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Haptic and Locomotion 
interfaces 

“Haptic interfaces refers to interfaces involving the 
human hand and to manual sensing and manipulation”  

(Durlach et al., 1994) 

  a haptic interface is made of 
  a mechanical position tracker 
  actuated joints 

  it is just a robot attached to a human 

Locomotion interfaces refers to interfaces involving the  
human body/legs/feet and to natural or induced locomotion  
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from Merrian-Webster dictionary 

  from the Greek ἅπτεσθαι = haptesthai = to touch 
  an adjective (the word is “haptics”) 
  circa 1890 
  relating to or based on the sense of touch 
  or, characterized by a predilection for the sense of touch  
 <a haptic person> 

What is “haptic”? 
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Human exploratory procedures 
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where are forces typically applied? 

  conventional haptics: on arms and/or hands 
  foot haptics (e.g., Iwata’s GaitMaster) 
  whole-body haptics (e.g., Sarcos Treadport, inertial 

emulators) 

Haptic interfaces are robots that apply forces 
to the body to display or relocate information 

A force-exchange point of view 
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Conventional haptic interfaces 

ground based 
(Phantom) 

body based 
(UTAH teleoperator arm) 
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Haptic hand devices 

(Sensable Technologies) 

PHANTOM Desktop PHANTOM Omni 
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PHANTOM Desktop data sheet 

3D force feedback 
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A VR application in surgery 

Immersive Touch 
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video 



OMEGA 6D hand device  

6D force feedback, Stewart platform 
(Force Dimension) 
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Haptic interfaces: 
Teleoperation and Virtual Reality 

teleoperation 
in the real world 

an agent 
in the virtual world 
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Teleoperation with an haptic interface 

using an Omega device  
(European project Robocast: http://131.175.32.10/Robocast) 
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Force feedback from Virtual or Real world 

virtual 
environment 
compliance  

modeled with  
a spring/damper 
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Haptic rendering control loop 

 joint displacement  
 sensing (on device) 
 (direct) kinematics 
 collision detection 
 (environment 
 geometry) 
 surface point 
 determination 
 force calculation  
 kineto-statics 
 actuation  
 (on device) 
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G1(s)

Haptic rendering control loop 
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G1(s)

FHO FVE

human 
operator 

side 

virtual 
environment 

side 

impedance (linear) models 
of operator and environment 

ZVE (s) =
FVE (s)
XVE (s)

ZHO (s) =
FHO (s)
XHO (s)

continuous 
time t 

discrete 
time tK = KT 

(Laplace) transfer functions 
of haptic device for operator’s 

G2(s)
position sensing 

force display 

+ = 
local stability analysis 

(e.g., by Nyquist criterion) 
of closed-loop system 

Gloop =G1G2
ZVE
ZHO



Telemanipulation (1-dof) control loop - 1 
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˙ θ s = τ s + Fe
master 

(operator 
side) 

slave 
(environment 

side) 
Mm

˙ ̇ θ m + Dm
˙ θ m = τm + Fh

applied 
by 

human 

reaction 
torque by 

environment 

master 
coordination torque  
(applied by motors) 

slave 
coordination torque  
(applied by motors) 

ri = ˙ θ i + λθi i = m,s

Mm

Dm

rs(t)

τm

Ms

Ds

Fh Fe
τ s

rm (t)

θm , ˙ θ m θs, ˙ θ s

rs(t −T) rm (t −T)

master 
coordination 

slave 
coordination 

bi-directional 
channel 

with time 
delay T 



Telemanipulation (1-dof) control loop - 2 
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to preserve passivity of the closed-loop in the presence of delay T,  
scattering transformations are often introduced  

scattering variables um, vs (and their delayed versions) are suitable 
combinations of local torque and position/velocity variables 

(see, e.g., Chopra, Spong, Lozano: 
 “Synchronization of bilateral teleoperators with time delay,” Automatica, 2008) 



Haptic/visual rendering architecture 
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Haptic rendering and augmented reality 

 University of Siena (http://sirslab.dii.unisi.it)  
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Mobile haptic devices - 1 

 University of Siena (http://sirslab.dii.unisi.it)  
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Mobile haptic devices - 2 
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Powered exoskeletons 
for human walking augmentation 

Berkeley Lower Extremity 
Exoskeleton (BLEEX) ExoHiker™ Medical Exoskeleton™ 

H. Kazerooni (http://bleex.me.berkeley.edu) 
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ExoHiker™ 

  designed for carrying heavy loads during long missions 
  weight: 13.5 kg (with power unit, batteries, and on-board computer) 
  payload: >65 kg (while the wearer feels no load) 
  noise: virtually imperceptible 
  duration:  

  150 km/kg (Lithium Polymer) battery, at average speed 4 km/h  
  e.g., 80 W/hour battery of 0.52 kg & 65 kg load, sufficient for 21 h 
  unlimited with a small pack-mounted solar panel 

  interface: small hand-held LCD display 
  features: easy-stow retractable legs, quick release emergency  
  completed in February 2005 

  see video on YouTube  
  http://www.youtube.com/watch?v=EdK2y3lphmE 
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Foot haptics 

Sarcos Biport Iwata’s GaitMaster 
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Whole-body haptics 

Sarcos Treadport II 

CyberWalk platform 

with immersion in Virtual Reality/Environment (VR/VE) 
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Whole-body haptics: The Ferrari race 

with inertial immersion in Virtual Reality/Environment (VR/VE) 
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Other robots that apply 
forces to humans 

  programmable exercise machines  
  rehabilitation robots 
  assist devices 
  powered exoskeletons 

a thin line separates similar robotic devices 

most are intended for interaction with the real world, but 
immersion in VR is also possible 

  in fact, the most general interaction may involve not  
 only vision (and sound) but also haptics 
  similar case in human-computer interfaces (HCI) 

Elective in Robotics – Haptic and Locomotion Interfaces                27 



A typical haptic/VR system 

haptic interface 

User 

visual 
interface 

geometry, 
kinematics 

dynamics 

force rendering 

auditory 
interface 

robot model 

world model 
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Relevant aspects for haptics & VR 

  technical issues 
  device: specifications, design, control transparency & stability 
  simulated environment: fidelity 

  high for objects, low for haptic interaction 

  device/hardware 
  precise registration to a simulation 
  human factors for device use 
  cost, size, and dissemination 

  real-time simulation/software 
  visual displays: 30-60 Hz 
  haptic displays: 1 kHz, 1 msec delay 

  high-frequency contact transients 
  control instability (especially for hard environments) 
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Types and features of motion interfaces 

  passive motion interfaces 
  non-inertial systems (e.g., joysticks) 
  inertial systems (e.g., Stewart platforms) 
  rate control is used 
  user is seated and does not expend energy 

  active motion interfaces 
  normal rooms with CAVE or HMD displays 
  locomotion interfaces (e.g., exercise machines) 
  cyclic proportional control is typically used (gait) 
  user expends energy to move through VE 
  sensorimotor integration for geometry 
  human power enhancers for locomotion 
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CAVE and HMD 

Cave Automatic Virtual Environment (ELV, Univ Illinois Chicago)  

Head Mounted Display (with tracker) 
eMagin Z800 
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Possible applications 

  entertainment: arcades and exercise 
  health rehabilitation 
  military training and mission rehearsal 
  architectural walkthroughs 
  education 
  mobile interface (virtual tourist, e-travel) 
  physio-psychological research 
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Types of locomotion interfaces 

  pedaling devices 
  walking-in-place systems 
  programmable foot platforms 
  treadmills 
  moving bases 
  ... 
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Sarcos Uniport Tectrix VR bicycle 
(Georgia Tech) 

Pedaling devices 
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Room-size environments 
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Room instrumentation 

Elective in Robotics – Haptic and Locomotion Interfaces                36 



Walking-in-place systems 

Templeman’s Gaiter system 
(US Navy Research Lab) 
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Programmable foot platforms 

Sarcos Biport Iwata’s GaitMaster 

cyclic walking in 3D 
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1D linear treadmill platforms 

ATR GSS 
(ground surface 

simulator) 

ATR ATLAS Sarcos Treadport 
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Sarcos Treadport video 

John Hollerbach (University of Utah) 
on KSL Channel 5 TV, April 2008 
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1D treadmill platforms 

Max Plank Institute, Tübingen 
linear 

circular 
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2D planar treadmill platforms 

Iwata’s Torus 
Treadmill 

Omni-Directional 
Treadmill (D. Carmein) 
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Torus treadmill clip 

H. Iwata (University of Tsukuba) 
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Omni-Directional Treadmill (ODT) 

http://www.vsd.bz 
(Virtual Space Devices, Inc.) 

May 2005 May 2006 
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video video 



2D planar treadmill platforms 

CyberWalk platform (the largest in the world!) 

Elective in Robotics – Haptic and Locomotion Interfaces                45 



2D passive locomotion interfaces 

Virtusphere  
(R. Latypov) 

Cybersphere  
(University of Warwick) 

both are passive devices, with curved walking surface 
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Virtual Sphere 

http://www.virtusphere.com 
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Other 2D locomotion interfaces 

BAT Ball Array Treadmill 
(Kogakuin University) 

CyberCarpet 

nonlinear couplings between rotation and translation 
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BAT Ball Array Treadmill 

Simulation Experiment 
N. Akira (KU), W. Kohei (KU), K. Masato (Fujitsu Social Science Lab), 

S. Ryo (KU), I. Minoru (KU)  
IEEE Virtual Reality Conference (VR 2005), Bonn 
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Moving bases for locomotion 

Powered Shoes 

general objective is to cancel walker’s motion... 

VR Lab, University of Tsukuba (Hiroo Iwata) 

CirculaFloor 
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CirculaFloor 

University of Tsukuba 
ACM SIGGRAPH 2004 Conference, Los Angeles 
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video video 



Powered Shoes 

University of Tsukuba 
ACM SIGGRAPH 2006 Conference, Boston 
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Commercial motion interfaces ... 

Nintendo Wii Fitness 

what are their apparent limitations? and advantages? 
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Microsoft Kinect 



Bibliography - 1 

  B. Hannaford, A.M. Okamura, “Haptics”, Springer Handbook of Robotics 
(O. Khatib, B. Siciliano, Eds.), Springer, 2008  

  K. Salisbury , F. Conti, F. Barbagli, “Haptic rendering: Introductory 
concepts,” IEEE Computer Graphics and Applications, vol. 24, pp. 24-32, 
2004 

  J.M. Hollerbach, “Locomotion interfaces,” in Handbook of Virtual 
Environments Technology (K.M. Stanney, Ed.), pp. 239-254, Lawrence 
Erlbaum Associates, 2002 

  H. Iwata, “Locomotion interface for virtual environments,” 9th Int. Symp. 
on Robotics Research, pp. 275-282, 2000 

  R. Mills, J.M. Hollerbach, and W.B.Thompson, “The biomechanical fidelity 
of slope simulation on the Sarcos Treadport using whole-body force 
feedback,” Experimental Robotics VII (ISER'00), pp. 437-446, Springer, 
2001 

  H. Iwata, H. Yano, and F. Nakaizumi, “Gait Master: A versatile locomotion 
interface for uneven virtual terrain,” IEEE Virtual Reality Conf., pp. 
131-137, 2001 

Elective in Robotics – Haptic and Locomotion Interfaces                54 



Bibliography - 2 

  H. Noma and T. Miyasato, “Design for locomotion interface in a large scale 
virtual environment ATLAS: ATR locomotion interface for active self motion,” 
7th Annual Symp. on Haptic Interface for Virtual Environments and 
Teleoperated Systems, pp. 111-118, 1998 

  R. Darken, W. Cockayne, and D. Carmein, “The Omnidirectional Treadmill: A 
locomotion device for virtual worlds,” in Proc. Symp. User Interface 
Software and Technology, pp. 213-221, 1997 

  H. Iwata, “The Torus Treadmill: Realizing locomotion in VEs,” IEEE 
Computer Graphics and Applications, vol. 9, pp. 30-35, 1999 

  K.J. Fernandes, V. Raja, and J. Eyre, “Cybersphere: The fully immersive” 
spherical projection system," Communications of the ACM, vol. 46(9), pp. 
141-146, 2003 

  A. Nagamori, K. Wakabayashi, and M. Ito, “The Ball Array Treadmill: A  
locomotion interface for virtual worlds,2 Work. on New Directions in 3D 
User Interfaces (at IEEE VR 2005), Bonn, D, 2005 

  H. Iwata, H. Yano, H. Fukushima, and H. Noma, “CirculaFloor,” IEEE 
Computer Graphics and Applications, vol. 25, pp. 64-67, 2005 

Elective in Robotics – Haptic and Locomotion Interfaces                55 


