A Thesis

Entitled

Developing an Active Ankle Foot Orthosis

Based On Shape Memory Alloys

By

Ehsan Tarkesh Esfahani

Submitted as a partial fulfillment of the requirement for

The Master of Science in Mechanical Engineering

Advisor: Dr. Mohammad H Elahinia

Graduate School

The University of Toledo

December 2007



The University of Toledo

College of Engineering

I HEREBY RECOMMEND THAT THE THESES PREPARED UNDER MY

SUPERVISON BY Ehsan Tarkesh Esfahani

ENTITLED Developing an Active Ankle Foot Orthosis

Based on Shape Memory Alloys

BE ACCEPTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE

DEGREE OF Master of Science in Mechanical Engineering

Thesis Advisor: Dr. Mohammad H Elahinia

Recommendation Concurred by

Dr. Mohamed S Hefzy Dr. Medi Pourazadi

Committee on
Final Examination

Dr. Charles Armstrong

Dean, College of Engineering



Copyright ©
This document is copyrighted material. Under copyright law, no parts of this document

may be reproduced without the expressed permission of the author.



An Abstract of

Developing an Active Ankle Foot Orthosis

Based On Shape Memory Alloys

Ehsan Tarkesh Esfahani

Submitted as partial fulfillment of the requirements for

The Master of Science in Mechanical Engineering

University of Toledo

December 2007

This thesis is aimed toward the development and evaluation of a novel active ankle foot
orthosis (AAFO) based on shape memory alloy (SMA) actuators. This device intends to
fill the gap in the existing research aimed at helping patients with drop foot muscle
deficiencies as well as rehabilitation activities. To examine the feasibility of this idea, the
current study focuses on the dynamic behavior of the ankle joint. A SMA manipulator
with a similar dynamic behavior is experimentally evaluated.

Nonlinear behavior of SMA wires requires nonlinear control techniques such as Sliding
Mode Controller (SMC) for tracking the desired ankle angle. Simulation results of

several different techniques are compared (PID, SMC, SMC-PID and Adaptive PID) and

v



finally the experimental result of an Adaptive PID is used to check the stability of
walking. This results shows that an Adaptive PID controller as a robust and precision
control can be used to track the desired position of the ankle. However for frequencies

more than 0.25 Hz (time cycle less than 4 seconds), the walking conditions will be

unstable due to slow cooling process.
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Chapter 1

1. Introduction

Locomotion, a characteristic of animals, is the process by which the animal moves itself
from one location to another [Rose and Gamble, 94]. In nature, locomotion takes on
many different forms, walking is a very interesting and complex form of locomotion that
is mainly restricted to human beings. It is a common observation that individuals walk
uniquely and one can usually recognize someone by one’s gait. Short and slim people
walk differently as compared to tall or thick individuals. Human emotions also have clear
effects on walking patterns. As a result, walking can be called a learned activity that
defines a certain characteristic of human life. There are however millions of individuals
who cannot experience the pleasures of walking. These ‘individuals’ require either
rehabilitation or permanent assistance in the form of assistive devices (orthosis or
prosthesis) to restore some of their walking abilities. In the past, the majority of
prosthetic patients lost limbs in combat, but this appears to be changing. National trends
indicate that typical patients are middle-aged who have suffered an amputation due to
vascular disease [Kirkup, 07].

The amputee population in the U.S. is approximately 1.2 million [Harman 04]. About 9

out of 10 amputations involve the leg, from the foot to above the knee. Three-quarters of



all amputations are the result of disease, often cancer or peripheral vascular disease. The
latter is a narrowing of the arteries in the extremities that is often associated with
diabetes. Most other amputations are the result of workplace or automobile accidents. A
small fraction, approximately 3 percent, is due to birth defects that constrict bone growth
[Kirkup, 07]. Walking problems, however, are not limited to the amputee population;
there are a large number of patients who have lost muscular force control due to a
disruption of major neural pathways at some point along the spinal column. Similar
disabilities can be due to aging.

An orthosis is a device that is applied externally to a part of the body. The main function
of an orthosis is to correct orthopedic maladjustment. These functions are performed by
the device through supporting or through assisting the musculo-neuro-skeletal system.
Only in the US, approximately 866,000 people use an orthosis on a lower extremity [US
DOC, 94] and 8 million people are in immediate need for new technologies that will help
them walk.

A common need of orthosis devices exist for drop foot patients. These patients are unable
to lift their foot because of reduced or no muscle activity around the ankle. The major
causes of drop foot include severing of the nerve, stroke, cerebral palsy and multiple
sclerosis [Perry, 92]. There are two common complications caused by drop foot. First, the
patient cannot control the falling of their foot after heel strike. As a result, the foot slaps
the ground on every step. The second complication is the inability of the patients to clear
their toe during swing. This causes the patients to drag their toe on the ground throughout
the swing. The objective of this thesis is to develop a nonlinear controller for an Active

Ankle Foot Orthosis (AAFO). The force and motion in this active orthosis is provided by



shape memory alloy (SMA) actuators. This orthosis device will fill the gap in the existing
research aimed at helping patients with drop foot muscle deficiencies as well as

rehabilitation activities.

1.1. Powered Assistive Locomotion Technologies

Leonardo DaVinci, Galileo, Lagrange and Bernoli were among the first scientists who
had primary interest in the application of mechanics to the study of human locomotion.
The first efforts in building a powered assistive device go back to the mid-1970s
[Hughes, 72, Vukobratovic et al., 74, Townsend and Lepofsky, 76]. In 1974 a
Yugoslavian researcher, Miomir Vukobratovic, invented one of the most advanced
models of the time period (Figure 1.1-A). His device used pneumatic actuators at the hip,
knee and ankle to provide assistance in the frontal and sagittal planes [Vukobratovic et al.
74, 90]. In 1978 Ali Seireg at the University of Wisconsin developed a hydraulic orthosis

with a dual axis hip, dual axis ankles and single axis knees [Seireg, 81]. (Figure 1.1-B)

Figure 1-1 A-The exoskeleton developed by Vukobratovic in Yugoslavia in the 1970s
[Vukobratovic, 74]. B- A computer controlled hydraulic exoskeleton in University of
Wisconsin in 1978 [Seierg, 81].



More recently, new versions of powered orthoses have been developed at Michigan
Technological University [Ruthenberg et al. 97] and in Italy [Belforte et al. 01]. All of
these devices underwent testing on human subjects, but they did not achieve sufficient
utility to be produced on a broad scale. Achieving better and smaller actuators, sensors,
and computer processors will help powered orthoses become a reality in the clinical
community. Perhaps the most advanced academic laboratory focusing on integrating new
technology into orthotics and prosthetics is the Biomechatronics Laboratory at the MIT
Media Laboratory. Researchers at this lab have developed a computer-controlled above-
knee prosthesis to rival the Otto Bock C-Leg which is currently being sold commercially
by Ossur [Herr, 03]. Blaya, in the same lab, also developed a powered ankle-foot orthosis
based on Series Elastic Actuators [Blaya and Herr, 04] (Figure 1.2-A). The basic idea of
this AAFO is to change the orthosis impedance (stiffness) actively, which eliminates the
slap foot. As a result, the AAFO minimizes the kinematic walking difference from
normal people. The MIT group developed a Series Elastic Actuator (SEA) for the AAFO
to realize variable stiffness. This actuator is comprised of a DC motor, mechanical links
and torsional springs. A control algorithm was developed to create proper stiffness for
each part of the walking (gait) cycle. Although this AAFO shows promising results in a
lab environment, the actuator weighs 2.6 kg and requires bulky batteries and electronics
for operation. In addition, the patient may not be able to sit while wearing this AAFO.

Another magnificent work done on developing AAFOs is a pneumatically powered lower
limb exoskeleton which is developed in the Human Neuromechanics Lab at the
University of Michigan [Ferris et. al 05]. This AAFO is actuated by McKibben Muscles

which are pneumatic actuators. One pneumatic actuator provides plantar flexion torque



and a second actuator provides dorsiflexion torque. A control algorithm adjusts air
pressure in each actuator independently. The study has shown promising results in gait
rehabilitation, Human motor adaptation and muscle activations [Ferris et. al 05; Cain et
al, 07] (Figure 1.2-B). However, the size and weight of the pneumatic auxiliary

components such as the compressor is prohibitive for outdoor walking and activities.
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Figure 1-2 A-Powered ankle-foot orthosis for drop foot correction in MIT media lab.
[Blaya and Herr, 04]B- McKibben muscle actuators in AAFOs. [Ferris, 05]

Mechanical system laboratory at the University of Delaware is another research group
working on walking assistive devices. Researchers at this lab designed a gravity
balancing leg orthosis to assist persons with hemiparesis to walk through elimination of
the effects of gravity. The proposed device is designed to be passive (Figure 1.3). This
device is intended to be used as a rehabilitation device for patients to train their muscles
and in order to regain their former control and strength. This device has the following
features: (i) it can fully or partially gravity-balance the human leg over the range of its
motion; (ii) it is tunable to the geometry and inertia of a specific human subject to

achieve the desired level of gravity balancing [Fattah and Agrawal, 05; 06].



The same group also designed an active leg exoskeleton for gait rehabilitation of patients
with walking disabilities. They proposed a force-field controller which can apply suitable
forces on the leg to help it move along a desired trajectory. The interaction forces
between the subject and the orthosis were designed to be ‘assist-as-needed’ for safe and

effective gait training [Banala and Agrawal, 05].

Figure 1-3 A-Gravity balance leg orthosis designed at University of Delaware [Fattah,
05, 06] B-Active leg exoskeleton [Banala and Agrawal, 05]

Applications of a powered orthosis are not limited to assisting people with walking
disabilities. There is another class of powered orthoses (robotic exoskeletons) which are
used to increase human motor abilities over and above normal levels. These human
performance augmentation devices provide superhuman motor function to neurologically
intact individuals. The Defense Advanced Research Projects Agency (DARPA) in the
United States hopes to yield devices that can increase the speed, strength, and endurance
of soldiers in combat environments [Ferris et. al, 05]. Berkeley Robotics lab at UC
Berkeley and Sarcos Inc. are two groups currently developing working exoskeletons
financed by DARPA. Sarcos protptype is shown in Figure 1.4-B and the other prototype

called BLEEX (Berkeley Lower Extremity Exoskeleton) is shown in Figure 1.4-C



[Kazerooni, 96]. While the exact devices created by these research groups may not be
readily used as assistive technology, it is likely that their research will result in spin-off
technology that can later be incorporated into powered orthoses for neurologically
impaired humans.

Another academic laboratory that is leading the way in developing powered orthoses for
assistive technology and also super humans is the Cybernics Laboratory at the University
of Tsukuba in Japan. They have developed an electromechanical powered orthosis called
Hybrid Assistive Limb (HAL) (Figure 1.4-A). It includes four rotational motors that
assist knee and hip joints on both lower limbs based on feedback from force sensors and

muscle activation amplitudes [Kasaoka and Sankai, 01; Kawamoto and Sankai 04].

Figure 1-4 Powered orthosis for power augmentation. A-HAL (TesKoba University,
Japan) [http://sanlab.kz.tsukuba.ac.jp/english/r_hal.php] B-The Sarcos prototype [MIT
Technology review, 04] C-BLEEX, the Berkeley Lower Extremity Exoskeleton
[bleex.me.berkeley.edu/bleex.htm]

1.2.  Other Locomotion Assistive Technologies

There are some other locomotion assistive technologies which use non-conventional

actuators. These techniques include Functional Electric Stimulation, Weight Bearing



Control or simply a passive orthosis. These alternative mechanisms are explained in the

following sections.

1.2.1. Functional Electrical Stimulation (FES)

Functional electrical stimulation (FES) is a technique that uses electrical currents to
activate nerves innervating extremities affected by paralysis resulting from spinal cord
injury (SCI), head injury, stroke or other neurological disorders in an attempt to restore
function in people with disabilities. FES consists of electrically stimulating a muscle
using electrodes [Bajd et al., 99; Guyton, 96]. In this methodology shorts bursts of
electrical pulses are used to generate muscle contraction. If muscles are stimulated in the
right order, a walking-like motion can be attained by paraplegic subjects.

The first electrical stimulator for drop foot problems was created in 1961 by Liberson. He
used a heel switch in the affected leg. As soon as the patient raise the heel, the heel
switch triggered the stimulation electrodes positioned in the fossa popliteal area and
above the peroneal nerve. This in turn causes a dorsal flexion at ankle joint [Liberson et
al., 61]. Walking pattern, based on flexion response triggering, was also applied by
Graupe et al [Graupe et al. 83; 84]. In the investigation conducted by Bajd et al. a simple
hand switch, built into the handle of a walker or crutches, was used to initiate a step [Bajd
et al. 83]. The advantage of Graupe’s approach was the control of stimulation sequences
based on a patient’s electromyogram (EMG) signal.

Current hybrid systems use a combination of electrical stimulation and walkers to allow
paraplegic subjects to walk. The latest system was developed by Case Western Reserve

University as shown in Figure 1.5 [Kobetic et al 03].



Figure 1-5 CWRU hybrid gait orthosis [Kobetic, 03]
It should be mentioned that a work by Mizrahi et al. [Mirzahi et al., 85; Isakov et al., 86]

shows a 20% heart rate increase during FES exercise while the subject was in a sitting
position. The heart rate was then increased to 100% and 150% during standing and FES
induced walking, respectively. Similarly, the oxygen uptake was doubled during exercise,
tripled during standing and about five times higher during walking as compared to the
resting values. These results demonstrate the high level of effort during FES-restored

walking, which also requires an anaerobic source of energy [Kralj and Bajd, 89].

1.2.2. Weight Bearing Control (WBC) Orthosis

The weight bearing control (WBC) orthosis (Figure 1.6) consists of a rigid frame that
supports the user's body weight, a special hip joint device that reciprocally propels each
leg forward, a gas powered foot device for foot/floor clearance and a control system for
the orthosis [Kaneoko et al 97]. The patient uses special crutches with two buttons to

signal the WBC orthos