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Abstract

Many biological and artificial systems are made up from similar, relatively simple
elements that interact directly with their nearest neighbors. Despite the simplic-
ity of the individual building blocks, systems of this type, network systems, often
display complex behavior — an observation which has inspired disciplines such as
artificial neural networks and modular robotics. Network systems have several at-
tractive properties, including distributed functionality, which enables robustness, and
the possibility to use the same elements in different configurations. The uniformity of
the elements should also facilitate development of efficient methods for system design,
or even self-reconfiguration. These properties make it interesting to investigate the
idea of constructing mechatronic systems based on networks of simple elements.

This thesis concerns modeling and optimal design of a class of active mechani-
cal network systems referred to as Neuro-Mechanical Networks (NMNs). To make
matters concrete, a mathematical model that describes an actuated truss with an
artificial recurrent neural network superimposed onto it is developed and used. A
typical NMN is likely to consist of a substantial number of elements, making de-
sign of NMNs for various tasks a complex undertaking. For this reason, the use of
numerical optimization methods in the design process is advocated. Application of
such methods is exemplified in four appended papers that describe optimal design of
NMNs which should take on static configurations or follow time-varying trajectories
given certain input stimuli. The considered optimization problems are nonlinear, non-
convex, and potentially large-scale, but numerical results indicate that useful designs
can be obtained in practice.

The last paper in the thesis deals with a solution method for optimization problems
with matrix inequality constraints. The method described was developed primarily
for solving optimization problems stated in some of the other appended papers, but
is also applicable to other problems in control theory and structural optimization.
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1 Introduction

A noticeable trend in the development of mechanical artifacts during the 20th and
the present centuries is the increasing level of integration of electronics into what had
previously been purely mechanical systems. A car in the 1960s typically contained no
advanced electronics save for the radio [18, Chapter 1], whereas nowadays a standard
car contains multiple microprocessors that control fuel injection, airbags, anti-spin
systems, and collision warning systems — and self-driving cars have been demon-
strated successfully. In the late 1960s, an engineer working at a Japanese company
coined the term ”mechatronics” [73], combining parts from ”mechanism” and ”elec-
tronics”, which describes the integration of electronics, mechanics, and information
technology in a broad sense (including control theory and artificial intelligence), that
characterizes many modern systems [18, 60], including cars.

Over the years, a number of concepts of mechatronic character have appeared,
including Adaptronics [62], Intelligent Structures [26], Smart Structures [28], and
Structronics [42]. Although this thesis does not deal with the subject explicitly, the
field of robotics [5] should also be mentioned here. Today, mechatronic systems are
almost omnipresent in large parts of the world, ranging in size from very large such
as earthquake resistant buildings [120], to vehicles and robots, to very small in the
form of micro-electro mechanical systems (MEMS) [125]. Based on the rapidly de-
creasing cost-per-function of computing devices [61], sensors and actuators, together
with expected improvements in energy storage and energy harvesting [6], there is ev-
ery reason to believe that mechatronic systems will continue to become increasingly
important.

An interesting class of mechatronic systems are modular (self-reconfigurable) robots
[63, 130, 119]. Such a robot constitutes an assembly of identical modules that interact
locally with their nearest neighbors. This idea is captured by the notion of network
systems. A characteristic attribute of network systems is that they may display com-
plex behavior that could not have been inferred from studying individual elements;
it is primarily the interaction between the elements that give rise to complexity —
a phenomena known as emergence. Apart from modular robots, other man-made
network systems include artificial neural networks [49, 25] and cellular automata [88],
and linear network systems have been studied by researchers in control theory since
at least the 1970s; see [29] and references therein. Although one could argue about
to what extent biological systems fit the description of network systems [69], it is
nevertheless clear that nature can serve to inspire the creation of such systems. From
a mechanical point of view, the vertebrate heart, consisting of a large number of
cells that collaborate to carry out a complicated mechanical motion, or the could be
considered an interesting example.

This thesis focuses on what can be described as a type of biologically inspired
mechatronic network systems, referred to as Neuro-Mechanical Networks (NMNs).
The concept of NMNs was introduced by Krus and Karlsson [72], and subsequently
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studied and developed by Sethson et al [110, 111]. Simulation and optimization of
truss-like NMNs served to exemplify the ideas. More recently, Magnusson et al [83]
considered the problem of designing so-called active trusses for adaptive stiffness in
a small-deformation setting inspired by traditional structural optimization of passive
structures. A prototype for an NMN was built by Magnus Sethson and is described
in [82]. The present work is theoretical however, based on a mathematical model
somewhat similar to the one used in [84, 82, 83], but extended to account for large de-
formations and other sources of nonlinear characteristics. Most importantly though,
new examples of NMNs used in static as well as dynamic situations are treated.

The primary objectives of this study are:

1. To develop the concept of NMNs further and consider potential applications;

2. To establish proper mathematical models for NMNs;

3. To investigate the use of numerical optimization methods for design of NMNs.

It is hoped that the present work will be seen as a contribution towards a more long-
term goal to enable automatic, optimal design of all kinds of mechatronic systems.
As discussed in section 2.1, network systems like NMNs have properties that should
facilitate the accomplishment of this goal, which if attained will mean dramatically
reduced development times, and, in particular, the possibility of obtaining systems
whose performance exceed what could have been achieved using traditional design
methods.

This work has borrowed ideas from literature on both structural optimization and
recurrent neural networks. These disciplines in turn are based on the theory of nu-
merical optimization and nonlinear systems. Therefore, Section 3 constitutes a very
brief overview of these subjects. This is followed by a derivation of the mathematical
model used throughout this work in Section 4. Examples of optimal design problems
based on this model and some numerical results are presented in Section 5. Conclud-
ing remarks and ideas for future work are then given in Section 6. First, however, we
present some related work and discuss practical implementation of NMNs.

2 Background and related work

One way to define the term structure is to say that it is anything designed to carry a
mechanical load [28]. In this thesis, the term active structure is used to describe any
structure capable of generating deformation and/or reaction forces when subjected
to non-mechanical stimuli (e.g. electrical or thermal). Adaptive, or smart, structures
is then a subset of all active structures, namely those equipped with some form of
sensors and feedback control. Intelligent structures finally, constitute a subset of the
smart structures with higher cognitive abilities, e.g. task planning.

Although NMNs has here been positioned as a concept of mechatronic character, a
more precise description of the present work is that it concerns optimization of active
structures that do not undergo rigid body displacements, or where such displacements
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are not of primary concern. This excludes active structures such as, e.g., vehicles and
robotic arms, and limits the scope of what is considered to be related work.

Generally speaking, the motivation for considering active structures is either to
compensate for inadequate passive performance, such as lack of stiffness in light-
weight structures, or to realize functionality that could not have been achieved by a
passive structure. In the former case, a caveat is of course that active structures may
be more complicated than their passive counterparts, hence potentially more prone
to errors and in need of additional maintenance.

As shown in Fig. 1, a smart structure comprises four building blocks: a ”skeleton”
in the form of structural material; actuators that constitute ”muscle”; a ”nervous sys-
tem” in the form of sensors; and a ”brain” in the form of electronics in which signal
processing and control algorithms can be implemented. Following several authors,

Figure 1: The four building blocks of a smart structure.

e.g., Giurgiuti [38, 39], we have here noted the opportunity for biological inspiration
when designing active systems. In passing it may also be remarked that biological
systems have two very attractive properties: the ability to self-repair and the capabil-
ity of self-replication [10]. Realization of these properties in non-biological mechanical
systems is, however, outside the scope of this thesis.

Given the complexity of mechatronic systems and the successful application of
numerical optimization methods for passive structures [14, 115], it is not surprising
that interest in similar techniques for design of active structures is steadily increasing.
Partly inspired by Frecker [37], we list five classes of optimization problems for design
of active structures that have been treated in the literature:

1. actuator placement on given (passive) structures;

2. actuator placement and controller design (e.g. selection of feedback gains and
actuator control voltages) for given structures;

3. design of coupling structure to enhance performance of a given actuator [1];

4. simultaneous design of structure (e.g. passive material distribution) and actua-
tor placement;
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CHAPTER 2. BACKGROUND AND RELATED WORK

5. simultaneous design of structure, actuator placement, and optimization of con-
troller parameters (including sensor placement).

The word simultaneous may be noted, for it is possible to carry out the design of the
structure first, followed by searching for a suitable placement of actuators, and finally
optimizing control parameters. Such an approach however, as intuition says, generally
leads to suboptimal solutions [34, 104]. For this reason, ”simultaneous engineering”
[60] is advocated.

The optimization problems treated in this thesis fall under the second and fifth
of the categories listed above. Therefore, to give some additional background to the
present work, a few selected papers dealing with problems from the listed classes will
be referred.

Early work on design of active structures using optimization methods was con-
cerned with placement of actuators on existing passive structures, one example being
a paper from 1985 by Haftka and Adelman [43] wherein actuator placement on space
antennas using analytical methods was described. The objective was to minimize
the distortion of such antennae from their desired shapes. Subsequently, the actua-
tor placement problem has been treated numerically [94, 37, 59], often modeled as a
discrete problem and attacked by heuristic methods, such as genetic algorithms [48].

Methods from topology optimization [14] have the potential of making design of
active structures more systematic. Examples of this are papers by Sigmund [113, 114]
and Raulli and Maute [103] on topology optimization of electro-thermally actuated
and electrostatically actuated, respectively, MEMS. These papers exemplify simulta-
neous design of structure and actuator placement (or more precisely, distribution of
active material). Topology optimization of beams, plates, or shells bonded by layers
of piezoelectric material has recently been treated in, e.g., [70, 30, 67, 66].

If an active structure is outfitted with sensors, control strategies for vibration con-
trol, or active damping, can be implemented [124, 102, 101, 3]1. (Note that, according
to the definitions above, vibration control requires smart structures.) Beginning in
the 1980s [15, 107], the problem of simultaneous optimization of structure and control
system has been considered by several researchers. In principle, the idea is to select
a controller, based on methods for linear quadratic [13, 12] or H∞ [131, 58] control,
which is optimal — with respect to the criteria of the respective method — for a
large class of structures. Given an optimal controller one then poses an optimization
problem to find, e.g., the optimal material distribution and actuator placement. Pos-
sible objectives can be to minimize the weight of the structure and the control effort,
but also to maximize robustness and controllability/observability measures [12]. The
controller in a problem of this type is parameterized by (a subset of) the optimization
variables. Often, a nested strategy (see section 3.2.3) is used, meaning that one has to
solve a set of algebraic (Ricatti) equations defining the controller for each candidate
design [12].

1Sensors also enable structural health monitoring [53].
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2.1. ACTIVE TRUSSES

2.1 Active trusses

The type of NMNs dealt with here is referred to as active trusses, a term adopted
from [83]. An active truss consists of two subsystems: a mechanical in the form
of a truss in which the members are capable of actuation to actively change their
length; and a neural in the form of a nonlinear, additive, artificial recurrent neural
network (RNN) [55] that controls the actuation based on external stimuli and sensory
information obtained from the mechanical subsystem. A high-level diagram of the
two subsystems and their interaction with each other and the surroundings, through
both mechanical and non-mechanical stimuli, is shown in Fig. 2. The arrows marked

Figure 2: High-level diagram showing the two subsystems of an active truss and
their interaction with each other and the surroundings.

”Auxiliary energy” indicate flow of energy required to maintain the active properties
of the system — it could be electric, thermal, or other forms of non-mechanical energy.

Physically, the two subsystems that make up an active truss are tightly integrated
as each neuron in the RNN is located within one element in the truss; i.e., it is not the
case that the RNN is used as an external controller. A schematic picture of an active
truss consisting of six elements is shown in Fig. 3. It is clearly seen that each element
consists of an actuator and an artificial neuron, the latter of which should be thought
of as a very simple dynamical system. The elements are connected mechanically
at frictionless joints. Strain sensors convey information about the mechanical state
to the neurons, which are directly connected to each other through neural network
connections, thus forming an RNN.

As mentioned in the introduction, NMNs are examples of so-called network sys-
tems. Such systems have several potential advantages compared to more conventional
systems. For instance:

• Since the functionality of the system is distributed across the elements, there
is potential for graceful degradation, i.e. a slow decline in performance as an
increasing number of individual elements fail rather than an immediate catas-
trophic failure due to malfunctioning of a central component.
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CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 3: An active truss consisting of six elements. A force F and a non-mechanical
input stimulus I are applied.

• The use of uniform elements facilitates development of efficient methods for
design (or even self-reconfiguration) and implementation.

• If assembly and disassembly is straightforward (by careful design of connectors),
multiple, possibly very different, systems could readily be constructed using the
same physical building blocks (cf. LEGOR©).

It should be noted that graceful degradation is not an inherent property of systems
made up from simple building blocks, but has to be ensured by the designer. In the
present work it is the second of the items listed above that is central, namely how to
design network systems.

2.1.1 Practical implementation

Realization of practically useful NMNs, or NMN-like systems, may lie years ahead.
Nevertheless, all kinds of practical implementations of NMNs are important to ad-
vance the concept and to test the validity of the mathematical models. Currently,
there are no prototypes of NMNs up and running, although one was once built; see
Fig. 4. The purpose of this section is to provide a very brief overview of some of the
technologies available today, or in a not-to-distant future to realize practical imple-
mentations.

Starting with the neurons, it is clear that the necessary building blocks already
exist, in the form of electronic components. Furthermore, these components are so
small that their impact on the mechanical design will be negligible. Assuming a
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2.1. ACTIVE TRUSSES

Figure 4: An element of the prototype built by Magnus Sethson. Contraction or
elongation is generated by a screw mechanism driven by an electric motor (seen on
the left side). See [82] for details.

digital implementation is sought2, one could mention that the microcontroller ATtiny
88 [9], a readily available, cheap, product with more than enough functionality for
implementing an artificial neuron, can be found in packages of size 4 by 4 millimeters
(the silicon die itself is probably much smaller). It is also reasonable to assume
that any sensors — we think here in particular of the strain sensors on the systems
discussed in section 5.1 — can be made small. For example, thin-film technology has
been used for strain gauges since the 1950s [128], and modern cellphones contain both
accelerometers, gyroscopes, and pressure sensors in the form of MEMS. Thus, from
a mechanical design point of view, the actuator is the most interesting part as it will
constitute the bulk of the volume of an element and consume most of the supplied
energy.

A linear actuator is a device that generates translatory motion. Some of the
currently available linear actuator types together with important characteristics can
be found in Tab. 1. In this work we have assumed that the elements are capable of
producing active strains of up to 40 percent. Looking at Table 1, this seems to rule out
the use of actuators based on, e.g., piezoelectric or magnetostrictive materials. Thus,
if restricted to linear actuators, some kind of electroactive polymer, or, particularly for
larger structures, hydraulic or pneumatic actuators appear preferable. Alternatively,
mechanisms for converting rotary motion into translational, such as the one used in
the element shown in Fig. 4, could be considered. There are also means to overcome
the limitations of some of the actuator types listed in Tab. 1, an example of this is
the arrangement of piezoelectric material to form traveling wave or inchworm motors
[99].

The rapidly decreasing cost-per-function of microprocessors and other devices
based on semiconductors means that nowadays, significant computing power can be
integrated in individual components of a mechatronic system. Sensors and actuators,
for example, can be made to appear from the outside in essentially any way desired;
one may for instance want the displacement generated by an actuator to depend

2Modern-day computing is by far dominated by digital devices, but analog computation might
become an important alternative in the future [79]. In section 4.2 an analog implementation of an
artificial neuron is considered.

7



Type Max. strain Max. stress Bandwidth
[%] [MPa] [Hz]

Hydraulic 10-100 20-70 <300
Pneumatic 10-100 0.5-0.9 <300
Piezoelectric 0.1 1-35 103

Magnetostrictive 0.06-0.2 10-70 > 103

Shape Memory Alloy 0.7-7 100-700 0.2-7
Electroactive polymer 0.2-380 0.2-50 1-103

Muscle 20-40 0.1-0.4 > 50
Electro-static >10 0.04 1

Table 1: Important characteristics for various actuator types (the numbers should
be viewed primarily as order of magnitude estimates). Data is compiled from [56, 99,
60, 18, 81, 52]. Note that electroactive polymer actuators constitute a large family of
different actuator types. The highest values of strain are observed in actuators based
on dielectric elastomers, and the lowest in some based on ionic polymer metals [80].

linearly on the control voltage. This is achieved by actively compensating for perfor-
mance defects such as, e.g., sensitivity to noise; cross-sensitivity, in particular with
respect to temperature; and non-linear behavior, such as hysteresis, through feed-
back control [20]. For a designer of mechatronic systems this means that it is possible
to work at a relatively high level of abstraction, treating individual components as
subsystems/units with well-defined, uncomplicated, and predictable behavior.

One conclusion that can be drawn from the preceding discussion is that, physically,
it is reasonable to view an active truss primarily as an actuator network — the
actuators make up the bulk of volume and consume most of the supplied energy.
Another thing to be noted is that while NMNs may seem to be a futuristic concept,
to some extent, enabling technologies exist already today. With a bit of a stretch it
could therefore be argued that the primary difficulty is to determine how the parts
should be assembled, a problem which in this thesis is addressed by application of
numerical optimization methods.

3 Theoretical background

In what follows, some background material on nonlinear systems and optimization is
presented. Detailed accounts of these topics can be found in [68, 126, 76, 45, 92, 19, 4,
11]. A brief introduction to traditional structural optimization and some comments
regarding the problem treated in Paper V are given at the end of the section.
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3.1. NONLINEAR SYSTEMS

3.1 Nonlinear systems

Many physical processes can be modeled as ordinary differential equations (ODEs)
of the form

ẋ = f(x, t), (1)

where the t is time, a superposed dot denotes time-differentiation, and the function
f : Rn×R→ Rn is nonlinear; in this thesis, the counterparts of f are smooth in their
first arguments and at least piecewise continuous in the second (time). The system
(1) is a non-autonomous system as there is an explicit dependency on time in the
right-hand side; otherwise the system would have been autonomous. Associated with
(1) is the initial value problem

ẋ = f(x, t)

x(0) = x0.
(2)

It is well-known that this problem has a unique solution defined for all t ≥ 0 if f
satisfies a global Lipschitz condition1. However, as our models contain quadratic and
cubic terms of the state (see Section 4), the Lipschitz property holds only locally. To
prove global existence and uniqueness, one can therefore instead make use of, e.g.,
Theorem 3.3 in [68] which asserts that if every solution starting in a compact subset
of Rn remains in that set for all t ≥ 0, then (2) has a unique solution defined for all
t ≥ 0. To ensure that this condition holds it suffices to show that every solution to
(2) is bounded, i.e., ||x(t)|| <∞ for all t ≥ 0.

The word ”nonlinear” is important here — nonlinear systems are capable of much
more complex behavior than their linear counterparts. For instance, a nonlinear
system can have multiple isolated equilibrium points, exhibit finite escape behavior,
and have stable limit cycles (self-excited periodic oscillations). To make things worse
(or more interesting), it is often impossible to obtain analytical solutions. Fortunately,
much can often be said about the qualitative behavior of nonlinear systems without
actually solving them.

Some of the most important tools for qualitative studies of dynamical systems,
concerning such things as stability of equilibria and boundedness of solutions, are
so-called Lyapunov functions2. A continuously differentiable function V : Rn → R is
said to be a Lyapunov function for (1) on an open set D ⊆ Rn if it has the property
that, for all t ≥ 0,

V̇ (x, t) = ∇V (x)Tf(x, t) ≤ 0, ∀x ∈ D, (3)

where we have used the chain rule and substituted (1). V̇ would typically be referred
to as something like ”the time-derivative of V along solutions to (1)”. By integration
we obtain

V (x(t))− V (x(0)) =

∫ t

0

V̇ (x(τ), τ) dτ ≤ 0, ∀x ∈ D,

1That is, ||f(x, t) − f(y, t)|| ≤ L||x − y|| for all x,y ∈ Rn and t ∈ [0,∞), L being a Lipschitz
constant.

2After the Russian mathematician AM Lyapunov, 1857-1918.
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CHAPTER 3. THEORETICAL BACKGROUND

so clearly the evolution of the system on D is such that V is non-increasing.
In order to obtain global results it is often useful to know that a function is radially

unbounded. A continuous function V : Rn → R is said to be radially unbounded or,
equivalently, proper [77, Proposition 2.17], if

||x|| → ∞ ⇒ V (x)→∞, (4)

where || · || denotes a vector norm. The defining characteristic of a proper function,
or map, is that the inverse image of a compact set under such a function is compact
[77, p. 45]. This means that if V is radially unbounded, then the level sets {x ∈
Rn | V (x) ≤ c } are bounded for every 0 < c <∞3.

3.1.1 Dependency on parameters

As this thesis deals with optimal design of systems governed by ODEs it is interesting
to see how solutions to (2) are affected by changes in the right-hand side. To this end,
let f be parameterized by a vector p of time-invariant parameters. It turns out that
if f depends smoothly on p, then so does the solution x = x(t,x0,p) [46, Corollary
4.1, p. 101].

When dealing with so-called nested optimization problems (see below) with many
parameters and few constraints, the adjoint method [47] is best suited for sensitivity
analysis. For an example, consider a functional of the form

H(x(p)) =

∫ T

0

h(x(t,p)) dt,

where h is a smooth function. It can be shown (see Paper II) that

∂H

∂pi
=

∫ T

0

λT ∂f

∂pi
dt,

where λ solves the linear terminal value problem

λ̇ = −JTλ+∇h (5a)

λ(T ) = 0, (5b)

with J = ∇xf . Assuming J is bounded for all t ≥ 0 it follows from [68, Theorem
3.2] that (5) has a unique solution which does not escape to infinity for t <∞.

The static case

In many applications one is only interested in equilibria of (1) — often without
reference to an underlying dynamical system. An equilibrium solution for (1) is a
solution x which satisfies

0 = f(x,p, t), ∀t, (6)

3It is no restriction to assume, as is usually done, that V is non-negative; continuity and radial
unboundedness ensures that it is bounded below, so a suitable constant can always be added to
make it non-negative.

10



3.2. OPTIMAL DESIGN

where we have again assumed a dependency of f on some parameters. Provided
there exists a point x∗ satisfying (6) for a given p = p∗4, it follows from the implicit
function theorem [106, Theorem 9.28] that x is a function of p satisfying (6) in some
vicinity of p∗ if the Jacobian J is non-singular at (x∗,p∗).

Given a point where the Jacobian is non-singular, the derivative of a function
h = h(x(p)) with respect to a parameter pi can be computed using the adjoint
method as follows:

∂h

∂pi
= λT ∂f

∂pi
,

where λ solves the linear system

JTλ = −∇h. (7)

In the static case, the gradient of a function can generally be obtained at a small
fraction of the cost of solving a nonlinear state problem (which is typically the most
time-consuming part when solving a nested problem). In the dynamic case on the
other hand, such a computation is comparatively expensive as it is necessary to solve
an additional terminal value problem, cf. (5), and evaluate one integral for each
variable pi of interest.

3.2 Optimal design

3.2.1 General nonlinear non-convex optimization

The optimization problems encountered in this thesis can all be cast in the form

minimize
p∈Rm

h(p)

subject to l ≤ g(p) ≤ u,
(8)

where h and g are smooth non-linear and non-convex functions, referred to as the
objective and constraint functions, respectively. l and u are constant vectors, and
equality constraints are modeled by setting li = ui for some i:s. Problem (8) is what
we refer to as a standard nonlinear optimization problem (NLP). A local solution to
this problem is a point in Rm which satisfies the constraints of the problem and is
locally optimal; i.e., there is a vicinity of this point where no smaller function value is
attained. A global solution is any of the local solutions having the smallest objective
function value. Existence of globally optimal solutions to (8) holds under the fairly
non-restrictive conditions of Weierstrass’ theorem [4, Theorem 4.7].

If the objective function in an NLP is convex and the constraints define a convex
set, then this problem is said to be convex [19]. This situation is highly desirable
since for a convex problem, every local solution is also a global solution [11, Theorem
3.4.2]. For this reason, convex problems are ”easy” to solve. Unfortunately, the
problems encountered in this thesis are non-convex, meaning that it can be difficult

4See [100, 105] for a sufficient condition.
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CHAPTER 3. THEORETICAL BACKGROUND

to find globally optimal solutions. Systematic methods for finding global solutions
exist (based on e.g. branch-and-bound procedures), but their application are deemed
outside the scope of this work. For well-posed problems, the numerical optimization
methods used here guarantee convergence to a local solution, or at least a so-called
KKT point [92]. They are thus globally convergent local methods.

Apart from distinguishing between local and global methods, one way to classify
optimization algorithms is to state whether they use derivative information or not (the
latter category includes methods such as genetic algorithms and simulated annealing
[48]). In our case, the optimization problems are smooth and obtaining, at least
first-order, derivative information is relatively cheap in terms of CPU time compared
to the cost of solving the state problems (see below). This makes derivative-based
optimization methods a sensible choice.

3.2.2 Optimal design problems

In one sense, the optimal design problems considered here are just standard NLPs.
However, there is some additional structure and notation associated with the term
”optimal design”. The variables are divided into two groups: state variables (x) and
design variables (p), where the state variables should at some point satisfy a so-called
state problem. The degree to which a candidate design meets the requirements (the
”optimality”) set up by a designer is quantified by performance or cost functions (or
functionals) that are used as objective or constraints in the optimization problem
together with constraints imposed directly on the design variables.

In the following, a dynamic problem is one where performance is quantified using
a least one performance functional that depends on the entire solution to an initial
value problem of the form

ẋ = f(x,p, t)

x(0) = x0.
(9)

The state problem thus consists of finding a solution to (9) for a given p. In a static
problem on the other hand, performance is evaluated only at points that satisfy the
algebraic equation

0 = f(x,p). (10)

In this case the state problem therefore consists in finding a solution to (10) for a
given p. As discussed in Paper IV, there are at least two ways in which this can
be done: by applying a Newton-type solver to (10); or by solving a dynamic system
whose equilibria coincide with solutions to (10).

3.2.3 Nested versus simultaneous

Regardless of whether the problem is static or dynamic, there are two commonly seen
ways in which an optimal design problem can be formulated [7]: as a simultaneous
problem where both the design and state variables are used as variables in the resulting
NLP; or as a nested problem wherein the state variables are treated as functions of
the design variables (by solution of the state problem) and therefore do not appear

12



3.2. OPTIMAL DESIGN

explicitly in the NLP. For a given problem, the nested form is smaller in terms of the
number of variables. However, it is hampered by a number of drawbacks, including
the facts that

• in order to obtain useful sensitivity information it may be necessary to solve
the state problem to a high level of accuracy for each set of design variables;

• the design-to-state map p→ x may be highly nonlinear (see Appendix II); and

• simple constraints, such as box constraints, involving the state variables become
nonlinear and solution of additional ”state problems”, of the form (5) or (7), is
required to obtain sensitivities.

These problems can be avoided by using a simultaneous formulation at the cost of
increasing the number of variables and the possibility that intermediate designs are
useless since they do not satisfy the equations of state.

3.2.4 Dynamic problems

In the dynamic case, the continuous-time, simultaneous optimization problem is writ-
ten as

minimize
x(t)∈Rn,p∈Rm

h(x,p)

subject to





ẋ = f(x,p, t), t ∈ [0, T ]

x(0) = x0

l ≤ g(x,p) ≤ u,

(11)

where h and g are smooth non-linear and non-convex functionals. To treat this prob-
lem numerically, it must be converted into a standard NLP. In the direct transcription
method of optimal control [17] this is done by dividing the interval [0, T ] into a grid
with N segments, introducing a set of variables x1, . . . ,xN+1 that approximates x(t)
at the grid points and using these to replace the ODE-constraint, and the performance
functionals, by a discrete approximation (e.g. using the trapezoidal rule). Usually N
must be quite large in order for the solution to (9) to be approximated with good
accuracy, so the number of state variables need not be particularly large for (11) to
become a large-scale problem.

To avoid a large number of variables one may consider a nested version of (11),
namely

minimize
p∈Rm

h(p)

subject to l ≤ g(p) ≤ u,
(12)

where we have used the shorthand notation h(p) = h(x(p),p) and g(p) = g(x(p),p).
Here x(p) denotes the solution to the initial value problem (9) for a given p. The
number of variables in (12) is usually much smaller than in (11), but solving an initial
value problem to high accuracy can be costly, and adding to that we also need to solve
a terminal value problem, of the type (5), to obtain sensitivity information for each
state dependent functional.

13
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3.2.5 Static problems

For static problems, (11) reduces to

minimize
x∈Rn,p∈Rm

h(x,p)

subject to

{
0 = f(x,p)

l ≤ g(x,p) ≤ u,
(13)

where x is now independent of time. Again, a nested version can be obtained:

minimize
p∈Rm

h(p)

subject to l ≤ g(p) ≤ u,
(14)

where h(p) = h(x(p),p) and g(p) = g(x(p),p) and x(p) satisfies (10). The differ-
ence between this problem and (12) is that in the latter, the objective and constraints
depend on the entire solution to an initial value problem, whereas in (14) performance
is evaluated only at a single point. This implies that a numerical solution to (10) can
be sought using some variant of Newton’s method, leading to what in Paper IV is
referred to as a static nested problem.

As discussed in section 3.1.1, the map p → x is well-defined if the Jacobian
∇xf is non-singular. For optimal design using large-displacement models of trusses,
this requirement has been found sometimes to be quite restrictive by the author.
The reason for this it that buckling occurs, leading to singular Jacobians and hence
non-convergence of the Newton methods tested5. As a possible remedy for these
difficulties, one may consider applying an ODE-solver to find an equilibrium point
for (9)6; using the terminology of Paper IV this approach leads to a dynamic nested
problem.

Structural optimization

As an example of a class of static problems we consider optimal design of (passive)
structures for maximum stiffness. The state problem is to find a displacement vector
u ∈ Rn which satisfies the small deformation quasi-static equilibrium equation

K(ξ)u = F , (15)

where K(ξ) is the (symmetric, positive semi-definite) stiffness matrix, ξ ∈ Rm is a
vector of design variables, and F collects external, dead loads. Equation (15) is valid
for a large class of structures, including a-priori discrete structures such as trusses,
as well as discretized (by some finite element method) continuum structures. The

5Note that singular Jacobians is a potential issue even in the simultaneous formulation (13).
Some NLP-solvers, however, will take measures to handle this [92, p. 572] so that the user never
sees such problem directly, but rather by observing slow convergence.

6Convergence to an equilibrium point holds for instance if f defines a gradient system (and all
equilibria are isolated), i.e. f is the gradient of some scalar function [51, Chapter 9].
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problem discussed in this section is thus quite general. To maximize the stiffness
of a structure, one tries to minimize its compliance F Tu, which can be interpreted
as the displacement of the structure in the direction of the load [2]. Presently, the
so-called ground structure approach7 is used almost exclusively. In the case of truss
optimization, a ground structure consists of a number of nodes distributed in the
design domain (a 2- or 3-dimensional subset of space) connected by a set of potential
bars. A ”structural universe” is thus defined, consisting of all designs compatible
with the given ground structure, and the task is to pick among those that design
which best suits our need. Choosing the bar volumes as design variables in a ground
structure with m potential elements, we now pose the following optimization problem
for truss design:

minimize
ξ∈Rm,u∈Rn

F Tu

subject to





K(ξ)u = F
m∑

i=1

ξi ≤ V,

(16)

where V is the maximum allowed volume. With appropriate support conditions,
ξi > 0 for all i ensures that the stiffness matrix is positive definite, so u can be
eliminated from (16) by solving the equilibrium equation (15) for each ξ8. We thereby
obtain the following nested version of (16):

minimize
ξ∈Rm

F Tu(ξ)

subject to





m∑

i=1

ξi ≤ V

ε ≤ ξi, i = 1, . . . ,m,

(17)

where ε is a small positive number. Typically n� m so it might seem as if the nested
formulation would offer no significant advantage over the simultaneous. However,
since K depends linearly on ξ, it can be shown that (17) is in fact a convex problem
[2, 118], while due to the equilibrium constraint, problem (16) is non-convex [24,
p. 87]. This illustrates that there may sometimes be additional points to consider
besides those listed in Section 3.2.3 when formulating an optimal design problem.

Optimal design of structures using numerical methods is a vast subject, with
research being initiated as early as the 1960s [31]. While this work has borrowed
ideas and terminology from this field, a more comprehensive review is outside the
present scope; see [16, 2] and [14, Chapter 4] for reviews focused on optimization of
trusses. We will, however, mention an interesting extension to the problem discussed
in the preceding paragraph that was treated in Paper V.

7A concept apparently due to Dorn [31] in the early 1960s. Alternatives to the ground structure
approach are growth methods [87], wherein new bars and nodes may be introduced during the
optimization process. This idea appears so far not to have gained much interest, however.

8With special care it is possible to let elements vanish even in a nested formulation, see [21]
(which deals with discretized continuum structures), but this is not a common approach.
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When solving, say (17), it may turn out that the optimal design is unstable in the
sense that the structure is prone to global buckling; i.e., buckling of the structure as
a whole rather than of individual bars. It can be shown [71] that under the linear
buckling assumption, the condition

K(ξ) +G(ξ,u) positive semi-definite, (18)

where G(ξ,u) is the geometric stiffness matrix, is sufficient to guarantee a stable
structure for loads τF with τ ∈ [0, 1), F being the load in (17) and (16). Adding this
as a constraint to (17), or (16), results in a problem which is not a standard NLP.
However, as described in Paper V 9, it is quite straight-forward to put the problem
into standard form should one wish to. Unfortunately (18) constitutes a non-convex
(due to the bilinearity of the geometric stiffness matrix) and large-scale constraint,
and therefore the alternative use of multiple load cases to enforce stability will be
preferable in many cases.

4 The mathematical model

When establishing a mathematical model for NMNs (or any physical system) there
are some important choices that need to be made. First, the level of detail. For
instance, there exists a vast body of work concerned with very detailed models of
actuators, taking into account such things as friction, heat production, and flow
of fluid and chemicals. In this work, however, we have opted for a simple generic
actuator model in the form of a spring with variable spring constant depending on
the state of the neuron in the same element. One rationale for this is that it is
not clear what type of actuators would be used to implement NMNs. Another is
that, as discussed in section 2.1.1, a given actuator can often be made to behave in
a desired way through integration of sensors and feedback control. Second, using a
large displacement (geometrically nonlinear) model rather than a small displacement
(linear) model can be very important to accurately predict the behavior of mechanical
systems; see, e.g., results in [113]. Since the type of NMNs considered in this thesis
are intended for generation of large displacements, the mathematical model takes into
account geometrically nonlinear effects.

The remainder of this section presents a detailed derivation of the mathematical
model, a set of nonlinear ODEs, used throughout this thesis. The mechanical and
neural subsystems are treated separately in section 4.1 and 4.2, respectively.

4.1 The mechanical subsystem

The state variables in the model of the mechanical subsystem are the nodal displace-
ments and velocities, collected in u ∈ Rn and u̇ ∈ Rn, respectively. The number of

9In that paper, the weight is minimized subject to an upper bound on the compliance. An
advantage of that formulation is that existence of solutions is trivial to guarantee since (18) can
always be satisfied by adding more material.
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4.1. THE MECHANICAL SUBSYSTEM

mechanical degrees of freedom is n = dN −nf , where d denotes the number of spatial
dimensions, N is the number of nodes in the truss, and nf is the number of fixed
degrees of freedom. The N nodes in the truss are connected by nel elements. The
state of the neural subsystem is given by v ∈ Rnel , and enter into the model of the
mechanical subsystem through the so-called active forces defined below.

As a starting point in the modeling we assume that the total energy of the me-
chanical subsystem satisfies the so-called dissipation inequality1

˙K + Ψ ≤ Pext, (19)

where K = K(u̇) is the kinetic energy, Ψ = Ψ(u) is the potential energy, and Pext is
the external power. (A minor note is that in a non-inertial frame, the kinetic energy
may also depend on u.) Integrating both sides of (19) with respect to time over some
interval [t1, t2] gives the interpretation that the energy stored in the system at t2 is
less than or equal to the sum of the energy stored at t1 and the energy supplied to
the system during this interval. Governing equations for the system at hand are now
obtained by specifying all quantities in (19) and ensuring that this inequality holds
for all evolutions of the system.

The mechanical properties of the elements are uniform along their respective
lengths, meaning that for the i:th element, the cross-sectional area Ai, Young’s mod-
ulus E (assumed to be the same for all elements), and the strain and stress, εi = εi(u)
and σi = σi(u), respectively, do not vary throughout the element. Using the con-
stitutive assumption σi(u) = Eεi(u), the stored elastic energy in element i is given
by

Ψi(u) =

∫ li

0

Aiσi(u)εi(u) dl =
1

2
ViEεi(u)2,

where the volume Vi = Aili, li being the undeformed length. Summing over all
elements in the truss and accounting for linear springs attached to some of the nodes
we get

Ψ(u) =
1

2

nel∑

i=1

ViEεi(u)2 +
1

2
uTK0u, (20)

where the stiffness matrix of the linear springs, K0, is symmetric and positive semi-
definite.

To find an expression for kinetic energy, let the nodal velocities of element i
be denoted by u̇i1 and u̇i2, respectively. Assuming that the mass of each element
is concentrated at its end points (i.e. each element is treated as two point masses
connected by a massless spring), the kinetic energy of the truss is then simply

nel∑

i=1

(
1

2
mi||u̇i1||2 +

1

2
mi||u̇i2||2

)
,

1Note that (19) suggests the total energy as natural Lyapunov function candidate for physical
systems (the time derivative should be interpreted as the time derivative along system trajectories).
Perhaps not surprisingly, inequalities of this type play an important role in control theory [32],
where, following Willems [127], systems satisfying a dissipation inequality are often referred to as
dissipative.
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CHAPTER 4. THE MATHEMATICAL MODEL

where mi ≥ 0 denotes mass. From this we obtain

K(u̇) =
1

2
u̇TMu̇, (21)

where the mass matrix

M =

nel∑

i=1

miIi,

in which Ii is a diagonal matrix with ones in the places corresponding to the compo-
nents of u̇ associated with element i.

Having specified the quantities on the left-hand side of (19), the remaining task
is to define the external power. To this end, we first consider an external force acting
along an element to change its length; this is the effect of a linear actuator. We
refer to this force2 as an active force and note that it is power-conjugate to the rate
of change of strain in the element. The active force in element i is taken to be a
function of the state vi of the neuron in the same element, and is defined as

fa
i (vi) = Viβif̂i(vi), (22)

where the parameter βi is referred to as the actuator gain, and f̂i is a function of
sigmoidal character; i.e., bounded and monotone increasing. Scaling with the element
volume in (22) ensures that elements with zero volume produce no actuation. In
addition to the active forces we also have external, dead loads applied to the nodes;
these are collected in F . Defining fa(v) = [fa

i (vi)], the external power can now be
written as

Pext = F Tu̇− fa(v)T
˙

ε(u) =
(
F −∇ε(u)Tfa(v)

)T
u̇, (23)

where the minus sign in front of the active force term indicates that positive active
forces are contractive.

Using the expressions for the kinetic energy and the external power given above,
the dissipation inequality (19) becomes, with aid of the chain rule,

(
Mü+∇Ψ(u)− F +∇ε(u)Tfa(v)

)T
u̇ ≤ 0. (24)

A sufficient condition that yields satisfaction of this inequality, for all u̇, is that the
term inside the parenthesis equals the negative of the gradient of a convex function
of u̇, say D = D(u̇), such that ∇D(0) = 0 3. If this is the case, then (24) reduces to

∇D(u̇)Tu̇ ≥ 0,

where the term on the left-hand side, which has dimension power, is the dissipation.
The function D is an example of a dissipation potential [89]. With the dissipation
potential

D(u̇) =
1

2
u̇TATu̇,

2Strictly speaking it is a force-like quantity as its dimension is length times force.
3A simple proof can be obtained using the fact that a differentiable function f : Rn → R is convex

if and only if f(y) ≥ f(x) +∇f(x)T(y − x) for all x and y in Rn [19, p. 69].
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where the matrix A is positive definite4, (24) yields the governing equation

Mü+Au̇+∇Ψ(u) +∇ε(u)Tfa(v) = F , (25)

which after substitution of (20) and (21) and a slight rearrangement becomes

Mü+Au̇+

nel∑

i=1

[
ViEεi(u) + fa

i (vi)
]
∇εi(u) +K0u = F . (26)

To complete the model, it remains to specify how the strains relate to the nodal
displacements; this is done below.

Remark. Assuming a static situation and no active forces, (25) reduces to

∇Ψ(u) = F . (27)

By the global inverse function theorem proved in [129] this problem has a unique
solution for every F if and only if ||∇Ψ(u)|| → ∞ as ||u|| → ∞ and ∇2 Ψ is positive
definite. From this we conclude that Ψ must be strictly convex [19, Section 3.1.4.] in
order for (27) to have a unique solution. Thus, in order not to preclude buckling, Ψ
must not be strictly convex; see [86] for additional discussion.

Kinematics

The NMNs encountered in this thesis are expected to undergo large deformations, so
as a strain measure we have chosen the Green-Lagrange strain. For a truss element
this means that

εi(u) =
l̂i(u)2 − l2i

2l2i
, (28)

where li and l̂i(u) are the initial and current length, respectively, of the element shown
in Fig. 5. To see that (28) really is the Green-Lagrange strain, let xi ∈ [0, li] denote
the position of a cross-section along element i in its initial configuration and notice
that the component of the Green-Lagrange strain tensor in the axial direction of the
undeformed bar is given by [27, p. 117]

∂u1
∂xi

+
1

2

(
∂u1
∂xi

)2

+
1

2

(
∂u2
∂xi

)2

, (29)

where u1 and u2 are displacements along and orthogonal, respectively, to the bar in
its initial configuration; see Fig. 5. Since the strain distribution in the bar is uniform,
the derivatives in (29) are given by

∂u1
∂xi

=
u1(li)− u1(0)

li
, and

∂u2
∂xi

=
u2(li)− u2(0)

li
. (30)

4This makes D (strictly) convex, since ∇2D(u̇) = 1
2

(
A+AT

)
is positive definite.
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Figure 5: Element i shown in its initial and current (dashed) configuration.

Pythagoras’ theorem yields

l̂i(u)2 = (li + u1(li)− u1(0))2 + (u2(li)− u2(0))2.

Dividing both sides by l2i , substituting (30), and rearranging leads to the conclusion
that

l̂i(u)2 − l2i
2l2i

=
∂u1
∂xi

+
1

2

(
∂u1
∂xi

)2

+
1

2

(
∂u2
∂xi

)2

,

showing that (28) is the Green-Lagrange strain.
In practice it is convenient to express the strain in terms of the vector u represented

in the global xy-system indicated in Fig. 5. As shown in Paper I, one such expression
is

εi(u) = bTi u+
1

2
uTBiu, (31)

where bi ∈ Rn contains direction cosines of the element in its initial configuration
and Bi ∈ Rn×n is a symmetric, positive semi-definite matrix.

Remark. A model based on a linear elastic constitutive relation together with the
strain measure defined in (28) can display curious behavior. Consider a bar of unit
cross-sectional area with length l = 1, clamped at one end and constrained to move
in the axial direction in the other; cf. Appendix II. Expressed in terms of the dis-
placement u, the equilibrium equation is u3+3u2+2u = 2F/E. The interesting thing
to note is that the left-hand side vanishes for u = −1 — i.e., the internal force in
a bar compressed to a point is zero! This unnatural behavior, which should not be
confused with buckling, has not caused numerical difficulties in any of the problems
treated herein. An exception was Paper IV, but there it could readily be tackled by
adding box constraints on the displacements.

4.1.1 A theoretical note on displacement control

In a quasi-static small deformation setting with no external forces, the equilibrium
equation for an actuated truss is given by (cf. (46) and (15))

Ku+Bf̃ = 0, (32)
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where f̃ is the control force (corresponding to fa(v) in (23)), and the i:th column of
the matrixB is bi found in (31). The question is how the control should be chosen if a
certain displacement is desired? This can be formulated as an optimization problem:

minimize
f̃∈Rm, u∈Rn

||u− u∗||

subject to Ku+Bf̃ = 0,
(33)

where u and u∗ are the actual and desired displacements, respectively. Note that it
is obviously unrealistic to assume that the control forces can be chosen arbitrarily as
in (33), but the general point of this section does not depend crucially on this fact.

Now, if K is positive definite, then u = −K−1Bf̃ and (33) can be reduced to a
problem in f̃ only:

minimize
f̃∈Rm

|| −K−1Bf̃ − u∗||,

with solutions satisfying
Bf̃ = −Ku∗. (34)

This equation is solvable for every right-hand side if and only if the columns of B
span Rn (this will typically be the case for a truss with many bars). Furthermore, if
B has full rank, then f̃ is uniquely determined by (34); otherwise f̃ is not unique
and can be decomposed as

f̃ = fnil + fpot,

where fnil lies in the nullspace of B and causes stresses but no displacements (here
”nil” and ”pot” stands for nilpotent and impotent, respectively, a terminology bor-
rowed from some recent papers on shape control [132, 93, 78]). In general, B will not
have full rank and therefore f̃ will not be unique. In the present work, however, the
control force is prescribed to be a function of the neural state, hence unique. The
important lesson from this discussion is that, for statically indeterminate structures,
there is always a risk of wasting energy on actuation that does not contribute to
completion of the task at hand.

Remark. Having discussed the minimum compliance problem for passive structures
at the end of section 3.2.5, it is interesting to see how f̃ should be chosen to minimize
the compliance of an active structure. To this end, we consider the following problem:

minimize
f̃∈Rm

(
F Tu(f̃)

)2
,

where u(f̃) solves (32) with F on the right-hand side (the compliance of an active
structure may actually become negative, hence the square). It is readily verified
that the objective function is minimized for every f̃ satisfying Bf̃ = F . Since the
stiffness matrix can be written as K = BTDB, where D is a diagonal matrix, and
the strain as ε = Bu, it is natural to set f̃ = DBu0, where u0 solves Ku0 = F . In
practice this means, which should not come as a surprise, that each element in the
truss should measure its strain and then produce an active force which is proportional
to the measured value; the resulting compliance is thereby zero.
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4.2 The neural subsystem

As already mentioned, the neural subsystem constitutes an artificial nonlinear recur-
rent5 neural network. A network of this type can be implemented in a variety of ways,
including as a software program running on some general purpose CPU; directly in
analog [90] or digital [40] electronics hardware; or even in more exotic media [95]. To
give some physical motivation for the mathematical model of the neural subsystem,
we present a derivation of the governing equations for an implementation in analog
electronics [55] illustrated in Fig. 6. The state variable for the depicted neuron is the
voltage vi across the capacitor.

Figure 6: Neuron i implemented using analog electronics. The output amplifier,
indicated by a triangle, has two outputs: one normal, providing the voltage si(vi),
and one inverted. The gray background alludes to the integration of the neuron inside
one of the elements depicted in Fig. 3.

Although it is possible to write down a dissipation inequality for the neural sub-
system resembling the one in section 4.1 and derive governing equations from it, this
is unnecessarily complicated for the simple model used here. Instead, we note that
Kirchhoff’s current law applied to the node marked with an A in Fig. 6 gives

−Cv̇i −
vi
Ri

+ Ii +
∑

j∈Ni

1

R+
ij

(sj(vj)− vi) +
∑

j∈Ni

1

R−ij
(−sj(vj)− vi) + φi(u,v) = 0, (35)

where C denotes capacitance; and Ri, R
+
ij and R−ij resistance. The index set Ni

specifies which of the nel neurons in the network provide input to neuron i, and
φi(u,v) is a current providing ”sensory information”; see (43) below. The functions
sj, j = 1, . . . , nel, are taken to be of sigmoidal character. Following established
terminology [49], the sj:s are referred to as activation functions. Two things may
be noted regarding (35): i) the output amplifier is assumed to have infinite input

5”Recurrent” implies that the neurons in the network are connected to each other in feedback
loops. A more common architecture, particularly for machine learning applications, is the so-called
feed-forward network [49].
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impedance, hence there is no flow of charge through the amplifier; and ii) the implicit
constitutive assumptions regarding the behavior of the resistors and the capacitor are
suitable for small signals; cf. small deformations in mechanics.

Equation (35) can be expressed more succinctly as

v̇i = φ̃i(u,v) +
∑

j∈Ni

Wijsj(vj)−
1

τi
vi + Ĩi, (36)

where φ̃i(u,v) = φi(u,v)/C,

Wij =
1

C

∑

j∈Ni

(
1

R+
ij

− 1

R−ij

)
,

1

τi
=

1

C

(
1

Ri

+
∑

j∈Ni

(
1

R+
ij

+
1

R−ij

))
,

and Ĩi = Ii/C. Using matrix-vector notation, the governing equation for a network
with nel neurons of the type (36) can be written as

v̇ = φ(u,v) +Ws(v)−Cv + I, (37)

where C = diag {ci}, with ci = 1/τi for all i. The matrix W is referred to as the
weight matrix and defines the connectivity of the neural network and the weight of
each neural network connection; cf. Fig. 3.

Omitting φ(u,v) on the right-hand side and assuming W is symmetric, (37)
describes what is generally known as the Hopfield model [54, 55]6

v̇ = Ws(v)−Cv + I, (38)

originally envisioned to be used for so-called associative memories [54]. To study the
behavior of (38) for constant I, Hopfield used a Lyapunov function of the form

V (v) = −1

2
s(v)TWs(v) +

m∑

i=1

ci

∫ si(vi)

0

s−1i (x) dx− s(v)TI, (39)

whose time derivative along solutions to (38) is given by

V̇ = −v̇Tdiag

{
∂si
∂vi

}
v̇ < 0, ∀ v̇ 6= 0,

where the inequality follows since each si is a monotone increasing function. Since
V is radially unbounded, the invariance principle discussed in Appendix I applies,
and it follows that every solution to (38) will converge to some equilibrium point,
provided all equilibria are isolated. It turns out that in the presence of non-isolated
equilibria, it is sufficient that the activation functions are analytic — the often used
hyperbolic tangent being an example of such a function — to guarantee convergence
to an equilibrium point [36].

6So called after John Hopfield, 1933- who was a pioneer in the study of RNNs. Some would argue
that the term ”Hopfield model” is inappropriate as a similar model was introduced in the 1960s but
in a different field [41, p. 23].
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Another conclusion that can be drawn from this discussion is that a non-symmetric
weight matrix is a necessary condition for (38) to exhibit limit cycle behavior. As
shown in Paper IV it is not sufficient, however.

Remark. Since the early 1980s, the Hopfield model and variants of it have received
a great amount of interest. A comprehensive review would probably require hundreds
of pages, but one can at least mention a few references covering the use of RNNs for
solving combinatorial optimization problem [116]; networks with delays [35]; networks
with non-symmetric weight matrices [117, 85], and algorithms for optimization — or
in this context, ”training” — of such networks [8]. The relation between artificial
neural networks and their biological counterparts is covered in [65, 108], and spatially
continuous approximations of RNNs are treated in [33].

5 Optimal design problems

This work introduces two new concepts based on the active truss model: Neuro-
Mechanical Shape Memory Devices (NMSMDs), discussed Papers I and IV; and
Neuro-Mechanical Oscillators (NMOs), treated in Papers II and III. The task of
designing an NMSMD or an NMO is cast as an optimal design problem to be treated
numerically. In this section we present versions of these problems that are slightly
simplified compared to those given in the appended papers, together with some ex-
amples of the type of systems that can be obtained.

In all of the design problems, the neural network connection weights are used
as design variables; this is quite natural since the neural subsystem constitutes the
control system. In some of the problems stated below and in the appended papers,
the actuator gains (see (22) above) and element volumes have also been subject to
optimization. For notational convenience we introduce the set of feasible designs
H ⊆ Rndes defined by all constraints that do not depend on the state variables1.

The optimal design problems are based on a ground structure approach with
ground structures of the type shown in Fig. 7. A subset of all possible neural network
connections are shown as (green) curved lines in the figure, with an arrow indicat-
ing the direction of each connection. Also shown are support conditions, an applied
force, a linear spring attached to one of the nodes, and non-mechanical input stimuli,
drawn as curved (red) lines connected to the elements on the left side of the structure.
Compared to those used in traditional structural optimization, the ground structures
used herein also include neural network connections, so the number of design vari-
ables is potentially much larger. With no restriction on element lengths, a ground
structure for an NMN with N nodes where overlapping elements are excluded will
contain N(N+1)/2 elements and nw = n2

el neural network connections, provided each
neuron has direct connection to all other neurons in the system. Although in most
cases the neural subsystem will probably not be fully connected, nw will typically be
substantially greater than nel.

1H is assumed to be such that a particular design variable is restricted to a compact set whenever
needed to ensure a well-posed problem.
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5.1. NEURO-MECHANICAL SHAPE MEMORY DEVICES

Figure 7: A ground structure for design of an NMO or NMSMD.

5.1 Neuro-Mechanical Shape Memory Devices

NMSMDs are designed to take on static configurations, shapes, in response to constant
input signals. To this end, they are, as in Fig. 2, equipped with strain sensors. This
allows them to sense applied loads through induced strain. By means of actuation,
an NMSMD can thus by itself take active measures to, for instance, amplify or invert
the response of a corresponding passive structure (which is to ”give in” to the applied
load).

A ”shape” is characterized by target values for nc of the displacement components
associated with nodes in the system. The difference between the actual and desired
shape can thus be quantified using the functions hi, i = 1, . . . , nc, defined by

hi(u) =
(
cTi u− (utar)i

)2
, i = 1, . . . , nc,

where cTi u and (utar)i, is the actual and desired value, respectively, for the i:th dis-
placement component. Here, ci is a vector of zeros except for a one in the i:th position.
An optimization problem to find a design such that the maximum value attained by
any of the hi:s for a given load is minimized subject to a constraint on the actuation
energy can now be defined as follows:

minimize
p∈H

{
max

i=1,...,nc

hi(u(p))

}
+ γΦ(ω)

subject to ||fa(v(p))||2 ≤ Emax,

(40)

where γ > 0, the positive function Φ is used to penalize non-zero neural network
weights, and Emax is an upper bound on the size of the active force vector. The
max-function is non-differentiable at the origin, but a standard trick turns (40) into
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CHAPTER 5. OPTIMAL DESIGN PROBLEMS

a standard NLP; see Paper I. The state variables are assumed to satisfy the following
state problem:

Given F , I and p, find u and v such that

nel∑

i=1

[
ViEεi(u) + fa

i (vi)
]
∇εi(u) +K0u = F (41a)

0 = φ(u,v) +Ws(v)−Cv + I. (41b)

Since (41) is a set of nonlinear algebraic equations, it is natural to seek numerical
solutions using Newton’s method or some variant thereof 2. This, however, turned out
to be difficult — too frequently the solvers tested would not converge to points where
the residual vanished. Therefore, we chose instead to solve the dynamic system

Au̇+

nel∑

i=1

[
ViEεi(u) + fa

i (vi)
]
∇εi(u) +K0u = F (42a)

v̇ = φ(u,v) +Ws(v)−Cv + I, (42b)

whereA is positive definite, whose equilibria coincide with solutions to (41). In Paper
I, to ensure that solutions to (42) actually converged to equilibrium points, the weight
matrix was required to be symmetric and the term φ(u,v) in (42b), referred to as
the sensor term, was defined as

φ(u,v) = −diag {βi} ε(u). (43)

This choice resulted in the existence of a Lyapunov function for (42) such that the
invariance principle in Appendix I could be applied to show convergence. It may
be noted from (43) that elements which are not capable of actuation, i.e. for which
β = 0, should not measure their own state of strain.

An example of an optimized system taken from Paper I is shown in Fig. 8. The
NMSMD is clamped at the left end and a stiff spring is attached to the rightmost
node, to which a vertically directed force is also applied. By itself, this force is unable
to induce any significant displacement, but through the strain sensors in the structure
the elements shown in blue are activated and increase their respective length to move
the controlled node upwards. For moderately obvious reasons, this type of mechanism
is referred to as a force amplifier. An interesting type of force amplifiers are artificial
exoskeletons, and with further development it is possible that NMSMDs could be
used as such.

When designing the system depicted in Fig. 8, both the neural network connec-
tions and the element volumes was subject to optimization. The problem in Paper I
included a cost function depending on the number of elements, and to minimize the
value of this function, 28 of the 45 elements in the ground structure (not shown) have
been removed. Noteworthy is also the absence of direct neural network connections;

2Line search or trust-region methods based on the Newton step [92, chap. 3-4], for instance.
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5.1. NEURO-MECHANICAL SHAPE MEMORY DEVICES

Figure 8: An NMSMD functioning as a force amplifier.

i.e., W = 0. The fact that no direct connections — the neurons are still indirectly
connected through the sensor term and the mechanical structure — were needed was
discovered by solving (40) for different values of γ and noting that systems showing
small differences between their the actual and desired shapes could be obtained inde-
pendently of the degree of penalization of the neural network weights. For the other
example studied in Paper I (and Paper IV) however, the so-called force inverter, non-
zero neural network weights were found to be necessary for any system that were to
complete the prescribed task.

5.1.1 A simultaneous formulation

Numerical experiments with the nested problem in Paper I (some of which are de-
scribed therein), resembling (40), showed that finding acceptable solutions can be
difficult due to frequent convergence to spurious local minima. Hoping to alleviate
this issue, specifically by avoiding the nonlinear design-to-state mapping (see section
3.2.3), we therefore considered a different formulation of the problem in Paper IV,
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CHAPTER 5. OPTIMAL DESIGN PROBLEMS

resembling the following simultaneous version of (40):

minimize
p∈H,u∈Rn,v∈Rm, ε∈Rm,f∈Rm

{
max

i=1,...,nc

hi(u)

}
+ γΦ(ω)

subject to





||fa(v)||2 ≤ Emax

m∑

i=1

[
fi + fa

i (vi)
]

(bi +Biu) +K0u = F

fi = EViεi, i = 1, . . . ,m

εi = bTi u+
1

2
uTBiu, i = 1, . . . ,m

0 = φ(u,v) +Ws(v)−Cv + I

u ≤ u ≤ u,

(44)

where box constraints on the displacements have been added primarily to avoid certain
pathological solutions (see Paper IV). The mechanical equation of state (41a) has
here been split in three parts to reduce the degree of nonlinearity slightly. To this
end, two new sets of variables which were previously dependent quantities have been
introduced: the bar forces fi, i = 1, . . . ,m, and the strains εi, i = 1, . . . ,m.

Although problem (44) is much larger in terms of both number of constraints and
variables than (40), it turned out to be easier to solve in the sense that systems with
small shape errors could be obtained from almost any starting point. However, in
Paper IV, when carrying out dynamic simulations to validate the optimized systems,
it was found that the target configurations attained by optimized system — i.e., the
optimal values of u, ε, f , and v — could not be reached except when launching
the ODE-solver3 with initial states very close to their respective optimal values. In
practice, however, one expects an NMSMD to take on the prescribed shape for a
wider range of initial conditions, in particular with states initialized to zero. The
conclusion is therefore that (44) may not be a suitable problem formulation for design
of NMSMDs.

5.2 Neuro-Mechanical Oscillators

In contrast to NMSMDs, NMOs are designed for dynamic applications, specifically
to generate oscillatory, periodic motion. The work on NMOs described herein was
partly inspired by reading about biological system, where oscillatory motion driven
by neural networks play a crucial role [57]. Locomotor activity such as walking or
swimming are good examples of this. Not surprisingly, robots controlled by artificial
neural networks have received interest recently [97, 109, 64], and the NMOs considered
here could be viewed as examples of such bio-inspired robots or machines.

Two different principles underlying the functioning of an NMO are encountered
in this thesis: In Paper II, periodic motion is generated as the neural subsystem

3ode15s from the Matlab ODE suite [112] has been used throughout this work.
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5.2. NEURO-MECHANICAL OSCILLATORS

converges into a limit cycle after application of a constant input signal. In Paper
III on the other hand, limit cycle behavior is considered undesirable, and motion
results instead from the application of periodic input signals to the neural subsystem.
The former principle allows for a certain autonomy of the system, while the latter
enables a greater degree of external control — the frequency of the periodic motion,
for instance, is eventually the same as the frequency of the input signal. Which of
these approaches is preferable depends on the application.

Inspired by the way muscle work, the active forces [recall (22)] have been restricted
to be non-negative in the NMO-model. This means that the elements are only capable
of one-way actuation, namely contraction. Borrowing an idea from the field of binary
robots [23], they are also modeled as binary in the sense that, in principle, either
they take on the value zero, or they take on their respective maximum value. These
restrictions imply that individual elements can be made very simple, which should
facilitate robust implementations since no special mechanisms for two-way actuation
or precision control are needed.

An example of an NMO in action is shown in Fig. 9. The system is fixed at all

Figure 9: An NMO shown at two instants in time. Left: t = 1.3. Right: t = 1.5.

four corners and has been designed such that the center node moves counterclockwise
in a circle of a given radius when the system is subjected to certain non-mechanical
input stimuli. Elements that are actively contracting are shown (in red) with various
levels of transparency, where fully opaque elements are those generating the largest
active contraction forces. Unlike what was the case for the force amplifier shown
in Fig. 8, a weight matrix with at least some non-zero entries is necessary for the
functioning of an NMO. Each curved plain (green) or dashed (magenta) line in Fig. 9
therefore represents a neural network connection. The thickness and style of each line
is determined by the weight of the connection times the instantaneous output from
the neuron at which it originates, i.e. Wijsj(vj) for the line connecting element j to
element i. The curved lines can thus also be said to represent the ”activity” of the
neural subsystem.
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CHAPTER 5. OPTIMAL DESIGN PROBLEMS

5.2.1 The design problem

The goal of attacking the optimal design problem is to obtain an NMO with the
property that some of its nodes follow prescribed, periodic, trajectories given a certain
input stimulus I to the system. In addition, the system should also use a minimal
amount of energy for actuation. Collecting the target values for the displacement
components to be controlled in u∗ = u∗(t), a nested version of the optimal design
problem can be stated as follows:

minimize
p∈H

∫ T

T0

fa(v(p))T
˙

ε(u(p)) dt

subject to

∫ T

T0

||Lu(p)− u∗||2 dt = 0,

(45)

where
˙

ε(u(p)) = ∇ε(u(p))Tu̇(p), 0 < T0 < T , and the matrix L picks out the
displacement components of interest. That the integral in the objective really is the
energy spent on actuation, over the interval [T0, T ], is clear from (19) and (23). Time
histories of the state variables in (45) are obtained by solving state problems of the
form

Given I, p, and x0, find x = (u̇,u,v), t ∈ [0, T ], such that

Mü+Au̇+

nel∑

i=1

[
ViEεi(u) + fa

i (vi)
]
∇εi(u) +K0u = F (46a)

v̇ = Ws(v)−Cv + I (46b)

x(0) = x0.

Figure 9 shows an example of the type of systems that can be obtained, using a
suitable ground structure, from problem (45). This problem is non-convex in general,
so one should expect different designs depending on the initial guess.

Apart from the addition of the inertial term in (46a), the difference between
(46) and (42) is that the sensor term is missing in (46b). This omission was made
because strain sensors play no immediately obvious role in NMOs. It has been shown,
however, that feedback from strain sensors is important for efficient motor control in
animals [91], and an interesting future study could therefore be to investigate in what
situations NMOs would benefit from the addition of such sensors.

Another thing that may be noted is that, depending on fixed system parameters,
such as initial nodal positions, problem (45) may lack solutions due to the constraint
on the displacement trajectories. An obvious reformulation that results in a well-
posed problem is to remove this constraint and add the displacement error functional,
call it H, to the objective (possibly times some weight factor). However, in practice
it turned out that for such a formulation, the optimization solvers4 were much more
likely to converge to points where the fit to the target trajectories was unsatisfactory.

4In this case interior-point and SQP algorithms available in fmincon [121] and KNITRO [22].
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5.2. NEURO-MECHANICAL OSCILLATORS

A possible explanation for this behavior is that there are, in general, many more
points satisfying ∇pH(p) = 0 than H(p) = 0.

Finally, it should also be mentioned that a version of (45) of the simultaneous
form (11) has been tested. However, since a relatively fine time-discretization was
needed to ensure that state trajectories were accurately represented by solutions (this
was checked by comparing solutions to results from simulations using an ODE-solver),
the resulting problems became rather large and could not be solved as efficiently as
their nested counterparts. This observation is based on preliminary results, however,
so we refrain from drawing a definite conclusion of how the problem should best be
formulated, but note that this is an interesting avenue for future investigations.

5.2.2 Design with stability constraints

As indicated above, a drawback of letting the neural subsystem converge into a limit
cycle is that the NMO may become difficult to control. Responses to variations in
the external stimuli may be unpredictable, and the motion of the system may be
highly dependent on initial conditions. If external control of the system is desired,
limit cycle behavior must be prevented and the system should have the property that
it eventually ”forgets” its initial state, meaning that after some time, the motion is
determined by the input stimulus. Following [96], we refer to a system having this
property as convergent. More precisely, an NMO is locally convergent if it has a
locally attractive solution associated with a given input stimulus I = I(t) and an
initial state x0 such that for every x′0 sufficiently close to x0,

lim
t→∞
||x(t,x0, I)− x′(t,x′0, I)|| = 0.

Since NMOs are designed for generating periodic motion it is interesting to note that
if the input signal to a convergent system is periodic with period τ , then so is the
motion of the system [96]5.

The possibility of large deformations means that is probably not possible to obtain
global results, but in Paper III it is shown that an NMO is locally convergent if

1. there exists a positive semi-definite, symmetric matrix P such that the matrix
(
−CP − PC PW + I
W TP + I −2diag {Li}

)

is negative definite (here Li, i = 1, . . . ,m, are Lipschitz constants for the acti-
vation functions); or

2. there exists positive constants λi, i = 1, . . . ,m, such that

−λi(ci − LiWii) + Li

∑

j∈Ni,j 6=i

λj|Wji| < 0, i = 1, . . . ,m.

5This is not true for general nonlinear systems as demonstrated by ẍ+x = (x2 + ẋ2−1) sin(
√

2t),
which has a periodic solution x = sin(t) despite the fact that the input signal has period 2π/

√
2 [44,

p. 30].
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Solving problem (45) augmented with either of these conditions — possibly reformu-
lated to obtain a standard NLP as in Paper III — as constraints results in a, at least
locally, convergent system.

The top plot in Fig. 10 shows the response of a convergent NMO of the type
depicted in Fig. 9 in terms of time histories for the displacement components of the
center node. The system has been optimized such that this node follows the trajectory

Figure 10: Top: Time histories for the displacement components of the center node.
Bottom: A non-zero component of the input stimulus I.

represented by thin dashed lines in the top plot given a time-varying input stimulus
I whose non-zero components sin(2πt) apply to the sides of the NMO, as in Fig. 9.
The desired behavior is represented in the plots for t & 8, where an excellent fit of
the actual trajectory to the target can be seen. Initially, however, an input stimulus
with non-zero components sin(3πt) is applied. As seen in the top plot in Fig. 10, for
t < 5 the actual trajectory clearly differs from the desired, both in terms of frequency
and magnitude. Once the original stimulus is applied at t = 5, however, we see rapid
convergence towards the target trajectory — precisely the type of behavior expected
from a convergent system.

6 Concluding remarks and future work

This thesis has been concerned with the concept of Neuro-Mechanical Networks —
active mechanical systems made up from simple building blocks capable of actuation
and rudimentary signal processing/control that interact with their nearest neighbors.
A specific type of NMNs, referred to as active trusses, has been the focus of study,
and a mathematical model for systems of this type including geometrical nonlineari-
ties, actuator saturation, and nonlinear, additive neurons has been established. The
notions of Neuro-Mechanical Shape Memory Devices and Neuro-Mechanical Oscilla-
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tors, based on the active truss model, have been introduced, exemplifying the use of
NMNs in both static and dynamic situations.

Future research on NMNs could go in many different directions. Continuing with
the active truss model, this could be extended to include phenomena such as friction
in the joints, communication delays in the neural subsystem, and nonlinear mate-
rial behavior. Flow of heat and energy within the system could also be taken into
account. Another direction of future work is towards implementation of physical pro-
totypes. Such efforts would probably benefit from studying work done on modular
self-reconfigurable robots [119]. Formulation of optimal design problems that guar-
antee systems which degrade gracefully, as mentioned in section 2.1, could also be
considered.

In the author’s opinion, Neuro-Mechanical Oscillators is the most interesting con-
cept introduced in this thesis; in fact, it could be argued that NMSMDs are just
special cases of NMOs. In addition to the suggestions for studying the incorporation
of strain sensors and simultaneous formulations of the design problem given in section
5.2, a natural extension of the work on NMOs presented herein is also to consider op-
timization of element cross-sectional areas, or volumes, and nodal positions. Another
idea is to use NMOs as basis for explanatory models of biological systems [72].

Finally, non-convexity has been an issue throughout this work. Unless one resorts
to small displacement models this is probably unavoidable, but there may be other
ways to alleviate the problems associated with non-convexity. One possibility could
be to switch from nested to simultaneous formulations, another to apply algorithms
for global optimization.
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I An invariance principle

An invariant set M for the autonomous system

ẋ = f(x) (47)

is a set such that if x(0) ∈ M , then x(t) ∈ M for all t ≥ 0. Let V : Rn → R
be a continuously differentiable, radially unbounded (Lyapunov) function such that
V̇ (x) ≤ 0 for all x. Now, consider the set E = {x ∈ Rn | V̇ (x) = 0} and let M
be the largest invariant set in E. From LaSalle’s invariance principle [74, Theorem
1]1 it then follows that every solution to (47) will tend to M as t → ∞. Here it is
interesting to consider the case when

ẋ = 0 ⇔ V̇ (x) = 0,

i.e. M is the set of all equilibrium points for (47). Since the set of points to which a
bounded solution tends as t → ∞ (the ω-limit set) is connected [98, Theorem 1, p.
188], convergence to an equilibrium point follows if every point in M is isolated (two
or more isolated points do not form a connected set). It may be the case, however,
that M contains connected sets of equilibria, and in this case the invariance principle
only guarantees so-called quasi-convergence [50]. Furthermore, note that even if all
equilibria are isolated, the arguments above shows only convergence to an equilibrium
point; unless V is positive definite in some vicinity, this point need not be stable.

II A design-to-state mapping

Consider the bar shown in Fig. 11 below, and let the cross-sectional area A > 0 be the
design variable. If the length of the bar l = 1, and the Green-Lagrange strain measure

Figure 11: A single bar subject to a force.

is used (see section 4.1), the equilibrium equation in terms of the displacement u is
given by

u3 + 3u2 + 2u =
2F

AE
,

where F and E is the applied force and Young’s modulus, respectively. Assuming
F/E = 1 and solving for u we get the real root

u(A) =
1

3((1/A2 − 1/27)1/2 + 1/A)1/3
+ ((1/A2 − 1/27)1/2 + 1/A)1/3 − 1,

1See [75] for some historical notes on the invariance principle.
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which is plotted as a function of A in Fig. 12.

Figure 12: Displacement u as a function of cross-sectional area A.
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