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Finite Element Modeling of Arthropod Exoskeleton

Abstract

by

William Clay Flannigan

Confocal microscopy methods have been employed to image the metathoracic

trochanter, a small exoskeleton segment between the coxa and femur, of an adult

cockroach, Periplaneta americana.  The confocal images represent planar sections

through the exoskeleton of the trochanter.  Specialized software was implemented to

convert the section images into a complete three-dimensional geometric model of the

trochanter.  

The raster image data of the confocal model was exported in a vector file

format.  Custom software was developed to resample the vector data and to

automatically create a finite element mesh.  The resulting mesh contained first-order,

three-dimensional, triangular plate elements and also encoded data for element

thicknesses.

The Algor finite element package was used to analyze the model under the

conditions of several biologically pertinent experiments.  Special emphasis was placed
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on the strain analysis of the four groups of campaniform sensilla on the trochanter. 

These sensory organs respond to strains in the exoskeleton and are instrumental in the

control of natural walking in insects.

The results were compared to data from biological experiments which

confirmed hypotheses and answered questions that have been difficult to determine

experimentally on the animal.  Functional differentiation both between groups and

within groups of sensilla was observed.  Further evidence that strain measurements

are used in positive feedback control of the trochanteral extensor muscles was

discovered.  The structure of the trochanter was analyzed in the context of the

function of the campaniform sensilla.  Previously undescribed quantitative stress and

strain data for insect cuticle was recorded. 
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Chapter I

Introduction

1.1 Purpose

Biological organisms have been evolving for millions of years to overcome the

challenges of life in an uncertain and changing environment.  Insects are unique in the

animal kingdom in their number and diversity.  They have adapted to almost every

environmental niche and many are extremely adept locomotors.  This observation has

led many investigators to study the behavior and physiology of insects and

arthropods in general.

The American Cockroach, Periplaneta americana, is one the champions in

locomotion ability, being able to traverse walls, ceilings, and rough terrain at up to 24

steps per second [Delcomyn, 1971].  Its walking behavior and associated neural

circuits are some of the most widely investigated in the invertebrate world, yet many

questions remained unanswered as to how individual influences from sense organs

affect leg coordination.

Answering these questions will lead to a better understanding of arthropod

locomotion and nervous systems in general, but from an engineer’s viewpoint there

are other benefits to these investigations.  Roboticists have recently begun looking
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towards biological research to gain insight for the design and control of mobile robots. 

Insects such as cockroaches have remarkable locomotion capabilities when compared

with the most advanced walking robots.  By extracting control and biomechanical

principles from insects and applying them to solve locomotion problems, more agile

walking robots are being designed to traverse hazardous and even extraterrestrial

environments.

This work has goals founded in both of these fields—to further our

understanding of insect physiology and to advance the development of walking

vehicles.  The sensory capabilities of insects are relatively coarse compared to typical

robotic sensors, yet insects are capable of incredible navigation feats.  This suggests

that insects’ means of incorporating relatively simple proprioceptive and

exteroceptive (internal and external sensory) information into their behavior are

successful and warrant investigation by biologists and roboticist alike.

The trochanteral campaniform sensilla are only a small part of an insect’s vast

sensory array, but it has been shown that campaniform sensilla play a major role in

the motor activity of insects [Pearson, 1972; Zill and Moran, 1981b].  Additionally,

in the trochanter, the largest muscles in the leg have their insertions [Alsop, 1978],

and four groups of campaniform sensilla are present [Pringle, 1938b].  Because of this,

researchers believe this to be a high stress area with strong influences on locomotion. 

The complex geometry and loading conditions of the trochanter have thus far
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prevented a comprehensive study of the trochanteral campaniform sensilla [Zill,

1990].  The use of computer modeling and finite element analysis in this work have

proven to be a powerful method for describing the physiology of the trochanteral

campaniform sensilla.

1.2 Perspective

This work was performed in R. Quinn’s Biorobotics Lab in the Department of

Mechanical and Aerospace Engineering.  The larger Biologically Inspired Research

Program at CWRU also involves R. Beer’s Lab in the Department of  Computer

Science, and R. Ritzmann’s and H. Chiel’s Labs in the Department of Biology and

Neuroscience. The group has also had the opportunity to work closely with S. Zill’s

Laboratory in the Department of Anatomy, Cell, and Neurobiology, at the Marshall

University School of Medicine.  One of the ongoing goals of this project and the

primary goal of the Biorobotics Lab is to build better robots through understanding

and application of biological principles.

This goal encompasses a variety of research in many fields.  Basic scientific

research is performed in the Ritzmann Lab at CWRU and the Zill Lab at Marshall

University.  This work includes behavioral and physiological studies on a variety of

animals including the Periplaneta americana.  The engineering aspects include the use

of computer modeling and simulation of animals and robots.  Using these tools, robot
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locomotion controllers have been developed and tested.  Ultimately, the controllers

are applied to biologically-based legged robots.  The work described in this thesis falls

in the transition between the biological research and the engineering design and

analysis.

An attempt has been made to keep the discussions in this thesis at a level

where both biologists and engineers with only a minimal background in the converse

field can follow the reasoning.  Hopefully, this has been accomplished without

eliminating important details or creating a document that is less useful to either fields.

1.3 Group History

At CWRU, the biologically inspired robotics work began with the Artificial

Insect Project [Beer, 1990] in which a simulated hexapod was controlled using a neural

network.  The controller was based on experimental studies of the cockroach nervous

system [Pearson et al., 1973].  It had the ability to wander, follow edges, look for

food, and eat.  The locomotion controller was particularly interesting and its success

led to the formation of the Biologically Inspired Robotics Group and the Biorobotics

Lab.

The Biorobotics Lab’s first robot, Robot I, shown in figure 1.1, was a hexapod

with two degrees of freedom (DOF) per leg.  It was capable of flat terrain, straight line

motion in a continuum of insect-like gaits with the implementation of the neural
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network controller developed in the Artificial Insect Project [Quinn and Espenschied,

1993; Beer et al., 1992].  Studies showed that the controller was robust to lesions

[Chiel et al., 1992].

Figure 1.1 Robot I

The lab’s next hexapod, Robot II, figure 1.2, addressed several of the short

comings of Robot I.  Each leg of the robot had three rotational DOF which permitted

turning and rough terrain locomotion.  The gait controller for this robot [Espenschied

et al., 1993] was not a neural network, but instead was based on inter-leg influences

that are thought to be responsible for the leg coordination of the stick insect [Cruse,

1990].  In addition, localized leg reflexes were added that permitted navigation over
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uneven, unstable, and partially missing terrain [Espenschied et al., 1996].

Figure 1.2 Robot II

While Robot II displayed exceptional rough terrain performance, it suffered

from the curse of most electric motor actuated mobile robots: slowness.  One answer

to this problem is the current hexapod robot in development, Robot III, shown in

figure 1.3.  It is believed that by tieing the mechanical design and control strategy very

closely to that of the animal, great advances in performance can be realized.  Robot

III’s mechanical design is based directly on data gathered in the Ritzmann Lab on the

Death-Head Cockroach, Blaberous discoidalis [Watson and Ritzmann, 1998a; 1998b].

Muscle-like pneumatic actuators are used to actuate the 24 DOF hexapod [Nelson et
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al., 1997].  Initial posture control studies have shown great promise for this approach

[Nelson and Quinn, 1998].

Figure 1.3 Robot III

The Biorobotics Lab has also had the opportunity to work with K2T inc. of

Duquesne, PA on legged robots.  K2T developed an autonomous crab-like robot,

figure 1.4,  for the purpose of removing and disposing military mines and unexploded

munitions [Flannigan et al., 1998].  The robot has eight two DOF legs which are

attached to two vertically mounted frames.  The robot turns by rotating the two

frames with respect to each other.  It’s biologically-based locomotion controller was
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developed at CWRU using simulation tools and is based partly on Robot II’s

locomotion controller.  

Figure 1.4 K2T Demining Robot

The Ritzmann Laboratory in the Biology Department of CWRU has worked

closely with the Biorobotics Laboratory from its inception.  Dr. Ritzmann’s research

interests include neural integration of sensory data in the control of insect locomotion.

He has extensively studied the neural organization of the cockroach escape response

[Ritzmann, 1993].  This system is an excellent example of how arthropod nervous

systems integrate complex sensory data and incorporate that information into

locomotive behavior. 
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In addition, the Ritzmann Laboratory has performed studies on neurological

control of insect walking, and running [Watson and Ritzmann, 1998a; 1998b]. 

Through the use of high speed video to extract joint kinematic data and concurrent

electrophysiological recordings, they have been able to gain an understanding of how

neural signals direct muscle contractions and movement during real locomotion.  This

data has been invaluable in the mechanical design and controller development for

Robot III.

The Biologically Inspired Robotics Group has also had the pleasure of

working with the Zill Laboratory in the Department of Anatomy, Cell and

Neurobiology, at the Marshall University School of Medicine.  Dr. Zill has been at

the forefront of arthropod mechanoreceptor research for the past two decades.  His

interests include campaniform sensilla research which is highlighted by the influential

work on tibial campaniform sensilla and their effect on cockroach walking [Zill and

Moran, 1981a; Zill et al., 1981; Zill and Moran, 1981b].  Zill has experience with

most of the sense organs found in insect legs and the neural circuitry innervating them.

He has performed experiments and documented mechanoreceptor’s effects on reflexes

[Zill, 1990], posture [Zill 1982], and walking [Zill and Seyfarth, 1996] of arthropods.

The Zill Laboratory has been involved in all of the biological studies for this

work.  This includes the confocal imaging and subsequent model constructions.  In

addition, many anatomical studies were performed to gather data for model details and
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to confirm the model’s accuracy.  The Zill Laboratory also performed several

physiological experiments [DiCaprio et al., 1997] which are used for direct correlation

between these results and the insect.



Chapter II 

Biological Background

2.1 Cockroach Anatomy

The insect has three distinct body regions—head, thorax, and abdomen.  It is

postulated that all the segments once had walking appendages, but after years of

evolution, there only remain six walking legs on the thorax [Alsop, 1978].  These legs

are designated by the three segments of the thorax—pro (front), meso (middle), and

meta (rear).

The three pairs of insect legs may be similar in form and function as in the

beetle [Delcomyn et al., 1996] or they may be specialized as is the case with the

cockroach.  The prothoracic legs of the cockroach are small and highly mobile and are

used primarily as sensing appendages to find foot holds and monitor the environment.

The mesothoracic legs support much of the body weight and are important for

controlling the pitch of the body for climbing.  The metathoracic legs are the largest

and have the least flexibility of the three pairs.  They provide much of the forward

propulsive force for walking and running [Snodgrass, 1965; Full et al., 1991].  This

study concentrates on the metathoracic leg.

The cockroach leg, shown in figure 2.1, has five major divisions.  Working
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from the thorax distally they are: the coxa, the trochanter, the femur, the tibia, and the

tarsus.  Most of the joint articulations are about two hinge joints (condyles).  The

coxa attaches to the trochanter with one condyle on each side (anterior and posterior)

of the trochanter, slightly askew with the plane of the coxa [Snodgrass, 1965], figure

2.2.  The femoral-trochanteral joint is often considered fused [Delcomyn et al., 1996],

but in fact, small movements due occur along a hinge-like joint supported by two

condyles on the anterior side of the trochanter [Alsop, 1978; Snodgrass, 1965].  This

joint is also the location of autotomy where the animal will separate its leg if trapped

or damaged [Pringle, 1938b].  It is interesting to note that the line of action of the

trochanteral-femoral joint is oblique to that of the coxal-trochanteral joint which

allows the large moments created by the muscles in the coxa to be transmitted to the

femur by using the strength of the exoskeleton to transmit the force rather than

musculature.  The femoral-tibial joint is a one DOF hinge joint, and the tibial-tarsal

joint is flexible in three rotations [Full and Ahn, 1995].  The tarsus itself has flexibility

between its segments due to elastic members.  It’s segments also have one active DOF

that enables the claw to be retracted.
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Figure 2.1 Cockroach Leg Segments
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Figure 2.2 Trochanter Photomicrograph

Biologists are in some disagreement on the musculature of the trochanter in

terms of its functional differentiation.  Alsop [1978] chose a narrow morphological

view and identified 26 different muscles inserting on the metathoracic trochanter.  For

this work, the description by Snodgrass [1965] will be used and is shown in his
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drawing in figure 2.3.  The six numbered elements are actually the muscle apodemes

(tendons) that the muscle groups insert onto.  In fact, these apodemes do not insert

directly on the exoskeleton but instead on elastic membranes that distribute the forces

to the exoskeleton [Snodgrass, 1965].  Muscle groups 177, 178, and 179 are the

trochanteral extensors, the large muscles of the coxa that support the body and drive it

forward.  Muscles 180, 181, and 182 are the trochanteral flexors which lift the leg. 

There is also one muscle, the reductor femoris, that originates in the trochanter and

inserts on the posterior side of the femur which accounts for the small movements of

the trochanteral-femoral joint [Snodgrass, 1965].

Figure 2.3 Trochanteral Muscle Definition [Snodgrass, 1965]

2.2 Mechanoreceptors
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An insect requires the ability to physically sense its surroundings to locomote,

find food, and escape from dangers.  These sensory activities require the measurement

of force which is provided by a broad class of sensory neurons know as

mechanoreceptors.  Mechanoreceptors come in many different forms with various

means of stimulation such as touch, muscle tension, and joint angle [Zill, 1990]. 

These sensors have been further differentiated by the source of the stimulation; Those

that respond to forces from the environment are exteroceptors and those that are

stimulated by forces generated by the animal are proprioceptors [Sherrington, 1906]. 

It will be seen that some sensory organs such as campaniform sensilla can fall into

both of these classes.

In the legs of cockroaches, there are five major groups of mechanoreceptors:

isolated hair sensilla, hair plates, chordotonal organs, multipolar receptors, and

campaniform sensilla.  Isolated hair sensilla are single hairs that are found over most of

the cockroach’s legs.  They are innervated (connected by nerves) by a single neuron

and have a phasic response; that is, they detect changes in position of the hair not

actual position.  They are, therefore, probably used as transitional tactile sensors. 

Hair plates are similar to hair sensilla in that they are groups of hairs, but they are

located near joints and are stimulated by joint movement.  This classifies hair plates as

proprioceptors as opposed to hair sensilla.  Hair plates also show a tonic response to

joint position meaning that they measure joint positions not velocities.  Chordotonal
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organs are also proprioceptors that measure joint angle position and rate of change. 

They span joints and encode signals by means of a structure called a scolopale.  The

multipolar receptors are less well understood, but are believed to measure joint angle

tonically (actual position) and joint velocity phasically [Zill, 1990].

2.2.1 Campaniform Sensilla Morphology

The campaniform sensilla are a type of mechanoreceptor that respond to

strains in the exoskeleton, first described by Pringle [1938a] and elegantly

demonstrated by Spinola and Chapman [1975].  On the cockroach leg, there are six

groups of campaniform sensilla.  Four are located on the trochanter (three on the

anterior, one on the posterior), see figure 2.4; 2.6; 2.7, one on the proximal femur and

one on the proximal tibia.   A comparable arrangement of sensilla is found on a variety

of insects.  The sensilla are comprised of a thin cuticular cap in the exoskeleton which

is innervated by a single neuron, figure 2.5.  The dendrite of the neuron is connected to

the cap which, when deflected by cuticular distortions, stimulates the neuron [Moran

et al. 1971].  The caps are ellipsoidal and are from 6 to 24 µm in length.  They have

been shown in the tibial group to be responsive to compressive strains in the direction

perpendicular to the long-axis of the sensilla (short-axis strains) [Zill and Moran,

1981a].  Within the groups of sensilla, the long-axis of the cuticular caps are oriented

in approximately the same direction which further emphasizes their directional



17

sensitivity.

Group 2

Group 3

Group 4

Figure 2.4 SEM of the Anterior Half of a Trochanter
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Figure 2.5 Campaniform Sensilla Morphology

2.2.2 Campaniform Sensilla Physiology

Spinola and Chapman [1975] were the first to demonstrate the directional

sensitivity of campaniform sensilla.  Zill and Moran [1981a] have characterized the
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response of the tibial (group 6) campaniform sensilla of the Periplaneta americana. 

In their study, they showed that there are two subgroups of sensilla: one with the

long-axis orientation perpendicular to the axis of the tibia and one with the long-axis

orientation parallel to the axis of the tibia.  By applying bending moments, axial

forces, and torques to the tibia, they were able to show that the two subgroups

responded to only those stimulations that caused compressive strains perpendicular

to the long-axis of the cuticular caps.  Based on this evidence, campaniform sensilla

are exteroceptors; they respond to strains created through interaction with the insect’s

environment.  Zill and Moran went on to show that the sensilla are also stimulated by

the activation of the tibial extensor and flexor muscles.  Again, each subgroup was

selectively sensitive to either the extensor or the flexor muscles.  The sensilla may in

this case be used to monitor the insect’s muscle activities and could, in that facility, be

classified as proprioceptors.

Further, Zill et al. [1981] have postulated that the tibial campaniform sensilla

act as part of a negative feedback system.  The sensilla tend to reflexively excite

motoneurons that in turn lessen the stimulation of the sensilla.  For instance, the

proximal sensilla on the tibia are excited by forces that act in the direction of leg

extension.  They have shown that the same sensilla tend to excite motoneurons to the

tibial extensors while inhibiting the flexor muscles.  They suggest that this system

may control load compensation and limit muscle tension.  As more load (from walking
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for example) is applied to a leg, the sensilla fire with greater frequency which causes

the extensor muscles to fire reducing the load.  Similarly, as the muscle tension

increases, sensilla fire which reduces the muscle exertion and protects the structural

integrity of the tibia.

The response of campaniform sensilla to cuticular strains depends on the

anatomy and orientation of the sensilla and the nature of the stimulus.  It has been

shown in the slit sensilla of spiders, which are the arachnid analog of the campaniform

sensilla, that the size of the sensilla reflect the magnitude and the sensitivity of the

response.  The gradations in size of the sensilla correspond to variable sensitivity to

strain.  This effect is called range fractionation and may allow for different responses

depending on the level of force application [Bohnenberger, 1981].

Additionally, it has been shown that within group 3, individual sensilla can

have low threshold levels and high sensitivity to the rate of force application.  This

suggests that these sensilla might function as touch sensors and detect the stability of

the leg placement during walking.  Conversely, some of the sensilla have high

threshold levels and are less sensitive to the rate of force application.  These sensilla

may report when adequate force has been applied during leg placement to begin

propulsion and possibly influence inter-leg coordination [DiCaprio et al., 1997].

2.3 Material Properties of Insect Exoskeleton
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Insect cuticle is not a typical homogeneous engineering material.  It is in

general formed of three components: fibrous chitin, protein matrix, and water.  It is a

composite with the protein matrix supporting the chitin fibers.  In addition, water acts

as a plasticizing agent affecting the material properties of the cuticle [Hillerton, 1984].

The three components are found in varying ratios in different cuticle which creates a

huge range of material properties.  Soft, pliant cuticles such as those found in

interjoint membranes have a high chitin content while hard structural members such as

the trochanter tend to have a larger quantity of the relatively stiff protein matrix

[Hillerton, 1984].

To further complicate the issue, insect exoskeleton is a layered structure with

a shell-like epicuticle, tough exocuticle, and pliant endocuticle [Hepburn and Joffe,

1976].  The epicuticle is a very thin (1 - 5 µm [Hillerton, 1984]) and stiff shell that

only plays a small role in the bulk mechanical behavior of cuticle [Hepurn and Joffe,

1976].  The exocuticle and endocuticle can, in the case of pliant cuticles, have similar

mechanical properties [Jensen and Weis-Fogh, 1962], but Ker [1977] has shown the

exocuticle in some cases to be twice as stiff as the endocuticle.  There is limited

information describing the properties of the individual layers of cuticle due in part to

the many variations of cuticle and the extreme difficulty in cleanly separating the

layers for testing.  As a result, most of the reported mechanical properties are for

whole cuticle samples.
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Most cuticle is tested for mechanical properties with typical material tensile

tests.  These tests measure in-plane tensile elasticities and strengths.  Jensen and

Weis-Fogh [1962] have shown through tensile and compressive buckling tests with

locust tibias that cuticle performs similarly in tension and compression for small

loads.  In addition, their results show a nearly linear stress-strain relationship for

loads less than half the ultimate tensile strength.  It will be shown that normal

operating stresses are well below this level in the cockroach trochanter.  Several

published material properties of stiff cuticles such as those found in the trochanter are

shown in table 2.1.

Species Specimen Elastic Modulus
(N/mm2)

Ultimate Tensile
Strength (N/mm2)

Reference

Leucophaea
maderae (Madeira

Cockroach

Hind
Femur

3160 158 [Hepburn
and Joffe,

1976]

Schistocerca
gregaria (Desert

Locust)

Tibia 1800 [Ker, 1977]

Schistocerca
gregaria (Desert

Locust)

Hind
Femur

1350 81 [Hepburn
and Roberts,

1975]

Schistocerca
gregaria (Desert

Locust)

Hind
Tibia

4600 [Katz and
Gosline,
1994]

Schistocerca
gregaria (Desert

Locust)

Hind
Tibia

9400 94 [Jensen and
Weis-Fogh,

1962]

Table 2.1 Cuticle Properties
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Cuticle can have a huge range of moduli demonstrated in the fact that

intersegmental membranes have been shown to have elastic moduli 108 times more

pliant than those listed in table 2.1 [Hepburn and Chandler, 1976].  Much of this

variation can be attributed to the chitin-protein ratio, but the effect of sclerotization or

tanning is also important.  After molting, cockroaches have a soft, white, flexible

exoskeleton.  In the days that follow, sclerotization takes place as the cuticle browns

and the chitin-protein matrix stabilizes through a process of cross-linking [Hepburn

and Joffe, 1976].  The elastic modulus can change by orders of magnitude during this

process.  Tanning can occur to various extent in different locations.  For instance, joint

condyles tend to be tanned to a large extent suggesting a stiffer structure.

A final important characteristic of cuticle is its viscoelastic property. 

Viscoelasticity occurs in many polymeric materials and has characteristics of both

fluids and elastic solids.  Plastic deformation in viscoelastic solids is rate dependent

[Reitveld, 1995].  Under small loads and small rates of strain, cuticle has nearly elastic

behavior, but its viscous properties must be accounted for when performing material

testing [Joffe and Hepburn, 1973].  The viscoelastic effects also explain some of the

variation between measured values since the testing method can affect the results.

2.3.1 Material Parameters for Finite Element Analysis

Finite element analysis (FEA) requires definition of the material properties for
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the model.  For an isotropic, homogeneous material undergoing linear elastic analysis

the properties in consideration are the modulus of elasticity (E), Poisson’s ratio (v),

and the shear modulus of elasticity (G).  The modulus of elasticity or Young’s

Modulus is the ratio of the stress versus strain for an elastic material and is the slope

of the stress-strain curve in the elastic region.  The shear modulus is the similar

relationship between shear stress and shear strain.  Poisson’s ratio is a ratio of the

axial deflection to transverse deflection of a material subject to axial loading or, in

other words, how much a material “squashes” out the side when compressed [Popov,

1990].  The three values are related by the equation

G = 
E 

2 ( 1 + ν ) 
2.1

[Hibbler, 1993].  Therefore, only two of the three empirical values are required for the

analysis.

The values in table 2.1 demonstrate some of the variation evident in the

determination of the elastic modulus.  Without specimen-specific material tests,

probably the best course of action is to examine the analysis over a range of values

and quantify the effects this parameter has on the analysis.  This approach is

discussed in Section 4.2.

Poisson’s ratio may be even more nebulous than the elastic modulus.  No

major studies have examined this parameter for insect cuticle.  This may be in part due
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to the difficulty in obtaining accurate data with a material as complex as cuticle, but

may also be due to the fact that finite element analysis has not been performed before

on insect exoskeleton.  For most materials, Poisson’s ratio falls within a narrow band

from about 0.25 to 0.33 [Hibbler, 1993].  Using this range and values from other more

studied fibrous materials such as wood, an estimate can be made of 0.30 for Poisson’s

ratio for cuticle.  Again the approach here will be to test a range of values and quantify

the results.

In this thesis, linear elastic analysis was performed on the trochanter model. 

This approach ignores the possible viscoelastic effects and non-linearity of the

material.  It will be shown that these assumptions are justified when analyzing the

normal operating conditions of the cockroach.  Normal locomotion activities do not

cause significant plastic deformation of the exoskeleton.  In fact, it can be argued that

the campaniform sensilla prevent such deformation through modulation of muscle

tension [Zill and Moran, 1981a].  Further, under small loads the material response is

relatively linear and can be considered elastic [Jensen and Weis-Fogh, 1962; Hepburn

and Joffe, 1976].

The assumption of an isotropic material may be more problematic in the

analysis.  Composite theory states that strength benefits can be obtained by using

materials of varying properties to create a layered structure [Callister, 1991].  Ker

[1977] has shown this to be the case in terms of the exocuticle-endocuticle layering. 
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Fortunately, isotropic mechanical properties can be expected in the plane of the

cuticle [Barth, 1973].  The loading of the trochanter tends to involve inplane bending

as this is where the strength of shell-like structures is realized.  Also important to this

work is the analysis of inplane normal stresses and their effects on the campaniform

sensilla.  Consequently, isotropic material properties are a reasonable assumption

when considering inplane loading.  The composite structure of cuticle and its benefits

are certainly an area for further research since relatively little is known about the

individual properties of the cuticle components.

2.4 Confocal Microscopy Model

In order to create a finite element model, an accurate, high resolution

geometrical description of the trochanter is required.  For the experiments, the

metathoracic (rear) leg of the Periplaneta americana was used.  Although the rear leg

is the largest on the insect, the trochanter of an adult is only about 2.5 mm in length. 

Thus in the Zill and DiCaprio Labs, specialized microscopy and optical

reconstruction methods were used to create the three-dimensional model.

The confocal microscopy method uses ultraviolet light to irradiate the

specimen.  Fluorescent qualities of many biological tissues allow the light to be

adsorbed and reemitted at a lower frequency.  The microscope is able to selectively

filter the reflected light so that only the desired frequency is retained.  Additionally,
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by using a pin-hole iris diaphragm a single focus plane can be captured.  The result is

that a three-dimensional object can be optically sectioned without performing tedious

physical sections by focusing on separate layers through the specimen.  The optical

sections can be assembled using specialized software to create a three-dimensional

model of the specimen.

2.4.1 Confocal Sectioning Method (Zill and DiCaprio Labs)

Adult Periplaneta americana cockroaches obtained from commercial suppliers

were anesthetized with carbon dioxide and the left metathoracic leg was removed.  The

trochanteral segment of the leg was isolated by making transverse cuts through the

distal coxa and proximal femur and then immersed in 1M NaOH for 1 hour to

facilitate removal of soft tissues.  Using 4% phosphate buffered formaldehyde, the

trochanter was fixed and then bisected along its long axis into anterior and posterior

halves.  The two halves were dehydrated in an alcohol series and mounted in

Permount on aluminum slides with holes drilled in the centers.  The tissue was

mounted between coverslips attached to each side of the slide which permitted

viewing of the outer or inner surfaces of the exoskeleton.

The trochanter was visualized and reconstructed by employing its endogenous

fluorescence under ultraviolet illumination.  Although the fluorescent signal was

stronger when the samples were viewed from the inner endocuticular surface, images
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could be obtained from either side of the specimens.  Serial optical sections were taken

with a Molecular Dynamics (DiCaprio Lab) or Biorad (Zill Lab) confocal microscope

through the entire width of the cuticle using a 10X objective and stored as 512 x 512

pixel images with a 1.597 micron/pixel resolution.

In order to permit subsequent reconstruction of three-dimensional montages of

each half of the trochanter, the image series were started from the same position in the

z-axis in a plane above the specimen.  The microscope stage was moved laterally

between the series so that the series overlapped and included the full field of view of

the trochanter.  To construct montages, projection images were created and the exact

extent of overlap was determined by using landmarks such as cuticular hairs and

surface features.  Individual images from each set, with corresponding z-axis values,

were then placed in the determined positions in a 2048 x 1024 pixel template and

saved as a series of bitmap files.  These images were then reduced to 512 x 256 pixels,

which corresponds to a 6.388 micron/pixel resolution, using resampling algorithms in

Voxblast software (Vaytek Inc., University of Iowa).  The montage images were

loaded as data sets in Voxblast and resampled as 2-bit images by establishing gray-

scale look-up values for tissue differentiation.

The montage series of the front and back halves were then combined and

resectioned as a single data set for reconstruction of the entire trochanter.  Alignment

of the halves was performed by rotations and translations of the anterior half to match
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the posterior.  The final resectioning created the unified model and was saved as TIFF

bitmap images.  These images were individually loaded into a graphics software

program (Corel Photo Paint 4.0) to eliminate tissues which remained attached to the

trochanter and to correct inadvertent breaking which occurred during bisection.  This

process was guided by measurements from images taken of a number of other hind leg

trochanters.

Light rendered views of the two halves of the model in Voxblast are shown in

figures 2.6 and 2.7.  Included are the locations of the joint condyles and the locations

of the four groups of campaniform sensilla on the trochanter.  Notice also the large

topology changes of the inner surface evident in the strut-like ridges.  In contrast, the

outer surface is relatively smooth.

Coxa Condyle Femur Condyle

Group 2
Group 4

Group 3

0.2 mm

Figure 2.6 Anterior Half of Rendered Confocal Model, Interior View
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Coxa
Condyle

Group 1

0.2 mm

Figure 2.7 Posterior Half of Rendered Confocal Model, Interior View

2.4.2 Model Controls (Zill Lab)

To confirm the accuracy of the three dimensional reconstructions, leg segments

were examined by plastic sectioning and conventional light microscopy.  Specimens

containing the trochanteral, distal coxal and proximal femoral segments were fixed in

Karnovsky's fixative, dehydrated in graded alcohol series and embedded in Spurr's

resin.  These specimens were sectioned at 1 micron increments through the transverse

axis of the trochanter and stained with toluidine blue.  Sections were viewed using a

Kohu video camera mounted to a conventional light microscope and digitized images

obtained through a Matrox Millenium video capture board on a PC.  The

measurements were also confirmed by digitizing images of unfixed trochanteral

segments that were isolated and viewed in a dissecting microscope.

At this point the high resolution confocal microscope model was ready for
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finite element meshing as described in Chapter III.



Chapter III

Computer Modeling

3.1 The Finite Element Method

The finite element method is a relatively recently developed (mid 1960’s)

analysis tool that can be used generally to solve a wide variety of analysis problems. 

It is well documented in many sources [Zienkiewicz and Taylor (1994); Fagan (1992);

Spyrakos (1994)] and will not be reiterated here except in brief detail.  Traditional

closed form solutions work well for simple geometries or in cases where

approximations can be made that allow the problem to be modeled so that it fits the

theory.  As geometries get more complicated and accuracy requirements get more

stringent, traditional methods become cumbersome and computational methods are

required.

3.1.1 Finite Element Theory

The finite element method surmounts these problems by breaking the analysis

into parts or elements that are well described by the physics of the situation.  Many

smaller problems can then be solved and combined to provide the overall solution to

the problem.  The use of computers automates much of the process of setting up,

32
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solving, and examining the analysis.  A very simple example of the method is a

one-dimensional truss such as that shown in figure 3.1 with an axial compressive

force.  Although elastic theory easily describes this problem, we could break the truss

into three elements, and each of these elements could be modeled as a spring-mass

system shown in figure 3.2.

Figure 3.1 Truss Model

F

k1 k2 k3m1 m2 m3

x1
f1

x2
f2

x3
f3

Figure 3.2 Three Element Truss Model

The equations of motion for the spring-mass system are

F =  m 1 x ¨ 1 + k 1 ( x 1 - x 2 ) 

0 = m 2 x ¨ 2 + k 1 ( x 2 - x 1 ) + k 2 ( x 2 - x 3 ) 

0 = m 3 x ¨ 3 + k 2 ( x 3 - x 2 ) + k 3 x 3 

3.1

which can be written in matrix form as
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F 

0 

0 

= 

m 1 

0 

0 

0 

m 2 

0 

0 

0 

m 3 

x ¨ 1 

x ¨ 2 

x ¨ 3 

+ - 

k 1 

k 1 

0 

- k 1 

k 1 + k 2 

- k 2 

0 

- k 2 

k 2 + k 3 

x 1 

x 2 

x 3 

F = M X ¨ + KX

3.2

where F, M, and K are the load, mass, and stiffness matrices respectively.  If static

equilibrium is assumed, the accelerations are zero and

F = KX 3.3

which is the familiar linear elastic spring equation in matrix form [Rao, 1995].  Once

the problem is formulated as above, equation 3.3 is solved computationally for the

displacements by effectively inverting the stiffness matrix, K

X = K - 1 F 3.4

This is the most difficult and time consuming part of the analysis since in a large

problem the stiffness matrix can have hundreds of thousands of elements.  After the

displacements are known, it is a relatively simple matter to solve for the stress and

strain tensors based on the geometry of the element [Porter, 1996].

For a general problem, the global stiffness matrix, K, of equation 3.3 is created

by filling the matrix with the element stiffness matrices, Ke, based on the connectivity

between elements.  In order to form the element stiffness matrices, the concept of a

shape function is introduced.  Shape functions are typically polynomial

approximations to the displacements within an element.  They are chosen such that
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they yield the exact displacements at the nodes (vertices).  Thus, the actual

displacements within an element, u, can be approximated by the matrix of shape

functions, N, times the nodal displacements, a 

u = Na 3.5

Elastic theory provides the relationship between stress and displacement as

ε = Su 3.6

where S  is a linear operator.  For example, in the case of two-dimensional plane stress

ε = 

ε x 

ε y 

γ xy

= 

M 

M x 

0 

M 

M x 

0 

M 

M y 

M 

M y 

u 

3.7

which can be approximated with the matrix of shape functions by

ε = SNa = Ba 3.8

The constitutive relation between stress and strain can also be defined in

matrix notation as

σ = D ε 3.9

where, again for isotropic plane stress, D is

D = 
E 

1 - ν 2 

1 

ν 

0 

ν 

1 

0 

0 

0 

1 - ν 
2 

3.10



36

The element stiffness matrix can now be derived using virtual work principles as

K e = I 
vol

B T DBd ( vol) 3.11

In the one-dimensional example from above the shape functions are

N = 
− x + 1 / 2 

x + 1 / 2 
3.12

and the relationship between strain and displacement, S , is a derivative of x so B is

B = 
− 1 

1 
3.13

D is simply the modulus of elasticity or in the notation of above k
i
.  So the element

stiffness matrix is

K e 
i = 

1 

I 
0 

− 1 1 k i 
− 1 

1 dx = k 
i 

1 

− 1 

− 1 

1 
3.14

Finally, the global stiffness matrix is assembled by placing the element stiffnesses in

the global matrix based on the element connectivity

K = 

k 1 

− k 1 

0 

− k 1 

k 1 + k 2 

− k 2 

0 

− k 2 

k 2 + k 3 

3.15

which is what we obtained directly above.  Once the displacements are solved for in

equation 3.4 it is a simple matter to find the strains using equation 3.8 and the stresses

by equation 3.9.
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3.1.2 Finite Element Application

 Finite element analysis (FEA) software has matured such that the solution of

the analysis problem is automated, but development of the model can still be a time

consuming and difficult process.  Often computer aided design (CAD) tools are used

to create a geometrical description in the form of a solid model.  This model contains

the complete three-dimensional description of the part.

The solid model then needs to be partitioned into elements that comprise the

finite element model.  This process is called meshing or creating a mesh for the part. 

The meshing activity presents many options.  The first decision is to choose the type

of element for the analysis.  One, two, and three-dimensional elements are available in

many different configurations.  Each element type has specific qualities that effect the

speed of the analysis, the accuracy of the solution, and the appropriateness for a

specific problem.  For example, the one-dimensional approach shown above might be

useful for modeling the trusses of a bridge.  Two-dimensional plate models work well

for thin-walled pressure vessels, whereas the complex geometry of an automobile

suspension component requires the used of three-dimensional elements [Zienkiewicz

and Taylor, 1994].   

A major consideration is the number of elements to approximate the model,

also termed the mesh density.  In general, the more elements used, the more accurate

the solution.  There is a trade off between accuracy and computation time, though. 
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More degrees of freedom through higher order elements and higher mesh densities

require more solution time.  One way to circumvent this is to use larger, less

complicated elements in low stress areas.  This allows the forces and displacements to

be carried to the higher stress areas where a denser mesh is used and more accurate

solutions are required.

A final important modeling consideration is how the model will interact with

its environment.  This entails applying forces and boundary conditions to the model. 

The boundary conditions can include constraints on the degrees of freedom (DOF) of

the nodes of individual elements.  Depending on the type of element, a node can have

up to six DOF (three translations and three rotations).  For example, a cantilevered

beam would have all the DOF fixed of the nodes where the beam attached to its

support.  Field effects such as pressure and temperature can also be applied to

elements.

3.2 The Algor FEA System

The Algor analysis software (Pittsburgh, PA) includes a complete set of tools

for finite element analysis.  Model development occurs in the CAD program

SuperDraw III.  SuperDraw has facilities for three-dimensional feature line

construction and advanced surface and solid mesh generation.  These mesh generators

are extremely important in modern FEA packages since they greatly simplify the
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process of converting a solid CAD model to a FEA model.  SuperDraw can also

import models from a wide variety of other CAD programs such as Autodesk’s

AutoCAD.  All of the models in this work were imported in this manner through the

AutoCAD drawing exchange format, dxf [AutoCAD Users Guide, 1994].  The forces

and boundary conditions are defined and applied to individual nodes once the mesh

has been created in SuperDraw.

After the model has been drawn or imported and the mesh created, the

properties of the elements, the materials, and the body forces are applied in the

Decoder [Porter, 1996].  The Decoder is a text based menu system that acts as a

database for the parameters of the model.  Here, the type of element such as plate or

brick elements are defined and any element specifics such as plate thickness are

entered.  The important material properties are also entered which for static linear

stress analysis ignoring gravitational and temperature effects are Young’s Modulus,

the shear modulus, and Poisson's Ratio.  The three values are related by equation 2.1. 

Finally, the decoder accepts information about body forces such as pressure,

temperature, and gravitational effects.  All of this information is applied when the

Decoder is “run”, and the finite element model is complete at this point.

The real work of the finite element software occurs next in the Processor.  The

Processor reads the input files, creates the stiffness matrix, inverts the matrix, and

multiplies it with the load matrix to solve for the displacements [Porter, 1996].  There
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are only a few options, which mostly control the output files, that can be set in the

Processor.  The output files can be used as tabular results or for debugging purposes if

there is a problem with the model.  The output of the Processor is the set of nodal

displacements which are immediately converted by another process into the stresses

and strains for the model.

As a note, the plate elements used in this thesis have only five DOF at each

node [Porter, 1994].  There is no rotational DOF about the z-axis normal to the

element face.  Because of this, the boundary conditions must be carefully applied to

ensure that this DOF is fixed.  Otherwise, the processor will apply a small stiffness

to the DOF that allows the solution to continue, but yields incorrect results.  This

effect can be tested by creating a beam of plate elements in the x-y plane and applying

a load also in the x-y plane without any boundary conditions.  An incorrect solution

will be returned.

The final step in the process is to view and analyze the results.  Algor has a

program called SuperView which is designed specifically for that purpose. 

SuperView allows many different stress calculations to be viewed as color-coded

graphics.  In addition, strains or displacements can be viewed and the values for any

node can be obtained.  SuperView has a wide variety of options for creating and

viewing the graphical output.
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3.3 Confocal Microscopy Data

The confocal microscopy model data as described in Section 2.4 is output in a

proprietary file format called a polygon file by the Voxblast imaging software.  The

polygon file is similar to a finite element mesh in that the surfaces of the model are

represented by a large number of polygon facets.  The actual file format contains a

section for three-dimensional node locations and a section for connectivity data

between the nodes.  The connectivity data can be represented as vectors that create

the polygons of the surface model.  A graphical representation of a polygon file is

shown in figure 3.3 with an inset showing the element shapes.

Figure 3.3 Sample Polygon File

The polygon file format is inappropriate for finite element analysis for several
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reasons.  One obvious problem is the shape of elements in the polygon file.  In the

finite element method, there is a necessity to represent any possible element shape or

size by a standard model.  This is accomplished by a process of mapping the actual

element to the theoretical standard element.  In an isoparametric mapping, there is a

one-to-one correspondence between the actual and the theoretical geometry shown in

figure 3.4.

Figure 3.4 Isoparametric Element Mapping

If the actual element is extremely distorted with respect to the theoretical

element, inaccuracies or even singularities can occur that can cause computational

singularities in the solution.  In the case of the triangular elements in the polygon file,

equilateral triangles are optimal, and any angles less than about 30 degrees and more

than 90 degrees should be avoided.  As can be seen in the inset of figure 3.3, there are

many elements that violate this criteria.

Another problem with the polygon files is the lack of control of the mesh

density.  Mesh density is an important parameter that controls the accuracy and

speed of the solution.  Often the analyzer would like to be able to use a smaller mesh

density in critical areas which is not possible with the polygon files.
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Finally, the polygon files of the trochanter are unacceptable for FEA because

of the manner that the surfaces are represented.  The shell-like exoskeleton of the

trochanter is mapped by triangular plate elements on both the inner and outer surfaces

in the polygon file.  A three-dimensional plate element model for FEA must represent

the solid shell by a single surface.   The surface can be visualized as the center of the

shell or average of the outer and the inner surfaces.  The thickness of the single surface

is then input as a parameter in the Decoder.

3.4 Mesh Generation

The mesh generation process begins with the data exported from the confocal

microscope model in the form of a polygon file.  For the above reasons, this format is

unfit for FEA, so a usable mesh must be created from this data.  A mesh created by

hand would be extremely time consuming and error prone.  Commercially available

meshing tools were also not a feasible solution based on the unique data format and

problems with the inner and outer surface representation.  As a result, a custom

meshing tool was created.  

3.4.1 Meshing Method

It was decided early in the code development to use three-dimensional plate

elements.  These elements have four nodes, and if they are triangular, two of the nodes



44

lie at the same position.   The third dimension is a thickness parameter that is assigned

in the Decoder.  Plate elements are appropriate for thin shell-like models.  A rule of

thumb is that the maximum dimension of the model must be at least ten times the

thickness in order to use plate elements [Porter, 1996].  In the case of a fully

developed trochanter, the length is approximately 3 mm and the average thickness is

about 0.1 mm—well within the requirements.

The meshing problem is to take the vertex and connectivity data of the

polygon file and create appropriate plate elements.  The method that was adopted

after trying several different approaches is as follows.  The connectivity data is

discarded and only the vertex data is examined.  This data set is a field of

approximately half a million three-dimensional points that represent the inner and

outer surfaces of the trochanter.  A sampling method is employed where only a small

geometric volume of the model is examined at a time as depicted in figure 3.5.  The

points in this volume are sorted according to the coordinate normal to the surfaces. 

This normal coordinate is then examined to determine the location of the largest

difference between successive points.  This gap represents the differentiation between

the upper and lower surfaces in the data, and any point above it is considered on the

upper surface and vice-versa.  The normal coordinates of the upper and lower surfaces

can then be averaged.  The difference between these two values is the average

thickness of the model over the sampled volume.  Finally, a single four-dimensional
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point can be distilled from the data, by using the three coordinates of the center of the

sampled volume and the thickness value.

Upper Surface

Lower Surface

Vertices

Figure 3.5 Sampling Vertex Data

The above process is repeated over the entire domain of the data yielding

points that represent the center of the exoskeleton shell and the thickness at that

point.  The points are then used to create triangular elements.  The final mesh is

output as an AutoCAD dxf file with the elements described by the AutoCAD 3Dface

object [AutoCAD Users Guide, 1994].  The thickness values are sorted into

categories and each category is assigned a color.  When the elements are created, the

thickness is encoded into each by assigning a color.  The colors and their

corresponding thicknesses are output into a separate file which is later input into the

Algor Decoder.  

3.4.2 Code Development

The mesh generator code is included in Appendix A.  The first step of the

process is to parse the polygon input file for the vertex data and read it into memory. 
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Because of the large number of data points (about 500,000 for a full model), and

because each node in the finite element model requires a search of the entire data set,

an efficient data structure is a necessity.  A binary tree was chosen because its worst

case search takes log 
2
 n comparisons where n is the number of data points[Schildt,

1990].  The data is stored in the binary tree according to the x-coordinate (see figure

2.2 for coordinate system).  Also at this time, the cartesian coordinates are

transformed into polar coordinates.

Sampling of the data occurs next.  The algorithm is as follows:

1. Determine the extent of the sample volume in the x-direction

2. Search the tree recursively to find all points in the x-range of the sample volume

3. If points are found in the x-range,

4. Determine the extent of the sample volume in the theta-direction

5. Search the candidate points for values within the theta-range

6. If too few points are found in the sample volume,

7. Expand the sample volume by a set amount

8. Repeat 2 - 7 until enough points are found or until the sample

volume reaches its maximum size

At this point we have all the points in the data set that lie within the sample volume. 

The iteration in step 8 of the above algorithm guarantees that at least 20 points are

found.  Assuming an equal number of points on the inner and outer surface of the
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trochanter, there is a 1/2 probability that a point lies on the either the inner or the

outer surface.  With 20 points, the probability of all the points laying on either

surface is

1 
2 

19

= 1 . 9 x 10 - 6 3.5

and since there are on the order of 5000 nodes in a model, the chances are small that

either the inner or outer surface will not be represented over the full model.

With the high probability that both surfaces are represented, the thickness can

be determined over the test volume by the following algorithm:

1. Use a quicksort algorithm to sort the points by the radial coordinate

2. Determine the largest difference between any two successive points

3. Average the radial coordinates of the points above and below the largest difference

4. The difference of the two averages is the average thickness over the test volume

The code allows several choices of how to best represent the points in the

sample volume with a single node.  These include using a single point in the volume,

using the lower surface average, the upper surface average, or a central average.  The

central average is usually the best choice since in a plate element the thickness

parameter is centered on the two dimensional element.

The information contained in each sample volume has been reduced to four

pieces of data—three spacial coordinates and one thickness value.  The elements are
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now created and written to a dxf file.  The meshing is a simple task of connecting the

nodes created in the sampling procedure.  The dxf format was chosen since it allows

the models to be viewed and modified in AutoCAD.  The dxf files may be also

directly imported into Algor’s SuperDraw.  Plate elements could be represented by

either simple lines or by 3Dface elements.  The advantage of using the 3Dface

elements is that they are true solid model elements and as such can be rendered in

AutoCAD for model verification purposes.  The meshing code allows output in either

format.  The process of meshing converts a 55 Megabyte polygon file with half a

million vertices to a 2 Megabyte dxf file with approximately 5000 nodes and 11000

elements.

3.4.3 Examples

Several tests were run on the meshing code before the trochanter model was

attempted.  These tests used files of approximately 100,000 vertices that covered the

surfaces of simple shapes.  The points were generated with a degree of randomness to

simulate the distribution found in the polygon files.  The first was a simple cylinder

with points on the inner and outer surface, shown in figure 3.6.  The bluish color

shows the thickness of the cylinder wall which is constant along its length.
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Figure 3.6 Cylinder Test Model

The second test case is a spherical shell model, shown in figure 3.7.  Again, the

colors show the thickness of the shell.  This shell is also of constant thickness, but the

model shows some distortion near the ends.  This distortion is due to the cylindrical

sampling method that was used.  The model was sampled radially about the x-axis

which causes the shell to appear thicker near the ends.  This radial sampling was

chosen since the trochanter model is well described by a cylinder thus reducing this

type of distortion.  Additionally, code was added to the meshing algorithm to close

the ends of the model so that a continuous model could be created.
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Figure 3.7 Sphere Test Model

3.4.4 The Trochanter Model

The meshing tool provides a simple and efficient means for generating first-

order triangular plate element meshes.  The mesh density is easily variable, and the

performance is fast—a 410,000 vertex file can be meshed with 5500 elements in 70

seconds on a 500 MHz DEC Alpha Workstation.  The result is a mesh such as that
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shown in figure 3.8 and 3.9.  This mesh was used for the analyses unless noted

otherwise.  Note again that the colors represent discrete thickness values.  The model

incorporates 20 thickness values ranging from 6.5 µm shown as red to 265 µm which

is blue.  Notice the thick vertical ridge and the top central ring.  Also indicated on

these two figures are the locations of the sampling points for each group of

campaniform sensilla, marked as small black circles.  Three nodal locations for each

group were selected for the data analysis.

Group 2

Group 3

Group 4

Figure 3.8 Trochanter Model, Anterior

Group 1

Figure 3.9 Trochanter Model, Posterior
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Figure 3.10 shows a finite element mesh laid over the confocal microscope

model from which the data was extracted.  This image gives an indication of the close

correlation between the two models.  The proximal end of the trochanter on the right

side of the figure shows a thick area that is not well modeled by plate elements.  While

this is the insertion of the large coxal muscle group 177, it not near any of the

campaniform sensilla regions and therefore the stress distribution in that area is of less

importance.  The exaggerated thickness plate elements in that area will effectively

transmit the forces and displacements to the rest of the model.  [Porter, 1996]

Figure 3.10 Finite Element Mesh Over Confocal Model

Figure 3.11 is the mesh over a photomicrograph of the original trochanter shown in a

negative image for clarity.  The orientation of the original exoskeleton and the finite

element model are not exact, but a good correlation can be seen.  The photo also has

the femur still attached in the upper left corner.  
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Figure 3.11 Finite Element Mesh Over Original Trochanter



Chapter IV

Results

4.1 Convergence Study

For first order elements such as those used in this model, the displacements

within an element are approximated by linear shape functions.  The strains (and

stresses) which are of interest are first derivatives of the displacements and are

therefore constant within an element.  Loading conditions such as bending which are

present in the trochanter model cause linear strain gradients which can only be

approximated by the constant strain distribution within the element.  As such, the

finite element solution is only approximate, and the accuracy of the solution must be

determined.

It can be shown [Zienkiewicz and Taylor, 1994] that the order of convergence

to the exact solution for displacement is given by

O ( h p + 1 ) = O ( h 2 ) 4.1

where h is the element size and p is the order of the polynomial approximation (p = 1

for linear elements).  Thus, there is a quadratic convergence of displacement.  The

convergence of strain is given by

O ( h p + 1 - m ) = O ( h ) 4.2

54
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where m is the number of derivatives of the displacement.  There is a linear

convergence of stress and strain in the model; if the element size is halved we should

expect the strain error to also be halved.

The peg leg flexion experiment (described in Section 4.4) was selected and run

at varying mesh densities to calculate the error.  The element size, h, was determined

by the number of elements along the x-axis.  The Von Mises stress representation at

the group 2 location was chosen for the analysis.  A mesh with 36 elements along the

x-axis returned a value of 1.122 MPa and a mesh with one third the element size, 108

elements along the x-axis, returned 1.174 MPa.  Based on linear convergence, the

actual stress value can be extrapolated by

σ 1 - σ a 

σ 2 - σ a 
= 

O ( h 1 ) 

O ( h 2 ) 

1 . 122- σ a 

1 . 174- σ a 

= 
O ( h ) 

O ( h / 3 ) 
= 3 

σ a = 1 . 201

4.3

This gives an estimated error of 6.5% with 36 elements along the x-axis and 2.1% with

108 elements along the x-axis.  6.5% is an acceptable level of error based on the

assumptions in the model, but the fine geometry in the areas of the campaniform

sensilla is not well represented at this level of accuracy.  Consequently, a mesh

density of 72 elements along the x-axis was chosen which represents the geometry

well and has an estimated error in the strain values of 3.25%.  The model at this
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resolution has 3251 nodes and 6320 triangular elements.

4.2 Material Studies

Based on the values of table 2.1, Joffe and Hepburn’s [1976] measured elastic

modulus of 3160 N/mm2 for the hind femur of the cockroach was used for all

analyses.  Global variations in the elastic modulus can be accounted for as follows. 

The D matrix used in the formulation of the stiffness matrix of equation 3.11 for the

three-dimensional isotropic elements used in this analysis is

D = 
E ( 1 − ν ) 

( 1 + ν ) ( 1 − 2 ν ) 

1 

ν 
1 − ν 

ν 
1 − ν 

0 

0 

0 

ν 
1 − ν 

1 

ν 
1 − ν 

0 

0 

0 
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1 − ν 
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1 − ν 

1 

0 
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0 
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0 
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0 

0 

1 − 2 ν 
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0 
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0 

0 

0 

0 

1 − 2 ν 
2 ( 1 − ν ) 

4.4

The calculation of the strains requires the inversion of the stiffness matrix, and

because the inversion of the triple matrix multiplication of equation 3.11 is equal to

the multiplication of the three matrix inverses, the strain is proportional to the inverse

of D 
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D − 1 = 
1 
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4.5

It follows that the strain is inversely proportional to modulus of elasticity, E.  Thus,

E is simply a linear scaling factor for the strain values.  In calculating the stresses of

equation 3.9, E is eliminated and does not affect the stress values.

Equation 4.5 shows that there is a proportional relationship between

Poisson’s ratio (ν ) and the off-diagonal strain elements.  Thus as ν gets larger, the

strains increase, but the magnitude depends on the orientation of the strain tensor.  To

quantify the effect, the peg leg flexion experiment (described below in Section 4.4)

was run using values for ν of 0.25, 0.30, and 0.33 which covers a wide range of

materials [Hibbler, 1991].  The strains were measured at the campaniform sensilla

locations normal to the average angle of the long-axis of the sensilla (short-axis

strains).  The results are shown in figure 4.1.
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Figure 4.1 Poisson’s Ratio Analysis

The effect of Poisson’s ratio depends on location and orientation.  Larger

values of ν in all cases led to greater strain.  Going from 0.25 to 0.33 had an average

strain increase of 6.1% for groups 1 - 3, but group 4 showed a change of 46.6%.  The

variation in group 4 will be discussed below.  A value of 0.30 was used as an

approximation of Poisson’s ratio for all of the experiments, and each case needs to be

considered individually as to the effect of poisson’s ratio.

4.3 Campaniform Sensilla Location and Orientation

It has been shown that campaniform sensilla are most sensitive to strains
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perpendicular to the long axis of the cuticle [Zill and Moran, 1981a].  Consequently, it

was necessary to locate the sensilla groups on the model and orient their axes.  The

locations are shown in figures 3.8 and 3.9 and are relative to an arbitrary coordinate

system.  The orientations, on the other hand, are reproducible.  Direct measurements

were made on the trochanter used for the confocal imaging relative to the coordinate

system shown in figure 2.2.  The x-axis is oriented along the flat ventral side of the

trochanter, and the angles are measured counterclockwise from the positive x-axis. 

The results are summarized in table 4.1.

Group Number of Sensilla
Measured

Average Long Axis
Orientation (degrees)

Standard Deviation

1 7 86.9 2.4

2 15 85.7 2.3

3 12 67.7 2.2

4 14 15.5 9.2 

Table 4.1 Campaniform Sensilla Orientation

It is interesting to note that within groups 1, 2, and 3 the sensilla are closely

oriented to each other, but group 4 has more than four times the variation.  It should

be stated that because of group 4’s location on a curved section of cuticle, the

orientation measurements were the most difficult to make accurately.  Group 4 was

also by far the most affected by the Poisson’s ratio study (46.6% versus 6.1%

average for groups 1-3).  This fact suggests that there are significant strains in other
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orientations than along the short-axis of the sensilla that are causing the off diagonal v

terms in equation 4.5 to be prominent.  The variation in the orientation of the group 4

sensilla may be structured to detect these strains. 

4.4 Peg Leg Experiments

The peg leg experiments get their names from a series of classic experiments

performed by von Buddenbrock [1921; 1953] and Wendler [1964; 1966] that studied

the effects of leg ablations on walking patterns of the stick insect.  In these

experiments, the middle legs were amputated at the proximal femur leaving just the

trochanter and coxa which could not touch the ground during normal walking.  The

amputations produced striking changes in the insects walking patterns.  During normal

walking, a tripod gait is produced where the front and rear legs on a side are in phase

with the middle leg of the opposite side.  The ablated specimens, however,

immediately adapted to a diagonal gait where the front and rear legs on a side were 180

degrees out of phase, similar to that seen in quadrupeds [Hughes, 1952; 1957].

To determine which sensory inputs caused the gait adaptation, prosthetic

limbs (peg legs) were attached to the partially ablated legs allowing normal contact

with the walking surface.  The tripod gait once again was observed.  Wendler [1966]

concluded that joint angle receptors were not responsible for the changes based on his

observation that ablation of the receptors had no effect on walking patterns and that
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the partially ablated legs continued to move through significant joint angles even

without the prosthetic limbs.  The conclusion was that force sensory information in

the proximal leg must be contributing to the gait coordination.

Several researchers have performed studies to determine how force information

is integrated into the control of walking patterns.  Pringle [1940] was the first to show

that deformation of the trochanter caused a response from the trochanteral

campaniform sensilla and a strong reflex excitation in the slow motoneuron to the

trochanteral extensor.  Pearson [1972] repeated this experiment and postulated that

this reflex is part of a positive feedback system; as the trochanter is strained, the

extensor motoneuron is excited more rapidly which causes increased strain in the

trochanter.  Zill has recently repeated the peg leg experiments while monitoring tibial

extensor motoneuron activity and was able to show that in the ablated leg, the increase

in activity did not occur, but if the partially amputated leg made contact with the

ground through a prosthesis, the characteristic increase in activity was observed.

4.4.1 Campaniform Sensilla Group Contribution

The contribution of the individual groups of sensilla on the trochanter to the

extensor reflex response has not previously been described in detail.  DiCaprio et al.

[1997] have performed experiments stimulating individual sensilla which support the

above conclusions.  One of the main goals of this work has been to characterize the
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placement and response of the four groups of sensilla on the trochanter.  In terms of

the peg leg experiments, it is of interest to determine which groups are stimulated by

external forces applied to a simple distal leg (peg-leg) and which are stimulated by

internal muscle generated forces.

To this end, analogous experiments were performed on the insect and within

the finite element model.  The parallel experiments were used to help strengthen the

results and act as a control for the model.  The finite element experiments used a

simple planar model of the femur attached to the high resolution trochanter model. 

External forces were applied to the femur model which were accurately transmitted to

the trochanter.  The biological experiments used a preparation where the trochanter

was fixed at the proximal end and forces were applied to the distal femur [DiCaprio et

al., 1997].  

4.4.2 Biological Experiments

The procedure was as follows.  An animal was restrained ventral side up and

all nerves innervating a hind leg were crushed close to the associated thoracic ganglion.

One pair of 30 µm wires, insulated to their tips, was inserted through holes made in

the cuticle and placed near the main leg nerve (n5) in the coxa. Another pair of wires

was placed next to n5 distal to the first pair.  To limit the number of sense organs

recorded in nerve 5, the leg was severed in the proximal tibia or distal femur and the
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branches of n5 and 5r8 were cut just distal to the trochanter.  The trochanteral

segment was then immobilized by securely gluing it on its ventral edge to a pin placed

close to the coxal-trochanteral joint.

Bending forces were then applied to the distal femur using a blunt, stiff

segment of thick tungsten wire attached to a piezo-electric crystal, shown in figure

4.2.  In preliminary experiments, voltages have been delivered to the crystal as step

functions generated by a stimulator.  A second probe, of much finer etched tungsten

wire, attached to another crystal was used to stimulate the cuticular caps of individual

trochanteral sensilla to facilitate identification of discharges.  After a series of test was

applied, individual groups of sensilla or the caps of single receptors were selectively

ablated using a sharp pin or etched tungsten wire.

PE Crystal
Wire

Femur

Pin

Trochanter

Figure 4.2 Peg Leg Forced Flexion Experiment
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4.4.2.1 Forced Flexion

A ramp force was applied and held on the dorsal femur.  The force acted

perpendicular to the axis of the femur causing dorsal bending.  This type of bending

could occur as a result of forces exerted by the large extensor muscles of the coxa

during normal walking.  Although the true structural force vector acting at the femoral-

tibial joint is certainly variable, the forced flexion component is significant.  The

electroneurogram readings of figure 4.3 show the combined activity of group 3 and 4

sensilla.  Upon ablation of the group 3 sensilla, group 4 remains in the response as

verified by stimulation of an individual sensilla.  Qualitatively, groups 1 and 2 appear

not to affect the response although definitive experiments have not yet been

performed for determination.
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Forced Flexion

Forced Flexion After
Ablation of Group 3

Stimulation of Individual
Group 3 Sensilla

Stimulation of Individual
Group 4 Sensilla

Figure 4.3 Peg Leg Flex ENG Response

4.4.3 Finite Element Model Experiments

The finite element experiments make use of the combined trochanter-femur

model and all forces are applied to the distal end of the femur segment.  The model has

been rotated such that the two coxal condyles lie in an axis parallel to the z-axis.  This

orientation allows hinge-like boundary conditions to be applied to the condyles; they

are fixed in all translations and in rotations about the x and y-axes.  Thus, rotation

about the condyle axis is permitted which simulates having a hinge joint between the

coxa and trochanter.  To fix the model for analysis, the proximal end of the trochanter
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on the ventral side is prevented from translating in the x and y-directions similar to the

glued pin of the complementary experiment.

4.4.3.1 Forced Flexion

A force of 1.96 mN, which is approximately one quarter of the weight of the

animal, was applied to the distal end of the femur as in the biological experiment. 

This level of force was above the threshold value that caused sensilla activity during

the biological experiment.  The force acted in the plane of the trochanteral-femoral

joint perpendicular to the axis of the femur similarly to figure 4.2.  The Von Mises

strain representation of the anterior and posterior halves is shown in figure 4.4 and

4.5.  The Von Mises strain is given by

ε VM = 1 

2 ( ( ε x − ε y ) 
2 + ( ε y − ε z ) 

2 + ( ε z − ε x ) 
2 ) + 3 ( ε 2 

xy + ε 2 
yz + ε 2 

zx) 4.6

and is derived from the maximum distortion energy failure theory [Popov, 1990].  It is

often used in stress analysis to determine yield failure since the value can be compared

directly to the tensile yield stress.  For deformation analysis, it is a convenient scalar

representation of the state of strain at a point.
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Figure 4.4 Peg Leg Flex, Anterior, Von Mises Strain

Figure 4.5 Peg Leg Flex, Posterior, Von Mises Strain
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Figures 4.4 and 4.5 give an indication of the distribution of strain across the

trochanter.  Strain concentrations are evident at the point-contact joint locations. 

Saint-Venant’s principle states that the manner of force application is relevant only in

the localized area of force application [Popov, 1990].  Real materials have an averaging

effect that quickly dissipates the strain concentrations caused by point applications

of loads.  In terms of the sensilla locations, only group 4 is close enough to a condyle

to be effected by the loading conditions.  The condyles are relatively small and hard

(sclerotized) and are not entirely mis-modeled as point loads.  It may be argued that

the group 4 sensilla are located where they are in order to be receptive to the high

strains in the area of the condyles.

Some general observations can be made looking at the qualitative data

presented in figures 4.4 and 4.5.  The strain present on the anterior half is larger in

magnitude and creates steeper strain gradients than that of the posterior side.  This is

of course due to the trochanteral-femoral joint being affixed to the anterior half.  The

posterior half does have large fields of significant strain.  These strains are transferred

in part by the dorsal bridge-like structure connecting the anterior and posterior halves.

The bridge is relatively thick and shows a high degree of sclerotization suggesting a

hard structure.  The bridge also forms into the vertical ridges on both sides of the

trochanter which makes it part of the main force carrying structure.

The anterior half shows lines of high strain along the ventral and dorsal



69

surfaces as would be expected in a simplified beam bending model.  The ventral

trochanter is quite thin and therefore is susceptible to large deformations.  Conversely,

the dorsal trochanter is much thicker yet still sees appreciable strains.  It is carrying

large loads transmitted from the coxal condyles and the upper femoral condyle that are

in a line across the dorsal edge.  From an engineering design point of view, the fact that

the structures are sized such that strains are relatively constant over the exoskeleton is

significant.  This suggests an efficient design where the maximum strength is achieved

for the minimum weight.  Exoskeletons in general have long been described as excellent

structural members because of their high moments of inertia [Currey, 1967], but even

at this level of structural detail, the elegant designs are evident.

The vertical ridges are visible on both halves of the strain representation. 

Their effect is not clear from this analysis and will be discussed more in Section 4.5. 

Finally, it can be seen that the ring of group 3, while in a high strain area, is not in a

significantly higher state of strain than the surrounding cuticle.

To quantify the results, the numerical strain values were collected at the

location of each of the four groups of sensilla.  Three nodes that represent the sensilla

locations were chosen for each group and are shown in figures 3.8 and 3.9.  Each

recorded value was the normal strain perpendicular to the long-axis of the sensilla

(short-axis strain) as listed in table 4.1.  The strains are graphed in figure 4.6 with the

red horizontal dashes representing the mean of the three points for each group.  The
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normal convention is adhered to: positive strains are tensions and negative strains are

compressions.  Negative values will, therefore, tend to excite the sensilla.
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Figure 4.6 Peg Leg Flex, Short-Axis Strain

It is clear from the data that group 3 is showing a consistent high level of

strain.  This value is well above the threshold that would cause the sensilla to respond

as will be discussed below.  This strong response from group 3 is in agreement with

the biological experiment.  One interesting analysis of the short-axis strain is to

compare it with the principle strains which can also be output from Algor.  These

values are displayed in table 4.2 for the four groups.  The orientation of group 3 with

respect to the minimum principle strain can now be calculated by the strain

transformation
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θ = 
1 
2 

cos− 1 ( " 
2 ε xx − ε 11 − ε 22

ε 11 − ε 22
) = 32. 6 B 

4.7

where the minus sign is used for the minimum principle strain.  Thus, group 3 is

oriented within 33° of the maximum compressive strain and is well suited for

detecting the forces applied during flexion.

Group Mean Short-Axis

Strain,  εxx (µε)

Maximum Principle

Strain,  ε11  (µε)

Minimum Principle

Strain,  ε22  (µε)

1 20 72 -60

2 -31 65 -99

3 -207 100 -334

4 31 246 -484

Table 4.2 Strain Values, Peg Leg Flex

Group 1 has a negligible compressive strain component and a statistical

significance test for a normal distribution of a random variable states that the mean is

zero with 85% confidence.  Group 2 has an average compressive strain of -31 µε and a

significance test shows only 25% probability that the mean is zero.  This raises the

question of whether the sensilla of group 2 will be stimulated by this level of strain. 

The only researchers who have attempted to make direct sensitivity measurements of

cuticle strain detectors have been Barth and Blickhan [1984].  They were able to

attach strain gages directly to the locations of slit sensilla of spiders during normal

walking.  They found, for slow walking, strains between 10 and 20 µε and maximum
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values during fast walking of 120 µε.  While these values may suggest the validity of

the finite element results, comparison between the slit sensilla and campaniform

sensilla is not a direct correlation because of differences in morphology.

Another way to approach the sensitivity question is to use the threshold

values from the biological experiments.  Measurements of group 3 during forced

flexion show no response until approximately 50 mN has been applied to the distal

femur.  The same force applied to the finite element model yields an average stress of

52 µε at group 3.  This is the corresponding threshold strain for the model.  Although

there is evidence of variations in sensitivity between sensilla, it is unlikely that the 30

µε at group 2 will be a significant factor in the response compared to group 3. 

However, some response from group 2 cannot be ruled out.

Group 4 shows a wide variation in strain among the three points.  This is in

part due to the proximity of the sensilla to the femoral condyle.  As a result, there is a

large strain gradient across the region.  In addition, group 4 tends to be more dispersed

relative to group 3, for example, which is tightly packed in the ring.  In fact, there is

one large sensilla, shown in figure 4.7 as L1, found on all Periplaneta americana that

is separate from the group.  This sensilla is in the approximate location of the first

sampling point (marked blue) which is the only one that shows compression for the

forced flexion.  It is conceivable that only a fraction of the group is recruited during
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specific types of loading such as the peg leg experiments. 

Figure 4.7 Group 4 Sensilla Showing Single Separate Sensilla (L1)

It is again insightful to examine the average orientation of the sensilla relative

to the principle strains.  The strain transformation can be easily visualized using a

Mohr’s circle representation [Popov, 1990], shown in figure 4.7.  The maximum and

minimum principle strains are ε
11

 and ε
22

 respectively.  The point (ε
xx

,γ
xy

) is the two

dimensional state of strain for group 4.  The angle 2θ, where θ is given by equation

4.7, shows the current orientation with respect to the principle strains.  Also plotted

are two points, ε
a
 and ε

b
 which are the strain transformations at +/- one standard

deviation away from the mean sensilla orientation.  Graphically, it can be seen that the

variation is significant.  Within one standard deviation, the normal strain can vary
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from approximately -80 µ to 126 µ.  The variation within group 4 has not reconfirmed

yet, but this is another indication that the individual sensilla may be responding

differently to the same force application.

(εxx,γxy)

εxx
ε11ε22 εb εa

γ

ε2θ

Figure 4.8 Mohr’s Circle for Group 4

It has been shown that for the forced flexion experiment, the finite element

model agrees with the physiological experiment.  Group 3 has strong short-axis strains

which will yield sensilla responses.  Groups 1 and 2 have negligible strains and will

not contribute significantly to the response.  Group 4 has shown variability on several

accounts: its orientation, its sensitivity to poisson’s ratio, its spacial arrangement, and
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its response to forced flexion.  It has shown evidence of strain values that would

stimulate sensilla in accordance with the biological experiment.

4.4.3.2 Forced Extension

The forced extension experiment was performed in exactly the same manner as

the forced flexion experiment except that the direction of the force was opposite.  Not

surprisingly, the results are the opposite of the flexion experiment.  Figure 4.9 has the

plot of the short-axis strain values.  Groups 2 and 3 are clearly in tension and

therefore not contributing to the response.  Group 1 has an average compressive

strain, although the value is statistically zero.  Group 4 is again interesting in that the

two points closest to the femoral condyle show compression, while the point

representing the large separate sensilla (marked in blue) is in tension.  
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Figure 4.9 Peg Leg Extend, Short-Axis Strain

4.4.3.3 Extensor Muscles

Another way to examine the peg leg experiments is to take the opposite

approach to applying forces.  Instead of having the leg withstand an externally

applied load as with the forced flexion experiment, the forces can be internally

generated by contractions of muscle groups.  Using this approach, the two major

muscle groups of the coxa, the flexors and the extensors, were examined.

Pearson and Iles [1970] performed detailed studies of the coxal musculature

while performing research on inhibitory neurons.  They were able to stimulate

muscles of group 177 (d, e, e’), see figure 2.3, in a simulated walking motion.  The
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tension of the muscle group was recorded simultaneously.  With inhibition, the muscle

tension varied between approximately 0.0 and 2.0 gmf (19.6 mN).  Group 177 is

innervated by a slow motoneuron and is the major contributor to trochanteral

extension during walking.  

The finite element experiment was performed using a force of 19.6 mN applied

at the proximal end on the trochanter centerline.  The actual 177 apodeme attaches to

a membrane that spans the posterior end.  The same argument is made here for point

loading as was described for the point-connection joint condyles; the inaccuracies

introduced for point loading are local and will not have an effect at the sensilla

locations.  The orientation of the force was placed from observations of the muscle

group and was approximately 75° from the x-axis along the center line of the

trochanter.  Hinge-like boundary conditions were applied at the coxal condyles as

described in the forced flexion experiment, and the distal femur was completely fixed

simulating obstructed movement.

The Von Mises strain distribution is shown in figures 4.10 and 4.11.  The

distributions are similar to those seen in the forced flexion with some differences.  In

fact, this is a similar experiment to forced flexion except that the location of the forces

and the fixed nodes are reversed.  A simple static analysis shows that 19.6 N applied

to the proximal trochanter is equivalent to 2.18 mN at the distal femur which is close

to the 1.96 mN applied during forced flexion.  The posterior end is under relatively
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more stress which is not surprising since that is where the muscle force is applied. 

There are again high strain areas at the condyles, but there is a vertical band of lower

strain which extends through group 3 and down the vertical ridge.

Figure 4.10 Peg Leg 177, Anterior, Von Mises Strain
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Figure 4.11 Peg Leg 177, Posterior, Von Mises Strain

The numerical results are graphed in figure 4.12.  There are consistent

compressive strains for group 3.  This is unexpected based on the Von Mises strain of

figure 4.10 where there is a region of low strain around the ring of group 3.  Closer

inspection shows that the minimum principle strain is -68.9 µε and the average short-

axis strain is -64.5 µε.  Using equation 4.7 it can be determined that the short-axis is

only 14.5° from the principle axis.  Thus, group 3 is well oriented to detect strains

from the contraction of muscle group 177.

Group 4 is more consistently under compression compared to the forced

flexion experiment, although there is still significant variance.  Again the point at the

location of the single separate sensilla stands out.  It is likely that at least this sensilla
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will show a response to application of muscle group 177.  Groups 1 and 2 are

reminiscent of the forced flexion experiment with the strain magnitude less than that

of groups 3 and 4.  The groups will probably not contribute to a response.
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Figure 4.12 Peg Leg 177 Short-Axis Strain

4.4.3.4 Flexor Muscles

The complementary muscles to the 177 extensor group are the trochanteral

flexors whose major slow-innervated, tension-creating muscle group is 181.  Similarly

to the group 177 experiment, it was desired to examine the effect of flexor contraction

against a restrained distal leg.  The boundary conditions were the same as the extensor

experiment—coxal condyles acting as a hinge joint and the distal femur completely
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fixed.  Pearson and Bergman [1969] in their study on inhibitory motoneurons recorded

a force of 12.7 mN from muscle group 182.  Although the value was not directly

recorded from group 181, it is a good estimate for tension of group 181, and since the

analysis is linear, all values can be scaled based on the magnitude of the muscle force. 

12.7 mN was applied to the model on the dorsal bridge-like structure connecting the

anterior and posterior halves.  The force acted on the center line of the trochanter at an

angle of 75° with the x-axis.  Figures 4.13 and 4.14 have the Von Mises strain

distribution.

Figure 4.13 Peg Leg 181, Anterior, Von Mises Strain
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Figure 4.14 Peg Leg 181, Posterior, Von Mises Strain

The strains overall are lower than those seen in the previous experiments. 

This is due to the smaller force exerted by the flexor muscles and the smaller moment

arm between the condyles and the muscle insertion.  It is worth noting that the

posterior side is seeing significant strains compared to the anterior which in general

has not been true of the previous experiments.  This is likely a testament to the load

transmitting capacity of the bridge structure.  The numerical data is charted in figure

4.15.
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Figure 4.15 Peg Leg 181, Short-Axis Strain

Group 1 is prominent as was predicted by the Von Mises distribution.  The

minimum principle strain there is -34.6 µε and the average short-axis strain is -25.6 µε

which corresponds to an orientation of 17.3° off the principle axis.  Group 1’s

orientation is much closer to the principle axis here than in any of the previous

experiments suggesting that group 1 may have a proprioceptive functionality for the

flexor muscles.  Delcomyn [1991] has shown in the stick insect that by pulling on the

flexor apodeme strong responses from group 1 can be elicited.

Group 3 is again showing strong short-axis compressions.  It’s location

between the two condyles and the insertion for the flexor muscles is proving to be

beneficial for strain measurement.  Groups 2 and 4 in this case are showing small
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tensions.

4.4.3.5 Muscle Lines of Action

The line of action of muscle groups 177 and 181 can vary greatly during

normal walking depending on the coxal-trochanteral joint angle.  The lines of action in

the above tests were near the flexion limit (75° relative to the positive x-axis).  During

the stroke phase, these angles decrease until the leg is fully extended.  To examine this

effect, the flexion and extension muscle experiments were run with the muscle forces

at angles of 40° and 20° relative to the positive x-axis.  Data for group 3 for the 177

muscle experiment and group 1 for the 181 muscle experiment was collected and is

shown in table 4.3.

Experiment Average Strain at

75° (µε)

Average Strain at

40° (µε)

Average Strain at

20° (µε)

177, Group 3 -64.5 -3.6 -1.4

181, Group 1 -25.6 -0.4 0.7

Table 4.3 Strain for Various Muscle Lines of Action

The strains drop off quickly as the angle decreases.  The effect can be

visualized as a shortening of the moment arm between the muscle insertion and the

coxal condyle as the angle decreases.  At 20° the muscles are performing mostly axial

loading instead of the large bending moments that are created at larger angles.
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The lessening of the strain seen by group 3 during extension must be taken in

context of the experiment.  In a walking animal, as the metathoracic leg extends, the

bending moment created on the trochanter by the ground reaction forces will increase. 

This external stimulus will counter the weakened stimulus provided by the extensor

muscles.  In fact, Pearson [1972] has shown that the sensilla reflexively excite the

extensor muscles and show an increase in activity as the leg extends.  Thus, it is likely

that the sensilla are more highly excited at the end of the stroke due to the increased

moment arm on which the ground reaction forces act.

4.4.3.6 Summary

A summary of the responses for the peg leg experiments is shown in table 4.4.

Full responses are shown as X and partial are shown as x.  The orientation of the

sensilla of group 1 (17.3° off the minimum principle axis) suggest that they are tuned

to detect forces from the flexor muscles, and indeed, the strains transmitted to the

posterior side during flexion prove this to be an appropriate location.

Group Flexion Extension 177 181

1 X

2 x

3 X X X

4 x x X

Table 4.4 Summary of Group Responses
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Group 2 was not strongly strained by any of the experiments shown here.  

Schmitz [1993] performed a series of experiments on the stick insect where he studied

the reflex effects of campaniform sensilla.  He found that, by performing experiments

similar to the forced flexion experiment except with posterior and anterior bending of

the femur, retractor and protractor reflexes would result.  Although he was not able to

conclusively determine which sensilla groups caused which reflex, he did show that

the reflexes were modulated by the anterior and posterior sensilla groups, analogous to

groups 1 and 2.  In addition, Delcomyn [1991] showed that posterior bending of the

stick insect trochanter produces responses from group 1.  Similar anterior/posterior

bending experiments were performed on this model, but the results were inconclusive.

The difficulty lies with the modeling of the trochanteral-femoral joint which allows

the femur a small amount of rotation posteriorly.  The movement of this joint is not

yet well understood and therefore difficult to model accurately.  The experiments

presented here cause moments transverse to the axis of this joint effectively removing

that degree of freedom from the model.

Group 3 has shown to be quite responsive to various loading conditions.  Its

location, near the coxal and femoral condyles and the insertion of muscle group 181,

place it in an excellent position to detect strains from a variety of sources.  It may be a

“catch-all” strain detector that with input from the other sensilla groups help

differentiate its signal.  Delcomyn [1991] has hypothesized that an even higher level
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of integration, for example with motoneurons, may be occurring within the nervous

system to identify the stimulation of the sensilla.  Group 3’s orientation to the

minimum principle strain for the 177 muscle experiment was the closest measured for

any group (14.5°) under these experiments.  This orientation and the orientation of

group 1 during flexor contraction make a strong argument for proprioceptive control

of the coxal musculature modulated by the responses of groups 1 and 3.

Group 4’s functionality is difficult to describe because of it’s variable results. 

It may be more accurate to consider group 4 as two subgroups—one consisting of the

single large sensilla and the rest of the sensilla in the other.  The resolution of this

model is not such that detailed analysis of individual sensilla can be made, but there is

clear indication that strains are variable across the group.  The measurement point at

the location of the single sensilla consistently showed a disparate response to the

other two points, even showing compression while the others showed tension.

4.5 Smooth Model

In an attempt to examine the effects of the structure of the trochanter on the

strains, another model was created that essentially removes the thickness variations

present on the interior surface.  In this model, the outer surface, which is relatively

smooth, was sampled and a constant thickness value was assigned to the elements. 

The result is the shell of a trochanter without the ridges and thickness variations of
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the inner surface.

The peg leg flexion experiment was performed on the model in exactly the

same manner as the real trochanter model.  The Von Mises strain distribution is

shown in figure 4.16.  A direct comparison between the strain distribution but not

actual values can be made between figures 4.16 and 4.4.  A striking difference can be

seen in the area of the central vertical ridge.  The smooth model has a vertical region of

high stress where the ridge would be in the normal model.  Figure 4.5 has no such

strain concentration and has a remarkably smooth distribution across the dorsal edge. 

It is clear that internal structures are designed to help distribute forces and keep

localized stress concentrations to a minimum.

 
Figure 4.16 Smooth Model, Peg Leg Flex, Anterior, Von Mises Strain
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4.6 Stress Distribution

It is of some interest to look at cuticle stresses from a design point of view. 

Many of the cuticle material studies give ultimate tensile stress values that can be

used as a strength criteria.  The stress distributions are the same as those shown for

strain since the constitutive relation is assumed linear.  The peak stress value for the

peg leg flexion experiment was 5.7 MPa and for the peg leg 177 experiment was 4.9

MPa.  Jensen and Weis-Fogh [1962] found an ultimate tensile strength of 94 MPa for

the hind tibia of the locust, but this stress occurs at catastrophic failure which is an

uncommon occurrence in biological materials [Alexander, 1981].  Their stress versus

strain plots show nearly linear behavior below about 30 MPa.  The experiments in

this work have not been worst case situations.  For example, Full and Tu [1991] have

found peak vertical reaction forces for running Periplaneta americana of 1.9 times the

weight of the cockroach or about 15.5 mN—nearly 8 times what was applied during

the forced flexion experiment.  This force applied to the peg leg flexion experiment

would cause maximum stresses of about 45 MPa.  Based on this evidence, it is likely

that the animal normally operates in the linear range of its cuticle properties—well

below the material’s ultimate strength.  The campaniform sensilla are the means for

maintaining this limit [Zill et al., 1981].



Chapter V

Conclusions

5.1 Methods

The confocal microscopy method has developed to be more troublesome than

first envisioned.  One issue is that multiple image series were required to cover the

entire area of the trochanter.  These series then required alignment by hand.  A similar

issue was that the trochanter had to be bisected to obtain accurate images through the

entire specimen.  Focusing through the upper shell to get to the lower half caused

shadows and general degradation of the images.  Bisecting the trochanter requires that

it be reassembled later in software—again by hand.  In addition, the reassembling

process, done in Voxblast, requires resampling the dataset which tends to have an

averaging or smoothing effect.  In the future, concatenation code created to reassemble

the polygon files after being split for ease of handling will be used to reassemble the

halves of the trochanter thereby eliminating the resampling step, but the halves will

still have to be manually aligned.  A final issue of tedium with the model formulation

is that the individual images required editing to remove extraneous material such as

individual hairs or muscle tissues.

The end product of the confocal model is the polygon file which itself is far

90
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from perfect for analysis.  In retrospect, it may have been easier to start with the raw

images and create code to formulate the finite element model directly from the raster

data.  Although this would require a significant increase in programming effort, it

would be a more straight-forward approach.  The current meshing code is in its fifth

version mostly due to complexities of dealing with the polygon files.

The resulting finite element model is geometrically very accurate due to a great

extent to the care taken in formulating the confocal model and use of control criteria at

every step.  The mesh accuracy is well within the assumptions of the model.  The

complexity of accurately modeling cuticle is still a difficult issue.  The elastic modulus

is relatively well researched, but there is evidence that there are variations even within

the trochanter.  Modifying the model to account for the fluctuations is a trivial matter,

but accurately describing the biology is not.  Poisson’s ratio has not been accurately

determined and at this point must be considered on a case-by-case basis.  The results

have shown that many of the nonlinearities reported for cuticle properties can be

neglected because they are beyond the normal operation range of the material; the

linear analysis used here is an accurate approach.

The model has provided a platform by which numerous experiments and

hypotheses can be tested quickly and easily.  As with any finite element model, the

application of boundary and loading conditions needs to be carefully considered.  It

has proved to be a less than trivial matter to transfer biological observations to the
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mathematics of finite element modeling.  The use of parametric studies has been

valuable in the assessment of the variations present in biological systems.

5.2 Discussion

This work disproved the hypothesis that the structure of the trochanter and

the placement of the sensilla were “designed” to create stress concentrations to

increase the sensitivity of the sensilla.  The opposite has turned out to be true.  It is

not a good design practice to create weak links in a structure by introducing stress

concentrators.  A design should take into account high stress areas by reinforcing the

structure in these areas through the use of material or form enhancements.  The

trochanter does both.  Force bearing structures tend to be highly sclerotized (hard) and

thick truss-like members help distribute stresses.  The strain distributions show

consistent levels across the dorsal and ventral edges despite irregular geometries and

thickness variations.  This is directly evident in comparison of the full-featured model

with the smooth model.

In addition, the stress analysis has shown that under normal conditions such

as the experiments in this thesis, cockroach cuticle operates well below the material’s

strength limits.  Most structural cuticles are linearly elastic for small deformations

[Hepburn and Joffe, 1976], and Periplaneta americana typically functions within this

range.
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The position and orientation of the sensilla are more likely optimized for

differentiation of strains from various sources than for simply maximizing the strain

values.  Groups 1 and 3 provide evidence of this.  While group 3 is located such that it

detects a variety of sources of strain, based on the experiments here, it is well oriented

to pick up the forces caused by the trochanteral extensors.  Conversely, group 1 is

relatively unresponsive to most force applications, but detects the flexor contractions

well.  These two groups form a complementary pair that sense the activities of the

antagonistic muscle pair that is most important to cockroach walking.

It has also been evident that the response of a single group of sensilla alone is

not enough to characterize the source of the stimulus.  Group 3 responds to a variety

of loading conditions, but to make use of this information the insect’s nervous system

must integrate information from other sources to differentiate the response.  Table 4.4

summarizes the responses to the experiments, and in each case, the total response of

the four groups is different.  The combined reaction is enough to identify the source of

cuticular strain for the experiments shown, but as Delcomyn [1991] suggests the

nervous system may also interpret other information such as motoneuron activity.  

Comparison of the finite element model with complementary biological

experiments has been a fruitful approach.  It has provided a check for the model as in

the case of Zill’s forced flexion experiment, but it has also added definition to existing

biological theories and raised new questions.  The activity of group 3 during
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contraction of the extensor muscles agrees nicely with Pearson’s [1972] model for

positive feedback control of this muscle group.  The identification of group 1 as a

complementary receptor for the flexors proposes that this group may perform a

similar function.  Schmitz’s [1993] and Delcomyn’s [1991] work demonstrate some

of the characteristics of the system in the stick insect, but the issue is unsettled.

5.3 Future Work

The finite element method has not previously been used in the study of

arthropod exoskeletons.  It has offered a level of detail and accuracy that has

previously been impossible with other structural models.  Because it is a new

approach, the value of the method for arthropod research remains to be seen, but

several applications relative to this work are apparent.  For instance, it would be a

relatively simple step to increase the resolution of the method and examine the

detailed structure of a single sensillum.  Several questions might be answered about the

fine structure of campaniform sensillum such as how the cap actually deforms and

interacts with the dendrite and how the sensilla respond to different types of strain. 

The approach could also be used on a larger scale to create an accurate model of the

entire leg.  The model could be supplied with ground reaction and joint data from

simulation [Nelson, 1994] or experiments [Full, 1995] and would be able to predict

strains actually seen during normal insect behavior.  
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Appendix A

Mesh Generator Code

A.1 File Poly5.h

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <conio.h>
#include <math.h>

#define inFile "..\\concatenate\\concfile.pol"//input file
#define dxfFile "d:\\Program Files (x86)\\AutoCAD R14\\out.dxf"//dxf file
#define outFile "out.txt" //debug out file
#define colorFile "color.txt"//color thickness value file
#define numTheta 72//number of elements along x-axis
#define numX 72//number of elements around theta direction
#define maxGood 20000 //maximum number of points selected in a sampling range
#define xRange 0.015 //inital sample range size - x coordinate
#define PI 3.14159265359//PI
#define minNumPoints20//minimum number of sample points
#define maxNumIter 8 //maximum number of sample interations
#define minRadius 0.05 //below this radius elements degenerate to point on x-axis
#define maxColor 200 //highest AutoCAD color number to be used (maxColor/10 colors)
#define scaleFactor 0.006388 //mm per pixel scaling factor

#define centerSampling //which surface to sample
#define faces //what to write to dxf file

struct vertex
{

float x;
float y;
float z;
float r;
float theta;
float thickness;

};

struct tree
{

struct vertexcoord;
struct tree*xLeft;
struct tree*xRight;

};

typedef struct vertex VERTEX;
typedef struct tree TREE;

TREE *parse(FILE *ifp, long numObj, TREE *root, float *minX, float *maxX);
TREE *addToTree(VERTEX point, TREE *r, TREE *root);
void printTree(TREE *root);
void addThetas(TREE *r, TREE *root);
void addTheta(float theta, TREE *r, TREE *root, TREE *R);
TREE *searchTree(TREE *root, VERTEX point);
void findPoints(TREE *root, VERTEX *goodPoint, int *numGood, VERTEX max, VERTEX min);
void sample(TREE *root, float minX, float maxX, VERTEX ***realPoint, float *maxThickness);
void printPoints(VERTEX *goodPoint, int numGood, FILE *ofp);
void removeBadTheta(VERTEX *goodPoint, int *numGoodX, int numGood, VERTEX max, VERTEX min);
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VERTEX findThickness(VERTEX *goodPoint, int numGood, float *maxThickness);
int compare(const VERTEX *first, const VERTEX *second);
void dxf(VERTEX ***realPoint, float maxThickness, float minX, float maxX);
void findMaxMin(TREE *root, float *minX, float *maxX);
void rotate3D (VERTEX *point, double x, double y, double z);

A.2 File Poly5.c

#include "poly5.h"

/******************************************************************************
*main control
******************************************************************************/
int main(void)
{

FILE *ifp, *color;
long numVert;
TREE *root = NULL;
float minX = (float)1000.0, maxX = (float)-1000.0;
VERTEX ***realPoint;
float maxThickness = (float)0.0;
int i;

root = parse(ifp, numVert, root, &minX, &maxX);

realPoint = malloc((numX + 1) * sizeof(VERTEX*));

sample(root, minX, maxX, realPoint, &maxThickness);

dxf(realPoint, maxThickness, minX, maxX);

color = fopen(colorFile, "w");
for(i = 1; i <= maxColor / 10 + 1; i++)

fprintf(color, "color: %d\tthickness: %f\n", i * 10, (i - .5) * maxThickness / (maxColor / 10));
fclose(color);

free(root);
free(realPoint);

return 0;
}

/******************************************************************************
*opens poly file
*reads in vertex
*adds data to binary tree
******************************************************************************/
TREE *parse(FILE *ifp, long numVert, TREE *root, float *minX, float *maxX)
{

char line[80], junk[80];
int i;
VERTEX point;

if((ifp = fopen(inFile, "r")) == NULL)
{

printf("Can't open input file\n");
exit(EXIT_FAILURE);

}

while(fgets(line, 7, ifp) != NULL)
{

if(strcmp(line, "VERTEX") == 0)
break;

fgets(junk, 80, ifp);
}
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if(line == NULL)
{

printf("Unable to find vertex data\n");
exit(EXIT_FAILURE);

}

fgetc(ifp);
fscanf(ifp, "%ld\n", &numVert);

printf("%d verticies found\n", numVert);
printf("adding x values\n");

for(i = 0; i < numVert; i++)
{

fscanf(ifp, "%f %f %f", &point.y, &point.x, &point.z);  //swap x and y
fgets(junk, 80, ifp);

point.x *= (float)scaleFactor;
point.y *= (float)scaleFactor;
point.z *= (float)scaleFactor;

// rotate3D(&point, 0.0, PI / 2., 0.0);

point.r = (float)sqrt(point.z * point.z + point.y * point.y);
point.theta = (float)atan2(point.y, point.z);

if(root != NULL)
addToTree(point, root, root);

else
root = addToTree(point, root, root);

if(i % 10000 == 0)
printf("%d\n", i);

}

findMaxMin(root, minX, maxX);

fclose(ifp);

return root;
}

/******************************************************************************
*controls sampling process
*chooses sampling range
*selects point to represent sampling area
******************************************************************************/
void sample(TREE *root, float minX, float maxX, VERTEX ***realPoint, float *maxThickness)
{

VERTEX goodPoint[maxGood];
VERTEX low, high;
int numGoodX = 0, numGood = 0;
int i, j;
float testTheta, testX;
int iterations;
FILE *ofp;
float rSum;
float thetaRange;

printf("sampling\n");

if((ofp = fopen(outFile, "w")) == NULL)
{

printf("Can't open output file\n");
exit(EXIT_FAILURE);

}

for(i = 0; i <= numX; i++)
{

testX = (float)(i * (maxX - minX) / numX + minX + xRange);
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low.x = (float)(testX - xRange / 2.);
high.x = (float)(testX + xRange / 2.);

numGoodX = 0;

findPoints(root, goodPoint, &numGoodX, high, low);

if(numGoodX != 0)
{

rSum = (float)0.0;
for(j = 0; j < numGoodX; j++)

rSum += goodPoint[j].r;

thetaRange = (float)xRange / (rSum / (float)numGoodX);

printf("numGoodX: %d r avg: %.2f\n", numGoodX, rSum / numGoodX);

realPoint[i] = malloc((numTheta + 1) * sizeof(VERTEX*));

for(j = 0; j < numTheta; j++)
{

testTheta = (float)(j * 2. * PI / numTheta - PI);

low.theta = (float)(testTheta - thetaRange / 2.);
high.theta = (float)(testTheta + thetaRange / 2.);
low.x = (float)(testX - xRange / 2.);
high.x = (float)(testX + xRange / 2.);

numGood = 0;

removeBadTheta(goodPoint, &numGood, numGoodX, high, low);

if(numGood > 0)
{

iterations = 0;

while(numGood < minNumPoints && iterations < maxNumIter)
{

iterations++;

numGood = 0;
numGoodX = 0;

low.x -= (float)(xRange / 10.);
high.x += (float)(xRange / 10.);

findPoints(root, goodPoint, &numGoodX, high, low);

low.theta -= (float)(thetaRange / 10.);
high.theta += (float)(thetaRange / 10.);

removeBadTheta(goodPoint, &numGood, numGoodX, high, low);
}

if(numGood > 1)
{

realPoint[i][j] = malloc(sizeof(VERTEX));

*realPoint[i][j] = findThickness(goodPoint, numGood, maxThickness);

#ifdef innerSampling
realPoint[i][j]->x = goodPoint[0].x;
realPoint[i][j]->y = goodPoint[0].y;
realPoint[i][j]->z = goodPoint[0].z;
realPoint[i][j]->r = goodPoint[0].r;
realPoint[i][j]->theta = goodPoint[0].theta;

#endif

#ifdef centerSampling
// realPoint[i][j]->x = goodPoint[0].x;
// realPoint[i][j]->y = goodPoint[0].y;
// realPoint[i][j]->z = goodPoint[0].z;
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realPoint[i][j]->r = goodPoint[0].r;
realPoint[i][j]->theta = goodPoint[0].theta;

realPoint[i][j]->x = testX;
realPoint[i][j]->y = (float)(realPoint[i][j]->r * sin(realPoint[i][j]->theta));
realPoint[i][j]->z = (float)(realPoint[i][j]->r * cos(realPoint[i][j]->theta));

realPoint[i][j]->y += (float)(realPoint[i][j]->thickness 
/ 2.0 * cos(realPoint[i][j]->theta));

realPoint[i][j]->z += (float)(realPoint[i][j]->thickness 
/ 2.0 * sin(realPoint[i][j]->theta));

#endif

#ifdef outerSampling
// realPoint[i][j]->x = goodPoint[numGood - 1].x;
// realPoint[i][j]->y = goodPoint[numGood - 1].y;
// realPoint[i][j]->z = goodPoint[numGood - 1].z;

realPoint[i][j]->r = goodPoint[numGood - 1].r;
realPoint[i][j]->theta = goodPoint[numGood - 1].theta;

realPoint[i][j]->x = testX;
realPoint[i][j]->y = (float)(realPoint[i][j]->r * sin(realPoint[i][j]->theta));
realPoint[i][j]->z = (float)(realPoint[i][j]->r * cos(realPoint[i][j]->theta));

#endif

printf("numGood: %d  iter: %d\n", numGood, iterations);
}

else
realPoint[i][j] = NULL;

}

else
realPoint[i][j] = NULL;

}
}

else
{

realPoint[i] = malloc(numTheta * sizeof(VERTEX*));

for(j = 0; j < numTheta; j++)
realPoint[i][j] = NULL;

}

realPoint[i][numTheta] = realPoint[i][0];
}

fclose(ofp);
}

/******************************************************************************
*adds vertex data to binary tree recusively
******************************************************************************/
TREE *addToTree(VERTEX point, TREE *r, TREE *root)
{

if(r == NULL)
{

r = (TREE *)malloc(sizeof(TREE));

r->coord.x = point.x;
r->coord.y = point.y;
r->coord.z = point.z;
r->coord.r = point.r;
r->coord.theta = point.theta;

r->xLeft = NULL;
r->xRight = NULL;

if(root == NULL)
return r;



107

if(point.x < root->coord.x)
root->xLeft = r;

else
root->xRight = r;

return r;
}

if(point.x < r->coord.x)
addToTree(point, r->xLeft, r);

else
addToTree(point, r->xRight, r);

}

/******************************************************************************
*calculates min and max values of tree
******************************************************************************/
void findMaxMin(TREE *root, float *minX, float *maxX)
{

TREE *currentNode;

currentNode = root;

while(currentNode->xRight != NULL)
currentNode = currentNode->xRight;

*maxX = currentNode->coord.x;

currentNode = root;

while(currentNode->xLeft != NULL)
currentNode = currentNode->xLeft;

*minX = currentNode->coord.x;
}

/******************************************************************************
*prints out data tree recusively
******************************************************************************/
void printTree(TREE *root)
{

if(root == NULL)
return;

printTree(root->xLeft);

printf("x=%f y=%f z=%f\n", root->coord.x, root->coord.y, root->coord.z);

printTree(root->xRight);
}

/******************************************************************************
*finds individual struct in tree
******************************************************************************/
TREE *searchTree(TREE *root, VERTEX point)
{

while(root->coord.x != point.x)
{

if(point.x < root->coord.x)
root = root->xLeft;

else
root = root->xRight;

if(root == NULL)
break;

}

return root;
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}

/******************************************************************************
*searches through tree to find all data in sampling range
******************************************************************************/
void findPoints(TREE *root, VERTEX *goodPoint, int *numGood, VERTEX max, VERTEX min)
{

if(root == NULL)
return;

if(root->coord.x <= max.x && root->coord.x >= min.x)
{

goodPoint[*numGood].x = root->coord.x;
goodPoint[*numGood].y = root->coord.y;
goodPoint[*numGood].z = root->coord.z;
goodPoint[*numGood].r = root->coord.r;
goodPoint[*numGood].theta = root->coord.theta;

if(*numGood >= maxGood - 1)
{

printf("\ntoo many good points in range...quitting\n");
return;

}

(*numGood)++;

findPoints(root->xLeft, goodPoint, numGood, max, min);
findPoints(root->xRight, goodPoint, numGood, max, min);

}

if(root->coord.x > max.x)
findPoints(root->xLeft, goodPoint, numGood, max, min);

else if(root->coord.x < min.x)
findPoints(root->xRight, goodPoint, numGood, max, min);

}

/******************************************************************************
*outputs points found in sampling range
******************************************************************************/
void printPoints(VERTEX *goodPoint, int numGood, FILE *ofp)
{

int i;

for(i = 0; i < numGood; i++)
{

fprintf(ofp, "%f\t%f\t%f\n", goodPoint[i].x, goodPoint[i].y, goodPoint[i].z);
}

fprintf(ofp, "\n");

}

/******************************************************************************
*removes sample points that are not with the theta test values
******************************************************************************/
void removeBadTheta(VERTEX *goodPoint, int *numGood, int numGoodX, VERTEX max, VERTEX min)
{

int i;

for(i = 0; i < numGoodX; i++)
{

if(goodPoint[i].theta >= min.theta && goodPoint[i].theta <= max.theta)
{

goodPoint[*numGood] = goodPoint[i];

(*numGood)++;
}

}
}

/******************************************************************************
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*sorts points in sample range
*finds largest difference between consecutive points
*calculates thickness based on average of inner and outer points
******************************************************************************/
VERTEX findThickness(VERTEX *goodPoint, int numGood, float *maxThickness)
{

VERTEX realPoint;
int i;
float maxDiff = (float)-1.0;
float diff;
float perc;
int diffLocation;
float lowSum = (float)0.0, highSum = (float)0.0;
float lowAvg, highAvg, thickness;

qsort(goodPoint, numGood, sizeof(VERTEX), compare);

for(i = 0; i < numGood - 1; i++)
{

diff = goodPoint[i + 1].r - goodPoint[i].r;

if(diff >= maxDiff)
{

maxDiff = diff;
diffLocation = i;
perc = (float)i / numGood;

}
}

for(i = 0; i <= diffLocation; i++)
lowSum += goodPoint[i].r;

for(i = diffLocation + 1; i < numGood; i++)
highSum += goodPoint[i].r;

lowAvg = lowSum / (diffLocation + 1);
highAvg = highSum / (numGood - (diffLocation + 1));

thickness = highAvg - lowAvg;

//printf("lowAvg: %.2f\thighAvg: %.2f\tthickness: %.2f\n", lowAvg, highAvg, thickness);
//printf("maxDiff: %.2f\tperc: %.2f\tnumGood: %d\n", maxDiff, perc, numGood);

realPoint.thickness = thickness;

if(thickness > *maxThickness)
*maxThickness = thickness;

return realPoint;
}

/******************************************************************************
*comparison function for qsort
******************************************************************************/
int compare(const VERTEX *first, const VERTEX *second)
{

if(first->r < second->r)
return -1;

else if(first->r > second->r)
return 1;

else
return 0;

}

/******************************************************************************
*creates elements
*writes dxf file 
******************************************************************************/
void dxf(VERTEX ***realPoint, float maxThickness, float minX, float maxX)
{

FILE *dxf;
long handle;
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int color;
float avgThickness;
int i, j;
unsigned short thisRadiusIsSmall, nextRadiusIsSmall;
float thisTestX, nextTestX;

printf("creating dxf file\n");

if((dxf = fopen(dxfFile, "w")) == NULL)
{

printf("Can't open dxf file\n");
exit(EXIT_FAILURE);

}

fprintf(dxf, "  0\nSECTION\n  2\nENTITIES\n");

for(i = 0; i < numX; i++)
{

thisRadiusIsSmall = 0;
nextRadiusIsSmall = 0;

for(j = 0; j < numTheta; j++)
{

if(realPoint[i][j] != NULL)
if(realPoint[i][j]->r < minRadius)
{

thisRadiusIsSmall = 1;
thisTestX = (float)(i * (maxX - minX) / numX + minX + xRange);
break;

}
}

for(j = 0; j < numTheta; j++)
{

if(realPoint[i + 1][j] != NULL)
if(realPoint[i + 1][j]->r < minRadius)
{

nextRadiusIsSmall = 1; 
nextTestX = (float)((i + 1) * (maxX - minX) / numX + minX + xRange);
break;

}
}

for(j = 0; j < numTheta; j++)
{

#ifdef points
if(realPoint[i][j] != NULL)
{

color = ((int)((realPoint[i][j]->thickness / maxThickness) * maxColor) / 10 + 1) * 10;

fprintf(dxf, "  0\nPOINT\n  5\n%i\n100\nAcDbEntity\n  8\n0\n 62\n%i\n100\nAcDbPoint\n",
handle++, color);

fprintf(dxf, " 10\n%f\n 20\n%f\n 30\n%f\n", realPoint[i][j]->x, realPoint[i][j]->y,
realPoint[i][j]->z);

}
#endif

#ifdef lines
if(thisRadiusIsSmall && !nextRadiusIsSmall)
{

if(realPoint[i][j] != NULL)
{

if(realPoint[i + 1][j] != NULL)
{

color = ((int)((realPoint[i][j]->thickness / maxThickness) * maxColor) / 10 + 1) * 10;

fprintf(dxf, "  0\nLINE\n  5\n%i\n100\nAcDbEntity\n  8\n0\n 62\n%i\n100\nAcDbLine\n",
handle++, color);

fprintf(dxf, " 10\n%f\n 20\n%f\n 30\n%f\n", thisTestX, 0.0, 0.0);
fprintf(dxf, " 11\n%f\n 21\n%f\n 31\n%f\n", realPoint[i + 1][j]->x, realPoint[i + 1][j]-

>y, realPoint[i + 1][j]->z);
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}
}

}

else if(!thisRadiusIsSmall && nextRadiusIsSmall)
{

if(realPoint[i][j] != NULL)
{

if(realPoint[i][j + 1] != NULL)
{

avgThickness = (float)((realPoint[i][j]->thickness + realPoint[i][j + 1]->thickness) /
2.0);

color = ((int)((avgThickness / maxThickness) * maxColor) / 10 + 1) * 10;

fprintf(dxf, "  0\nLINE\n  5\n%i\n100\nAcDbEntity\n  8\n0\n 62\n%i\n100\nAcDbLine\n",
handle++, color);

fprintf(dxf, " 10\n%f\n 20\n%f\n 30\n%f\n", realPoint[i][j]->x, realPoint[i][j]->y,
realPoint[i][j]->z);

fprintf(dxf, " 11\n%f\n 21\n%f\n 31\n%f\n", realPoint[i][j + 1]->x, realPoint[i][j + 1]-
>y, realPoint[i][j + 1]->z);

}
if(realPoint[i + 1][j] != NULL)
{

color = ((int)((realPoint[i][j]->thickness / maxThickness) * maxColor) / 10 + 1) * 10;

fprintf(dxf, "  0\nLINE\n  5\n%i\n100\nAcDbEntity\n  8\n0\n 62\n%i\n100\nAcDbLine\n",
handle++, color);

fprintf(dxf, " 10\n%f\n 20\n%f\n 30\n%f\n", realPoint[i][j]->x, realPoint[i][j]->y,
realPoint[i][j]->z);

fprintf(dxf, " 11\n%f\n 21\n%f\n 31\n%f\n", nextTestX, 0.0, 0.0);
}

}
}

else if(thisRadiusIsSmall && nextRadiusIsSmall)
{

if(realPoint[i][j] != NULL)
{

if(realPoint[i][j + 1] != NULL)
{

color = ((int)((realPoint[i][j]->thickness / maxThickness) * maxColor) / 10 + 1) * 10;

fprintf(dxf, "  0\nLINE\n  5\n%i\n100\nAcDbEntity\n  8\n0\n 62\n%i\n100\nAcDbLine\n",
handle++, color);

fprintf(dxf, " 10\n%f\n 20\n%f\n 30\n%f\n", thisTestX, 0.0, 0.0);
fprintf(dxf, " 11\n%f\n 21\n%f\n 31\n%f\n", nextTestX, 0.0, 0.0);

}
}

}

else
{

if(realPoint[i][j] != NULL)
{

if(realPoint[i][j + 1] != NULL)
{

avgThickness = (float)((realPoint[i][j]->thickness + realPoint[i][j + 1]->thickness) /
2.0);

color = ((int)((avgThickness / maxThickness) * maxColor) / 10 + 1) * 10;

fprintf(dxf, "  0\nLINE\n  5\n%i\n100\nAcDbEntity\n  8\n0\n 62\n%i\n100\nAcDbLine\n",
handle++, color);

fprintf(dxf, " 10\n%f\n 20\n%f\n 30\n%f\n", realPoint[i][j]->x, realPoint[i][j]->y,
realPoint[i][j]->z);

fprintf(dxf, " 11\n%f\n 21\n%f\n 31\n%f\n", realPoint[i][j + 1]->x, realPoint[i][j + 1]-
>y, realPoint[i][j + 1]->z);

}
if(realPoint[i + 1][j] != NULL)
{

avgThickness = (float)((realPoint[i][j]->thickness + realPoint[i + 1][j]->thickness) /
2.0);

color = ((int)((avgThickness / maxThickness) * maxColor) / 10 + 1) * 10;
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fprintf(dxf, "  0\nLINE\n  5\n%i\n100\nAcDbEntity\n  8\n0\n 62\n%i\n100\nAcDbLine\n",
handle++, color);

fprintf(dxf, " 10\n%f\n 20\n%f\n 30\n%f\n", realPoint[i][j]->x, realPoint[i][j]->y,
realPoint[i][j]->z);

fprintf(dxf, " 11\n%f\n 21\n%f\n 31\n%f\n", realPoint[i + 1][j]->x, realPoint[i + 1][j]-
>y, realPoint[i + 1][j]->z);

}
if(realPoint[i + 1][j + 1] != NULL)
{

avgThickness = (float)((realPoint[i][j]->thickness + realPoint[i + 1][j + 1]->thickness) /
2.0);

color = ((int)((avgThickness / maxThickness) * maxColor) / 10 + 1) * 10;

fprintf(dxf, "  0\nLINE\n  5\n%i\n100\nAcDbEntity\n  8\n0\n 62\n%i\n100\nAcDbLine\n",
handle++, color);

fprintf(dxf, " 10\n%f\n 20\n%f\n 30\n%f\n", realPoint[i][j]->x, realPoint[i][j]->y,
realPoint[i][j]->z);

fprintf(dxf, " 11\n%f\n 21\n%f\n 31\n%f\n", realPoint[i + 1][j + 1]->x, realPoint[i + 1][j
+ 1]->y, realPoint[i + 1][j + 1]->z);

}
}

}
#endif

#ifdef faces
if(realPoint[i][j] != NULL && realPoint[i + 1][j + 1] != NULL && realPoint[i + 1][j] != NULL)
{

avgThickness = (float)((realPoint[i][j]->thickness + realPoint[i + 1][j + 1]->thickness +
realPoint[i + 1][j]->thickness) / 3.0);

color = ((int)((avgThickness / maxThickness) * maxColor) / 10 + 1) * 10;

fprintf(dxf, "  0\n3DFACE\n  5\n%i\n100\nAcDbEntity\n  8\n0\n 62\n%i\n100\nAcDbFace\n",
handle++, color);

if(thisRadiusIsSmall)
fprintf(dxf, " 10\n%f\n 20\n%f\n 30\n%f\n", thisTestX, 0.0, 0.0);

else
fprintf(dxf, " 10\n%f\n 20\n%f\n 30\n%f\n", realPoint[i][j]->x, realPoint[i][j]->y,

realPoint[i][j]->z);
if(nextRadiusIsSmall)
{

fprintf(dxf, " 11\n%f\n 21\n%f\n 31\n%f\n", nextTestX, 0.0, 0.0);
fprintf(dxf, " 12\n%f\n 22\n%f\n 32\n%f\n", nextTestX, 0.0, 0.0);
fprintf(dxf, " 13\n%f\n 23\n%f\n 33\n%f\n", nextTestX, 0.0, 0.0);

}
else
{

fprintf(dxf, " 11\n%f\n 21\n%f\n 31\n%f\n", realPoint[i + 1][j]->x, realPoint[i + 1][j]->y,
realPoint[i + 1][j]->z);

fprintf(dxf, " 12\n%f\n 22\n%f\n 32\n%f\n", realPoint[i + 1][j + 1]->x, realPoint[i + 1][j +
1]->y, realPoint[i + 1][j + 1]->z);

fprintf(dxf, " 13\n%f\n 23\n%f\n 33\n%f\n", realPoint[i + 1][j + 1]->x, realPoint[i + 1][j +
1]->y, realPoint[i + 1][j + 1]->z);

}
}
if(realPoint[i][j] != NULL && realPoint[i + 1][j + 1] != NULL && realPoint[i][j + 1] != NULL)
{

avgThickness = (float)((realPoint[i][j]->thickness + realPoint[i + 1][j + 1]->thickness +
realPoint[i][j + 1]->thickness) / 3.0);

color = ((int)((avgThickness / maxThickness) * maxColor) / 10 + 1) * 10;

fprintf(dxf, "  0\n3DFACE\n  5\n%i\n100\nAcDbEntity\n  8\n0\n 62\n%i\n100\nAcDbFace\n",
handle++, color);

if(thisRadiusIsSmall)
{

fprintf(dxf, " 10\n%f\n 20\n%f\n 30\n%f\n", thisTestX, 0.0, 0.0);
fprintf(dxf, " 11\n%f\n 21\n%f\n 31\n%f\n", thisTestX, 0.0, 0.0);

}
else
{

fprintf(dxf, " 10\n%f\n 20\n%f\n 30\n%f\n", realPoint[i][j]->x, realPoint[i][j]->y,
realPoint[i][j]->z);
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fprintf(dxf, " 11\n%f\n 21\n%f\n 31\n%f\n", realPoint[i][j + 1]->x, realPoint[i][j + 1]->y,
realPoint[i][j + 1]->z);

}
if(nextRadiusIsSmall)
{

fprintf(dxf, " 12\n%f\n 22\n%f\n 32\n%f\n", nextTestX, 0.0, 0.0);
fprintf(dxf, " 13\n%f\n 23\n%f\n 33\n%f\n", nextTestX, 0.0, 0.0);

}
else
{

fprintf(dxf, " 12\n%f\n 22\n%f\n 32\n%f\n", realPoint[i + 1][j + 1]->x, realPoint[i + 1][j +
1]->y, realPoint[i + 1][j + 1]->z);

fprintf(dxf, " 13\n%f\n 23\n%f\n 33\n%f\n", realPoint[i + 1][j + 1]->x, realPoint[i + 1][j +
1]->y, realPoint[i + 1][j + 1]->z);

}
}
if(realPoint[i][j] == NULL && realPoint[i + 1][j + 1] != NULL && realPoint[i + 1][j] != NULL &&

realPoint[i][j + 1] != NULL)
{

avgThickness = (float)((realPoint[i + 1][j + 1]->thickness + realPoint[i + 1][j]->thickness +
realPoint[i][j + 1]->thickness) / 3.0);

color = ((int)((avgThickness / maxThickness) * maxColor) / 10 + 1) * 10;

fprintf(dxf, "  0\n3DFACE\n  5\n%i\n100\nAcDbEntity\n  8\n0\n 62\n%i\n100\nAcDbFace\n",
handle++, color);

if(thisRadiusIsSmall)
fprintf(dxf, " 10\n%f\n 20\n%f\n 30\n%f\n", thisTestX, 0.0, 0.0);

else
fprintf(dxf, " 10\n%f\n 20\n%f\n 30\n%f\n", realPoint[i][j + 1]->x, realPoint[i][j + 1]->y,

realPoint[i][j + 1]->z);
if(nextRadiusIsSmall)
{

fprintf(dxf, " 11\n%f\n 21\n%f\n 31\n%f\n", nextTestX, 0.0, 0.0);
fprintf(dxf, " 12\n%f\n 22\n%f\n 32\n%f\n", nextTestX, 0.0, 0.0);
fprintf(dxf, " 13\n%f\n 23\n%f\n 33\n%f\n", nextTestX, 0.0, 0.0);

}
else
{

fprintf(dxf, " 11\n%f\n 21\n%f\n 31\n%f\n", realPoint[i + 1][j]->x, realPoint[i + 1][j]->y,
realPoint[i + 1][j]->z);

fprintf(dxf, " 12\n%f\n 22\n%f\n 32\n%f\n", realPoint[i + 1][j + 1]->x, realPoint[i + 1][j +
1]->y, realPoint[i + 1][j + 1]->z);

fprintf(dxf, " 13\n%f\n 23\n%f\n 33\n%f\n", realPoint[i + 1][j + 1]->x, realPoint[i + 1][j +
1]->y, realPoint[i + 1][j + 1]->z);

}
}
if(realPoint [i + 1][j + 1] == NULL && realPoint[i][j] != NULL && realPoint[i + 1][j] != NULL &&

realPoint[i][j + 1] != NULL)
{

avgThickness = (float)((realPoint[i][j]->thickness + realPoint[i][j + 1]->thickness +
realPoint[i + 1][j]->thickness) / 3.0);

color = ((int)((avgThickness / maxThickness) * maxColor) / 10 + 1) * 10;

fprintf(dxf, "  0\n3DFACE\n  5\n%i\n100\nAcDbEntity\n  8\n0\n 62\n%i\n100\nAcDbFace\n",
handle++, color);

if(thisRadiusIsSmall)
{

fprintf(dxf, " 10\n%f\n 20\n%f\n 30\n%f\n", thisTestX, 0.0, 0.0);
fprintf(dxf, " 11\n%f\n 21\n%f\n 31\n%f\n", thisTestX, 0.0, 0.0);

}
else
{

fprintf(dxf, " 10\n%f\n 20\n%f\n 30\n%f\n", realPoint[i][j]->x, realPoint[i][j]->y,
realPoint[i][j]->z);

fprintf(dxf, " 11\n%f\n 21\n%f\n 31\n%f\n", realPoint[i][j + 1]->x, realPoint[i][j + 1]->y,
realPoint[i][j + 1]->z);

}
if(nextRadiusIsSmall)
{

fprintf(dxf, " 12\n%f\n 22\n%f\n 32\n%f\n", nextTestX, 0.0, 0.0);
fprintf(dxf, " 13\n%f\n 23\n%f\n 33\n%f\n", nextTestX, 0.0, 0.0);

}
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else
{

fprintf(dxf, " 12\n%f\n 22\n%f\n 32\n%f\n", realPoint[i + 1][j]->x, realPoint[i + 1][j]->y,
realPoint[i + 1][j]->z);

fprintf(dxf, " 13\n%f\n 23\n%f\n 33\n%f\n", realPoint[i + 1][j]->x, realPoint[i + 1][j]->y,
realPoint[i + 1][j]->z);

}
}

#endif
}

}

fprintf(dxf, "  0\nENDSEC\n  0\nEOF");

fclose(dxf);
}

/******************************************************************************
*performs rotation transformations on data
******************************************************************************/
void rotate3D (VERTEX *point, double x, double y, double z)
{

float intermediate;

if(x != 0.0)
{

intermediate = (float)(cos(x) * point->y - sin(x) * point->z);
point->z = (float)(sin(x) * point->y + cos(x) * point->z);
point->y = intermediate;

}

if(y != 0.0)
{

intermediate = (float)(cos(y) * point->x + sin(y) * point->z);
point->z = (float)(-sin(y) * point->x + cos(y) * point->z);
point->x = intermediate;

}

if(z != 0.0)
{

intermediate = (float)(cos(z) * point->x - sin(z) * point->y);
point->y = (float)(sin(z) * point->x + cos(z) * point->y);
point->x = intermediate;

}
}
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