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Abstract

A human with muscle weakness can wear a rehabilitation device, e.g. exoskeleton, to receive support during
walking. However, how can this support be adjusted in real-time to the intention of the user? The given
support should be intuitive, user-specific, compliant and robust to sensor noise. We suggest the use of an
adaptive oscillator which can detect the frequency and phase of the user’s gait. The designed oscillator-based
controller is capable to adjust the support in real time, based on reliable joint angle measurements. The
adaptive oscillator determines the position and velocity reference trajectories, based on the measured joint
angles. The controller uses these reference trajectories to attract the current angle respectively velocity.

This is part II of a two-part paper. In part I of this paper the controller is optimized using simulations. In
part II the performance of the optimized oscillator-based controller is determined for the ankle joint using
specially designed pneumatic ankle foot orthoses (PAFO). The PAFO actuate the plantar flexion movement
with pneumatic muscles. The performance of the controller is analyzed measuring the activity of the Tibialis
Anterior and Gastrocnemius Medialis with electromyography (EMG).

The oscillator-based controller found the same reference joint angles and velocities in real time compared
to the optimization. The desired exoskeleton torques are comparable to the simulations, but the amplitude
is lower. The support decreased the EMG activity of the Gastrocnemius Medialis. However, the lack of
transparency of the PAFO increased the EMG of the Tibialis Anterior.

Overall the oscillator-based controller can give a user-specific support by detecting the gait frequency and
learning the gait trajectory. The specially designed PAFO can measure the performance of controllers on
humans objectively. The EMG of the Gastrocnemius Medialis can decrease more, when the transparency of
the PAFO is increased.

1. Introduction

The human capability to walk and stand on two
legs has a lot of influence on his/her physical and
mental health. When this capability is disturbed,
robots can come in to regain the mobility. These
robots, e.g. exoskeletons, should adapt their behav-
ior to the intention of the user [10], so that the user
can interact with the exoskeleton rather than react
to it [12].

In this research a control strategy with compliant
behavior is developed to provide intuitive support
to a human with muscle weakness during steady
state walking with an anthropomorphic exoskele-
ton. The designed oscillator-based controller is ca-
pable to adjust the support in real time, based on

reliable joint angle measurements.
Ronsse et al. [9, 10, 11] developed an oscillator-

based controller, which can support the gait with-
out time delay, gives a user specific support and is
robust to sensor noise. Preliminary experiments as-
sisting rhythmic elbow movements showed a clear
decrease in the electromyography (EMG) of the bi-
ceps and triceps.

Recently Ronsse et al. [9] used the same ap-
proach to assist the hip joint. The hip joint angle
is measured and adaptive oscillators [1, 7] are used
to learn and predict the joint angles in real time
based on previous gait cycles. The predicted tra-
jectories are used to attract the current joint angle
by means of a proportional control and a manual
tuned stiffness. In this manner the oscillator-based
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control strategy is capable to adjust the support to
the walking pattern of the user, by using only one
sensor per joint (measuring the current joint angle).

In the first part of this paper [4] an oscillator-
based controller was designed by optimizations to
assist the hip, knee and ankle joint. The manual
tuned stiffness and the phase shift are optimized
parameters. In a one-stage optimization the con-
trol parameters were determined minimizing the
power consumption, the stiffness of the controller
and the disturbance of the gait. The simulation re-
sults showed that the designed control strategy is
capable to assist steady state walking. However,
the optimized controller may work in simulation,
but a comfortable assistance is not assured in prac-
tice. Besides that, in this part the joint angles and
velocities have to be learned in real time.

Therefore, the simulation results [4] are validated
by experiments in this second part of the paper.
The performance of the controller is analyzed for
the ankle joint using specially designed pneumatic
ankle foot orthoses (PAFO). The PAFO can be at-
tached to the Lower extremity Powered Exoskeleton
(Lopes) [13], which can assist the hip and knee joint.
However, the support of the hip and knee joint are
beyond the scope of this paper, but the approach
described in this paper is valid for all three joints.

We want to achieve that the optimized oscillator-
based controller in simulations can be used real-
time in experiments. The EMG activity needs to
decrease as an objective measure of the performance
of this controller.

In this report first the oscillator-based control
strategy and the experiments are explained in the
methods, then the results are shown, the paper
is concluded with a discussion and recommenda-
tions on the performance of the oscillator-based
controller and the PAFO.

2. Methods

In this paper the same oscillator-based controller
is used as in [4] to validate the optimized controller
on one subject. The oscillator-based controller uses
a first order [3, 6] impedance control law to actuate
the hip, knee and ankle joint in the sagittal plane
with an exoskeleton torque Texo:

Texo(t) = κ{k(φ1) · (qref (t)− q(t)) + ...

b(φ1) · (q̇ref (t)− ˆ̇q(t))}
(1)
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Figure 1: The stiffness and damping functions depend on
the gait phase φ1. These functions were determined using
optimizations in [4]
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Figure 2: The joint angle q is learned over multiple cycles to
find the learned joint angle q̂∗. This learned angle is shifted
in phase with ∆φ to find the reference angle qref
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Figure 3: The adaptive oscillator can learn the phase φ1
and joint velocity ˆ̇q, based on the joint angle q. The non-
linear filter finds the learned joint angle q̂∗ and learned joint
velocity ˆ̇q∗. These are shifted with an optimized phase shift
∆φ to find the reference angle qref and reference velocity
q̇ref
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The measured joint angle q(t) and calculated joint
velocity ˆ̇q(t) are compared to respectively a refer-
ence joint angle qref (t) and reference joint veloc-
ity q̇ref (t). The stiffness k(φ1) and damping b(φ1)
functions are gait phase φ1 dependent and were de-
termined by optimizations, see figure 1. The calcu-
lated torque Texo(t) is partly applied on the person,
by means of multiplication with the support ratio
κ.

The determination of the reference position
qref and reference velocity q̇ref is unique for the
oscillator-based controller. The starting point is
that the joint trajectory should be adjusted in real
time based on previous gait cycles. In figure 2 the
determination of the reference angle qref is shown.
First the joint angle q is learned from previous gait
cycles, then the learned angle q̂∗ is shifted in phase
with an optimized factor ∆φ to find the reference
angle qref .

In the simulations the gait phase φ1, the learned
joint angle q̂∗ and the learned joint velocity ˆ̇q∗ are
known in advance, because steady state walking is
assumed. However, in the experiments these vari-
ables are unknown and need to be learned.

In the experiments the oscillator-based controller
has to detect the gait phase φ1, the learned joint an-
gle q̂∗ and the learned joint velocity ˆ̇q∗, an overview
is shown in figure 3. Adaptive oscillators [1, 7]
are used to detect the gait phase φ1 and estimate
the joint velocity ˆ̇q, section 2.1. A non-linear filter
[2] determines the learned joint angle q̂∗ and the
learned joint velocity ˆ̇q∗, section 2.2. The learned
angle and velocity are used to find the reference an-
gle by applying an optimized phase shift ∆φ. The
method is concluded with a section on the experi-
mental protocol, section 2.3.

2.1. Adaptive phase oscillator

An adaptive phase oscillator can learn a peri-
odic input F . When the periodic input is learned,
the oscillator can deliver a filtered phase φ1 in real
time, used to apply the corresponding phase shift,
stiffness and damping. In this section first a sim-
ple adaptive oscillator is explained, learning a sinu-
soidal input. Then a more sophisticated oscillator
is explained learning non-sinusoidal inputs, used in
this paper.

Sinusoidal input. The basic building block of the
used adaptive phase oscillator is a modified Hopf
oscillator, that can synchronize to a sinusoidal in-
put F . The oscillator is similar to the one used

by Righetti et al. [1, 7], but transferred to polar
coordinates:

φ̇ = ω + νFcos(φ) (2)

Where φ is the phase of the oscillator, ν a constant
determining the speed of synchronization to F and
ω the intrinsic frequency. The modified Hopf oscil-
lator only synchronizes to the periodic input signal,
to actually learn the frequency of the teaching sig-
nal F , the intrinsic oscillator frequency ω has to
adapt:

ω̇ = νFcos(φ) (3)

This equation implies that the sum of ω̇ over one
period is zero, if the intrinsic frequency ω is equal
to the frequency of the input signal F , i.e. the oscil-
lator is converged. If the input signal is sinusoidal
and the oscillator is synchronized to the input, the
filtered learned signal q̂ can be obtained by:

q̂ = α1sin(φ) + α0 (4)

With the amplitude α1 and the offset α0 converging
to the sinusoidal input characteristics of q. Righetti
et al. [8] showed that this convergence is guaran-
teed, when the input of the adaptive oscillator F be-
comes the difference between the actual signal q and
the already learned signal q̂, i.e.: F (t) = q(t)− q̂(t).
The offset and amplitude can then be learned by
the integrators:

α̇0 = ηF

α̇1 = ηFsin(φ)
(5)

Where η is the integrator gain. This modified Hopf
oscillator can learn sinusoidal inputs F . The oscil-
lator becomes a low-pass filter without delay, when
the input signal q consist of more frequencies.

Non-sinusoidal, but periodic input. The proposed
adaptive oscillator can only learn one frequency. It
is possible to learn periodic signals, which consists
of multiple frequencies by using several adaptive os-
cillators in parallel [8]. Ronsse et al. [9] suggested
that for a periodic input only the main frequency
has to be learned, the others are multiples of it. In
this case the equations 2-5 are changed to:

φ̇i = iω + νFcos(φi)

ω̇ = νFcos(φ1)

α̇i = ηFsin(φi)

q̂ =

K∑
i=0

αisin(φi)

(6)
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Figure 4: The learned joint angle q̂∗ is determined by a
kernel-based non-linear filter. The main phase φ1 divides the
periodic input in N equal parts. In each part i a Gaussian
function Ψi is placed with corresponding weight factor γi to
find the learned joint angle q̂∗

Where φi is the phase and αi is the amplitude of
oscillator i. The 0th integrator in equation 6 is
still learning the offset, choosing φ0(t) = φ0(0) =
π/2. The velocity ˆ̇q can be estimated by taking the
derivative of the sum of sinusoids:

ˆ̇q =

K∑
i=0

α̇isin(φi) + αiφ̇icos(φi) (7)

The adaptive oscillator adapts fast to the input
signal, when the constants are defined as follows:
ν = 17, η = 0.25 and K = 10.

2.2. Kernel-based non-linear filter

The proposed adaptive oscillator in section 2.1
can learn sinusoidal signals. However, Ronsse et al.
[9] found that a large number of oscillators are re-
quired to learn intervals in the joint signals, e.g. the
plateau in the knee profile during the stance phase
of walking. Therefore, the adaptive phase oscillator
is combined with a kernel-based non-linear filter [2]
to reduce the number of oscillators needed.

Learning joint angle & velocity. The kernel-based
non-linear filter uses the main oscillator phase φ1 to
divide the periodic input q inN equal parts between
0−2π. In every part a Gaussian-like kernel function
Ψi is placed, defined by the width h and the center
ci, see figure 4. The learned angle q̂∗ is then the
weighted sum of N Gaussian-like kernel functions
Ψi:

q̂∗(φ1) =

∑
Ψi(φ1)γi∑
Ψi(φ1)

Ψi(φ1) = ehcos(φ1−ci)−1

(8)
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Figure 5: The phase shift ∆φ is phase dependent φ1 and was
determined by optimizations [4]

The joint angle q is mapped when the weight γi
minimize the quadratic error criterion for every
Gaussian-like kernel function Ψi:

Ji =

M∑
k=1

Ψi(k)(q(k)− γi(k))2 (9)

Where k ∈ [1,M ] are the M discrete time steps and
q(k) the signal to be learned. The quadratic error
criterion Ji can be minimized in real time using in-
cremental regression [2], which is done with the use
of recursive least squares with a forgetting factor of
λ. The weight factors γi can be updated by:

γi(k + 1) = γi(k) + Ψi(k)Pi(k + 1)(q(k)− γi(k))

Pi(k + 1) =
1

λ
(Pi(k)− Pi(k)2

λ
Ψi(k) + Pi(k)

)

(10)

Where P is the inverse covariance matrix [5]. Re-
cent data is more important, if λ < 1 [9].

Reference angle & velocity. The reference angle
qref is found by applying a phase shift ∆φ to the
learned joint angle q̂∗:

qref (∆φ) =

∑
Ψi,∆γi∑
Ψi,∆

Ψi,∆ = ehcos(∆φ−ci)−1

(11)

The reference velocity q̇ref is determined in the
same manner as the reference angle qref . The phase
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Figure 6: PAFO, pneumatic ankle-foot orthoses. The plan-
tar flexion movement is actuated with a pneumatic muscle.
An encoder and load cell measure respectively joint angle
and force

shift ∆φ(φ1) is determined by optimizations and is
defined as follows:

∆φ(φ1) = aφ + f(φ1) (12)

The constant phase shift aφ puts the reference an-
gle in front of the measured angle. The addition
of the phase modulation f(φ1) makes small adjust-
ments of the reference angle possible. In figure 5
the optimized phase shift is found. The same phase
shift is used for both position as velocity, but the
shift differs per joint.

The constants of the non-linear filter are defined
to get a good fit as follows: λ = 0.9995, N = 90
and h = 144.

2.3. Experimental setup

The optimized controller is tested on humans, ac-
tuating the plantar flexion movement of the ankle
joint with a specially designed pneumatic ankle foot
orthosis (PAFO).

Experimental equipment. The plantar flexion
movement of the PAFO (figure 6) is actuated with
a pneumatic muscle (Festo MAS-20-250N). The
PAFO consists of two orthosis to support both the
left as the right ankle, each orthosis weighs 3.5 kg.

Both orthoses are equipped with a load cell
(Futek LCM200) and a proportional 5/3 way valve
(Festo MPYE-5) to regulate the force generated
by the pneumatic muscle and an absolute encoder
(Baumer ATD 07 S A4) to measure the ankle joint
angle. These sensors and the valve are connected
to a Beckhoff EtherCAT system and Matlab xPC.

Data is collected for post-hoc analysis with the
same sensors at a frequency of 50 Hz.

The EMG of the Gastrocnemius Medialis and the
Tibialis Anterior are measured with a Delsys Bag-
noli EMG system to check the performance of the
controller at a frequency of 500 Hz. The EMG data
is synchronized with the EtherCAT system.

Participant. In this pilot test the performance of
the oscillator-based controller is tested on one male
participant (aged 25, weight 70 kg and length 1.90
m).

Experimental protocol. In total the performance of
the optimized controller and PAFO is tested for five
successive conditions. In every condition the partic-
ipant walked 15 minutes on the treadmill (Hastings
TR-6) with a speed of 3 km/h. The last 5 min-
utes of each condition were used for data analysis,
so that the participant had 10 minutes to adapt to
the support. The following conditions are used:

1. In the free walking condition the participant
walks without wearing the PAFO, but with
comparable heavy shoes. This condition is
used to evaluate the EMG level of normal walk-
ing.

2. In the zero impedance condition the orthosis
applies zero torque to determine the actual
transparency of the PAFO. Actually the ortho-
sis executes 1 Nm plantar flexion torque to in-
crease the controllablity of the pneumatic mus-
cle.

3. In the 20% support condition, the PAFO de-
livers 20% of the total torque, 80% is gener-
ated by the person according the simulations
(κ = 0.2).

4. In the 50% support condition the PAFO de-
livers 50% of the total torque, 50% is gener-
ated by the person according the simulations
(κ = 0.5).

5. In the 100% support condition the PAFO de-
livers 100% of the total torque, 0% is gener-
ated by the person according the simulations
(κ = 1).

3. Results

The results of the experiment are averaged over
all steps to find a mean gait cycle and shown in
figure 7-9.
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Figure 7: Mean ankle joint angle q. Left: Performance of the adaptive oscillator and non-linear filter in the 100% support
condition; the joint angle q is learned q̂∗ and shifted to find the reference angle qref . Right: Performance of the oscillator-based
controller, the measured joint angle q is influenced by applying different support ratios and the PAFO
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Figure 8: Mean ankle joint torques. Left: The exoskeleton torque Texo calculated by the oscillator-based controller. Right:
Torque applied by the PAFO
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Figure 9: EMG level of the shank muscles with increasing support ratios. Left: Gastrocnemius Medialis. Right: Tibialis
Anterior

6



The oscillator locks the frequency ω fast, in ap-
proximately 5 gait cycles. After the frequency is
locked, the joint angle is learned accurately as can
be seen in the left part of figure 7. The reference
angle qref is determined with the same phase shift
∆φ as in the simulations, but can now vary in real
time based on the user’s walking pattern. The stiff-
ness and damping values are dependent on the gait
phase and are automatically adjusted.

In the right part of figure 7 the influence of the
support conditions is shown in comparison to the
zero impedance condition. The joint angles during
swing phase are clearly influenced by the orthosis.
There is only a small difference between the differ-
ent support conditions.

The left part of figure 8 shows the desired ex-
oskeleton torque Texo in the plantar flexion direc-
tion calculated by the oscillator-based controller,
equation 1. These torques have the same shape as
the joint torques in the simulations [4], but the ab-
solute value is 3.5 times smaller. Therefore, the ac-
tual support factors are approximately 5%, 12.5%
and 25% instead of 20%, 50% and 100%.

The right part of figure 8 shows the executed
torque by the PAFO. The torques applied in the
zero impedance condition are not equal to 1 Nm,
especially during early swing and stance. The in-
crease of the desired exoskeleton torque over the
different support conditions can be found back how-
ever.

In figure 9 the measured EMG levels are shown
of the Gastrocnemius Medialis (plantar flexion) and
Tibialis Anterior (dorsiflexion). According to an
ANOVA test the differences, between the maxi-
mum EMG level of the Gastrocnemius Medialis for
the different conditions, are significant with p¡0.05.
There is a clear increase in EMG level between the
free walking and zero impedance condition. This
suggests again that the zero impedance condition is
not transparent. This lack of transparency is clearly
seen at early swing in the EMG level of the Tibialis
Anterior. The EMG level of the Gastrocnemius Me-
dialis decreases with increasing support ratio. The
amount of decrease is however not linear.

4. Discussion

The discussion is divided into two parts, first
the performance of the oscillator-based controller
is discussed, second the performance of the PAFO
is treated.

Oscillator-based controller. The conversion from
simulations to experiments can be done quickly
with the implementation of the oscillator-based
controller in the Matlab environment. The opti-
mized parameters can be loaded into the controller
and the experiment can start instantaneously. The
joint angles and velocities are learned in approx-
imately 5 gait cycles and the reference angle and
velocity are determined correctly and are compara-
ble to the simulations.

The oscillator-based controller can adjust its sup-
port to the walking pattern of the user. The refer-
ence angle and velocity are adjusted such that the
user can walk with varying speeds and with his/her
specific trajectory.

The calculated exoskeleton torque Texo has the
same pattern as the torque determined in the sim-
ulations, figure 8. The EMG level decreases with
increasing support ratios κ, figure 9. The EMG de-
crease is however smaller than expected, this can
probably be explained by a 3.5 times smaller ex-
oskeleton torque Texo in the experiments than in
the simulations. This is caused by an incorrect ve-
locity determination in the simulations. The actual
support rates are then 5%, 12.5% and 25% instead
of 20%, 50% and 100%, which is the reason that the
EMG decrease is small. Therefore, the EMG level
of the Gastrocnemius Medialis in the 100% support
condition cannot be equal to zero, figure 9.

The oscillator-based controller neglectible influ-
ences the gait, the measured joint angles q are ap-
proximately the same, see figure 7. However, in
early swing the zero impedance condition has a clear
difference in the measured joint angle compared to
all support conditions. This is caused by the slow
deflation of the pneumatic muscle, which is less in-
flated in the zero impedance condition.

Another notable aspect is the EMG increase in
the 100% support condition of the Tibialis Ante-
rior around 10%-30% of the gait, figure 9. In early
stance the knee is in full extension, if the pneumatic
muscle then contracts, the knee threatens to go in
hyperextension. This happens in the 100% support
condition. The hyperextension is prevented by con-
tracting the Tibialis Anterior, which is seen as in-
crease in the EMG level, figure 9. This problem is
probably caused by the design of the PAFO. The
PAFO tries to overtake the function of the Gas-
trocnemius Medialis. However, the Gastrocnemius
Mediallis is a biarticular muscle, so that the knee
cannot be overstretched.

The error torque Terror, introduced in the simula-
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tion [4] to make the model walk feedforward stable,
is not present during the experiments. Therefore
the applied Texo in the experiments is more com-
parable to the Winter torques [14] then during the
simulations.

PAFO performance. The increase in EMG activ-
ity in both muscles, switching from free walking to
zero impedance, indicates that the PAFO is not re-
ally transparent, see figure 9. The measured joint
torques confirm this lack of transparency, in the
zero impedance condition the measured torque is
not equal to 1 Nm, see figure 8.

The overall EMG increase of the Tibialis Ante-
rior can partly be explained by the implementa-
tion of the pretension in the pneumatic muscle (1
Nm in plantarflexion direction). This pretension is
implemented to increase the controllability of the
pneumatic muscle. The addition of a spring in dor-
siflexion direction can compensate for this 1 Nm
torque.

In early swing phase there is one clear increase
in the EMG of the Tibialis Anterior, comparing
the free walking and the zero impedance condition.
This peak is due to the slow deflation of the pneu-
matic muscle. At toe off the pneumatic muscle is
fully inflated and to ensure ground clearance the
pneumatic muscle has to deflate quickly. This prob-
lem can also be seen in the measured joint angle,
which does not come above 0 rad during swing
phase. This problem can be solved by increasing
the diameter of the valve openings, e.g. by adding
an exhaust valve.

5. Conclusion

The oscillator-based controller can give a user-
specific support by detection of the gait frequency
and determination of a user-specific reference tra-
jectory. The optimized controller can be tested on
humans using the specially designed PAFO. The
EMG of the Gastrocnemius Medialis decreases sig-
nificantly with increasing support ratio. However,
the results need to be improved by increasing the
transparency of the PAFO.

6. Future research

The transparency of the PAFO should be in-
creased to make more reliable measurements. The
exhaust of the pneumatic muscle should be faster,

so that dorsiflexion is made easier at early swing.
Pretension of the pneumatic muscle should be com-
pensated by adding a spring in dorsiflexion. A local
buffer in the hollow pipe of the PAFO can increase
the bandwidth of the system. Besides improving
the system dynamics, a better identification can im-
prove the system behavior.

The performance of the controller was deter-
mined by testing the EMG levels of two shank mus-
cles. However, the total gait pattern can be changed
using the controller and the PAFO, A better per-
formance measure for the controller would be the
oxygen consumption, which can measure the total
gait efficiency. Another option is to use more EMG
electrodes, e.g. at the hip and knee muscles, to
detect the changed gait pattern.

There is a clear difference between the ankle joint
angles used in the optimization and the measured
joint angles wearing the PAFO. The used joint an-
gles in the simulation also vary from the Winter
ankle joint angles [14]. The optimization can find a
better controller by using comparable joint angles.
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