AL',0,...
13 'AU',0,...
14 'Load',40);
15 %lenght in [m]
16 Length=struct('x0',0,'y0',0.6,...
17 'EB',0.25,...
18 'EU',0.3,...
19 'EL',0.25,...
20 'AL',0.297,...
21 'AU',0.295);
22

23 step=50;
24 l range=linspace(0,pi/2,step);
25 u range=linspace(−pi/4,−pi/4,step);
26 %% Setting for the optimazation
27 xl=[0.03 1000 0 0.05 0];
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28 xu=[0.09 10000 0.12 0.07 0.25];
29 numvar=5;
30

31 options = gaoptimset('PopulationSize',575,'TimeLimit',60,...
32 'Generations',50,'PlotFcns',@gaplotbestf);
33

34 [x,fval,exit,output] = ga(@Opti function,numvar,[],[],[],[],xl,xu,[],options);
35 save x opti4.mat
36 Runner

1 %% Opti function.m
2 function f=Opti function(x)
3 %% Define value for the parameters
4 global Mass Length step l range u range
5 %spring
6 Spring=struct('k1',x(2),...
7 'L01',x(3),...
8 'PL1',x(5),...
9 'PB1',0);

10

11 Con=struct('V',x(1),...
12 'R',0.075,...
13 'omega',0.02,...
14 'omegaX',−0.03,...
15 'EUV1',0.06,...
16 'ELR1',0.05,...
17 'EBR1',x(4),...
18 'EBR2',0.05,...
19 'EUTL',0.05,...
20 'T',0.083,...
21 'Load',0,...
22 '∆',0.1);
23

24 Par=struct('Mass',Mass,...
25 'Spring',Spring,...
26 'Length',Length,...
27 'Con',Con,...
28 'step',step);
29 %% Calculated the energy
30 [Em,Es,l,Pos]=energy cal(Par,l range,u range);
31 t=Em.EU+Em.EL+Em.EB+Em.AL+Em.AU+Em.Load+Es.V1;
32 td=diff(t',1);
33 Betad=diff(l range',1);
34 Mbeta=td./Betad;
35 Mmean=mean(mean(Mbeta));
36 Z=Mbeta−Mmean;
37 t mean=mean(mean(t));
38 Z1=(t−t mean);
39 f=4*mean(mean(Z.ˆ2))+1*mean(mean(Z1.ˆ2));
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Appendix G

Two degree of freedom gravity
compensation

There are two main aspects for two degree of freedom gravity compensation

• In the current design there is no gravity compensation for the upper part. The design
must include a way to balance the system around the angle α

• The proposed gravity compensation only work for one value of α. The proposed design
must be altered to include the angle α.

y

x


C
D

Figure G.1: Schematic representation of 2 degree of freedom gravity compensation.

Figure G.1 shows an additional linkage mechanism. This mechanism used a spring to com-
pensate the gravity for DoF α. The working principle of the system is equal to the lower
arm.
Adjusting |CD| with a predetermined relation to α will lead to 2 DoF gravity compensation.
The optimization used is adjusted to find the corresponding |CD| for each α. This is done
by repeating a optimization loop. The range of α is set is a number of steps. For each
step the optimal |CD| is determined for the full range of β. Figure G.2 shows the resulting
relationship.
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Figure G.2: The relationship between the length |CD| and the angle α

45


