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ABSTRACT

Current motion tracking technologies fail to provide accurate wide area tracking of

multiple users without interference and occlusion problems. These limitations make

difficult the construction of a practical and intuitive interface, which allows humans to be

inserted into networked virtual environments in a fully immersive manner. Advances in the

field of miniature sensors make possible inertial/magnetic tracking of human body limb

segment orientation without the limitations of current systems. Due to implementation

challenges, inertial/magnetic sensors have not previously been used successfully for full

body motion capture. This research proposes to overcome these challenges using multi-axis

sensors combined with a quaternion-based complementary filter algorithm capable of

continuously correcting for drift and following motion through all orientations without

singularities.

Primarily, this research involves the development of a prototype tracking system to

demonstrate the feasibility of hybrid RF/magnetic/inertial motion tracking. Construction of

inertial/magnetic (MARG) sensors is completed using off-the-shelf components.

Mathematical analysis and computer simulation are used to validate the correctness of the

complementary filter algorithm. The implemented human body model utilizes the world-

coordinate reference frame orientation data provided in quaternion form by the

complementary filter and orients each limb segment independently. Calibration of the

model and the inertial sensors is accomplished using simple but effective algorithms.

Physical experiments demonstrate the utility of the proposed system. These experiments

involve the tracking of human limbs in real-time using multiple inertial sensors.

The motion tracking system produced has an accuracy which is comparable and a

latency which is superior to active electro-magnetic sensors. The system is “sourceless”

and does not suffer from range restrictions and interference problems. With additional

MARG sensor packages, the architecture produced will easily scale to full body tracking.

This new technology overcomes the limitations of motion tracking technologies currently
v



in use. It will provide wide area tracking of multiple users in virtual environment and

augmented reality applications.
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I. INTRODUCTION

A. MOTIVATION

Fully developed networked synthetic environments (SE) stand to revolutionize the

fields of education, training, business, retailing and entertainment. They will fundamentally

alter our societies and the way in which mankind views the world. In the educational field,

synthetic environments will offer the ultimate in hands-on and visualization of difficult

concepts. They will allow training to transpire in a place much like that in which the skills

being practiced will be used without exposure to possible hazards and at less cost. In the

workplace, employees will be able to work “side by side” even though they may be

physically separated by hundreds or even thousands of miles. Using synthetic

environments, corporations will obtain a safe, economical and efficient method of testing

new concepts and systems. Retailers will create virtual department stores where consumers

will be able to try out products to an unprecedented degree before actually buying them.

Using synthetic environments, the entertainment industry will be able to create entire

worlds in which customers will be able to experience thrills and live out entire fantasy lives.

[Ref. 21.][Ref. 97.]

The power of the synthetic environment lies in its ability to immerse users in a

different world. The more complete the immersion, the more effective the synthetic

environment. For complete immersion, the user should sense and interact with the synthetic

environment in the same manner in which interaction with the natural world takes place.

Interaction in the natural world results from body motion. Information regarding the

surrounding environment is obtained through the five senses. Changes in body posture and

position directly affect what is seen, heard, felt and smelled. The parameters sensed in the

environment are altered and manipulated by the actions of the body. Thus, in order for a

user to interact with a synthetic environment in a natural way and have the synthetic

environment present appropriate information to the senses, it is imperative that data

regarding body motion and posture be obtained. Body posture and location data are also
1



needed in multi-user environments to drive the animation of avatars which represent the

actions of users of the environment to each other.

At this time, there is no practical and intuitive interface that allows an individual

human to be inserted into a SE in a fully immersive manner. Numerous motion tracking

technologies are currently in use, but each suffers from its own set of limitations.

Depending on the technology, these limitations may include marginal accuracy, user

encumbrance, restricted range, susceptibility to interference and noise, poor registration,

occlusion difficulties and high latency. Due to these problems, real-time animations of

avatars must be largely script-based using motion libraries. For the most part, only a single

user may be tracked in a small working volume. Thus, none of the current technologies

fulfills the need for wide-area tracking of multiple users. The ideal motion tracking

technology must meet several requirements. It should have low latency, be tolerant to noise

and other environmental interference, track multiple users and maintain both adequate

accuracy and registration throughout a large working volume [Ref. 62.].

The primary reason current tracking systems fail to meet the requirements described

above is the dependence of these systems on a generated “source” to determine orientation

and location information. This source may be sent by transmitters to body-based receivers

or it may be sent from body-based transmitters to receivers positioned at known locations

throughout the working volume. Usually the effective range of this source is extremely

limited or there may be compromises between resolution and range. Interference with or

distortion of this source will at best result in erroneous orientation and position

measurements. If the source is no longer received, it can cause a complete loss of track.

Huge gains in reliability and capability would be achieved through the development of a

“sourceless” sensor technology which could determine orientation and position without

depending on an externally generated source.

The development of micromachined magnetometers and inertial sensors over the

last few years makes it possible to determine orientation based on the passive measurement

of physical quantities which are directly related to the motion and orientation of a rigid
2



body to which they are attached. The “sourceless” nature of inertial and magnetic

orientation tracking makes possible a full body posture tracking system that avoids the

problems associated with current technologies and ultimately allows tracking over a

virtually unlimited area.

Inertial/magnetic orientation tracking is based upon established algorithms in which

local magnetic field, angular velocity, and linear acceleration data are combined to obtain

estimates of location and orientation. It involves placing miniature sensor units on the body

segments to be tracked. In the method discussed here, each unit contains a three-axis

magnetometer, a three-axis angular rate sensor, and a three-axis accelerometer. In this

document, nine-axes sensor units of this type are referred to as MARG (Magnetic, Angular

Rate, Gravity) sensors.[Ref. 6.] Integration of angular rate sensor data provides the

information necessary to calculate the orientation of a human body segment for relatively

short time periods. However, sensor drift and bias errors associated with small and

inexpensive sensors make it impractical to track orientation for long time periods. In the

long term, accelerometers can be used to determine the direction of the local vertical by

sensing acceleration due to gravity. In a similar manner, magnetometers can sense the

direction of the local magnetic field. Thus, use of data from these complementary sensors

can be used to eliminate drift by continuous correction of the orientation obtained using rate

sensor data. In this manner a continuously accurate estimate of the orientation of each

individual limb segment can be obtained.

The orientation obtained using MARG sensors is in an earth fixed coordinate

reference frame. Using this information, each limb segment can be oriented within the

synthetic environment without regard to the orientation of adjacent segments [Ref.

64.][Ref. 28.]. The posture of the user can then be reconstructed by simply attaching the

representations of individual limb segments together in the same manner in which the

corresponding segments on the body of the user are connected. There is no need for

transformations between limb segment associated coordinate frames nor for determination
3



of joint angles. Body posture is entirely determined based upon limb segment orientation

and length.

It should be noted that though it is possible to determine limb segment orientation

and hence body posture using only inertial and magnetic data, determining position

requires double integration of linear acceleration data. The inherent noise, manufacturing

defects, and measurement errors associated with low cost inertial sensors, and the quadratic

growth of errors through double integration, makes uncorrected acceleration-based

position tracking impractical for more than a very short period. Positioning of the user's

avatar within the synthetic environment would thus be better accomplished through the use

of a long range positioning system which is not susceptible to interference or noise to

precisely locate a single body reference point. Depending on the accuracy required, GPS

could be used in outdoor applications to provide the required position vector [Ref. 45.]. A

more precise spread spectrum radio frequency (RF) positioning system could be used for

indoor applications or applications requiring greater accuracy.[Ref. 24.]

In the complete inertial tracking system, individual MARG sensors will output the

angular orientations of each tracked body segment. The outputs of these sensors will be

conditioned and at least partially processed by a small wearable computer carried by the

user. A position vector for at least one point on the body would be determined with the aid

of an RF spread spectrum positioning system. These data would then be packaged into a

serialized bit-stream and sent via wireless transmission to a base electronics package for

further processing and submission to a synthetic environment. The resulting orientation and

position data would be used to drive the animations of human avatars in a networked virtual

environment and provide posture and location correct information to the senses of the user.

If difficulties arise due to intermittent reception of RF positioning information, location can

be estimated inertially for short periods of time.
4



B. GOALS

The research outlined in this document proposes to demonstrate the feasibility and

capabilities of full body angle tracking by tracking human limb segments using multiple

prototype MARG sensors.

1. Problem to be Solved

Several challenges have been overcome to bring a magnetic/inertial orientation

tracking system to fruition. Inertial orientation tracking in high acceleration applications

without serious drift error requires an integrated nine-axis sensor containing a three-axis

accelerometer, a three-axis rate sensor and a three-axis magnetometer. Each sensor triad

must be properly calibrated to determine sensor nulls and scale factors. Filtering and

combining sensor data in a complementary manner requires the design of an efficient, but

accurate software filter capable of tracking continuously in all orientations without

singularities. Furthermore, using world-coordinate frame orientation data to drive the

animation of an avatar requires development of a simplified human body model which

allows independent positioning of each limb segment. Since the sensors can not be

precisely mounted on each limb segment in a predefined position, the human model must

take into account the offset between the body axes of each limb segment and the axes of the

attached sensor. Finally, the animation of the avatar must take place with minimal lag and

latency.

2. What is Fundamentally New

This research demonstrates a new technology for human body tracking in

networked virtual environment applications. It shows that it is possible to construct a full-

body tracking system capable of accurately determining body posture with minimal lag

throughout a large working volume without occlusion problems. Unlike current body

tracking technologies, the system is not continuously dependent upon any external source.

This work describes the development of a novel nine-axis inertial sensor containing three

orthogonal accelerometers, three orthogonal angular rate sensors, and three orthogonal
5



magnetometers mounted in combination. At the core of the system is a complementary

filter based upon quaternions. The software filter can track human body limb segments

through all orientations without singularities. Drift corrections are performed continuously.

Though the filter is nonlinear, it can be shown through nonlinear simulations and actual

system performance that linear analysis of the filter is relevant and can by used as a method

for selecting scale factors and for predicting performance. Animation of the avatar is

accomplished using only orientation data. There is no need for complex kinematic

computations to determine joint angles. Novel algorithms allow calibration of both the

sensors and the human body model offsets quickly and accurately with no special

equipment.

3. Contribution of this Research

This research demonstrates a new technology that overcomes the limitations of

motion tracking technologies currently in use. The technology is capable of providing wide

area tracking of multiple users for synthetic environment and augmented reality

applications. This system makes a significant step toward “total immersion” of users in a

networked synthetic environment by allowing them to interface with it using their natural

bodies.

C. METHOD

Primarily, this research involves the development of a prototype MARG sensor

tracking system including innovative calibration and angle tracking software. Examination

of this implementation demonstrates the feasibility of a hybrid MARG/RF motion tracking

system for networked synthetic environments.

Mathematical analysis, computer simulation and physical experiments are used to

validate the correctness of the complementary filter algorithm as well as the human body

model. The analysis is largely based upon linear approximation of the nonlinear problem.

Frequency domain methods are used for analytic determination of system response
6



characteristics. Nonlinear computer simulations are used to confirm the validity of the

linear approximations.

Physical experiments have been completed to convincingly demonstrate the utility

of the proposed system. These experiments involve the tracking of a human limb using

prototype inertial sensors. Sensor data is provided to multiple quaternion filter software

objects. Each quaternion orientation filter object corresponds to a particular human limb

segment or segments and thus provides the orientation of it. These orientations are used to

drive the animations of a human model in real-time.

Qualitative and quantitative results provide data for comparison to other motion

tracking technologies. Preliminary attempts are made to estimate the performance

parameters of the prototype system. System sensitivity to interference and noise is also

examined.

D. DISSERTATION ORGANIZATION

This dissertation contains seven chapters.

• Chapter II presents a survey of motion tracking technologies currently in use

with comments regarding the strengths and weaknesses of each. Included is

a discussion of the performance parameters which are required to track the

human body for real-time synthetic environment applications. Chapter II also

provides a framework under which motion tracking technologies can be

evaluated.

• Chapter III reviews different methods of representing the orientation of a

rigid body with particular emphasis on quaternions and Euler angles. Various

general methods of modeling the human body for synthetic environment

applications are discussed as well.
7



• Chapter IV briefly presents the current state of micromachined sensor

technology and reviews the fundamentals of software filter theory which

pertain to human body tracking.

• Chapter V presents a description of a complementary filter based upon a

quaternion representation of orientation. Analysis as well as simulation

results for the complementary quaternion attitude filter are included.

• Chapter VI describes a prototype system for tracking human limb segments.

The theory and algorithms used to calibrate the multi-axis sensors and the

human body model are discussed.

• Chapter VII presents the results of experiments designed to quantify the

performance of the prototype system. These data provide some indication of

the performance which could be expected of a complete human body tracking

system.

• The final chapter of this document presents conclusions and outlines the work

which must be completed to build a complete human body tracking system

capable of tracking multi-users in a large working environment.

• Appendix A contains detailed derivations of the Gauss-Newton iteration

equations. Appendix B contains a derivation of the associated X matrix.

Appendix C is a video demonstration of the body tracking system in

operation.
8



II. SURVEY OF TRACKING TECHNOLOGIES

A. INTRODUCTION

The following survey is meant to establish the technological environment under

which magnetic/inertial body tracking is introduced. Though specific examples of the

various types of tracking systems are discussed, no attempt is made to comprehensively

cover the multitude of tracking systems currently available on the market or being

researched. Rather, the purpose is to establish the general limitations and performance

capabilities of the various motion capture technologies available at the time of this writing.

B. MOTION TRACKING TECHNOLOGIES

In general, position and orientation tracking has seen insufficient innovation and

development over the past decade. This continues to hamper advanced development of

immersive systems that allow participants to enter and navigate simulated environments

[Ref. 97.]. Today’s commercial motion tracking systems are based on optical, magnetic and

acoustic sources. Inertial sensing has been used for head tracking. RF positioning shows

promise, but no small scale commercial systems are currently available for indoor use. The

most popular trackers are active AC or DC magnetic systems. Before each of these

technologies can be examined, two baselines must be established. First, in order to allow

comparison of technologies, a “framework for suitability” is needed. Second, it is necessary

to determine the specific performance characteristics that a human motion tracking system

should have, based upon the dynamics of human body motion and research relating to

human factors in synthetic environments.

a. Framework for Suitability

Several frameworks for use in the analysis of tracking technologies have

been suggested [Ref. 62.], [Ref. 78.], [Ref. 21.]. Each proposes a similar method for

categorizing the strengths and weaknesses of a particular technology. A basic framework
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which is based upon those mentioned above is provided here. Five key measures are

proposed: resolution, registration, responsiveness, robustness, and sociability.

Resolution is the smallest change a system can detect. Poor resolution will

allow the user to move without any corresponding change being expressed by the avatar

within the synthetic environment. Without fine enough resolution, small details in the

motion of a user will not be captured.

Registration is a measure of the correspondence between the position and

orientation reported by the motion tracking system and the true position and orientation.

Without adequate registration, it is not possible for individuals to interact with physical

objects while immersed within the synthetic environment. Nor would it be possible for two

users to physically interact with each other and perform simple actions such as a handshake.

Registration is a function not only of tracking accuracy, but the also the fidelity of the

correspondence between the avatar and the subject being tracked.

Overall responsiveness is determined by sample rate, data rate, and update

rate. Responsiveness is fundamentally related to system latency or lag, which can be

defined as the time delay between the movement of a tracked object and a corresponding

update of the state of the synthetic environment. Lag which is imperceptible to the user will

still degrade human performance due to dynamic registration errors. Systems with poor

responsiveness make it difficult for the user to experience a feeling of presence. In some

cases, latency can lead to simulator sickness. [Ref. 21.]

Robustness measures the susceptibility of a tracker to noise and interference

within the operating environment. In a system with low tolerance to environmental noise,

extreme errors may be present in the reported position and orientation. Inconsistency in

these errors may make correction difficult using either software filters or lookup tables.

Sociability is an important measure of the suitability of a tracking system to

wide area applications involving multiple users. Good sociability provides an extended

range of operation under which resolution and registration are maintained as well a fitness
10



for tracking multiple objects. There should be no collateral effects such as one remote

object altering the reported position of another through either interference or occlusion.

b. Performance Requirements

To determine the minimum requirements for motion tracking performance,

it is necessary to analyze the speed, force and frequency of human motion. Since hand and

arm motions represent the quickest motions of the body, it can be assumed that a system

capable of tracking the hands and arms will be able to track the rest of the body. Normal

arm movements are accomplished with wrist tangential velocities of up to 3 m/s and

accelerations not usually exceeding 5 to 6 g. Faster arm motions, such as throwing a

baseball, may involve velocities of 37 m/s and accelerations in excess of 25 g. Normal hand

motion bandwidth is around 2 Hz, while the fastest hand motions are in the 5-6 Hz range.

Reflex actions may be on the order of 10 Hz [Ref. 12.]. Based on these values, a sampling

rate on the order of 20 Hz would satisfy the requirements of the Nyquist sampling theorem

[Ref. 14.]. In applications using sensors which are susceptible to noise, a general rule of

thumb calls for 20 times oversampling. Thus, if 5 Hz is taken as the normal bandwidth of

hand motions, human motion tracking requires a sampling rate of 100 Hz.

It is generally accepted that humans are more sensitive to changes in the

rotation angle of proximal joints than in more distal joints. Changes in the position of a limb

are usually experienced by the subject as a consequence of sensory receptors in the muscle

propelling the motion [Ref. 40.]. The minimal passive changes humans will perceive in

finger joints is about 2.5 degrees. For the wrist or elbow, a change of approximately 2

degrees is required. The minimal perceptible change in shoulder rotation is about 0.8

degrees [Ref. 21.]. Thus, a body sensor capable of resolving orientation to within 0.5

degrees should produce information which will not be in conflict with the kinesthetic

nervous system of the user. Head tracking requires accuracy that is an order of magnitude

greater than that required by body tracking applications. [Ref. 47.] Several authors call for

orientation estimates which are accurate to within a few hundredths of a degree and position
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which is accurate to within a tenth of a millimeter [Ref. 21.][Ref. 29.]. Thus, any system

which is able to meet the stringent requirements of head tracking would satisfy those of the

rest of the body.

Humans are extremely sensitive to lag. Depending upon the task, time lags

of greater than 100 msec can degrade performance. For head tracking applications, delays

of as little as 60 msec between head motion and visual feedback are known to impair

adaptation and may cause simulator sickness. If lag exceeds 300 msec, humans will begin

to dissociate their movements from the displayed environment. A lag of greater than one

second will force the user to adopt a move-and-wait strategy in order to complete a task. In

general, as lag increases, user performance and speed decreases while the number of errors

increases. [Ref. 21.][Ref. 47.]

In a typical SE system, there are multiple sources of lag. These include user

input device lag, application-dependent processing lag, rendering lag, synchronization lag,

and frame-rate-induced lag [Ref. 95.]. Often, it is difficult to determine that part of the total

system delay which is due to the input device [Ref. 1.]. In any event, this lag should only

account for a small portion of the total delay. Typical, input device lag ranges from 10 to

120 msec depending upon the type of filtering being performed and the mode of operation.

Kalman and Weiner predictive filtering can be used to extrapolate future

time values based on previous user input data. To minimize the lag perceived by the user,

the prediction algorithm normally attempts to project the user input data to the time at

which results from these data reach the visual display. [Ref. 95.] This method reduces

perceived lag as long as the user input device sampling rate is adequate and prediction too

far into the future is not attempted.

What follows is a short survey of current methods used for motion tracking.

Examples of some specific systems are provided to illustrate the current state of the art.

Many of these systems have fairly high latency, marginal accuracy, moderate noise levels,

and limited range. At this time, none is capable of fully meeting the need for a natural and

intuitive whole body interface. Range restrictions produce a severe limitation in many of
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today's motion measurement technologies due to a dependence upon a generated source,

which rapidly losses strength as range increases. Often, each user being tracked must

compete with other users in the virtual environment either for access to the source or for

space within a small working volume. This severely limits the number of users that can be

tracked in the same area and essentially requires that all users be tracked in separate remote

locations.

1. Mechanical Trackers

Mechanical tracking systems are perhaps the oldest motion tracking technology

[Ref. 80.]. They provide the best means of providing haptic feedback to the user of a virtual

environment. These systems are fairly accurate and have low latency. Current research

generally involves using these tracking systems to calibrate other types of trackers. [Ref.

44.] Mechanical trackers can be placed in two separate categories. Here these categories

will be termed body-based and ground-based.

Body-based systems utilize an exoskeleton which is entirely worn by the user of the

synthetic environment. Goniometers within the skeleton linkages have a general

correspondence to the joints of the user. These angle measuring devices provide joint angle

data to kinematic algorithms which are used to determine end effector position as well as

body posture. Since body-based systems are worn by the user, some other system must be

used to ascertain position within the environment.

Attachment of the body-based linkages as well as the positioning of the

goniometers present several problems. The soft tissue of the body allows the position of the

linkages relative to the body to change as motion occurs. Even without these changes,

alignment of the goniometer with body joints is difficult. This is especially true for multiple

degree of freedom (DOF) joints. Since goniometers must be mounted externally, there will

always be an offset from their centers of rotation to that of the actual joint. Human joints

are not perfect hinges or spherical joints. Thus, any technology based upon this

simplification will incur errors.
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Due to variations in anthropometric measurements, body-based systems must be

recalibrated for each user. This recalibration can be complicated and require an extensive

period of time. Perhaps the most significant drawback of body-based systems is user

encumbrance. Users must bear the weight of the exoskeleton as well as the annoyance of

having an cumbersome framework attached to their body. The exoskeleton may make it

difficult to interact with physical objects in a natural manner. For instance, it may be

difficult to lie on the floor in certain positions since linkages may be between the user and

the floor. All of these problems make it improbable that the user will become immersed

within a synthetic environment and that a feeling of presence will be obtained.

Ground-based mechanical trackers

typically have six degrees of freedom and

provide the location and orientation of a

single body segment. Thus, joint angle

measurement error is not a factor. Typically,

one end of a boom or shaft is either grasped

by the user or attached to a device worn by

user. The other end of the boom is attached to

a fixed station by a 3 DOF joint. As the user

moves the boom follows the motion.

Encoders on the joint combined with the

(possibly variable) length of the shaft provide

the information needed to determine location

and orientation within a synthetic environment. Ground-based mechanical tracking

systems are limited to a range of approximately two meters by the inertia of the boom

assembly. Longer shafts become too cumbersome and unwieldy.[Ref. 21.]

The BOOM (Binocular Omni-Orientation Monitor) is manufactured by FakeSpace

Inc. It consists of a counterbalanced, 6 DOF shaft with a single immersive stereoscopic

visualization display attached to one end. Shaft encoders produce translational and

Figure 1: Exoskeleton tracking of the
upper body
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orientation accuracies of 0.16 inch and 0.1 degree respectively. Latency is on the order of

200 nsec. The operating radius is three feet horizontally with a vertical range of 2.5 feet.

[Ref. 22.]

Mechanical motion tracking systems are fairly accurate and relatively inexpensive,

but due to several limitations, they are unsuitable for accurately tracking multiple users in

a large working volume. Body-based systems are difficult to calibrate and extremely

cumbersome. In order to track over a large range, they must be combined with some other

type of system. Ground-based systems, while highly accurate, can only track a single object

over a very limited range.

2. Magnetic Trackers

Magnetic tracking using artificially generated sources is currently by far the most

widely used technology for virtual and augmented motion tracking applications. For a

relatively low cost, it can provide modest but reasonable accuracy with no serious

obstruction or shadowing problems. These systems determine both position and orientation

by using small sensors mounted on the body to sense a set of generated magnetic fields. The

sensors contain three mutually perpendicular coils. As the coils are moved through the

magnetic fields, the induced current within them will change. These changes in strength

across the coils are proportional to the distance of each coil from the field emitter assembly.

The emitter assembly itself is constructed of three mutually perpendicular coils that emit a

magnetic field when a current is applied. Current is sent to these coils in a sequence that

creates three mutually perpendicular fields during each measurement cycle. In all nine

induced currents are generated within the sensor coils and used to calculate a position and

orientation. Each of the three emitted fields creates one induced current in each of the three

sensor coils, thereby allowing measurement of the nine elements of a rotation matrix

associated with each sensor. [Ref. 73.]

At the time of this writing there are two primary manufacturers of magnetic tracking

systems. The fundamental difference between their products is the type of current supplied
15



to the emitter coils. Polhemus, Inc. uses alternating current (AC) to generate the field [Ref.

71.]. Ascension, Inc. utilizes direct current (DC). AC current creates continuously

oscillating magnetic fields [Ref. 4.]. DC systems use pulsed magnetic fields and take

measurements only after the fields have reached a steady state. This technique requires

measurement of the ambient magnetic field so that it can be subtracted from the readings

of the generated fields. Thus in addition to the nine measurements discussed above, three

passive measurements of the constant magnetic field of the earth are required.

The shortcomings of magnetic tracking systems are directly related to the physical

characteristics of magnetic fields. Magnetic fields decrease in power inversely with the

square of the range as the distance from the generating source increases. This relationship

limits these systems to a usable range which is no greater than the size of a small room. To

simulate a larger working volume, user movement must be scaled or modified in some

other manner [Ref. 65.] As emitter distance increases, position and orientation errors due

to distortions of the generated field increase with the fourth power [Ref. 46.]. Thus, the

accuracy of magnetic systems varies within the working volume. Distortions of the

magnetic field come from several different sources. Changing magnetic fields produce

eddy currents in metallic objects. The amplitudes of the eddy currents are proportional to

the inverse cube of the transmitter to metal and receiver to metal separations. [Ref. 46.] The

use of DC is an attempt to alleviate the eddy currents created by the continuously changing

fields of AC systems. Ferromagnetic materials also produce magnetization fields due to

their high permeability. These effects must be added to the distortions due to eddy currents.

In addition to the eddy currents and possibly magnetization fields from metallic objects,

magnetic sensors will also pick up noise from other magnetic fields that are generated

within the environment by electrical devices. Such noise sources may include computer

monitors, fluorescent lighting and any powered-up electrical wiring which is present within

the surrounding walls. Even the wires connected to the receivers and transmitters

themselves produce noise which may be significant [Ref. 46.].
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In addition to software filtering, numerous techniques have been used in attempts

to alleviate the error problems associated with magnetic tracking systems. Most are based

upon the assumption that the magnetic characteristics within the working volume will not

change. Function fitting has been attempted, but implementation requires a sacrifice of

local accuracy to obtain better global accuracy [Ref. 44.]. In addition, a functional

representation may not capture all of the details of the various distortions which may be

present or may introduce variations of frequency which are higher than the frequencies of

the error data. Lookup tables based on the reported position have met with only limited

success. Livingston and State were able to reduce position errors by 79% within a two

meter sphere surrounding the field transmitter. Construction of the table required a total

12,801 samples to obtain 720 valid table entries [Ref. 44.]. The same research determined

that not only were orientation errors position dependent, but were orientation dependent as

well. Since the look up table was based only upon position, correction of orientation errors

was less successful. Creation of even a coarse lookup table which was dependent on

orientation as well as position would have required taking over 332,826 samples within the

two meter sphere [Ref. 44.].

Improvements in accuracy have also be made by varying the sampling frequency of

the tracking system relative to the frequencies of the noise sources within the environment.

Nixon et. al. reduced errors by sampling at twice the carrier frequency of the present

electrical power and averaging of adjacent measurements [Ref. 46.]. However, when

multiple noise sources operating at different frequencies were present, it was not possible

to synchronize with all of them simultaneously.

Magnetic trackers are affected by many variables. Exact performance is difficult to

quantify and is mostly application dependent. It has be shown to vary widely from the

claims made by manufacturers. While manufacturers make latency claims on the order of

4 msec, observed delays on the order of 30 msec and may increase even further depending

upon the number of sensors in use and the quality of filtering being performed [Ref. 1.].

Update rate also decreases with the number of sensors due to multiplexing. While
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manufacturers promise operating ranges of 10 to 15 feet, in most cases the usable range has

been shown to be much less [Ref. 46.]. Orientation accuracies of between 0.5 and 3.0

degrees are advertised. Position accuracies are given as anywhere from 0.3 to 3 inches. In

both cases these values may vary widely depending upon the distance from the transmitter

and the noise sources which are present.[Ref. 46.].

Skopowski did extensive work in tracking the upper body using electromagnetic

motion trackers. His work included construction of a joint angle based kinematic model of

the upper body. Difficulty in controlling figure motion indicated that the electromagnetic

sensors used lacked sufficient position tracking accuracy. Therefore, the interface software

used only orientation data for computing body joint angles. He concluded that the

electromagnetic trackers lacked sufficient accuracy and registration to enable their use as a

true six degree of freedom tracker in human body applications and called for the

investigation of new tracking technologies to support the insertion of dismounted infantry

into virtual environments [Ref. 78.].

Figure 2: Electromagnetic Orientation Only Tracking of the Human Body
From [Ref. 78.]
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The susceptibility of magnetic tracking systems to interference makes them

unsuitable for robust synthetic reality applications. The presence of any magnetic materials

or power sources within or near the working volume can severely degrade performance.

Perhaps even more critical is the limited range of these devices. This limitation makes it

nearly impossible to track more than one user in all but very specialized applications and

restricts the size of the working volume to that of a small room.

3. Optical Sensing

Optical sensing encompasses a large and varying collection of technologies. More

research is underway in this area than any other motion tracking technology. The cost and

the performance of the different optical sensing technologies vary widely. Many are not

capable of capturing motion data and processing it in real-time. The commonality between

them is the dependence upon the sensing of some type of light. The light involved may or

may not be visible to the eye. It may also be the focused light of a laser. It may be generated

by a source under the control of the tracking system or it may be passive. Detectors may

range from ordinary video cameras to lateral-effect diodes. In any case, optical systems

suffer from occlusion problems whenever a required light path is blocked. Interference

from other light sources may also be a problem. Lighting conditions must be controlled in

order for the camera to consistently see objects in the environment. Depending upon the

type of light in use, there may be severe range limitations.

Here, optical tracking systems are separated into three basic categories. Pattern

recognition systems sense an artificial pattern of lights and use this information to

determine position and/or orientation. Image-based systems determine position by using

multiple cameras to track predetermined points on moving objects within a working

volume. Structured light and laser systems have shown some promise, but little work

appears to be under way to make this technology practical. None have been commercially

marketed.
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a. Pattern Recognition Systems

Pattern recognition systems can be outside-in or inside-out. In outside-in

systems, the sensors (cameras in the case of optical systems) are fixed and the emitters are

mobile. The sensors look into the working volume. Inside-out systems use sensors which

are mounted on mobile objects and the emitters are fixed. These systems require elaborate

preparation of the working volume. In both cases, position and orientation are calculated

by viewing points of known intensity in known positions. Outside-in systems have a slight

advantage in accuracy, since a small movement of the sensor will cause relatively large

shifts in the apparent positions of emitters in view. The emitters themselves are usually

infrared LEDs.

The HiBall tracker developed at UNC Chapel Hill is a classic inside-out

system designed for head tracking. It utilizes a large number of ceiling-mounted infrared

LEDs as emitters. The HiBall tracker or sensor is slightly larger than a golf ball. It contains

six lenses and six photodiodes which are arranged so that each diode can view LEDs

through several of the lenses. Position and orientation are determined by sequentially

turning the LEDs in the ceiling on and off until it is determined which ones are in view of

each of the photodiodes. Refinements over ten years of research and augmentation with

inertial sensors has produced excellent performance. Position is accurate to 0.5 mm and

orientation is resolved to within 0.02 degrees. The claimed update rate is greater than 2000

Hz with a latency of approximately 1 msec. [Ref. 93.]. The primary drawbacks of this

implementation are its dependence on being under a specially prepared ceiling and its

inability to track in all orientations. Current research aims at attempting to alleviate some

of these problems and achieve passive optical sensing in a natural environment. [Ref. 93.]

The Honeywell LED array helmet tracker is a outside-in system designed

for cockpit use. It uses an array with 4 LEDs mounted on a helmet. The LEDs are

sequentially energized, and tracked by an infrared camera. The vector to each emitter is

calculated using camera optical parameters and the known image of the source. From the

four vectors, helmet orientation may be determined. [Ref. 25.]
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b. Image Based Systems

Image based systems attempt to determine position through the use of

multiple 2D images of the working volume. Stereometric techniques correlate common

tracking points on the tracked objects in each image and use this information along with

knowledge concerning the relationship between each of the images and camera parameters

to calculate position. In some cases a single camera may be used and the process is based

upon a sequence of images taken a different time instants. The tracking points are most

often fiducial markers which are attached to the body being tracked. In order to calculate

orientation, three noncollinear points on the each rigid body must be tracked. This process

is prone to errors due to position inaccuracies, repeatability problems and non-

simultaneous measurements [Ref. 66.]. The markers themselves may be either passive

(retroreflective) or active (light-emitting diodes). A great deal of research effort is currently

being expended on systems which are able to track natural objects in real-time without the

add of markers.

All of these systems vary in the number of objects that can be tracked as well

as the number of cameras that must be used. For many of the systems, the cost is quite high.

In all cases there must be a compromise concerning lens focal length. A long focal length

lens makes possible greater resolution over a smaller area than a short focal length lens.

However, a long focal length has a smaller viewing area which will in turn reduce the size

of the working volume unless additional cameras are added. Short focal lengths permit a

larger working area, but at reduced accuracy. No matter how this compromise is resolved,

these systems require that the entire working volume be within the view of several

expensive cameras and thus even systems which might be capable of tracking natural

objects will suffer from many of the limitations of sourced systems. All of these systems

could be categorized as inside-out.

Passive marker measurement systems such as Vicon [Ref. 90.], HiRES 3D

[Ref. 32.], and Peak Motus [Ref. 70.] use light sources placed very near each camera to

generate light. This generated light is returned from the highly reflective markers. During
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the post-processing of the motion capture data, an operator of the system must assist with

marker identification. The Peak Motus system has also been used without markers for

analysis of athletic performances in a manual video acquisition mode. Higher end systems

allow a frame rate of 60 Hz. Even for a small area, up to seven cameras may be required to

achieve proper triangulation of the markers.

Though reflective marker research continues [Ref. 87.], in general, only

active marker systems are currently able to produce the information necessary to drive an

avatar in real-time. The advantage of the active marker approach is that the identity of each

marker and thus the corresponding anatomical location is known immediately because the

LEDs are sequentially pulsed by the control and data acquisition hardware. Data reduction

is therefore greatly speeded up and a correspondence between multiple images can be

found more quickly. “Phantom marker artifact” problems may be encountered due to the

reflection of LED pulses from testing surfaces such as the floor. The range at which the

LEDs may be detected is usually limited to less than eight meters.

Commercial active marker systems based on light-emitting diodes include

Selspot II (Selspot Systems Ltd., Southfield, Michigan), OPTOTRAK (Northern Digital

Inc., Waterloo, Ontario, Canada) and CODA (Charmwood Dynamics Ltd., Leicestershire,

England). The Selspot II 3-dimensional motion measurement system allows the user to

collect real-time 3D coordinates of up to 36 infrared LEDs attached to the test subject. It

also calculates angle, acceleration, and moments. Update rates for active marker systems

are extremely high.

Reality fusion has released the GameCam system which is the first image

based system motion capture system intended for use by the general public. In this system,

the user must track their own location and position by viewing themselves on the screen.

This low cost system uses a single standard PC camera to capture the motion of the user.

Any motion information received from the camera that corresponds to an applicable

portion of the screen image will alter the game environment. [Ref. 74.]
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Camera tracking of natural objects without the aid of markers is considered

by many researchers to be the final solution to human motion tracking challenges. It is

largely based on computer vision techniques. It is felt that eliminating the need for fiducial

markers will allow greater mobility and a deeper sense of immersion. To make this

approach work it will still be necessary to position numerous expensive cameras

throughout the working volume. A varied array of algorithms are being used to register

objects in the video image or images captured by the camera with synthetic environment

models. Some of the more common algorithms include mesh-based modeling, neurofuzzy

classification, simple shape fitting, feature extraction based tracking and shape-volume

approximation. Most of these algorithms are computationally demanding and are thus

unable to deliver high quality motion capture data in real-time using current processing

power. Often, several algorithms can be used in conjunction with one another. Mesh-based

modeling breaks the video image into patches. The vertices of the patches can then be used

as the nodes of a mesh. To register an object in the scene, a correspondence must be found

between a given mesh model and the mesh which was created using the video image.

Neurofuzzy classification uses a neural network which has been trained to recognize

objects within the video image. Once an object has been recognized, knowledge of the

camera parameters can be used to derive the position of the object. The basic premise of

feature extraction and matching is that accurate 2D tracking of some basic distinctive

features of an object in a sequence of images can lead to 3D tracking of the object. The most

commonly used features are lines, points and curves. This technique is faster than more

complicated methods, but is sensitive to image noise and occlusion. Simple shape fitting

attempts to fit polyhedral, cylindrical or spherical models to candidate objects in the scene.

Surface-volume approximation is similar to simple shape fitting and is usually combined

with another technique such as mesh-based modeling.
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c. Structured Light and Laser Systems

Structured light systems use lasers or beamed light to create a plane of light

that is swept across the image. Some systems use a laser to scan points, the entire scene, or

randomly to determine positions [Ref. 62.]. These systems sense the person, not just joints

or points, thus, a person's body can be a virtual icon, rather than being artificially created

from limited information. This is primarily a mapping technique, and is too slow for

position tracking.

Laser Radar or Ladar measures the time of flight of laser light to an object

and back. This gives distance information Three such measurements can be used to

triangulate the position. If the angle of the laser beam is known, then only one measurement

can give position. These systems are capable of providing very accurate distance

information but resolution may be poor. Ladar is more appropriate for long distance

measurements though the diffuse reflections may only have one sixth of the strength of the

original beam. [Ref. 62.]

Laser Interferometers require retroreflectors or mirrors be attached to the

tracked object. Laser light is directed to the reflector and the phase of the reflection is

compared to the original light. An interference pattern is created and incremental distance

information is found. Only incremental distance changes in distance are measured, so a

position correction must be made to maintain registration. The correction may be found

using laser radar. The orientations of the object be tracked are limited to those in which the

reflector is accessible to the laser beam. This method is very accurate and precise.

However, it is probably not suitable for measuring humans.

Structured light and laser systems are all susceptible to shadowing and

occlusion problems. In general, they are quite complex and expensive. The measurement

of orientation increases system complexity even further. They are more appropriate for

mapping applications than dynamic tracking of human body motion.
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4. Acoustic Trackers

Acoustic or ultrasonic trackers are an inexpensive alternative to magnetic trackers.

They provide modest accuracies and update rates. Both outside-in and inside-out

implementations are possible. Outside-in systems must divide the maximum update rate by

the number of emitters being tracked. The number of tracked objects is not limited in

inside-out systems.

The physics of sound limit the accuracy, update rate and range of acoustic tracking

systems. Ranges are longer than that of magnetic trackers and magnetic interference is not

a problem. However, a clear line of sight must be maintained. Thus, obstruction and

shadowing can present difficulties [Ref. 21.]. Latency varies with distance due to the

relatively slow speed of sound. Most current systems utilize 40 kHz tone pulses. Sound in

this frequency band can be severely affected by noise from metallic objects such as jingling

keys. Shorter wavelengths more accurately resolve distances, but quickly attenuate. In

addition, high frequency omnidirectional radiators are expensive to implement and require

more power.

Ultrasonic tracking systems can determine position through either time-of-flight

and triangulation or phase-coherence. Phase-coherence trackers determine distance by

measuring the difference in phase of a reference signal and an emitted signal detected by

sensors. This difference is used to calculate changes in positions. Since this is an

incremental motion technique, initial location must be determined by some other means

and drift may be a problem. One of the major advantages of phase-coherence systems is

higher data rates which allow filtering. Both types of systems can be adversely affected by

echoes and reflections of sound waves.

5. Inertial and Magnetic Tracking

Though it is based upon well established algorithms, inertial and magnetic (MARG

sensor) tracking is a relative newcomer to the motion tracking arena. It has been used to

determine head orientation in virtual and augmented reality applications, but it has not yet
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found use in full body tracking applications. Inertial sensing is also finding expanded

usefulness as a method of augmenting other motion tracking technologies. Practical inertial

tracking is made possible by advances in miniaturized and micromachined sensor

technologies, particularly in silicon accelerometers and rate sensors. These advances have

been driven by the rapidly developing market for low cost automotive vehicle navigation

and control systems. Unlike other sensor technologies, there is no inherent latency

associated with inertial sensing. All delays are due to data transmission and processing.

Thus, an orientation that is calculated using inertial sensor data is likely to be extremely

accurate and have very low latency.

A naive approach to inertial orientation tracking would simply involve a single

integration of angular rate data to determine orientation. However, this solution, which is

found using only one type of sensor, would be prone to drift over time due to the buildup

of small bias and drift errors. In order to avoid drift, inertial tracking systems make use of

other complementary sensors to continuously correct the orientation estimate. Commonly,

these sensors include an inclinometer or accelerometers to sense the vertical and a set of

magnetometers to sense the direction of the local magnetic field. In order to track all

orientations, there must be a separate accelerometer, rate sensor and magnetometer for each

of the three coordinate axes of a rigid-body.

Theoretically, it is possible to determine position as well as orientation using

inertial sensors. This is done on a daily basis by the inertial navigation systems of

submarines and other platforms which must navigate without the aid of outside references.

This dead reckoning performance is made possible through the use of very expensive and

large sensors. Such dead reckoning is not possible with low grade inertial sensors for

anything longer than relatively short time periods [Ref. 7.][Ref. 26.]. Without outside

reference, position estimates based on inexpensive sensors will drift in a manner similar to

orientation estimates based only on angular rate sensors.

Motion tracking of a two-joint, two-axis arm model using accelerometers and

miniature gyroscopes was demonstrated Sakaguchi et al. [Ref. 77.] This research attempted
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to take advantage on the strengths of both sensor types and compensate for their

weaknesses in a complementary manner. The method proposed does not use Euler

integration of angular velocity data or complementary filter algorithms. Rotational and

centrifugal accelerations are calculated based upon the kinematic relationships between the

sensors and the links and the links with each other. The model is basically two-dimensional

and no provisions are made to compensate for drift in the yaw axis. “Fingertip” position

stated accuracy is 0.061mm.

Fuchs presented the first inertial system for head tracking applications [Ref. 29.].

This system utilized a fluid pendulum and three solid state piezsoelectric angular rate

sensors. The initial system did not include a compass or magnetometers and thus drifted

about the vertical axis. Subsequent systems include three orthogonal solid-state rate gyros,

a two-axis fluid inclinometer and a two-axis fluxgate compass [Ref. 27.]. Intersense, Inc.

was started as a result of this research and continues to produce inertial tracking devices

designed for head tracking applications. Most the systems currently marketed are hybrids

which use ultrasonic range-finding to determine or correct position. Advertised

performance of the IS600 includes an angular accuracy of 0.25 degrees, translational

accuracy of 0.25 inches and an update rate of up to 150 Hz. Though the response and

accuracy of the systems is excellent, the use of Euler angles to internally represent

orientation makes possible singularities in some orientations [Ref. 27.]. Sensor data is

processed by a complementary separate-bias Kalman filter which requires periods of “still

time” to correct for rate sensor drift. [Ref. 27.]. For most normal head tracking applications

this is not a problem. However, in high acceleration applications requiring orientation

tracking in all attitudes such limitations are not desirable. While InterSense is alleged to be

developing and marketing a full body tracking system, the author is unaware of any

research literature documenting such a system.

Henault researched software necessary to support inertial sensors capable of

tracking all orientations. His work included the development of a quaternion attitude filter.

The filter was tested with a computer simulated inertial tracker, [Ref. 35.]. Use of
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quaternions in the filter allowed objects to be tracked in all orientations and avoids the

singularities associated with Euler angle based filters. Another important feature of the

filter is reduced computational complexity since the incorporated filter uses no

trigonometric functions.

6. RF Positioning

RF positioning has yet to be applied to the body tracking problem. Radio Frequency

(RF) position systems are very fast and long range by their nature. Such systems have been

developed for ships, planes, missiles and various civilian applications such as Long Range

Navigation (Loran) and the Global Positioning System (GPS) [Ref. 45.]. All of these

systems are designed to be used at extreme distances. In the past, they could only be used

in such large-scale applications due to system errors in signal processing, [Ref. 13.]. Recent

advances in RF systems technology however, make possible translational three degree of

freedom tracking accuracy of a few millimeters at ranges of up to 100 meters, [Ref. 24.].

The speed of a radio signal is 2.99792458 x 108 meters per second. When a signal

is transmitted, it takes a finite amount of time to travel from point x to point y. If the receiver

knows the exact time the signal is transmitted and received, it can determine the amount of

time the radio signal took to travel. Thus delta-time multiplied by the speed of the radio

signal equals the range between the two points in meters. Using this method, a receiver-

equipped object can determine its position through triangulation based upon its distance

from several transmitters with known locations. This is the method used by GPS, [Ref. 45.].

Notice in this method that the receiver must accurately measure the exact times of

transmission and reception with adequate temporal resolution. Alternatively, the difference

in the time of arrival of a single signal at several locations can also be used to triangulate

the position of an object equipped with a transmitter, [Ref. 24.]. This method does not

require exact time synchronization between the receiver and transmitters.

Radio frequency devices have unique characteristics with both advantages and

disadvantages. Some advantages important to position tracking are that radio frequencies
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can penetrate nonmetallic objects, such as walls and the human body. They are resistant to

masking (hiding), easy to construct, and are scalable to both large and small areas. In a

closed environment however, radio frequency device performance can be degraded due to

reflections off surfaces, both metallic and nonmetallic, and is subject to attenuation when

passing through objects, [Ref. 13.].

Spread-spectrum RF signals exhibit two characteristics important to positioning in

a virtual environment. The first is excellent ranging ability, which allows accurate

measurement of distance between two points, based on the phase difference in the pseudo

noise (PN) code sequences of the transmitter and receiver. The second is code division

multiplexing (CDM) which allows multiple transmitter-receiver pairs to compatibly share

the same frequency at the same time, [Ref. 13.].

RF position tracking can be scaled to an area of any size. The accuracy of the system

would be dependent upon the frequency, coding and signal processing implementation

rather than the size of the area. A minimal system for 3 DOF tracking in a VE would require

four stations placed at known locations within the area in which the tracking is to take place

and a unit attached to the body to be tracked. The fixed location stations could be

transmitters and the tracked unit a receiver as with GPS, or the roles could be reversed as

described in [Ref. 24.]. In the former configuration, processors on the object itself could

estimate the position of the object. In the latter configuration, position calculations would

be made by a central processor in communication with each of the fixed location stations.

Either configuration would be capable of producing highly accurate location data.

7. Hybrid Tracking Systems

Each type of tracking technology has its own set of strengths and weaknesses. The

ultimate future of motion tracking almost certainly lies in hybrid systems. Many systems

use one type of technology for sensing orientation changes and another for sensing position.

Some merely use two separate technologies and choose whatever estimate seems to be the

most accurate at a particular time instant. The best systems take data from multiple sensor
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types and use filtering algorithms to combine them and arrive at some type of optimal

estimate. The inability of micromachined inertial sensor systems to calculate position for

any extensive period of time in practical applications necessitates that any 6 DOF inertial

system be a hybrid. The fact that inertial data lends itself to prediction through the use of

motion derivatives has resulted in the use of inertial sensors in numerous efforts to combat

latency problems.

In [Ref. 5.], Azuma demonstrates that predicting future head location using three

rate gyroscopes and three linear accelerometers is an effective approach for significantly

reducing dynamic errors in an augmented reality head tracking system. In this study,

prediction caused dynamic accuracy to increase by factors of 5 to 10. Linear Kalman filters

are used to estimate and predict translation terms and an Extended Kalman Filter (EKF) is

used to estimate and predict orientation terms. Welch continued predictive work at UNC in

[Ref. 94.], using a single-constraint-at-a-time (SCAAT) Kalman filter. Though a

quaternion representation of orientation is used in the UNC research described above, in

each case the orientation is converted to an Euler angle representation.

[Ref. 26.] describes a hybrid outside-in inertial/acoustic system called the

constellation. This system uses an inertial navigation system which is aided by ultrasonic

time-of-flight range measurements. The inertial subsystem determines position through

double integration of triaxial accelerometer data. The ultrasonic ranging system uses a

“constellation” of ceiling mounted acoustic beacons in a manner very similar to the optical

HiBall head tracking system developed at the University of North Carolina, Chapel Hill.

However, the ultrasonic system only calculates position. It does not calculate orientation.

The stated reasons for using acoustic sensing as opposed to optical are cost, weight, and

complexity. As with the UNC system, an extended Kalman filter is used to combine all

sensor data and calculate an optimal position and orientation estimate. Acoustic range

measurements are also individually processed using a SCAAT Kalman filter.
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8. Other Technologies

Suryanarayanan and Reddy investigate the use of surface electromyographic

(EMG) signals for tracking human movements for virtual environment application and

control of telemanipulators [Ref. 72.]. This study concentrates on determining elbow-joint

flexion and extension and using this information to drive an anthropomorphic

telemanipulator. Accuracy is based on comparisons between the actual elbow joint angle

and the angle produced by the telemanipulator. Use of EMG is difficult due to the nature

of the EMG signals and large variations from one user to another. Signals vary based on

both the speed of motion and the angle of motion. Limb loading and the plane of motion

relative to the down vector will also affect the EMG signal. [Ref. 72.] utilizes a nonlinear,

adaptive, intelligent system to track human arm movements. The system attempts to use an

artificial neural network with fuzzy logic to compute an adaptive gain that compensates for

the variation in the EMG signals due to speed of flexion. Only data from the biceps was

used to compute joint angle. RMS joint angles errors where less than 20% during testing.

Computation delays exceeded 150 msec.

Several technologies have produced good results in hand tracking applications.

Most gloves combine a single 3D tracker to track hand position and orientation and

multiple joint sensors for finger position. The Dataglove by VPL Research, measures

bending in the proximal joints based on the attenuation of a light signal in each of two fiber

optic strands sewn into the glove along the fingers and thumb. Sampling rate is 30 or 60 Hz

[Ref. 67.]. The Cyberglove by Virtual Technologies includes either 18 or 22 resistive-strip

sensors for finger bend and abduction, and thumb rotation [Ref. 67.]. Unlike the Dataglove,

the mapping between the sensors and finger positions is linear. The strip sensors are more

natural and comfortable to wear. Both of these glove technologies could be extended to the

entire body through the use of a body suit. However, calibration for different users would

most likely be difficult.
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C. SUMMARY

This chapter presents a brief survey of technologies which are currently being

researched or commercially marketed. The general limitations and performance

capabilities of the various motion capture technologies are examined. None is capable of

fully meeting the need for a natural and intuitive interface. In general, limited range,

shadowing problems and susceptibility to interference make currently available systems

unfit for tracking multiple users in the same work space. In addition, most sourced tracking

systems fall short in categories of robustness and sociability.

The ideal tracking system would receive high marks in all measurement categories.

It should be capable of accurately tracking multiple users in a large working volume with

minimal lag. There should be few errors due to noise sources within the working volume

or due to collateral effects associated with the tracking of multiple objects or users. The

update rate should be adequate to capture the entire range of human motion. The ideal

tracker should be not only be untethered, but also unobtrusive.
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III. REPRESENTATION OF HUMAN BODY MOTION AND
MODELING

A. INTRODUCTION

The human body can be modeled as a set of links or limb segments arranged in a

tree-like structure. Individual limb segments can be treated as rigid bodies. Specifying the

posture of the model involves descriptions of the orientation and position of the individual

segments. Specification of the nature of the relationships between the links in the structure

will determine whether the positions and orientations of the segments are described

individually or are specified relative to one another. The formalisms chosen will have a

bearing upon the ability to represent all orientations, computational efficiently, storage

requirements, and transmission bandwidth requirements when operating within a

networked synthetic environment architecture. In human body tracking applications, the

type and quality of sensor input being used to drive the animation of the human model

should also be considered.

This chapter discusses alternative methods of representing the orientation of the

individual links of a human model and relating the links to one another. Possible methods

of representing orientation considered include joint angles, Euler angles, and quaternions.

Both simple and complex link relations and structures are examined and compared.

Kinematic structures based upon homogenous transform matrices and quaternion/vector

pairs are also examined.

B. RIGID BODY ORIENTATION REPRESENTATION

A “rigid body” is an idealization of a body with volume and mass which has a shape

that cannot be changed. That is, such bodies are solid and completely inelastic. Numerous

methods are available for expressing the orientation of a rigid body. Two of the more

common methods are Euler angles and quaternions. Other methods of representation

include direction cosines and vector-angle pairs. Direction cosines represent an orientation

using the cosines of the angles an appropriate vector makes with the standard orthonormal
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basis for three space. The nine direction cosines associated with three unit vectors

correspond to the nine elements of a rotation matrix. Vector-angle pairs specify an a vector

and an angle of rotation about that vector. These are similar to a unit quaternion. Each

method has its own set of advantages and disadvantages. Only Euler angle and quaternion

representations are discussed here. More detailed discussions can be found in [Ref. 17.] and

[Ref. 42.]

In order to represent the orientation of a rigid body, it is conventional to choose a

coordinate system attached to an appropriate inertial frame, and then express all vectors in

component form relative to these coordinates. A commonly used coordinate system is the

local “flat Earth” system with an arbitrarily selected origin on the surface of the Earth with

coordinate axes x, y, and z directed in the local north, east and down directions respectively.

To specify orientation, it is also necessary, for each rigid body, to specify a “body fixed”

coordinate system or frame which is attached to the rigid body. This is also an xyz system

with x conventionally “out the nose,” y “out the right side,” and z down or “out the belly.”

(The reader may find it helpful to visualize an aircraft with positive axes pointing out the

nose, right wing and bottom of the fuselage.) The superscript or subscript “E” is most often

used to designate Earth coordinates, while “B” is typically used to signify body coordinates.

The description of the orientation of a rigid body expresses the relationship between these

two coordinate systems.

1. Euler Angles

Euler angles represent the orientation of a rigid-body using three rotations about

specified axes. The axes may be orthogonal body fixed, orthogonal earth-fixed, or gimbal

axes. Thus, when using Euler Angles, it is important that agreement be reached regarding

the type of axes as well as the ordering of the rotations. If the order of rotations is first about

a north axis, then about an east axis, and finally about a down axis, the associated angles

are denoted by the reserved words “roll,” “elevation,” and “azimuth” respectively. When
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using the above set of “Euler” angles, there are also reserved symbols for each angle;

namely, roll is designated by ϕ, elevation by θ, and azimuth by ψ. [Ref. 52.]

If the temporal order of rotations is reversed, body-axis rotations yield exactly the

same orientation as Earth axis rotations. Specifically, starting with a given body in its

reference orientation, if it is first rotated through the azimuth angle about its belly axis, then

through elevation about its right side axis, and finally through the roll angle about its nose

axis, the final orientation of the body will be exactly the same as if these rotations had been

performed in the reverse order about the north, east and down axes of an earth fixed

coordinate frame. [Ref. 52.]

Gimbal axes provide another way of defining Euler angles which helps to resolve

the apparent temporal conflict. This approach is derived from the terminology and practice

of naval gunnery and field artillery. To aim an artillery piece, it is necessary to tilt the gun

barrel upward through an “elevation” angle so that a projectile will travel the desired

distance when the gun is fired. It is also necessary to rotate the gun carriage to a proper

“azimuth” angle so it points toward the target. Finally, in most modern guns, when the

projectile is fired, the “rifling” in the gun tube imparts a “roll rate” (or “spin”) to the

projectile to stabilize its flight toward a target. If the azimuth, elevation, and roll axes all

intersect in a common point, then the mechanism that moves the gun is called a “gimbal”

system. Thus, gimbal systems provide a mechanical means for achieving rotations. In this

case the “temporal” order of the rotations does not matter. That is, the gun is “aimed” at the

same point regardless of what temporal order the rotations are applied.[Ref. 51.]

a. Euler Angle Rotation

The position of a point in space can be described using a three dimensional

point vector. If a rigid body is described in terms of point vectors, it can be rotated or

oriented by rotating each vector individually. This may be completed by multiplying an

appropriate rotation matrix times the point vectors. The rotated coordinates, v’= [x’ y’ z’]T,

of a vector v = [x y z]T by an angle ϕ about the x axis is described by [Ref. 17.]
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(3.1)

Likewise, rotations of θ (elevation) and ψ (azimuth) about the y and z axes

respectively can be accomplished by means of the following multiplications.

(3.2)

(3.3)

Thus, the relationship between the earth fixed coordinate system and the body fixed

coordinate system can be expressed as a single rotation matrix R.

(3.4)

(3.5)

It should be noted that this relationship applies regardless of the physical means by which

the Euler angle rotations have been achieved. Rotation of the point vector v in Eq. (3.5)

requires nine scalar multiplications and six additions. There are six trigometric functions.

b. Transforming Body Rates To Euler Rates

Unlike linear velocities which may be integrated to obtain position, the body

rates p, q, and r about the body x, y, and z axes cannot be integrated to obtain Euler angles.

That is

(3.6)

This will be proved in the following paragraphs.

The angular rate of a rigid body in earth coordinates, Eω, is given by
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(3.7)

where , , and are Euler rates measured about roll, elevation and azimuth Euler axes

respectively. Eq. (3.8) below expresses angular rates about body-fixed axes in terms of

angular rates about earth-fixed axes.

(3.8)

By the inverse law of transposed matrices and substitution of Eq. (3.7) into Eq. (3.8).

(3.9)

(3.10)

From the first term of Eq. (3.10), the rotational rate about an earth fixed down axis

in body coordinates is given by

(3.11)

In a similar manner, the following are obtained from the second and third terms of Eq.

(3.10) respectively.

(3.12)

(3.13)

To obtain expressions of body rates in terms of Euler Rates and angles, Eq. (3.11),

Eq. (3.10) and Eq. (3.11) are combined to produce
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(3.14)

(3.15)

(3.16)

In order to solve for , , and in terms of p, q, and r, it should be noted that Eq.

(3.15) and Eq. (3.16) involve only , and . Thus, multiplying Eq. (3.15) by cos ϕ and Eq.

(3.16) by -sin ϕ and adding produces the result

(3.17)

Substituting this result into Eq. (3.16) yields:

(3.18)

Finally, using this result in Eq. (3.14),

(3.19)

In matrix form, these results can be rewritten as:

(3.20)

where sec θ = 1 / cos θ. Evidently, this matrix is singular for . [Ref. 16.]

c. Euler Angle Singularities

When the nose unit vector of a rigid body points straight up (or down), the

roll and azimuth gimbal axes are collinear. This means that neither roll or azimuth angles

are uniquely defined, but rather, only their difference (nose up) or sum (nose down) can be

specified uniquely [Ref. 51.]. This problem is also manifested in an even more serious way

with respect to Euler angle rates since, the body rate to Euler rate transformation matrix (T

in Eq. (3.20)) is singular for this orientation ( ). Obviously, this problem only arises

for rigid bodies which are capable of assuming a vertical orientation.
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2. Quaternions

Quaternions are an extension of complex numbers designed to define a four-

dimensional volume using three “imaginary” parts and one “real” part. The imaginary

portion of a quaternion is often termed the “vector” part. The real part of a quaternion is

sometimes called the “scalar” part. Quaternions are commonly represented using three

different notations.

(1) Linear combination of four components:

(3.21)

where i, j, and k denote the standard orthonormal basis for three space.

(2) Four dimensional vector:

(3.22)

(3) Scalar with a vector imaginary part:

(3.23)

It is also possible to write a quaternion as the sum of two four dimensional vectors.

For a quaternion q, the vector Re(q) contains the scalar or real part of q. Only the first

element is nonzero. The vector Ve(q) contains the vector or imaginary part of the

quaternion. The first element is zero and the last three elements express a vector in

component form. Thus,

(3.24)

Intuitively, the three imaginary parts describe a vector and the real part expresses

an angle of rotation about that vector. The imaginary parts have the following properties

i * i = i2 = -1 (3.25)

j * j = j2 = -1 (3.26)

k * k = k2 = -1 (3.27)
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and

ij = k = -ji (3.28)

jk = i = -kj (3.29)

ki = j = -ik (3.30)

a. Quaternion Operations

Under the operations of addition and multiplication, quaternions satisfy all

of the axioms of a field except the commutative law. Let s be a scalar and let

(3.31)

The following operations are defined for quaternions.

Equality

Two quaternions are equal if and only if they have exactly the same

components. That is q1 and q2 are equal if and only if

w1 = w2 (3.32)

x1 = x2 (3.33)

y1 = y2 (3.34)

z1 = z2 (3.35)

Addition

The sum of two quaternions is defined in the same manner as normal vector

addition by adding corresponding components.

(3.36)

Each quaternion q has a negative or additive inverse denoted by -q, in which each

component is the negative of the corresponding component of q.

q1 w1 x1i y1j z1k+ + += q2 w2 x2i y2j z2k+ + +=

q1 q2+ w1 w2+( ) x1 x2+( ) y1 y2+( ) z1 z2+( )( )=
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Scalar Multiplication

Scalar multiplication of a quaternion is commutative and is again defined in

the same manner as that of a vector in four space. Each component of the quaternion is

simply multiplied by the scalar.

(3.37)

Quaternion Multiplication

The product associated with the multiplication of two quaternions is itself a

quaternion.

(3.38)

Using (3.25) through (3.30) and the distributive and commutative properties

of scalar multiplication, (3.38) becomes

(3.39)

The result given in (3.39) can also accomplished by scalar multiplication of

the imaginary vectors, taking the dot products of the imaginary vectors (produces a scalar)

and taking the cross product of the imaginary vectors (produces a vector). That is,

(3.40)

Evaluation of Eq. (3.39) or Eq. (3.40) requires a total of 28 scalar operations

(16 multiplies and 12 additions). Though quaternion multiplication is associative, the cross-

product makes the operation non-commutative.

b. Quaternion Forms

Quaternion Conjugate

Let , then the quaternion conjugate of q is
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(3.41)

It can be shown that the conjugate of the product of the two quaternions is equal to the

product of the individual quaternion conjugates in reverse order. That is

(3.42)

The sum of any quaternion and its conjugate will be the scalar quantity 2w.

Norm

The norm of a quaternion is sometimes called the length or magnitude of the

quaternion. Let q = (w x y z), then the norm of q denoted N(q) is

(3.43)

This definition is the same as the for the length of a four dimensional vector.

Normalized unit quaternion

If a quaternion has a norm of unity, each of its components must have an

absolute value less than or equal to one. Such quaternions are called unit or normalized

quaternions.

(3.44)

Quaternion (multiplicative) inverse

In general, the multiplicative inverse of a quaternion q is given by

(3.45)

Since N(q) = 1 for a unit quaternion, the inverse of a unit quaternion is

simply .

c. Quaternion Transformation Between Coordinate Frames

It is known that the orientation of a rigid body can always be described as

a rotation (φ) about a single inclined axis (v). If the axis (v) is constrained to unit magnitude,

the quaternion (qr) representing this orientation is

q w v–,( )=

q1q2( ) q2q1=

N q( ) qq w
2

x
2

y
2

z
2+ + += =

qnormalized
q

N q( )
------------=

q 1– q

N
2

q( )
-------------- q

qq
------= =

q
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(3.46)

Evidently,

(3.47)

The product of two unit quaternions is also of unit magnitude. The product

is a quaternion rotation from the orientation described by q1 to a cumulative

orientation of q1 and q2. In general, “earth coordinate” rotations multiply from the left and

“body coordinate” rotations from the right. [Ref. 53.]

Any scalar can be represented as a quaternion.

(3.48)

Any three dimensional point vector p = (x y z)Tcan be represented as the quaternion with

the real part set to zero.

(3.49)

The rotation of a vector, p, by a quaternion q is defined as

(3.50)

If q is of unit magnitude such that

(3.51)

then

(3.52)

where u is a unit vector about which the vector p is rotated through an angle θ. There are

no singularities and only two trigometric functions involved. 56 scalar operations or twice

the number needed to evaluate Eq. (3.40) are required to evaluate Eq. (3.52).

qr
φ
2
---cos v

φ
2
---sin,

 
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qrqr qr
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p 0 x y z( )=
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q
θ
2
--- u

θ
2
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d. Unit Quaternions In Positive Real Form

For any given orientation, there are two unit quaternions which may be used

to represent it. The unit quaternions

(3.53)

both represent the same orientation. To eliminate this ambiguity and insure a unique

solution for an orientation, the angle of rotation, α, may be restricted to -π/2 < α < π/2. Since

the real part of such a quaternion will always be positive, it can be recovered using the

assumption of unit length. Thus, the four elements of a unit quaternion in this positive real

form are not independent. For such a quaternion q = [ w x y z ]

(3.54)

from which it follows that

(3.55)

and

(3.56)

If w is allowed to vary between negative and positive one in Eq. (3.55) and Eq. (3.56), these

equations become descriptions of the interior and surface of a unit sphere in three-

dimensional space. This sphere is filled twice, once as w varies between 0 and 1, and once

as w varies between 0 and -1.

e. Transforming Angular Rates To A Quaternion Rate

Angular rates, p, q, and r, may be used to find the derivative of the

orientation quaternion, , relative to the earth-fixed coordinate system. Suppose a rigid

body is first rotated by an angle θ1 about an inclined axis specified by the unit vector v1. If

v1 is in earth coordinates, the unit quaternion representing this rotation is
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(3.57)

Assume the body is then rotated by an angle θ2 about a second axis v2

expressed in body coordinates by the unit quaternion q2.

(3.58)

For small θ2,

(3.59)

and thus (3.58) becomes

(3.60)

Assuming θ2 changes linearly with time, the orientation expressed by q2 as a function of

time becomes

(3.61)

for small t. expresses an angular rate of about a vector v2 in body coordinates. Thus

(3.62)

and (3.61) becomes

(3.63)

Taking the derivative of (3.63) with respect to time produces

(3.64)

(3.65)

(3.66)

If q1 is the initial orientation is earth coordinates and q2 is a second rotation

in body coordinates, then q3 is the composite rotation combining the two rotations.

(3.67)
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By the product rule

(3.68)

The components of are given by

(3.69)

(3.70)

(3.71)

(3.72)

In general, Eq. (3.69) through (3.72) are expressed by the quaternion multiplication

(3.73)

Note that Eq. (3.73) offers the potential of orientation tracking of rigid bodies using no

trigometric functions whatsoever. [Ref. 53.]

f. Representing Orientations Without Singularities

Quaternions can be used to represent all orientations without singularities

and thus are a logical choice when representing the orientation or a rigid body which may

go through the vertical. A precise method of overcoming the singularities associated with

Eq. (3.20) involves transformation of rotational rates sensed in body coordinates into a rate

quaternion Eq. (3.73), and integrating to get a quaternion representation of orientation [Ref.

52.].

C. MODELS FOR HUMAN BODY TRACKING

Unlike dynamics models, kinematic models involve the study of motion

independent of the underlying forces which cause it. Only geometrical and time related

properties of motion such as position, velocity and acceleration are defined. [Ref. 17.]

Kinematic models represent articulated structures as a series of interconnected links. The

relationships between these links may be extremely complex. They may be described using

either homogenous transformation matrices or quaternion/vector pairs.[Ref. 30.]
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1. Kinematic Models Based On Homogenous Transformation Matrices

The human body can be modeled as an articulated structure involving links

connected by revolute joints. Multiple degree of freedom joints can be modeled as multiple

collocated single degree of freedom joints. Each joint is assigned an individual reference

frame which is related to the reference frames of adjacent links by a 4 x 4 homogenous

transformation matrix which expresses both a rotation and a translation. The rules used to

derive the matrix are dependent on the notation in use. There are two common, but similar

notations for expressing the relationship between neighboring joints in the an articulated

structure. These notations are the Denavit-Hartenberg (DH) and the Craig or Modified

Denavit-Hartenberg (MDH). The DH and MDH notations are equivalent, with the

exception that the link frame of reference coordinate origin for DH links is attached to the

outboard motion axis of the link while the corresponding origin for MDH links is attached

to the inboard motion axis. [Ref. 17.]

As a body moves, the relationships between the frames associated with the links

change. Thus, describing a body posture simply involves expressing the relationships

between adjacent frames. Four parameters are used to describe the relationship. These are

link length, link twist, link offset, and joint angle. In an articulated structure involving only

revolute joints, only changes in joint angle occur. All other parameters are fixed.

Figure 3 depicts frame assignment and the standard MDH parameters associated

with each link. Linki-1 is inboard of axisi and thus Linki-1 is referred to as the inboard link

and linki as the outboard link. Again DH is equivalent, but attaches the link frame of

reference to the outboard motion axis. The four MDH parameters depicted are:

• inboard link length: ai-1 = distance from zi-1 to zi measured along xi-1

• inboard link twist: i-1 = angle between zi-1 and zi measured about xi-1

• outboard link offset: di = distance from xi-1 to xi measured along zi

• outboard joint angle: i = angle between xi-1 to xi measured about zi

Once the link parameters have been measured, a MDH transformation matrix which

relates the frame for i-1 to that of i can be created. It is given below by [Ref. 17.]:

α

Θ
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(3.74)

Rotating and positioning the outboard joint coordinate system relative to the inboard joint

coordinate system requires multiplication of i-1Ti and iTi+1. This composition of two

4 x 4 matrices will require 64 multiplications and 48 additions Taking into account the

redundant last rows this can be reduced to 36 multiplies and 27 additions [Ref. 88.].

2. Forward and Inverse Kinematics

Kinematic problems are often separated into two classes. In forward kinematics the

motion of the end effector is determined indirectly as the accumulation of the

transformations that lead to it. All joint angles are specified explicitly to define an exact

position for the entire structure. Complete control is maintained over the kinematic

structure, but it may be counterintuitive and complicated to use in practice. Forward

kinematics applications are less demanding computationaly and are commonly used to set

predefined postures. Inverse kinematics or goal directed motion entails calculating joint

angles given the position and orientation of the last link or end-effector and possibly some

T
i 1–

i

Θicos Θisin– 0 ai 1–
Θsin i α i 1–( )cos Θi αi 1–( )coscos α i 1–( )sin– α i 1–( )sin di–

Θi α i 1–( )sinsin Θicos α i 1–( )sin αi 1–( )cos α i 1–( )dicos

0 0 0 1

=

Linki - 1

Linki

Axis i

Axis i - 1

di

aiai - 1

Θi

α i 1–

xi

yi ẑi
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Figure 3: Frame Assignment Under MDH After [Ref. 17.]
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intermediate links. Inverse kinematics is generally not as straightforward as forward

kinematics. In an under specified system involving a minimal amount of information, there

may be an infinite number of solutions for a given end-effector position and orientation. As

the number of links increases, the difficulty of finding an unambiguous solution will

increase. In such a case, additional constraints or heuristics may be applied to the system to

allow a unique solution to be selected. The solution may be closed form or it may be arrived

at numerically. Methods of obtaining closed form solutions may be either algebraic or

geometric. In any event, the method of solution will tend to be unique for each specific

case. Performing the computations involved in inverse kinematics in real-time can often be

difficult even when using a closed form solution.

Minimizing the number of position/orientation sensors used in body tracking

applications reduces user encumbrance. However, reducing the number of sensors can

mean that the orientation of some links will not be tracked directly. Since solving the

inverse kinematics problem allows the transforms for untracked links which are not directly

sensed to be found, a great deal of research has been done involving inverse kinematics in

body tracking applications [Ref. 10.][Ref. 11.][Ref. 85.][Ref. 79.]. In these applications, 6

DOF sensors are required on all end-effectors such as the hands and feet. The solutions

found require considerable computational overhead. In addition, the posture of the model

can be inaccurate if the heuristics and constraints employed cause the selection of a solution

that does not match the actual position of the user.

3. Kinematic Models of the Human Body based on Joint Angles

Kinematic models of the human body are often quite complex. Attempts to simulate

the range of motion of the human skeleton typically result in articulated structures

containing on the order of 60 degrees of freedom [Ref. 11.][Ref. 78.][Ref. 88.]. Such

models can require a transformation matrix as given by Eq. (3.74) for each link. Since links

can not be positioned independently with such a model, each change in posture requires up

to 60 matrix multiplications or at least 3,780 scalar operations to reposition the model. The
49



computational load will increase further if there is a need for inverse kinematic calculations

to determine the positions of some limbs. Nevertheless, kinematic models based on

homogenous transformation matrices and joint angles are well suited for use with sensing

systems which provide joint angles as output. Other alternative models may be more

appropriate when working with sensors which provide link orientation and/or position

relative to Earth coordinates as output.

Noisy or inaccurate sensor information in human body tracking applications can

result in postures which are unrealistic of impossible for a human to perform. For example,

when the elbow is completely flexed, inaccuracies in sensor data due to noise or a lack of

precision can place the upper and fore arms in the same location. Joint angle models based

on transform matrices allow the implementation of joint limits which match the motion

limits of a human skeleton. If sensor data results in a calculated position which is beyond

the joint limits of the link, the limb can simply be placed at the limit and transformations

can continue based on this “limited” position. Often other representations of limb segment

orientation are converted to matrix form for this purpose. In [Ref. 88.], orientation data is

input in quaternion form. These quaternions are then turned into rotation matrices for

application of joint constraints and submission to the graphics API.

In networked applications involving body tracking, it is necessary to pass posture

data between remote locations. If full kinematic models containing all fixed transformation

matrix parameters are stored at each location, only the variable joint angles need to be sent

across the network each time a posture update is made. Thus, if a sixty DOF model is used

and the joint angles are specified using 16 bit numbers, only 120 bytes of information must

be sent across the network. It should be noted, however, that once the joint angle data has

been received, each location will be required to perform numerous matrix multiplications

to reposition the model. It would thus be desirable to find a method of specifying

orientation with an equivalent network bandwidth requirement that required a more limited

computational overhead at each location.
50



4. Orientation Only Tracking

In orientation only tracking applications, the posture of a human model is set using

only orientation data. Position data for a single reference point is used only to place the

entire human model within a synthetic environment.

Inertial sensors provide orientation relative to an earth fixed coordinate reference

frame. In early inertial angle tracking work in [Ref. 28.], Frey showed that an entire human

body simulation can be built and animated using only orientation data for each body part.

This result eliminated the need for human body motion capture systems to track the position

of each body part and showed that orientation data alone could be used to determine body

posture.

Usta created a human model designed to accept a quaternion representation of

orientation relative to an earth fixed coordinate reference frame. The input data was

provided by prototype inertial trackers. The quaternions were then turned into rotation

matrices for submission to the graphics API and the application of joint constraints [Ref.

88.]. He did not use the quaternions to directly orient individual body segments for

graphical rendering. Qualitative results from his work are shown in Figure 4. Only static

tests were performed.

Other work has discarded the position data from active magnetic systems for

posture determination and used only orientation data to drive the animation of a human

model. This orientation data was used to determine joint angles which were applied to

kinematic models [Ref. 78.], [Ref. 64.]. Though Molet transmitted orientation quaternions

across a network to save bandwidth, the quaternions were converted to rotation matrices.

Inverse kinematic calculations were made to allow several joints to be driven with one

sensor [Ref. 64.].

5. Kinematic Models based on Quaternion/Vector Pairs

Quaternion/vector pairs represent a rotation using a quaternion and a translation

using a vector. [Ref. 30.] Utilization of sensors which output orientation data in an earth-
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fixed coordinate reference frame is more applicable to the use of kinematics models based

upon quaternion/vector pairs. In this case, each limb segment can be oriented without

regard to the orientation of adjacent segments [Ref. 28.]. The posture of the user can be

reconstructed by simply attaching the representations of individual limb segments together

in the same manner in which the corresponding segments on the body of the user are

connected. There is no need for coordinate transformations or the associated transformation

matrices to determine joint angles. Body posture is entirely determined based upon limb

orientation and length and the quaternion and vector which represent these parameters.

Given low noise orientation data of sufficient accuracy, it should not be necessary

to apply joint angle constraints to correct position errors. If this data is supplied in

quaternion form, the need to generate rotation matrices and perform numerous matrix

Figure 4: Inertial Motion Tracking of the Right Fore and Upper Arm with
Two Inertial Sensors and a Quaternion Attitude Filter From [Ref. 88.]

(a) Initial Position (b) Fore Arm Raised

(c) Forearm and Upper Arm (d) 90 Degrees of Elevation at the
shoulder (No singularity)
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multiplications can be avoided. Each limb segment can be oriented via multiplication by

unit quaternions as described by Eq. (3.52). Limb segments can be positioned through a

rotated translation vector derived from concatenation of vectors pointed from proximal to

distal joints.

Figure 5 depicts a human model designed for the input of quaternions representing

the orientations of the individual limb segments. The animation of the human figure is

accomplished without rotation matrices. When all of the limb segments are in their

reference positions, the body-referenced x axes are pointing north, y axes pointing east and

z axes point down. The orientation of each limb segment in its reference position is

described by the unit quaternion

(3.75)

The first element of this quaternion is the cosine of the half angle of rotation. When in the

reference position there is no rotation (cos 0 = 1).
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Figure 5: Human Model Designed For Quaternion Input
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Each numbered link in Figure 5 has two connection points and a vector which

connects them. This vector direction is outboard toward the more distal joints. The vector

pij extends from the inboard connection point to the outboard connection point of link j. The

vector pij is a quaternion with a real part equal to zero. The length of pij is equal to the length

of link j. Thus, the position and orientation of limb segment j is described by the quaternion/

vector pair (qj, pij).

When a link j is no longer in its reference position, the orientation of that link is

given by the unit quaternion qj. Thus, the orientation transformation applied to each vertex,

vj, in the graphical representation of the limb segment corresponding to link j is

(3.76)

For link 1 the rendered position and orientation is given by vertex transformation

(3.77)

For link 2 the transformation applied to each vertex is

(3.78)

In general, the nth link outboard from the base is positioned and oriented by

(3.79)

Obviously, the links should be positioned and oriented by working outward from the base

and saving intermediate results. This eliminates the need to repeat identical calculations

when multiple limb segments are attached to the same inboard link. It should be noted that

Eq. (3.76) through Eq. (3.79) involve only scalar additions and multiplications. The are no

trigometric functions or matrix multiplications. Positioning and orienting the structure

depicted in Figure 5 will require approximately 840 scalar operations.

In networked simulations, the use of quaternions requires considerably less

bandwidth than that of joint angles. Specifically, for a unit quaternion all elements are

within the range +/- 1. Integer representation of a unit quaternion with 1% accuracy

v'j qjvjqj=

v'1 pE0 q+
1
v1q1=

v'2 pE0 q1p01q1 q+ + 2v2q2=

v'n pE0 q1p01q1 q+ 2p12q2 … qn 1– pn 1n– qn 1– q+ + + + nvnqn=
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therefore requires four bytes. For the purpose of networked simulation, the human body can

be adequately modeled using fifteen limb segments. Thus, posture updates using a

quaternion representation require that approximately 60 bytes of information be sent across

the network. This is roughly the equivalent of that required for the update of a kinematic

model with 60 degrees of freedom. If unit quaternions in positive real form are used, only

45 bytes need be transmitted. In addition, the amount of computation at each end will be

greatly reduced when quaternion representations of orientation are used.

D. SUMMARY AND CONCLUSIONS

Homogenous transform matrices and Euler angles are widely used by both the

graphics and robotics communities. This utilization is mostly due to their familiarity and

matrix formulation. There are however several disadvantages to the use of these

formalisms. Homogenous transform matrices require the storage of 16 numbers, seven of

which are redundant or constant for any matrix. The composition of two rotation matrices

requires 36 scalar multiplications and 27 adds. The use of trigometric functions is even

more expensive since approximation is usually carried out using Taylor series. Within a

rotation matrix there are at least six trigometric functions which must be evaluated. Each

requires numerous scalar operations. Use of Euler angles results in singularities whenever

the inner and outer gimbal rotation axes become collinear. Thus, they are not appropriate

for tracking the orientation of a rigid body that can assume any orientation.

Kinematic models of articulated structures which are based on homogeneous

transform matrices must orient and position each link with respect to the orientation and

position of the inboard connecting link. Changing the posture of a 60 DOF human model

will require at least one multiplication of two 4 x 4 matrices per joint. Kinematic models

based on homogeneous transform matrices are well suited to tracking systems which

provide joint angle output. The ability to implement joint limits allows correction of some

problems which might occur when using noisy or inaccurate sensors.
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Quaternions and quaternion/vector pairs offer an alternative to rotation matrices

based on Euler angles and homogenous transform matrices.[Ref. 30.] Though in less

general use, in terms of computational efficiency and compactness they are superior.

Thinking about a matrix which expresses a rotation about a non-principal axis is just as

difficult as imagining a quaternion which specifies a rotation about an arbitrary vector.

Thus, intuitively quaternions are no more difficult to work with than rotation matrices.

Storage of a quaternion requires four numbers (three for quaternions in positive real form)

where as an equivalent rotation matrix requires nine. Quaternion vector pairs require the

storage of only seven numbers in contrast to the sixteen of a homogenous transform matrix.

The composition of two rotations and translations using quaternion/vector pairs requires

only 32 scalar multiplications and 24 additions. In many practical applications, there is no

need to evaluate any trigometric functions. Quaternion representations of orientation do not

result in any singularities.

Kinematic models based on quaternion/vector pairs are computationaly more

efficient than those based on homogeneous transform matrices. This is especially true when

they are driven by orientation data which is described relative to a world coordinate

reference frame. When compared with joint angle updates of posture, the bandwidth

requirements are roughly the same. If it is necessary to transmit both translation and

orientation data, quaternion/vector pairs require approximately one fifth the bandwidth of

homogenous transform matrices. Update of the posture of a 15 segment human model will

require 840 scalar operations. This is an order of magnitude less than the 3,780 scalar

operation needed to reset the posture using transform matrices. An articulated structure

based on quaternion vector pairs includes no notion of joint angles. Thus, it is not possible

to implement joint angle constraints using this formalism and when using noisy or

inaccurate sensors it may be advisable to adopt the more traditional approach of a Denavit-

Hartenberg type system.
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IV. REVIEW OF FILTER THEORY AND DESIGN

A. INTRODUCTION

In physical applications, sensor outputs are commonly processed by digital

computers with the intention of making some determination regarding the physical world.

Examples of these determinations may include estimates of velocity, acceleration, position,

temperature, pressure, etc. In human body tracking applications, the goal is to use sensor

signals to estimate the orientation of a rigid-body. Unfortunately, because of size

limitations and cost considerations, sensor output is rarely of sufficient quality to allow

direct estimation using naive algorithms [Ref. 49.]. The sensors themselves will have

accuracy limitations. In addition, the output of the sensors will be corrupted by noise. Thus,

it is necessary to process sensor output data in a more rigorous manner to separate the actual

sensor signal from the noise which is present and arrive at the “best” estimate possible

given the inaccuracy of the sensors themselves. The algorithms used to process the signals

from the sensors are generally termed filtering algorithms.

The primary purpose of a filter or filtering algorithm is to separate signals from

noise. Classic examples of this type of filtering include high and low pass filters which

respectively attempt to separate low and high frequency noise from a signal. Removal of

noise from a signal will tend to smooth the output. More sophisticated filtering may also

combine signals from several sensors in order to produce an estimate which is “optimal”

with respect to some criteria. These types of filters are usually based upon a probabilistic

model of the signal being estimated as well as the overall system to which it is related.

Encapsulation of this model within the algorithm provides the additional capability of

prediction. This may be important in applications in which timeliness is critical, since a

predicted value can be used in place of an actual estimate.

Inertial/magnetic human body tracking is essentially a navigation problem with the

goal of determining the orientation of each body segment. Sensor input comes from

miniaturized sensors. No single input is of sufficient quality to accurately determine
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orientation over a long period. It is therefore necessary to combine the signal from several

sensors to arrive at an accurate estimate of orientation. Since the effects of lag are so

devastating to the sense of presence in a synthetic environment, calculation of this estimate

must not be so computationally demanding that it can not be made in real time. Thus, the

most accurate filter possible may not be the best choice if it is too slow.

B. MINIATURE INERTIAL SENSORS

MEMS, or microelectromechanical systems, are integrated systems combining both

electrical and mechanical components. Unlike conventional semiconductor manufacturing

or microelectronics in which electronic circuits are implemented, MEMs devices contain

three dimensional mechanical structures. These “micromachined” mechanical structures

have dimensions which are measured in micrometers. By combining microelectronics and

micromachining, precision electronics are closely integrated on the same device. The

electronics sense the positions and deflections of the mechanical elements. Since they are

in such close proximity, parasitics and noise are reduced and reliability is improved.

[Ref. 9.]

At least four different micromachining techniques are in use or under development.

Silicon micromachining is a relatively developed micromachining technique since it is

closely related to the production of microelectronic circuitry. Silicon is the primary

substrate material used. Electrochemical etching techniques are being investigated to

extend the set of basic silicon micromachining techniques. Silicon bonding techniques can

also be utilized to extend the structures produced by silicon micromachining techniques

into multiple layers. Excimer laser techniques use an ultraviolet laser to micromachine a

number of materials without heating them. The excimer laser lends itself particularly to the

machining of organic materials (plastics, polymers, etc.). LIGA1 is a technique that can be

used to produce molds for the fabrication of micromachined components. Microengineered

1. The acronym LIGA comes from the German name for the process (Lithographie, Galvanofor-
mung, Abformung).
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components can be made from a variety of materials using this technique. More than one

micromachining technique can be involved in the manufacture of a hybrid MEMs device.

Photolithography is used in conjunction with all of the micromachining techniques

described above. [Ref. 9.]

Sensors are a specialized type of transducer. MEMs sensors convert a physical or

chemical quantity into an electrical one. Though each sensor type has a set of advantages

and disadvantages, the orientation of a rigid body may be determined using only data from

body-mounted accelerometers, angular rate sensors, or magnetometers. Improved static

and dynamic accuracy can be obtained by combining data from all of the sensor types in a

complementary manner.

MEMs magnetic sensors or magnetometers can use several different methods to

sense the local magnetic field. Hall effect sensors consist of a conducting material, usually

a semiconductor, through which a current is passed. In these sensors, changes in anisotropic

magnetoresistance (AMR) occur when a magnetic field is applied perpendicular to the

current flow. Two magnetoresistive sensing elements or contacts may be placed on

opposite corners of the device. Sensing contacts are also placed on the remaining corners

of the device, opposite each other and perpendicular to the current flow. Changes in the

magnetic field perpendicular to the plane of the contacts are detected as a change in the

potential difference between the two sensing contacts. [Ref. 9.][Ref. 43.]

Several major techniques are used to design MEMs accelerometers. Due to the

newness of the field, performance ranges and optimal application areas of each have yet to

be determined. In one technique, a silicon diaphragm to which a mass has been added is the

basic structure used. Under acceleration, the diaphragm bends causing a change in the

distance between a stationary and moving electrode. The resulting change in capacitance is

converted into a voltage. Piezo resistive materials in which the resistance changes as the

material bends can also be used. Accelerometers based on this technique, consist of a mass

suspended from thin beams. Under acceleration, a force (f = ma) is developed which bends

the suspending beams. Piezoresistors positioned where the beams meet the support are used
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to detect acceleration. Vibrating beam accelerometers (VBAs) use two resonators vibrating

at their natural frequency. One resonator is compressed by acceleration while the other is

tensioned. The frequency of the tensioned resonator increases while the frequency of the

compressed resonator decreases. The acceleration is determined by the difference between

the two frequencies. [Ref. 9.][Ref. 43.]

Most miniature and micromachined angular rate sensors are based on the Coriolis

tuning fork principle. Gyroscopes that use vibrating rather than rotating bodies to detect

gyroscopic torques from coriolis acceleration are more reliable and less expensive than

rotating gyros. The “tuning fork” structure is set to stable vibration at its fundamental

frequency. As it is rotated about its axis, Coriolis acceleration generates a sinusoidally

varying precession. The amplitude of the generated sine wave is proportional to the input

angular rate about the axis and is given by

(4.1)

where v is the tine velocity, Ω is the input rate, and K is the stem torsional stiffness constant.

[Ref. 43.]

C. RANDOM PROCESSES

In order to work with the output of a sensor, it is necessary that its output signal be

described in mathematical terms. In filter theory, the characteristics of a signal are captured

by the notion of the stochastic or random process. The concept of a random process

associates time with a random variable. In this abstraction, it is imagined that an ensemble

of identical experiments are conducted simultaneously. In each of these experiments the

random signal of interest is being generated. The value or state of a random process, X, can

be examined at any time t. For a fixed time t, the value of the random process is described

by the random variable, x.

(4.2)

a 4v
Ω
K
----=

X t( ) x=
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If the parameter t is discrete, then X is a discrete-time random process. If the parameter t is

continuous, then X is a continuous-time random process. Since X is random, the value at

time t will generally not be the same for all experiments. What is of interest is the expected

value, and how the process is correlated with itself in time, and how the process might be

correlated with other processes in time.

How a process is correlated with itself in time is expressed by the autocorrelation

function. The relationship between the state at times t1 and t2 is given by

(4.3)

where f is the second order probability density function for X. If a process is closely

correlated with itself, the value of Eq. (4.3) will be positive. If Eq. (4.3) has a value of zero,

the process is uncorellated with itself in time. For a stationary process, the value of Eq.

(4.3) is only dependent upon the difference, τ = |t1 - t2|. The power of a signal is given by

the autocorrelation function when t1 = t2. That is,

(4.4)

The relationship between two process is expressed by the crosscorrelation function.

The correlation between the process X and Y at the times t1 and t2 is given by

(4.5)

Again, if the processes are uncorellated Eq. (4.5) will have a value of zero. Negative values

indicate the processes are negatively correlated. Autocovariance and crosscovariance are

zero mean versions of the autocorrelation and crosscorrelation functions respectively.

In filter theory, both the input and the output of a filter or system are treated as

random processes [Ref. 14.]. Thus, filter design becomes an in depth examination of how
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the input processes of a system are related to the output processes. In practical applications,

several simplifying assumptions are usually made. Processes are usually treated as Wide

Sense Stationary (WWS) meaning that second order probability density functions are time

invariant. It is also usually assumed that processes are ergodic or only a single sample time

signal of a process is needed to obtain all necessary information about the signal. Proving

two processes are independent requires that any moment of their joint probability density

functions will be zero. This is usually very difficult. Thus, independence is usually only

assumed based upon empirical data [Ref. 14.].

D. LEAST SQUARES FILTERING

A system is a mathematical model that relates an

input signal x to the output signal y. Figure 6 shows block

diagrams of linear systems in the time and frequency

domains. In each system diagram, the input is related to

the output by a function. When working in the time

domain, this function is call the impulse response (h(t) in

diagram (a)). The relating function in the frequency

domain is termed the transfer function (H(s) in diagram

(b)). Mathematically, the output or a linear system is

expressed by a convolution integral. In the time domain the integral is written

(4.6)

In the frequency domain, the convolution integral becomes a simple multiplication.

(4.7)

It should be noted, that working in the frequency domain is specialized to WSS processes

[Ref. 14.].

h(t)x(t) y(t)

(a) Linear System in the
Time Domain

H(s)X(s) Y(s)

(b) Linear System in the
Frequency Domain

Figure 6: Block Diagrams of
Linear Systems
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If the input and the outputs of a linear system are random processes, it becomes

necessary to determine the expected output of the system given an expected input. In the

time domain for a linear system Eq. (4.6) becomes

(4.8)

Filters are described as systems in which the inputs and outputs are random

processes. In a linear system, the impulse response or transfer function is applied to a noisy

input to produce an estimate of a desired noiseless output, which is written

(4.9)

The purpose of the filter under least square filtering is to minimize the estimation error. In

particular, if the estimate of the noiseless output, , is perfect the difference between

these two values will be zero. Minimization of the square of the expected error takes the

form

(4.10)

where e is the squared error criterion. In linear minimum mean-square error estimation, it

is assumed that X(t) and Y(t) are related to one another by some linear function. Eq. (4.9)

replaces in Eq. (4.10) with a term involving the filter impulse response and the input.

(4.11)

In the method of nonlinear mean-square estimation it is assumed that the input and

output processes are related by a nonlinear function. In this case, the squared error criterion

becomes

(4.12)
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where g is some nonlinear function of X. Choosing the form of the function g is difficult

due to the multitude of possibilities. In theory, the best nonlinear estimator is given by

(4.13)

However, in most practical applications this function is difficult to find [Ref. 58.]. In many

cases, a more tractable problem can be created by approximating a nonlinear relationship

using a linear function.

The exact manner in which the transfer function is determined is what characterizes

the different types of filters. Wiener filters are linear mean square error filters for stationary

random processes. Complementary filters are a specialization of Wiener filters in which no

assumptions are made about the signal structure. Kalman filters are also linear mean square

error filters in which the estimation process is recursive. The process model of an Extended

Kalman filter is nonlinear, but the estimation itself is linear. [Ref. 14.]

E. WIENER FILTERING

Linear mean square error filtering began with the work of Nobert Wiener. [Ref. 14.]

This work attempted to separate one noiselike signal from another. The end result tells how

past values of input should be weighted in order to estimate the present value of the output.

The theory developed is characterized by the following assumptions [Ref. 14.]:

• Both the signal and noise are random processes with known auto- and
crosscorrelation functions.

• The criterion for best performance is minimum mean-square error.

• A solution based upon scalar methods will lead to the optimal filter weighting
function.

The significance of the first and third assumptions should be noted. The first indicates that

the complete spectral characteristics of both the noise and the signal must be known. The

exact manner in which all signals are related must also be known in order for a Weiner filter

to produce an optimal estimate. The third assumption emphasizes the reliance of the Weiner

filter theory upon scalar methods. This reliance makes it difficult to apply Wiener filter

g X( ) E Y X[ ]=
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theory to systems with multiple time inputs and outputs. Wiener filters may be either

continuous or discrete.

1. Continuous Weiner Filters

If it is assumed that all processes are stationary and the filter is not time-varying,

prediction, filtering and smoothing problems may be solved with a Weiner filter. If the

input signal is continuous, the Wiener filter estimate of the output at a particular time t is

formulated as

(4.14)

The time t may or may not be in the interval [a, b]. X(t) represents the measured data. h(τ)

is treated as a set of weighting functions. The error should be orthogonal to the data. Thus,

(4.15)

This implies that

(4.16)

or

(4.17)

Eq. (4.17) is known as the Wiener-Hopf equation [Ref. 14.]. Theoretically, this result can

be used to solve for the weighting function given the assumption that the auto- and

crosscorrelation functions involved are known. However, there is no general solution

method for all practical applications. Usually, specialized forms based upon one or more

simplifying assumptions are solved.
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Weiner filters may be causal or noncausal. The weighting function of a noncausal

filter requires the filter to “look ahead” of real-time and use data which is not yet available.

The estimate of the output at a particular time t, for a noncausal filter is given by

(4.18)

The auto- and crosscorrelation relations can be expressed as

(4.19)

If is assumed that the processes involved are WSS, a closed form solution for the weighting

function can be found in the frequency domain. Taking the Fourier transform of both sides

of Eq. (4.19) produces

(4.20)

Thus, by rearranging Eq. (4.20) [Ref. 14.]

(4.21)

If it is assumed that the input measurement has the following form

(4.22)

where n(t) is uncorellated Guassian noise. Then Eq. (4.21) will become [Ref. 86.]

(4.23)

Noncausal filters are applicable to applications in which post-processing of data is

performed, but are not useful in real-time tracking applications.

Casual systems are dependent only upon the past and present values of input and

are therefore applicable in real-time applications. The estimate of the output, for a causal

filter is given by [Ref. 14.]
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(4.24)

where t is the “present” time. Unfortunately, there is no closed form solution for the

weighting function in Eq. (4.24). Application of methods such as inovation and spectral

factorization become necessary [Ref. 14.].

Application of continuous filter theory to digital computers which are processing

sampled data can be difficult. Discretization of a transfer function of a filter formulated in

continuous time may not produce the results desired.

2. Discrete Weiner Filters

Wiener filtering of discrete data is also a weighting function approach. The

weighting function again attempts to weigh all past data in a manner which produces the

best estimate. Given n noisy input measurements at times t1 through tn, the estimation

becomes

(4.25)

and the mean square error becomes

(4.26)

To find the minimum of the squared error criterion in Eq. (4.26), the partial

derivative with respect to each is taken.

(4.27)

These n resulting equations can be expressed in matrix form by [Ref. 14.]
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(4.28)

This implies that can be solved for by inverting the n x n matrix R.

(4.29)

The above assumes that each of the auto and crosscorrelation functions in Eq. (4.28) is

known.

Inversion of R in Eq. (4.29) can be computationally expensive. This inversion must

be completed each time a new estimate is required. As the size of the data set increases with

time, the growing dimension of R will soon make the problem intractable. A limitation may

be placed upon the number of previous measures used, but inversion of an n x n matrix will

still be necessary each time a new data point is received. It should also be noted the Eq.

(4.28) takes into account only one input and one output. If multiple outputs are involved,

there will be multiple matrices to be inverted.

F. KALMAN FILTERING

The Kalman filter is an alternate method of formulating the linear minimum mean-

square error filtering problem which utilizes state space methods [Ref. 14.]. The two main

features of the Kalman formulation of the problem are vector modeling of the random

processes under consideration and recursive processing of the noisy measurement data

vector. Unlike the discrete time Wiener filter which must reprocess all previous data each

time a new estimate in required, recursive processing allows an updated estimate to be

made using only the results from the previous estimate.

Kalman filter theory continues the assumption that the spectral characteristics of the

processes involved are known. All noise sources are assumed to be white and Gaussian
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[Ref. 49.]. “Whiteness” implies that the noise values are not correlated in time and have

equal power in all frequencies. Gaussian noise amplitude takes on the shape of a normal-

bell shaped curve. The probability density of a Gaussian noise source is completely

described by its mean and variance. Under these assumptions a Kalman filter will produce

an optimal estimate of the variables of interest. This optimality is based on Bayes theorem

and the use of conditional probability density functions [Ref. 91.]. Continuous Kalman

filters are only of theoretical interest and are rarely used in practical applications and thus

will not be discussed here.

1. Discrete Kalman Filters

Discrete Kalman filter theory is primarily based upon a process model and the

measurement equation. The process model express the physical characteristics of the

system. It predicts how the state of the system changes from one time step to the next.

Through the process model, unreasonable estimates made using only sensor data may be

discounted. This model for change is written [Ref. 91.]

(4.30)

where

• Xn+1 and Xn are n x 1 state vectors expressing the state of the system at the times
n +1 and n respectively.

• Φn is an n x n constant state transition matrix expressing the physical equations
which govern system state transitions.

• Wn is a n x 1 process noise vector. The n independent white noise sources have a
known covariance and account for system inaccuracies.

The measurement equation [Ref. 91.]

(4.31)

expresses how measurement data is related to the state of the system. Based on a given set

of measurements, it defines what state the system should be in. Individual terms are as

follows

• Zn is an m x 1 vector of measurement data at time n.

Xn 1+ ΦnXn Wn+=

Zn 1+ HnXn Vn+=
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• Xn is an n x 1 state vector expressing the state of the system.

• Hn is an m x n constant measurement matrix which relates measurements to the
system state.

• Vn is an n x 1 measurement noise vector. The n independent white noise sources
account for measurement inaccuracies. These noise sources are uncorellated with Wn
in Eq. (4.30) and have a known covariance.

The covariance matrix for the process noise vector, Wn, and the measurement noise

vector, Vn, vectors is given by

(4.32)

and

(4.33)

The estimation error is expressed as

(4.34)

and the associated error covariance matrix is

(4.35)

where the super-minus indicates that the best estimate prior to assimilating the actual

measurement at the corresponding time. The discrete linear estimation is

(4.36)

For clarity, Eq. (4.36) can be rearranged and written as

(4.37)

The second term on the right side of the equation expresses the error or update. The

subtraction in the term produces the difference between the actual measurement and the

expected measurement. The n x n weighting matrix, Kk, is the Kalman gain matrix, which

is given by [Ref. 14.]

(4.38)

Evaluation of Eq. (4.38) requires inversion of an n x n matrix.
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Once initial estimates of the state ( ), and the error covariance ( ) are determined,

Eq. (4.30) and Eq. (4.31) are repeatedly used to obtained updated estimates of the system

state as depicted in Figure 7. The elements of Kalman gain matrix will continue to change

during operation. Examination of Eq. (4.38) reveals that the only non-constant term is the

error covariance matrix. Thus, changes in the filter gain are directly related to the estimated

accuracy of the current state estimate. In effect, a Kalman filter automatically provides

information about the quality of the estimates while doing the estimation through .

2. Extended and Linearized Kalman Filters

In some applications, either the dynamic or measurement relations may be

nonlinear. The measurement equation may be a nonlinear function of the state variables,

the process model may be nonlinear function of the state variables, or both. These relations

can be expressed as

X
k

ˆ P
k

P
k

Figure 7: Kalman Filter Loop After [Ref. 14.]
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(4.39)

and

(4.40)

where f and g are nonlinear functions of the state.

Eq. (4.39) and Eq. (4.40) may be linearized by taking partial derivatives of the

nonlinear functions. Under such conditions the transition or measurement matrices will no

longer be constant and must be updated each time a new estimate of the state is made. There

are two basic methods of linearization. In a linearized Kalman filter, the partial derivative

of g or f is taken with respect to some nominal trajectory which does not involve the

measurement data [Ref. 14.]. In an extended Kalman filter, the partial derivative of g or f

may be taken with respect to the current state estimate [Ref. 91.]. The resulting matrix of

first partial derivatives or the Jocobian is given by

(4.41)

In either case the actual filter remains linear and performs its estimation using a linearized

model or approximation of a nonlinear problem.

Neither method of linearization is without risks. Linearized and extended Kalman

filters can no longer be proved to be optimal based on a derivation using Bayes theorem

[Ref. 91.]. In an extended Kalman filter, there is a potential for bad estimates to get worse

and lead to an eventual divergence of the filter. This may be especially true under

circumstances in which the initial uncertainty and measurement errors are large. Linearized

Kalman filters will be inaccurate in situations in which the nominal trajectory does not

closely match the actual trajectory. Recognition and correction of poor performance

becomes a key component in the design of such filters.
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The shock of a Kalman filter expresses the difference between what is actually

measured and the best prediction of the state. The shock for extended Kalman filter at time

i this can be expressed as

(4.42)

where is the mean of the system state and is the mean of the measurement noise. The

magnitude of a dimensionless shock term is given by

(4.43)

Should the magnitude of Eq. (4.43) become large compared to the number of components

of Si, it is likely that the filter has lost track [Ref. 91.].

Extended and linearized Kalman filters have performed well in a variety of

applications. However, it must be recognized that the added complexity of these types of

filters makes them more computationally demanding than other types of filters.

Recalculation of the Jacobian during each update cycle takes time. The complexities of the

nonlinear models involved may make it difficult to produce updated state estimates in a

timely manner.

G. COMPLEMENTARY FILTERING

Both Weiner and Kalman filter theory are based on the assumption that the spectral

characteristics of the processes involved are known. In practical applications this

assumption is often difficult to satisfy. It may be impractical to model the input signal as a

random process with known spectral characteristics. Complementary filters are “ad-hoc”

systems which are not dependent upon these strict assumptions. Though Weiner or Kalman

filter theory may be used to select an appropriate transfer function, neither method is

required. Complementary filters filter the input signal without unnecessary delay or

distortion.[Ref. 14.]

Complementary filtering is based upon the use and availability of multiple

independent noisy measurements of the same signal. If the measurements have
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complementary spectral characteristics, transfer functions may be chosen in such a way as

to minimize estimation error. The general requirement is that one of the transfer functions

complement the sum of the others. Thus, for n measurements of a signal [Ref. 14.]

(4.44)

This will allow the signal component to pass through the system undistorted since the

output of the system will always sum to one. The simplest complementary filter involves

two noise contaminated measurements of a signal. This situation is depicted in Figure 8. If

N1 is predominantly low-frequency noise and N2 is high frequency noise, the two noise

sources have complementary spectral characteristics. Choosing H(s) to be a low-pass filter

attenuates both noise signals. The output can be written [Ref. 14.]

(4.45)

where

(4.46)

which satisfies the conditions required by Eq. (4.44). Since both high and low frequency

data are utilized, the filter output will not suffer from any delay in dynamic response due to

low-pass filtering.

Examination of Eq. (4.45)

indicates that the filter only operates

upon the errors and noise involved in

the system. The transfer function does

not directly affect the input signal

itself. For this reason, this type of

filtering is sometimes called

distortionless filtering. [Ref. 14.]
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Figure 8: Complementary Filter Block
Diagram
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Figure 9 depicts a constant

gain complementary filter for

attitude estimation. The transform of

the roll angle from accelerometer

readings due to gravity is ,

while is the roll angle obtained

by integrating rate signals. If the

accelerometer were noiseless and sensed only gravitational acceleration, k would be set to

infinity and the attitude estimation would be entirely accelerometer based. Use of noiseless

rate sensors with no bias would allow attitude estimation using only these sensors and k

could be set to zero. Since neither sensor is ideal, a compromise value for k that gives the

best estimate must be found.

From Figure 9, the output of the filter is given by

(4.47)

The filter transfer function based on accelerometer input alone with is given by

(4.48)

where . With a unit step input, u(t), the frequency domain output of the filter is

(4.49)

The far right expression is derived through partial fraction expansion [Ref. 41.].

Transforming to the time domain produces

(4.50)

Since , when t equals , the filter output due to accelerometer input has increased

to or 63 percent of its steady state value. Therefore, the accelerometer input

is low pass filtered.

Similarly, the transfer function for rate sensor input alone with is

Figure 9: Transform Domain Block Diagram
Of Roll Angle Estimation Filter
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(4.51)

With a unit step input, the frequency domain rate sensor output of the filter is

(4.52)

Transforming to the time domain produces

(4.53)

In this case when , the output due to rate sensor input will have decreased to 37 percent

of its initial value. Eq. (4.53) high pass filters the rate sensor data.

From Eq. (4.48) and Eq. (4.51), the combined transfer function due to both rate

sensor and accelerometer input is

(4.54)

which sums to unity regardless of the value of k [Ref. 56.]. Transforming the sum into the

time domain produces the total response of the filter

(4.55)

This means that the initial response of the filter to a step change comes entirely from rate

input. The rate input decays exponentially over time and is replaced by complementary

“low frequency” accelerometer input.[Ref. 56.]

1. Crossover Frequency

The crossover frequency of a complementary filter represents the value below

which signals from one type of sensor are given a greater weight and above which signals

from another type of sensor are favored. At the crossover frequency, signals from both

inputs are weighted equally. For the filter depicted in Figure 9, below the crossover

Gs s( ) ϕ s( )
ϕs s( )
-------------

1

1 ks
1–

+
-------------------

s
s k+
-----------

τs
1 τ+ s
--------------= = = =

ϕs s( ) 1
s
---

s
s k+
-----------
 
  1

s k+
----------- τs

sτ 1+
--------------= = =

ϕs t( ) e
kt–

e

t
τ
--–

= =

t τ=

ϕ s( )
ϕa s( )
------------- ϕ s( )

ϕs s( )
-------------+ 1

1 τ+ s
-------------- τs

1 τ+ s
--------------+ 1 τ+ s

1 τ+ s
-------------- 1= = =

1 e

t
τ
--–

–
 
 
 

e

t
τ
--–

+ 1=
76



frequency accelerometer signals are given greater weight. Above, the rate sensor signals are

more trusted.

The crossover frequency of a filter of the form in Figure 9 can be found by equating

the absolute values of the separate transfer functions [Ref. 50.]. Rewriting in the complex

frequency domain and equating the transfer functions from Eq. (4.48) and Eq. (4.51)

produces

(4.56)

The magnitudes of the transfer functions are given by

(4.57)

and

(4.58)

Thus, at the crossover frequency

(4.59)

which implies

(4.60)

In Hertz, the crossover frequency, fc, can be written as

(4.61)

and can be adjusted by varying the filter gain k.[Ref. 51.]

H. SUMMARY AND CONCLUSIONS

Each of the types of filters reviewed above has its own sets of strengths and

weaknesses. They differ in computational complexity, memory requirements, and

applicability to discrete implementation on digital computers. They also differ in the

assumptions on which the underlying theory is based and applicability to problems
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involving numerous variables to be estimated and multiple outputs. However, the primary

goal of each is to produce the best possible estimate for the variable or variables of interest

by minimizing errors due to noise corrupted measurements and inaccuracies due to sensor

limitations and the precision of the system.

Weiner filter theory is applicable to filtering problems involving the separation of

one noiselike signal from another. The end result of solving an integral equation is a

weighting function which describes the relationship between input and output. Weiner

filter theory is completely based upon the assumption that spectral characteristics of both

the signal and noise are known and uses only this information to minimize the mean square

error. However, in many practical applications the auto and crosscorrelation functions may

not be known. The scalar formulation of Weiner filter theory makes it difficult to apply to

problems involving multiple inputs and outputs. Though there may be multiple inputs, only

a single scalar output may be estimated. Perhaps the greatest obstacle to the discrete

implementation of a Wiener filter on a digital computer is the requirement that the solution

be completely recalculated each time additional data in obtained. This requires that all

previous measurement data be stored in memory and be available for recalculation of the

solution. As the size of the data set grows, inversion of the covariance matrix soon becomes

intractable.

Kalman filter theory, like Weiner filter theory assumes that the spectral

characteristics of each signal is completely specified. While Weiner filters use constant

gains, Kalman filters have time varying gains which are derived using the Kalman gain

matrix. The Kalman filter incorporates a physical process model as part of the estimation

process. The end result is a differential or difference equation relating input and output. The

matrix formulation of the Kalman filter makes it applicable to a large class of problems

involving multiple inputs and outputs as well as complex measurement and process

relationships. Discrete Kalman filters are particularly applicable to implementation on a

computer due to their recursive nature. It is not required that all previous data to be kept in

storage and reprocessed every time a new measurement is taken. Only the most recent
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estimate and measurement are needed to arrive at a new estimate of the state of the system.

Kalman filter theory does assume that all noise sources are white and Gaussian. However,

it can be proved that the sum of multiple colored noise sources will result in a Gaussian

distribution and thus a Kalman filter will still perform well even when the assumptions are

not true [Ref. 49.]. The traditional Kalman filter is based upon a linear process model and

measurement equation. Though the filter can no longer be proved to be optimal, a nonlinear

process model can be used in a linearized or extended Kalman filter. Formulation of such

a process model can be extremely difficult and time consuming. Other difficulties can arise

due to the additional computational demands of linearization.

Kalman filters are highly reliant on having complete measurement statistics and an

accurate process model. In the absence of either of these requirements, highly inaccurate

estimates of the system state can result [Ref. 14.]. Complementary Filters are not based

upon the assumption of having complete statistical data regarding the signals involved in

the problem and thus are often more robust. Most commonly they are designed to combine

multiple measurements of the same signal in a complementary fashion. The primary goal

continues to be minimization of the square of the expected error. Any appropriate

parameter optimization technique can be used to solve the minimization problem. Often, a

complementary filter is tuned using empirical data obtained in experimental trials of the

system. The formulation of a complementary filter is usually more straightforward and

simpler than that of a Kalman filter. Though not optimal, a complementary filter can

produce estimates with an accuracy which is comparable to that of an Kalman filter, with

a lower computational overhead and less development time.

It was stated at the beginning of this chapter that inertial/magnetic tracking of

human body segments is basically a navigation problem. In recent years, this type of

problem has most commonly been solved using a complementary filter to integrate the data

from multiple complementary sensors. Foxlin has had success using a reduced order

extended Kalman filter in similar but simpler head tracking applications in which inertial

sensors were used [Ref. 27.]. The ideal solution to the body tracking problem would be an
79



extended Kalman filter which incorporates a dynamic model of the human musculoskeletal

system, and measurement statistics of the sensors. Dynamic models for the musculoskeletal

system have been studied for many years [Ref. 23.]. Such models are ideal for computer

simulations of articulated body motions, but they are currently too computationally

demanding for real-time applications such as human motion tracking. Thus, the challenge

would be to develop a model that is adequate, but not overwhelmingly complex for motion

tracking applications. In the end however, it may be the case that a properly tuned

complementary filter will provide estimates with an accuracy that is comparable to those

made by an extended Kalman filter without the associated complexity and development

time. Thus, the prototype research described here makes use of a complementary filter

based upon a quaternion representation of orientation and leaves the development of an

extended Kalman filter for this application to future work [Ref. 48.].
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V. A QUATERNION ATTITUDE FILTER

A. INTRODUCTION

Human body tracking using inertial sensors requires an attitude estimation filter

capable of tracking in all orientations. Singularities associated with Euler angles make them

unsuitable for use in body tracking applications. Quaternions provide an alternate method

of orientation representation that is more efficient than the use of rotation matrices and does

not involve the use of trigometric functions. In addition, quaternions do not suffer from the

singularities associated with Euler angles.

The optimality of Kalman filter theory is entirely based upon the assumption that

complete statistical data regarding the signals involved in the problem are known. In

practice this may not be true. Calculation of the Kalman gains requires the inversion of an

n x n matrix on each iteration step. In a nonlinear problem such as human-body tracking, it

becomes necessary to use an extended Kalman filter. In this case it may be necessary to

compute Jocobians to linearize both the measurement and process model equations at each

iteration step. In order to keep the problem tractable, it may also be necessary to simplify

the involved process model to the point where it is no longer accurate.

Nonlinear regression analysis is a simpler form of optimal least-squares estimation.

In this method, a squared error criterion function relating the measurements to the state

estimate is minimized using a least squares estimate of the true value of the state. The least

squares estimate can be derived using techniques such as Gauss-Newton and Newton

iteration. This chapter describes the theory, design, and analysis of a complementary

attitude estimation filter based upon a quaternion representation of orientation and Gauss-

Newton iteration.

B. A QUATERNION ATTITUDE FILTER

Figure 10 is a block diagram of the complementary quaternion-based attitude

estimation filter used in this research. The filter takes inputs from three separate sensors.
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Its output is a unit quaternion representation of the orientation of the tracked object, . The

inputs are from a three-axis angular rate sensor (p, q, r), a three-axis accelerometer (h1, h2,

h3), and a three-axis magnetometer (b1, b2, b3).

In an error free, noiseless world, angular rate data could be processed to obtain a

rate quaternion using the relationship

(5.1)

where the indicated product is a quaternion product and the superscript B means measured

in body coordinates (See Chapter III for a complete derivation of Eq. (5.1)). Single

integration of would produce a quaternion which describes orientation. However, in an

environment containing noise and errors, the output of angular rate sensors would tend to

drift over time. Thus, rate sensor data can be used to determine orientation only for

relatively short periods of time unless this orientation is continuously corrected using

“complementary” data from additional sensors.
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Accelerometers measure the combination of forced linear acceleration and the

reaction force due to gravity. That is,

(5.2)

Since most real-life objects do not experience constant linear acceleration, when averaged

over time, accelerometers return a gravity vector or the local vertical. Thus, accelerometer

outputs are used to correct orientation relative to a vertical axis. Similarly, magnetometers

measure the local magnetic field in body coordinates. This information is used to correct

rate sensor drift errors in the horizontal plane.

1. Parameter Optimization

Combining filter inputs can be regarded as a parameter optimization problem with

the goal of minimizing modeling error. The closer the estimated orientation to the actual

orientation, the smaller the modeling error. Through iteration and calculations based on the

magnitude and direction of modeling errors, orientation estimations become increasingly

accurate. Theoretically, when the modeling error is zero, the estimated orientation is equal

to the actual orientation.

The three orthogonally mounted accelerometers return an approximation to the

local vertical, the unit vector h. The magnetometer returns the direction of the local

magnetic field, b, also normalized to a unit vector. These two vector quantities expressed

in body coordinates as pure imaginary unit quaternions are

(5.3)

Combining the vector parts of Ve(h) and Ve(b) from Eq. (5.3) produces a 6 x 1

measurement vector representing the actual measurements taken by the accelerometers and

magnetometers.

(5.4)

Gravity in earth coordinates is always down and can be expressed as the down unit

vector in quaternion form as

ameasured a g–=

h 0 h1 h2 h3[ ]= b 0 b1 b2 b3[ ]=

y0 Ve h( ) Ve b( ),[ ] T h1h2h3b1b2b3[ ] T= =
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(5.5)

The local magnetic field in earth coordinates, once determined and normalized, can

be expressed in unit quaternion form as

(5.6)

Eq. (5.5) and Eq. (5.6) are transformed from earth fixed coordinates to body

coordinates through quaternion multiplication with the estimated orientation, by

[Ref. 92.]

(5.7)

Combining the imaginary parts of Eq. (5.7) into a single 6 x 1 computed

measurement vector produces

(5.8)

Eq. (5.4) represents the measured gravity vector and local magnetic field while Eq.

(5.8) is the computed gravity vector and magnetic field found using Eq. (5.7) and is based

upon the best estimate of the current orientation. The difference between the actual

measurements and the computed measurement is the error vector or modeling error

(5.9)

In viewing Eq. (5.9), note that if in Eq. (5.7) and there is no measurement noise,

the difference between the measured and computed values, , will equal the zero vector.

The square of the filter modeling error is termed the criterion function

(5.10)

In the current version of the filter, is minimized using Gauss-Newton iteration [Ref.

59.]. This method is based on linearized least squares regression analysis where is

considered a vector of data points and is a vector to be fitted to those points. The full

correction step to the measured rate quaternion is [Ref. 59.]
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(5.11)

where the X matrix is defined as

(5.12)

It should be noted that if is not constrained to unit length as depicted in Figure 10 and

discussed in Appendix B, a unique solution to the problem it no longer exists and the X

matrix will not be of full rank. In this case the regression matrix

(5.13)

will be singular and can not be inverted. The orthogonal quaternion theorem described later

in this chapter provides a method of avoiding regression matrix singularities and improving

filter efficiency.

Eq. (5.11) treats m and n as if they are perfect measurements of forced linear

acceleration and the local magnetic field. In dealing with data corrupted by noise, a scalar

multiplier is used.

(5.14)

where . In the absence of noise, would be set to nearly unity. Very noisy or

inaccurate measurements would demand that the scalar multiplier be given a value closer

to zero. For a discrete approximation to a continuous time filter, referring to Figure 10

(5.15)

Thus, for discrete time step integration, the next estimate of orientation would be

(5.16)

In the continuous time domain, Eq. (5.16) becomes

(5.17)
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2. Analysis

Figure 11 is a time domain signal flow graph (SFG)[Ref. 41.] of the linearized

quaternion attitude estimation filter. The inputs n1 and n2 are maneuver induced noise and

rate sensor noise respectively. The basis for linearization is the assumption that in the

absence of measurement noise the computation of is exact and therefore

(5.18)

This assumption would be correct only if y depended linearly on q, which it does not.

Nevertheless, simulation studies [Ref. 51.] and physical experiments show that this

equation offers a very useful approximation for the selection of filter gains and predication

of filter response.

Application of Mason’s formula [Ref. 41.] to Figure 11 produces

(5.19)

where p-1 is the time integration operator [Ref. 41.]. Thus, with correct initial conditions,

in the absence of noise,

(5.20)

regardless of the value of k. This means that, under the linearization assumptions, Figure

10 is a complementary filter since, for all k, if n1 and n2 are zero, then .
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a. Noise Response

Applying Mason’s formula to noise disturbances n1 and n2 in Figure 11

produces the following low pass filter transfer functions.

(5.21)

(5.22)

Eq. (5.21) and Eq. (5.22) can be used to find an optimal k value in Eq. (5.17) based upon

power spectral density functions for both the noise signals and actual maneuvering

behavior of the tracked object. Unfortunately, this information is typically not available, so

ad hoc “tuning” of k must usually performed based upon experimental results. [Ref. 96.]

b. Response to Initial Condition Errors

Eq. (5.20) assumes that has been correctly initialized. In order to

understand how an erroneous approaches over time, consider the following static

sensor scenario. Suppose the sensor is mounted in a static fixture so that all Euler angles

are zero and thus

(5.23)

Assume that the unit quaternion is incorrect and is represented by

(5.24)

where all are small quantities. In the absence of motion and noise, and both n1

and n2 equal zero. Therefore, Figure 11 can be simplified to Figure 12 as follows:
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Based on Figure 12, the initial value for is

(5.25)

Since the first component of in Eq. (5.25) will always be zero, it can be assumed that it

will remained unchanged and will take on the form

(5.26)

Figure 13 is a Laplace transform SFG for the scalar . From the application

of Mason’s formula it follows that

(5.27)

Employing the inverse Laplace transform produces the result

(5.28)

Equivalent results apply for and . This implies that any transient errors in

resulting from erroneous initialization will persist for a time inversely proportional to k.

Specifically

(5.29)

and for any disturbance , the resulting errors in the x component of will be

(5.30)

Thus, it can be predicted that any error will be reduced to 37% of the initial value by the

time . Similar results apply to and .
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c. Choosing the Feedback gain value

If k is too large, the discrete time filter may become unstable or too much

maneuver induced error will appear in . From Eq. (5.29), it can be seen that k should not

be too small if the filter is to converge in a reasonable time period. On the other hand,

must be larger than the maneuver time constant, , in order to adequately suppress

maneuver noise. This result leads to the qualitative requirement

(5.31)

or

(5.32)

The maximum value for k can be quantitatively established through a

geometric series [Ref. 7.]. Figure 14 is a block diagram of the linearized quaternion attitude

filter. From this diagram, it can be observed that the estimated rate quaternion is given by

(5.33)

Discretization of the filter replaces the integral with the summation

(5.34)

where

(5.35)

q̂

τ∆q

τmaneuver

τmaneuver τ∆q«

1 τmaneuver⁄ k»

Figure 14: Block Diagram Of Time Domain Linearized Quaternion Attitude Filter

+ +

q

q·

+ -

k

∫ q̂

q·ε

q̂
·

q̂
·

q· q·ε+=

q̂
·

td∫ qε
ˆ
·

n∆t( )∆t

1 0=

n

∑⇒

qε0

ˆ
·

qε
ˆ
·

0( ) qε1

ˆ
·

qε
ˆ
·

1∆t( ) qε2

ˆ
·

qε
ˆ
·

2∆t( ) …,=,=,=
89



Let and assume there is no angular rate input; that is . If an

error exists then

(5.36)

Using Euler integration, the first updated estimate is given by

(5.37)

Since

(5.38)

Substituting into Eq. (5.37) produces

(5.39)

For the second updated estimate

(5.40)

Again, since

(5.41)

Substituting into Eq. (5.40) produces

(5.42)

In general, the nth estimate is given by the geometric series equation

(5.43)

Based on this result, it can be observed that for values of the geometric series will

converge since the absolute value of will be less than unity. The maximum value for

k for which the filter can expected to be stable is

(5.44)
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Based on Eq. (5.43) and Eq. (5.14), when working with perfect noiseless data, values for k

greater than can be expected to cause correction “overshoots” and oscillations in the

attitude estimate.

The above discussion provides guidelines for the selection of “reasonable”

values for k and . With power spectral density functions for , n1 and n2, a Kalman

filtering approach [Ref. 14.] could be used for this problem. In the absence of such

statistical information, gain values may be selected through experimental “tweaking” of the

scalar gain, k, in laboratory studies.

3. Reduced Order Filter

The filter derivation discussed above is correct if is constrained to be of unit

length. Constraining to unit length also allows formulation of a more efficient algorithm. If

it is assumed that the computed measurement vector, , depends linearly on q, the

criterion function can be minimized using the relation

(5.45)

where ∆q can be thought of as either a correction to estimated orientation or an update to

the old estimate to produce the new estimate. Eq. (5.11) gives the Gauss-Newton iteration

formula for ∆q as

Iterative application and recalculation of this correction will lead to convergence for small

∆q under known conditions [Ref. 60.].

It should be noted that if is a positive real unit quaternion, the sum in Eq. (5.45)

will not in general be a unit quaternion. However, in order to ensure that a unique solution

exists for , it should be kept as near to the surface of a four dimensional unit hemisphere

as possible. This will be the case if ∆q is small and is tangent to the surface of the sphere

and thus orthogonal to .

Taking the dot product of with itself produces
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(5.46)

If ∆q is orthogonal to q, the middle term on the right hand side is zero. The square of the

length of is thus given by

(5.47)

which varies from unity by an order ∆q2 term.

It is shown below that for any quaternion and any three dimensional vector in

quaternion form, the quaternion product of the quaternion and the vector will result in a

vector which is orthogonal to the original quaternion. Furthermore, given any pair of

quaternions it is possible to express the one as the product of a unique vector and the other

quaternion.

a. Orthogonal Quaternion Theorem

Let p and q be any two quaternions. Then p is orthogonal to q if and only if

p is the quaternion product of q and a unique vector v (real part equal to zero) where v is

given by

(5.48)

Proof:

Let q be any quaternion given by

(5.49)

and let v be any vector in quaternion form which is given by

(5.50)

Taking the quaternion product of q and v produces
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(5.51)

The dot product of q and the result from Eq. (5.51) is

(5.52)

Thus proving that q and qv are orthogonal for any v.

Now, suppose p and q are quaternions such that

(5.53)

for some vector v. Then multiplying both sides of Eq. (5.53) by the inverse of q will produce

(5.54)

Substitution of the v given by Eq. (5.54) into Eq. (5.53) results in

(5.55)

Thus given any pair of orthogonal quaternions, one can be written as the quaternion product

of the other and a unique vector.
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Q.E.D.

According to the above theorem it follows that ∆q can be written in the form

(5.56)

where v is a vector in quaternion form such as

(5.57)

and ∆q will be orthogonal to q. Using a Taylor series approximation, the computed

measurement vector given by Eq. (5.8) can be approximated for orthogonal ∆q by

(5.58)

Consequently, as v changes, using the chain rule for partial derivatives,

(5.59)

where X is the gradient of with respect q and is derived in Appendix B. Similarly

(5.60)

and

(5.61)

Equations (5.59), (5.60), and (5.61) can be used to define a new 6 x 3 gradient matrix in

which each of the equations forms a column of the matrix

(5.62)
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This matrix linearizes with respect to orthogonal ∆q and can therefore be used to

compute an optimal ∆v as

(5.63)

from which it follows that the optimal ∆q under the linearity assumptions is

(5.64)

Evaluation of Eq. (5.63) requires inversion of a 3 x 3 matrix rather than inversion of the 4

x 4 X matrix used in Eq. (5.11). Note that normalization of to unit quaternion form will

still be required to correct the O(∆q2) effects in Eq. (5.47).

4. Differential Weighting of Sensor Data

Due to noise and interference from electromagnetic sources, magnetometer data is

not as reliable as that produced by accelerometers being used to sense gravity. Differential

weighting of sensor data allows less weight or confidence to be placed in the magnetometer

data relative to that of the accelerometers. This approach makes sense since small drift

errors in the horizontal plane are acceptable in most human body tracking applications as

long as they are gradual and transient. The effects of noise on the data from a sensor can be

expressed using a weighting factor. This factor can be used to implement a weighted least-

squares regression analysis algorithm.

If it is assumed that each input parameter is affected by an uncorrellated noise

source, the weighted modeling error can be written

(5.65)

where wi is a weighting factor. If it is further assumed that the noise magnitude does not

differ for sensors of the same type, the weighted modeling error may be rewritten as

(5.66)

(5.67)
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where wh is a weighting factor for accelerometer data and wb is a weighting factor for the

magnetometers. The ratio ρ controls the relative weight placed on the accelerometer and

magnetometer data and it will generally be between zero and one. Increasing ρ above unity

will cause more weight to placed on the magnetometer data. Decreasing it below one

indicates that there is more confidence in accelerometer data. In this case the weighted

criterion function becomes

(5.68)

(5.69)

Using Eq. (5.69) to derive the error criterion function, results in a modified X matrix

given by

(5.70)

5. Reduced Rate Drift Correction

The upper loop of Figure 10 serves to correct rate sensor drift and is essentially a

low-pass filter. While an attitude update using rate sensor inputs only requires a quaternion

multiplication and a single integration, calculating a drift correction requires a matrix

inversion and numerous scalar multiplications. If the drift time constant of the rate sensors

is long enough and the noise level is low, a drift correction may not be required on every

filter cycle.

Eliminating the need to perform drift calculation on every filter cycle leads to a

significant reduction in computational costs of running the filter. This reduction may be
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taken advantage of in two different ways. Reducing the number of drift corrections can be

used to increase the overall update rate of a filter. This may result in a reduction in lag and

increase in the overall accuracy and resolution of the system. Increasing the drift correction

interval can also be used to reduce the number of calculations associated with an individual

filter. In a system in which a single processor is being used to run multiple filters, this

reduction effectively increases the number of filters which may be operated. For instance

on a system which is only capable of running three filters at 100 Hz and performing a drift

correction on every filter cycle, it may be possible to run a much larger number of filters

by sequencing the drift corrections so that they are only performed for a subset of three of

the filters on any given update of posture. If the filter time constant is one second, it may

be possible to operate 100 filters at 100 Hz simultaneously with each filter only performing

a drift correction after every 100 update cycles.

C. FILTER SIMULATION

Linear analysis provides a method of estimating the response of the filter if the

initial orientation estimate, , is inaccurate. Such analysis implies that any transient errors

in resulting from erroneous initialization will persist for a time inversely proportional to

the k used in Eq. (5.14). Specifically, the time constant is given by Eq. (5.29) as

Let be a small quantity representing an initial error in the x component of . From Eq.

(5.30) the resulting errors in the x component of over time will be given by

Thus, it can be predicted that any error will be reduced to 37% of the initial value by the

time . Similar results apply to and .

Figure 15 is an example plot of simulation results obtained from an earlier version

of the filter [Ref. 6.]. Since these nonlinear simulation results are in close agreement with
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linear theory, the validity and value of linearization is established. White noise simulation

shows noise reduces accuracy, but the filter still works well.

Simulation tests performed using noiseless synthetic data and a random starting

point were reported in [Ref. 51.] In these trials no failures to converge were observed after

ten cycles of Gauss-Newton iteration. Further simulations were conducted in [Ref. 51.] to

examine the convergence properties of the filter. In these experiments, the rms (root mean

square) accuracy of Gauss-Newton iteration was evaluated as a function of max-noise and

the required number of cycles of iteration to achieve convergence. These results confirmed

that even with noise levels exceeding 10%, the length of the vector error in q remained at

only approximately 80% of the maximum data component noise level.

D. SUMMARY

This chapter describes a quaternion based complementary attitude filter. The filter

is designed to accept sensor data from a nine-axis MARG sensor and produce a quaternion

representation of the orientation of a tracked rigid body. Due to the use of quaternions, the

algorithm described is inherently free from orientation singularities. Continuous correction

of drift regardless of the type of motion being tracked is achieved using Gauss-Newton

Figure 15: Simulated Nonlinear Filter Response,10 Degree Offset, α=0.1, ∆t=0.1
From [Ref. 6.]
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iteration. This property of the filter makes it particularly applicable to human body tracking

applications which commonly include short cyclic periods of high linear acceleration.

The algorithm relies upon the Orthogonal Quaternion Theorem. The theorem both

resolves the singularity problem of Gauss-Newton iteration applied to quaternion

orientation tracking and reduces the size of the associated regression matrix from 4 x 4 to

3 x 3. This reduction results in a significant computational advantage since the inversion of

the regression matrix is probably the most time consuming part of the drift correction

process. This improvement is especially important when simultaneously tracking a large

number of human limb segments or when implementing the algorithm on imbedded

microprocessors.

The described algorithm also includes two scalar gain factors that allow “tuning” of

the filter to fit a particular tracking situation. Guidelines for choosing values for these

parameters are provided, but it is believed that final selection of gains is best accomplished

by adjustment during the course of an experiment. It is conjectured that periods between

drift corrections can be extended resulting in either a higher update rate or the ability to

implement a greater number of filters simultaneously using less computing power.

The quaternion attitude filter fulfills the need for an efficient and robust algorithm

for sourceless real-time tracking of human limb segments without the computational

complexity of previous Euler angle based algorithms designed for head tracking or ship and

aircraft navigation systems.
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VI. IMPLEMENTATION OF INERTIAL AND MAGNETIC
TRACKING OF HUMAN LIMB SEGMENTS

A. INTRODUCTION

This chapter describes pertinent details of an implementation of a prototype system

for tracking human body motions using magnetic, angular rate, and gravity sensors. The

central data processing algorithm is the quaternion attitude filter described in the previous

chapter. The goal of the system is to demonstrate the practicality and robustness of inertial

and magnetic orientation tracking as well as to provide a test-bed for further experiments

and future system development. Several features are considered imperative if these goals

are to be meet. Among these are

• Orientation tracking of any three or more human limb segments using nine-

axis MARG sensors

• Sufficient dynamic response and update rate (100 HZ or better) to capture

faster human body motions

• Ability to change quaternion filter operating parameters while the system is in

operation

• Calibration of individual sensors without the use of any specialized equipment

• Simplified human kinematic model based entirely on quaternions capable of

accepting orientation parameters relative to an earth fixed reference frame in

quaternion form

• Automatic accounting for the peculiarities related to the mounting of a sensor

on an associated limb segment

• Adjustable human model to take into account anthropometric variations

between different individuals

• Creation of data files for recording data relating to posture estimation as well

as filter operation

• Archiving of system configurations for retrieval and further experimentation
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Figure 16 is a diagram of the prototype system. Depicted are three body-mounted

MARG sensors outputting analog signals to three I/O connection boards. The output from

each connection board is digitized by an associated A/D converter card. The cards

themselves are mounted in a standard Wintel desktop computer. All data processing and

rendering calculations are performed by software running on this single processor machine.

The display monitor provides a means of visually displaying the estimated posture of the

tracked individual. The principal components of the system are discussed in detail in the

following sections.

B. PROTOTYPE MARG SENSORS

The prototype MARG sensors used in this research were custom built using off-the-

shelf, low cost components. No significant attempt was made to produce an extremely

small sensor. Ease of use and construction were the overriding factors affecting sensor

design. These sensor components are housed in a lightweight case constructed of birch

wood to prevent shock damage and to provide a stable temperature environment for the rate

Figure 16: Prototype Inertial and Magnetic Body Tracking
System
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sensors (Figure 17). The case material was also chosen to take advantage of its lack of

magnetic properties.

The MARG sensors units are designed to combine three mutually orthogonal

magnetometers, three mutually orthogonal angular rate sensors, and three mutually

orthogonal accelerometers into a single compact package. To track the entire human body,

approximately fifteen of these nine-axis units would be required. One sensor would be

attached to each limb segment to be tracked. The exact number of sensors needed would

depend upon the desired motion tracking detail to be captured. Three such sensors were

used in the system described in this research.

Each sensor package

measures 10.1 x 5.5 x 2.5 cm. The

analog output of the sensor is

connected to a breakout header via a

thin VGA monitor cable. Output

range is 0-5 vdc. The power

requirement of the sensors is 12 vdc at

approximately 50 milliamperes. The

primary sensing components are a

Crossbow CXL04M3 triaxial

accelerometer [Ref. 18.], a Honeywell

HMC2003 3-axis magnetometer [Ref. 39.] and three Tokin CG-16D series miniature

angular rate sensors mounted in an orthogonal configuration [Ref. 84.]. The individual

components are integrated using a single integrated circuit board with the accelerometers

mounted separately. The circuit provides a set/reset circuit capability for the

magnetometers and allows manual adjustment of magnetometer null points. Rate sensor

output voltage is amplified by a factor of five to attenuate rate sensor oscillator noise. All

three sensors were fabricated by McKinney Technology of Prunedale, California [Ref. 61.].

Figure 17: Prototype MARG Sensor From
[Ref. 61.]
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1. Sensor Components

a. Crossbow CXL04M3 Triaxial Accelerometer

The CXL04M3 triaxial accelerometer package contains three silicon

micromachined Analog Devices ADXL05 accelerometers [Ref. 3.] mounted in an

orthogonal configuration. The ADXL05 is a force balanced capacitive accelerometer with

capability to measure dc accelerations which are typical of an inertial force such as gravity.

When oriented to the earth’s gravity, x axis pointing up, the accelerometer will experience

a positive 1g acceleration. Full scale output is selectable from +/- 1 to +/- 5g. Dimensions

of the triaxial package are approximately 25 x 25 x 19mm. Individual accelerometer cans

have a diameter of 9.4mm and a height of 4.7 mm. Shock survival is 1000g when

unpowered, 500g powered. Additional pertinent characteristics of the CXL04M3 are given

in Table 1.

b. Tokin CG-16D Series Rate Gyros

The Tokin CG-16D is a ceramic angular rate sensor composed of a single

piezoelectric ceramic column printed with electrodes [Ref. 84.]. It is primarily designed for

Characteristic Range Units

Zero g Output 2.5 +/- 0.1 Volts

Output Voltage 0 - 5 Volts

Sensitivity 500 +/- 5% mV/g

Noise 5 mg rms

Bandwidth DC-100 Hz

Temperature Range -40 to +85 C

Supply Voltage 5 +/- 0.25 VDC

Supply Current 24 mA

Table 1: CXL04M3 Triaxial Accelerometer Specifications After [Ref. 18.]
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use as a vibratory gyroscope in vehicle navigation systems. The advertised maximum

detectable angular rate is given as +/- 90 degrees per sec. Though the response may no

longer be linear, higher rates have been observed in experiments. Sensor dimensions are

given as 8 x 8 x 20 mm. Shock survival is 300g. Three CG-16D angular rate sensors are

mounted in an orthogonal configuration inside each MARG sensor. Due to the unstable

characteristics of the sensors under temperature changes, internal MARG rate sensor

circuitry amplifies the sensor output and performs temperature compensation to maintain

null output voltage at a constant value. Additional pertinent characteristics of the CG-16D

are given in Table 2.

c. Honeywell HMC2003 3-Axis Magnetometer

The Honeywell HMC2003 is a solid state 3-axis magnetometer contained in

a 20-pin hybrid DIP package [Ref. 39.]. The local magnetic field is measured by three

permalloy magnetoresistive (MR) Honeywell HMC1001/2 microcircuits which convert

magnetic fields to a differential output voltage. The transducer is configured as a

Characteristic Range Units

Reference Voltage 2.4 Volts

Output Voltage 0 - 5 Volts

Sensitivity 1.1 +/- 20% mV/deg./sec.

Output Voltage at zero angular
rate (25 degrees C)

+/ 300 mVolts

Output Voltage at zero angular
rate (any Temp.)

+/-500 mVolts

Bandwidth 100 Hz

Temperature Range -5 to +76 C

Supply Voltage 5 VDC

Supply Current 7 mA

Table 2: CG-16D Ceramic Rate Gyro Specifications After [Ref. 84.]
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magnetoresistive Wheatstone bridge. Two “straps”, OFFSET and Set/Reset, eliminate the

need for external coils. DIP footprint is approximately 25 x 19 mm. Shock survival is 100g.

Pertinent characteristics of the CG-HMC2003 are given in Table 3.

2. Magnetometer Set/Reset

Early system testing was hampered due to saturation of the MARG sensor

magnetometers by small magnetic fields. Saturation produced flips or reversals resulting in

changes in the sensor characteristics. Once saturated, the lack of a built-in reset made it

difficult to restore the magnetic sensors to a usable condition. Only through repeated

exposure to various magnetic fields and trail and error iterations could the sensors be

returned to a functional condition. Often, the magnetometer null points had changed

following these procedures making it necessary to recalibrate the sensor.

Manufacturers literature states that HMC1001/2 magnetometer saturation occurs

due to the influence of a strong magnetic field in excess of 30 gauss which can cause the

polarity of the MR film magnetization to flip [Ref. 15.]. In practice, changes in the

magnetometer characteristics were found to occur in the presence of weaker fields such as

Characteristic Range Units

Field Range -2 to 2 gauss

Output Voltage 0.5 - 4.5 Volts

Null Field Output 2.5 Volts

Sensitivity 1 V/gauss

Bandwidth 1000 Hz

Temperature Range -40 to +85 C

Supply Voltage 6 - 15 VDC

Supply Current 20 mA

Table 3: Honeywell HMC2003 Three-Axis Magnetic Sensor Hybrid

Specifications After [Ref. 39.]
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those caused by exposure to metal scissors or cell-phones. Following such an upset field, a

strong restoring magnetic field must be momentarily applied to restore, or set, the sensor

characteristics. The effect is commonly referred to as applying a set or reset pulse. The

Honeywell HMC1001/2 incorporates a patented on-chip strap for performing the re-

magnetization electrically. This flipping may be performed manually or automatically at

various time intervals.[Ref. 15.]

The prototype MARG sensors used in this research incorporate a manual set/reset

circuit to electrically restore the magnetometers to proper operation. Activation of the

circuit is accomplished using a sensor mounted button. The associated circuit is depicted in

Figure 18. The purpose of the circuit is to set or reset the permalloy film contained in the

individual magnetometers by applying a current pulse of 3-4 amps for approximately 20-

50 nsec.

3. Analog to Digital Conversion

Analog sensor output signals must be converted to digital form in order to perform

processing using a digital computer. In this research, analog to digital conversion of sensor

output voltages was completed external to the sensors using one National Instruments PCI-

MIO-16XE-50 data acquisition card for each MARG sensor. Each data acquisition card

was inserted into a PCI slot on the mother board of the data processing computer. The PCI-

MIO-16XE-50 is a 16-bit A/D converter capable of sampling either 16 single-ended or 8

double-ended analog input channels. Maximum sampling rate is 20K samples/sec. Input

voltage ranges are 0 - 10V in single ended mode and -10 to 10V in double sided mode. The

boards are completely Plug and Play, multifunction analog, digital, and timing I/O boards

for PCI bus computers. [Ref. 69.] Sensor to board connection was completed using a

National Instruments SCB68 type I/O connection board.[Ref. 68.]

4. Data Processing

The prototype inertial and magnetic body tracking system depicted in Figure 16

uses an Intel based desktop computer to complete all data processing and rendering
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functions. The computer was manufactured by Micron Electronics, Inc. The single installed

CPU is an 866 MHz Intel Pentium III. The machine contains 256 MB of RAM. Hardware

rendering is performed by a NVIDIA GeForce2 GTS video card. The Microsoft Windows

2000 operating system is used in order to achieve accurate timing of body tracking system

events.

C. SYSTEM SOFTWARE

The system software implements the estimation as well as calibration algorithms

which make possible tracking of human body segments using MARG sensors. Drift

correction is performed using the reduced order form of Gauss-Newton iteration described

in the previous chapter. Facilities are included to allow performance of experiments related

Figure 18: MARG Sensor Magnetometer Set/Reset Circuit Schematic From [Ref.
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to differential weighting of magnetometer and accelerometer data, variation of intervals

between drift corrections, and adjustment of the filter gains. A sensor calibration algorithm

allows system users to calibrate individual sensors by subjecting them to a series of six 90

or 180 degree rotations followed by two 360 degree rotations oriented with respect to the

local magnetic field.

In addition, the system software includes a fully articulated human model based

entirely on quaternion/vector pairs. No rotation matrices are used to position the model.

Limb segments are oriented independently of one another and positioned through the

addition of limb associated vectors. Limb segment lengths are fully adjustable to allow

compensation for variation in the relative dimensions of limb segments for different

individuals. The model is positioned and oriented relative to a z axis down coordinate

system [Ref. 52.].

The system software is fully serialized allowing for archival of experimental

configurations with varying model dimensions and differing filter parameter settings.

Facilities are provided for creating files containing data related to full body posture

estimation or data related to the operation of an individual filter object.

The body tracking software for this research was designed using object oriented

techniques. All code was written using the Microsoft Visual C++ Integrated Development

Environment (IDE) and compiled under the Visual C++ 6.0 compiler. The application is a

Single Document Interface (SDI) which follows the Microsoft Foundation Class (MFC)

Document/View architecture and application framework conventions. The code is single

threaded. Estimation and rendering events are window system timer driven at 100 Hz and

25 Hz respectively.

Figure 19 is a simplified class diagram of the body tracking software. Minor dialog

box classes and other user interface classes have been omitted. For clarity, class methods

and data members are not individually listed. In viewing the figure, the classes can be

separated into two groups, those under the application document class,

CBodyTrackingDoc, and those under the application view class, CBodyTrackingView.
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The classes under the application document class, CBodyTrackingDoc, are related

to the generation and saving of data as well as the system configuration. These classes

include CAtoDConverter which retrieves sensor data from the system hardware, CSampler

which formats data for submission to the quaternion filter, CQuatAttFilter which

implements the quaternion based attitude filter algorithm and CHumanModelSettings

which holds data related to the posture and configuration of the human model.

CSensorCalibrater implements the MARG sensor calibration algorithm.

CQuaternionEstimator serves as a container class to facilitate object communication.

CLimbData objects are used to hold the current length and orientation data of individual

limb segments. CHumanModelDialog and CSensorSettingDialog objects allow user

adjustment of application settings. All document related classes are serialized.

The classes under the application view class, CBodyTrackingView are responsible

for providing a view of the data of the application. These data are contained in the

document. In the case of the body tracking system, all data pertains to the orientation,

location, and size of human model limb segments. The CHumanModel class implements a

human model using objects of type CLimbSegment. The number of CLimbSegment objects

used is determined by the number of links in the model.

Figure 20 depicts the major data flow paths between the instantiated objects of the

system. The primary input to the system is nine-axis MARG sensor data. The state of the

system may also be affected by the user through the use of dialog boxes. System outputs

are not depicted. These include visual display of the posture of the articulated human model

and the creation of data files for post-processing or plotting. MARG sensor data is only

received by a CSensorCalibrater object when the associated sensor is being calibrated.

The following sections describe the key classes and algorithms implemented in

more detail.
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1. Quaternion Filter

The CQuatAttFilter class implements the reduced order quaternion attitude filter

described in Chapter V using the simplified X matrix derived in Appendix B. The filter is

complementary in form. Estimation error is minimized using Gauss-Newton iteration.

Options are included for performing differential weighting of sensor data and reduced rate

drift correction. Reduced rate drift correction may occur at specified time intervals or may

be applied to the system filter objects in a round-robin fashion in order to allow a greater

number of filters to operate at higher update rates. Matrix and quaternion mathematical

abstractions are handled using objects of the Matrix and Quaternion classes respectively.

With the exception of the measured rate quaternion, qDot (Eq. (5.1)), and the correction

quaternion qDotEpsilon (Eq. (5.14)), all quaternions are normalized to unit length. The

reference unit vectors, m and n, given by Eq. (5.5) and Eq. (5.6) are determined during the

calibration process and set by an associated object of the CSensorCalibrater class. Expected

input to the class is nine floating point numbers corresponding to the nine analog output

voltages of an associated MARG sensor. The angular rate values must be provided in

radians per second. Magnetometer and accelerometer readings are used to describe the

components of two directional vectors. Only the direction of these vectors is of importance

and each is normalized to unit length. Thus, there is no need to follow any particular unit

convention

Once the filter object has been instantiated and estimation has begun, the

estimateRotation method serves as the primary interface to obtain updated orientation

estimates. The quaternion returned by this method represents the orientation relative to an

Earth-fixed reference frame of the associated MARG sensor block. Figure 21 depicts the

control logic flow and the step by step algorithm followed by this method. In viewing the

figure, it appears that the computational expense of calculating drift corrections based upon

magnetometer and accelerometer data is much higher than merely updating the orientation

estimate using only rate sensor data. This is in fact the case. Derivation of the X matrix in

the “Calculate X Matrix” step requires the computation of multiple partial derivatives (See
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appendix B) and “Calculate full Delta v step” requires inversion of a 3 x 3 matrix. Filter

operating parameters and gains may be adjusted as the filter operates using the dialog

shown in Figure 22.

Figure 21: Orientation Estimation Flow Chart
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2. Sensor Calibration

The accuracy of the

orientation estimate produced by

the quaternion filter depends

heavily on the data which is input.

In order for the system to operate

properly, it is imperative that the

null point and scale factor of each

individual component of the

MARG sensors be determined prior

to commencing limb tracking. The

null point and scale factor for each

component are found through a

calibration procedure. Practical use

of an inertial tracking system

requires that this procedure be both

efficient and accurate. Unless the

characteristics of the sensors themselves change, calibration need only be accomplished

once. Magnetometer calibration may need to be accomplished more often due to changes

in the local magnetic field. Fortunately, it has been found that slight inaccuracies in the

magnetometer readings do not adversely affect the overall operation of the tracking system

to the same degree as inaccuracies in accelerometer and rate sensor data.

In the body tracking software, the nine digital values corresponding to a given

MARG sensor data sample are converted to positive floating point numbers. These

numbers are the single-sided voltages which are output by the sensors. Based upon this

assumption, each number is formatted for input into the quaternion filter by

(6.1)

Figure 22: Dialog For Manually Setting Filter
Parameters and Sensor Data Null Voltages and

formatted number voltage null point–( ) scale factor units××=
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In practice the separate units term is not necessary since it can be combined with the scale

factor and a scalar multiplication can thus be saved.

An individual linear accelerometer can be calibrated by placing it in a vertical

position to sense gravity in one direction and then turning it over to sense gravity in the

other. Half way between the readings taken is the null point.

(6.2)

Multiplication of a correct scale factor times the accelerometer output values will result in

a product of 1 g in one direction and -1 g in the other. This scale factor can be found using

(6.3)

Calibration of a triaxial accelerometer module could be accomplished in a manner similar

to that described above. The module would have to be placed in six different positions so

that each accelerometer could sense gravity along both its negative and positive axes.

An obvious method of magnetometer calibration is very similar to that used for

accelerometers. Instead of orienting each sensor relative to the gravity vector, each

magnetometer would have to be placed in a position in which it could sense the maximum

strength of the local magnetic field along both its negative and positive axes. This may be

accomplished by pointing the magnetometer axis toward the local north and recording the

maximum and minimum voltages as the magnetometer is rotated 360 degrees about an axis

oriented toward the east. Half way between the maximum and minimum readings obtained

is the null point of the magnetometer.

(6.4)

Multiplication of a correct scale factor times the magnetometer output values should result

in a reading of approximately 0.6 gauss in one direction and -0.6 gauss in the other

depending upon the actual strength of the local magnetic field.

(6.5)

accel null accel max accel min+( )
2

-------------------------------------------------------------------=

accel scale
accel units( ) 2×

accel max accel min–( )
------------------------------------------------------------------=

mag null
mag max mag min+( )

2
-------------------------------------------------------------=

mag scale
mag units( ) 2×

mag max mag min–( )
------------------------------------------------------------=
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Complete calibration of a three-axis magnetometer could thus be accomplished by

performing one such rotation for each individual sensor.

Determination of the null point of an angular rate sensor can be accomplished by

recording and averaging over some time period the output of a static sensor. Scale factors

are determined by integrating the output of angular rate sensor over time. If an angular rate

sensor is subjected to a known angle of rotation and its output is integrated during the

period of rotation, the correct scale factor will cause the result of that integration to equal

the angle of rotation. The scale factor for a rate sensor can therefore be determined

following a known rotation using

(6.6)

where the estimated rotation term is the result of integrating the output of the sensor with

a scale factor of unity. In practical applications it may be desirable to make several

estimates of the scale factor while putting the sensor through several known positive and

negative rotations and then averaging the results.

From the above, it is apparent that a MARG sensor could be completely calibrated

using a level nonmagnetic platform and a simple compass to indicate the direction of the

local magnetic field. The sensor could be calibrated by placing it in the six positions which

allow each accelerometer to sense gravitation acceleration in both the positive and negative

directions, subjecting each rate sensor to one or more known rotations and rotating the

MARG sensor in a manner such that maximum and minimum local magnetic field readings

can be obtained for each magnetometer. The following calibration algorithm is

implemented in the body tracking software as a state machine. The state machine includes

approximately 33 separate states. Rate sensor scale factors are calculated by averaging the

estimates produced by one negative and one positive rotation. The steps of the algorithm

listed below loosely correspond to the actual physical actions which a person doing the

calibration must perform upon the sensor.

scale factor
known rotation

estimated rotation
---------------------------------------------------=
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Finding Inertial Sensor Null Points and Scale Factors

1. Place the sensor in a stationary position on a flat level nonmagnetic surface

with the positive z axis of the sensor pointing down. While the sensor is in this

position record the maximum voltage reading for the z-axis accelerometer as

accZMax. Set the rate sensor null points angXNull, angYNull and angZNull to

the rate sensor readings obtained while in this stationary position.

2. Rotate the sensor 90 degrees about the positive x-axis. While performing this

rotation integrate the output of the x-axis rate sensor (Figure 23).

3. Following completion of the rotation, record the maximum voltage reading for

the y-axis accelerometer as accYMax. Make a first estimate of the x-axis rate

sensor scale factor, angScaleXOne, using Eq. (6.6).

4. Rotate the sensor 180 degrees about the negative x-axis. While performing this

rotation integrate the output of the x-axis rate sensor.

5. Following completion of the rotation, record the minimum voltage reading for

the y-axis accelerometer as accYMin. Make a second estimate of the x-axis rate

sensor scale factor, angScaleXTwo, using Eq. (6.6). Set the scale factor for the

Figure 23: Rotating Sensor 90 Degrees About Positive x-axis For Rate Calibration
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x-axis rate sensor to the average of angScaleXOne and angScaleXTwo. Calcu-

late the null point for the y-axis accelerometer using Eq. (6.2).

6. Rotate the sensor 90 degrees about the positive z-axis. While performing this

rotation integrate the output of the z-axis rate sensor.

7. Following completion of the rotation, record the minimum voltage reading for

the x-axis accelerometer as accXMin. Make a first estimate of the z-axis rate

sensor scale factor, angScaleZOne, using Eq. (6.6).

8. Rotate the sensor 180 degrees about the negative z-axis. While performing this

rotation integrate the output of the z-axis rate sensor.

9. Following completion of the rotation, record the maximum voltage reading for

the x-axis accelerometer as accXMax. Make a second estimate of the z-axis rate

sensor scale factor, angScaleZTwo, using Eq. (6.6). Set the scale factor for the

z-axis rate sensor to the average of angScaleZOne and angScaleZTwo. Calcu-

late the null point for the x-axis accelerometer using Eq. (6.2).

10. Rotate the sensor 90 degrees about the negative y-axis. While performing this

rotation integrate the output of the y-axis rate sensor.

11. Following completion of the rotation, record the minimum voltage reading for

the z-axis accelerometer as accZMin. Make a first estimate of the y-axis rate

sensor scale factor, angScaleYOne, using Eq. (6.6). Calculate the null point for

the z-axis accelerometer using Eq. (6.2).

12. Rotate the sensor 180 degrees about the positive y-axis. While performing this

rotation integrate the output of the y-axis rate sensor.

13. Following completion of the rotation, make a second estimate of the y-axis rate

sensor scale factor, angScaleYTwo, using Eq. (6.6). Set the scale factor for the

y-axis rate sensor to the average of angScaleYOne and angScaleYTwo.

14. Calculate the accelerometer scale factors using Eq. (6.3).

Finding Magnetometer Maximum and Minimum Voltage Readings

15. Point the sensor x-axis north and rotate the sensor 360 degrees about the y-axis.

Record the minimum and maximum voltages obtained from the x-axis magne-
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tometer during this rotation.

16. Point the sensor y-axis north and rotate the sensor 360 degrees about the x-axis.

Record the minimum and maximum voltages obtained from the y-axis and z-

axis magnetometers during this rotation.

17. Calculate the magnetometer null points using Eq. (6.4). Calculate the magne-

tometer scale factors using Eq. (6.5).

Finding Gravity and Magnetic Reference Vectors

18. Place the sensor in the reference position with the positive x-axis pointing

toward magnetic north, positive y-axis east, and the positive z-axis pointing

down. While in this stationary position record the reading produced by the

magnetometers and accelerometers. Convert these readings using Eq. (6.1).

The six numbers produced correspond to the x, y, and z components of the two

reference vectors.

Once the sequence of rotations becomes familiar, the entire calibration procedure

can be performed in less than one minute. Figure 24 is shows a console display of

calibration results.

In the implementation described above each sensor is calibrated individually. The

algorithm described could be used to allow calibration of numerous sensors

simultaneously. In that case, MARG sensor calibration could be carried out by placing the

sensors in a special apparatus before commencing body tracking. The apparatus could be a

simple box containing a bin for each sensor. The apparatus could then be put through the

same sequence of rotations and orientations as those used for an individual sensor.

Steps 15 through 17 of the calibration procedure could be accomplished separately

to prepare the system to operate in a different magnetic environment. It also is possible to

change the orientation and magnitude of the rotations performed to allow magnetometer

calibration without completing of steps 15 and 16. The maximum and minimum voltage

output for each magnetometer could be determined if the rate sensor were calibrated

through one positive and one negative 180 degree rotation about the each axis with the axis
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orthogonal to the direction of the local magnetic field. This sequence was not used here due

to the position of the sensor data cable and the reset button on the MARG sensor housings.

3. Quaternion Human Body Model

The quaternion human body model is designed to accept orientation data in

quaternion form relative to an earth-fixed reference frame. The model posture is set using

only vector addition and quaternion rotation. Vector addition determines the position of the

inboard end of each limb segment. Quaternion rotation of limb segment vertices is used to

set the limb segment attitude. This attitude is set independently of those to which it is

attached. No homogeneous transform matrices are used. The model includes no provisions

for joint constraint implementation. The number of polygons and vertices involved in the

model where kept to a small number in order to minimize the rendering demands on the

processor. The model is rendered in a north, east, down coordinate system. Figure 25 is a

wireframe rendering of the quaternion human body model.

Figure 24: Console Display Of Sensor Calibration Results
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The orientation quaternions received by

the model may be mapped to any number of limb

segments. Thus it is possible, depending on the

mapping, to animate several limb segments or

even the entire model using a single sensor. If one

MARG sensor is mapped to all limb segments, the

model will rotate as a single unit with an

orientation corresponding to that of the applicable

sensor. Setting up a one to one correspondence

between individual sensors and the movable limb

segments of the model would allow realistic

tracking and rendering of full body postures. The

human model is only a visual approximation of the

human body. It is not based detailed studies of

human anatomy. The lengths of the individual

segments of the model may however be adjusted

to match the anthropometric measurements of the

individual being tracked. Figure 26 depicts the dialog box used to adjust limb segment

lengths and to specify which MARG sensor corresponds to which limb segment or

segments. The peculiarities of the manner in which each sensor is attached to each limb

segment are accounted for through the use of an offset quaternion. The offset quaternions

are found using a calibration routine which requires the user to momentarily stand in a

reference position. Once the offset quaternions have be calculated, it is assumed that the

limb/sensor relationships remain constant.

The human model is implemented in a CHumanModel class. It composed of objects

of the CLimbSegment class. CLimbSegment objects encapsulate the length, width, depth,

current orientation, offset quaternion and an associated translation vector for each limb

segment. Climb segment objects could be used to model any articulated rigid-body. The

Figure 25: Wireframe
Rendering Of The Quaternion-

Based Human Model
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CHumanModel class sets the limb segment dimensions and arranges them in a

configuration that is recognizable as a human figure. In this research, all limb segments are

rendered as a six-sided boxes. To draw figures with a more realistic visual appearance, the

limb segment could be extended to include a more complex geometry.

a. Setting Model Position and Posture

The vertices of an individual limb segment are described relative to a z-axis

down coordinate system which is attached to the inboard end of the segment. If the sensor

and limb segment axes are aligned, the orientation of an individual limb segment could be

set by applying to each vertex, v, the quaternion rotation

(6.7)

where the unit quaternion qsensor is the estimated orientation produced by the filter

processing the sensor output data. In practice, due to the irregular shape of human limb

segments and other factors related to sensor mounting and attachment, it is difficult to

achieve perfect alignment between the sensor and limb segment axes. This misalignment

can be taken into account by performing an additional rotation using an offset quaternion.

The orientation of an individual limb segment must then be set by applying the rotation

sequence

Figure 26: Human Model Settings Dialog

qsensorvqsensor
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(6.8)

to each vertex, where qoff is the offset quaternion for the limb of the vertex.

To set the position of a individual limb segment it is necessary to find a

vector which describes the location of the inboard end of the limb segment. Once this vector

is found the final position of each vertex can be calculated through addition of this vector

to the rotated coordinates of each vertex. Thus, the final position of a limb segment vertex

is given by

(6.9)

where ptrans is a 3-space vector describing the location of inboard end of the limb. Using

homogeneous transformation matrices this final positioning could be accomplished by

(6.10)

where T is a homogenous transformation matrix describing the same translation as vtrans,

Rsensor describes the orientation of the sensor relative to an earth-fixed reference frame and

Roffset describes the same relation as qoff. However, this calculation would be less efficient

and is not used in this research.

The origin of the human body model is the waist. The position of the human

model could be set by tracking this location on the user and equating the resulting position

vector to the origin. (No position tracking is included in this research.) Attached to the

origin are the torso limb segment extending generally upward and the pelvis limb segment

with its long axis orientated in a downward direction when the figure is in a normal standing

position. Attached to the outboard end of the torso are the neck to which the head is attached

and the shoulders which have a fixed relation to the torso. The outboard ends of the

shoulders are connected to the upper arms, to which are attached the lower arms and finally

the hands. The hips, upper legs, lower legs and feet are connected to the pelvis in a similar

manner.

qsensorqoffvqoffqsensor

ptrans qsensorqoffvqoffqsensor+

TRsensorRoffsetv
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Each limb segment has an associated translation vector, p, which extends

from the inboard to the outboard end of the segment. Once this vector has been oriented

using Eq. (6.8) the outboard end point can be used as the origin location for the coordinate

system of more distal segment attached to the end point. Limb segment origin positions are

calculated through the addition of translation vectors working from the waist towards the

body extremities as depicted in Figure 27. Each node represents a limb segment origin and

each edge a translation vector which has been rotated by an offset quaternion and a limb

orientation quaternion. Positions are determined by traversing the tree from the root to the

node of a particular limb segment origin and adding the vectors associated with each edge

in the path. For example, by traversing the displayed tree, it can be seen that the elbow or

connection point for the inboard end of the right lower arm limb segment is given by

(6.11)

Figure 27: Calculation Of Limb Segment Positions
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in the manner similar to Eq. (3.79). The origins for all other links are located iteratively

using the same method.

Actual positioning of the human model is carried out as a two step process.

This separation allows rendering calculations to be spread over a wider time interval and

thus reduces the impact on the data filtering processes. In the first step the orientations of

all limb segments are set. This is accomplished by calling the setPosture method of the

CHumanModelClass. Filter produced orientations in quaternion form are passed in a

predetermined order as an input argument. This method is listed in Figure 28. The limb

segments are positioned and rendered using the renderFigure method. The location of the

waist or the origin of the human figure is passed as input argument. This vector as are all

vectors in the software is stored as a quaternion with the real part equal to zero. The

renderFigure method is listed in Figure 29.

b. Body Model Calibration

Due to the irregular shape of actual human limb segments, it is not possible

to exactly align the axes of the attached a sensor with those of the limb. Sensor attachment

will vary from limb to limb and from individual to individual. Thus the use of off-line

// Sets the orientation for each limb segment
void CHumanModel::SetPosture(CLimbData * angleData)
{

for (int i = 0; i < 16; i++) {

// Set the orientation of the limb
m_trackedLimb[i]->SetOrientation(angleData[i].orientation);

} // end for

// Set the orientations of the fixed segments
m_fixedLimb[L_HIP]->SetOrientation(angleData[PELVIS].orientation);
m_fixedLimb[R_HIP]->SetOrientation(angleData[PELVIS].orientation);
m_fixedLimb[L_SHOULDER]->SetOrientation(angleData[TORSO].orientation);
m_fixedLimb[R_SHOULDER]->SetOrientation(angleData[TORSO].orientation);

} // end SetPosture

Figure 28: The setPosture Method Of the CHumanModel Class
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Figure 29: The renderFigure Method Of the CHumanModel Class

// Calls draw functions to draw the human
void CHumanModel::RenderFigure(const Quaternion & vecRoot)
{

// Calculate joint locations
Quaternion waist = vecRoot;

// Calculate upper body joint location vectors
Quaternion bodyNeck = waist + m_trackedLimb[TORSO]->GetTranslation();
Quaternion bodyHead = bodyNeck + m_trackedLimb[NECK]->GetTranslation();
Quaternion lShoulder = bodyNeck + m_fixedLimb[L_SHOULDER]->GetTranslation();
Quaternion rShoulder = bodyNeck + m_fixedLimb[R_SHOULDER]->GetTranslation();
Quaternion lElbow = lShoulder + m_trackedLimb[L_UP_ARM]->GetTranslation();
Quaternion rElbow = rShoulder + m_trackedLimb[R_UP_ARM]->GetTranslation();
Quaternion lWrist = lElbow + m_trackedLimb[L_LOW_ARM]->GetTranslation();
Quaternion rWrist = rElbow + m_trackedLimb[R_LOW_ARM]->GetTranslation();

// Calculate lower body joint location vectors
Quaternion bodyHip = waist + m_trackedLimb[PELVIS]->GetTranslation();
Quaternion lHip = bodyHip + m_fixedLimb[L_HIP]->GetTranslation();
Quaternion rHip = bodyHip + m_fixedLimb[R_HIP]->GetTranslation();
Quaternion lKnee = lHip + m_trackedLimb[L_UP_LEG]->GetTranslation();
Quaternion rKnee = rHip + m_trackedLimb[R_UP_LEG]->GetTranslation();
Quaternion lAnkle = lKnee + m_trackedLimb[L_LOW_LEG]->GetTranslation();
Quaternion rAnkle = rKnee + m_trackedLimb[R_LOW_LEG]->GetTranslation();

// Draw the upper body
m_trackedLimb[TORSO]->Draw(waist);
m_trackedLimb[NECK]->Draw(bodyNeck);
m_trackedLimb[HEAD]->Draw(bodyHead);
// Draw shoulders
m_fixedLimb[L_SHOULDER]->Draw(bodyNeck);
m_fixedLimb[R_SHOULDER]->Draw(bodyNeck);
// Draw upper arms
m_trackedLimb[L_UP_ARM]->Draw(lShoulder);
m_trackedLimb[R_UP_ARM]->Draw(rShoulder);
// Draw lower arms
m_trackedLimb[L_LOW_ARM]->Draw(lElbow);
m_trackedLimb[R_LOW_ARM]->Draw(rElbow);
// Draw hands
m_trackedLimb[L_HAND]->Draw(lWrist);
m_trackedLimb[R_HAND]->Draw(rWrist);

// Draw the lower body
m_trackedLimb[PELVIS]->Draw(waist);
// Draw hips
m_fixedLimb[L_HIP]->Draw(bodyHip);
m_fixedLimb[R_HIP]->Draw(bodyHip);
// Draw uppper legs
m_trackedLimb[L_UP_LEG]->Draw(lHip);
m_trackedLimb[R_UP_LEG]->Draw(rHip);
// Draw lower legs
m_trackedLimb[L_LOW_LEG]->Draw(lKnee);
m_trackedLimb[R_LOW_LEG]->Draw(rKnee);
// Draw feet
m_trackedLimb[L_FOOT]->Draw(lAnkle);
m_trackedLimb[R_FOOT]->Draw(rAnkle);

} // end RenderFigure
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analytic calculations is not a practical method of deriving an offset quaternion which

accounts for the misalignment of the two coordinate systems.

When the human model is in the reference position, the limb segment

coordinate axes are aligned with the corresponding Earth-fixed axes. That is the x-axis for

each limb segment points toward the local north, the y-axis points east and the z-axis points

down. The reference position for the human model is an “attention” type stance facing

North. The offset quaternions for each limb segment can be derived by noting that while

the user is in the reference position the equation

(6.12)

is true. This implies that

(6.13)

and

(6.14)

These results and the inverse property of quaternion multiplication further imply that

(6.15)

while in the reference position. The quaternion, qsensor, is output by the quaternion filter

algorithm and is thus known.

Complete compensation for the way in which all sensors are attached to the

limbs of a tracked subject can therefore be accomplished by simply setting qoff for each

limb segment to the inverse of the associated qsensor while the subject to be tracked is

standing in a predetermined reference position. The implemented reference position for this

research is an attention type stance facing the local magnetic north (Figure 30). The

calculated offset quaternion will remain valid as long as the sensor positions do not shift

position relative to the tracked limb segment.

v qsensorqoffvqoffqsensor=

qsensorqoff 1=

qoffqsensor 1=

qoff qsensor=
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The same calibration method could be applied to a model based upon the use

of homogeneous transformation matrices vice quaternions. Relations which are equivalent

to those given by Eq. (6.12) and Eq. (6.15) are

(6.16)

and

(6.17)

where Rsensor is a homogeneous matrix expressing the limb segment orientation relative to

a earth-fixed reference frame and Roff expresses the orientation of the limb segment

coordinate system relative to the that of the sensor. Again, since matrix inversion is very

expensive computationally in comparison to unit quaternion inversion, Eq. (6.17) is not

used in this research.

v RsensorRoffv=

Roff R
1–

sensor=

Figure 30: Body Model Calibration Reference Position
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D. SUMMARY

The body tracking system described in this chapter is able to track the orientation

of human limb segments using prototype MARG sensors. The MARG sensors are

calibrated via a series of eight rotations without the need for any specialized equipment.

The data from each sensor is processed by a reduced order quaternion attitude filter which

is complementary in form. The incorporated filter algorithm is able to track limb segment

attitude through all orientations without singularities and continuously corrects for drift.

Filter output is a quaternion representation of the orientation of a limb segment relative to

an earth fixed reference frame.

The orientation quaternions are used to set the posture of a quaternion based human

model. All model segments are positioned and oriented using quaternion/vector pairs in a

z-axis down coordinate system. The human body model implements a simple calibration

method for correcting for misalignment between the coordinate systems of individual

sensors and limb segments. The calibration method only involves the inversion and

assignment of a single quaternion for each limb segment while the tracked subject stands

in a reference position. The minimal computational demands of this method are largely due

to the overall simplicity of the human model itself. Human model limb segment lengths

may be adjusted to account for human anthropomorphic differences.

The prototype MARG sensors where fabricated using low-cost off-the-shelf

components. Internal sensor circuitry supports magnetometer set/reset of MR film polarity

and allows manual adjustment of magnetometer null points. Analog MARG sensor output

digital conversion is performed external to the sensors using a PCI data acquisition card.

The system software was entirely implemented using C++. It is single threaded and

runs on a standard Wintel desktop computer. The estimation update rate is at least 100 Hz

for three filters performing drift correction calculations on each iteration. Rendering frame

rate is maintained at 25 Hz.
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VII. EXPERIMENTAL RESULTS

A. INTRODUCTION

The chapter describes experiments designed to test the performance of the inertial/

magnetic body tracking system. The quantitative and qualitative results presented

document the accuracy and robustness of the system under various dynamic and static

conditions.

The static experiments described relate to the stability, convergence properties and

accuracy of the orientation estimates produced by the quaternion attitude filter algorithm

when processing MARG sensor data. All static tests were single MARG sensor

experiments. Preliminary results are presented which quantitatively illustrate the dynamic

accuracy of the quaternion filter orientations. This data also allows some conjectures to be

made regarding system latency.

The qualitative experiments examine the performance of the system as a whole in

relationship to the goal of robust posture estimation. The performance of the system while

using differential weighting of sensor data as well as increased drift correction intervals is

investigated. The ability of the system to track the posture of various limb segments of the

human body using three MARG sensors is also qualitatively evaluated.

The final section of this chapter examines the InertiaCube sensor and Kalman filter

algorithm used by Intersense Inc. to process inertial data [Ref. 27.]. The shortcomings of

this system for full body tracking applications are discussed. This discussion is based upon

both the observed performance of an Intersense system and an examination of available

research literature describing the implemented data filtering algorithm.

B. STATIC STABILITY

Orientation estimates based solely on angular-rate sensors are prone to drift

problems. Thus in the past, the idea of using inertial sensors to track orientation for

extended periods was often criticized due to the mistaken belief that the estimates would
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diverge over time. This criticism was applied regardless of the combination of sensors

actually in use and was mostly due to difficulties in understanding the complementary

characteristics of different sensor types and complementary estimation filters.

The drift characteristics of the quaternion filter algorithm and the MARG sensor

over extended periods were evaluated using static tests. In each of these experiments the

stability of the orientation estimate produced with the sensor stationary was monitored for

a specified period. Through the course of the experiments the estimated orientation was

recorded at 0.1 second intervals. Figures 31 through 34 display the results. Each plots the

four components of the estimated quaternion and the length of the quaternion error vector

versus time.

Figure 31 graphically depicts the drift of each of the four components of the

quaternion estimate produced by the filter. It can be observed through examination of

Figure 31 that average total drift is about 1%. During the experiment shown, the filter gain,

k (Eq. (5.15)), was set to unity. Equal weighting was given to both magnetometer and

Figure 31: One Hour Static Test Of Orientation Estimate Stability, k = 1.0, = 1.0ρ
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Figure 32: 15 Minute Static Test Of Orientation Estimate Stability,
No Magnetometer Input, k = 1.0

Figure 33: 15 Minute Static Test Of Orientation Estimate Stability,
No Accelerometer Input, k = 1.0
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accelerometer data. It is expected that increasing the filter gain to 4.0 would reduce the drift

error by a factor of four or to about 0.25 percent. However, due to the observed stability of

the filter over a one hour period, no further static experiments relating to stability were

conducted.

Experiments were also conducted in which magnetometer, accelerometer or rate

sensor data were disregarded by the filtering algorithm. These results are shown in figures

32, 33 and 34. As expected, Figure 32 shows continuous drift about the vertical axis of

approximately 1 degree per second. Poor stability about the North and East axes is apparent

in Figure 33. Here the total drift is on the order of 3 degrees per second. The greatest

possible difference between two unit quaternions occurs when they point in directions

which are exactly opposite each other. At that time the length of the error vector would be

two. Thus, the magnitude of the rms difference in both Figure 32 and Figure 33 cycles

between 0 and 2.

Figure 34: 60 Minute Static Test Of Orientation Estimate Stability,
No Rate Sensor Input, k = 1.0
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The lack of any drift in Figure 34 indicates that all drift is due to rate sensor bias.

Throughout these tests all limb segments of the human model were mapped to the single

sensor in use. The posture of the human model when viewed on the display monitor

reflected the results seen in the figures.

C. STATIC CONVERGENCE

Linear analysis of the quaternion filter and nonlinear simulation imply the transient

errors in will persist for a time period which is inversely proportional to the filter gain, k

(Eq. (5.15)). Specifically, by the time following the occurrence of a transient error, it

is expected that the error magnitude will be reduced to 37% of its original value (Eq. ). The

magnitude of the square of the error should be reduced by 37% by the time

(7.1)

Experiments to test the static convergence of the filter following transient errors

were conducted to further validate the results of the linear analysis. The MARG sensor

itself was left in a stationary position throughout each of these experiments. Transient

orientation errors were introduced into the system by rotating a stable estimate by an

error quaternion. Following this rotation, the filter was allowed to reconverge to the

previous estimate. Error quaternions representing orientation errors of 30 degrees where

used. Filter gains included 1.0, 4.0, 8.0, 16.0 and 32.0. Setting the filter gain to values

greater than 200 with an update rate of 100 Hz (as predicted by Eq. (5.44)) was found to

make the filter unstable. Equal weighting was given to both magnetometer and

accelerometer data. In each of these experimental trials the filter remained stable and re-

converged to the previous estimate in the time period predicted by linear theory. Figures 35

through 38 plot the magnitude of the quaternion filter criterion function (Eq. (5.10)) versus

time. These data were obtained following rotation of by the indicated error quaternion.

Filter gains of 1.0, 4.0, 16.0 and 32.0 are shown. These figures represent a sample of the

results obtained.
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Figure 35: Error Convergence Following 30 Degree Transient Error, k = 1.0

Figure 36: Error Convergence Following 30 Degree Transient Error, k = 4.0
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Figure 37: Error Convergence Following 30 Degree Transient Error, k = 16.0

Figure 38: Error Convergence Following 30 Degree Transient Error, k = 32.0
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D. DYNAMIC RESPONSE AND ACCURACY

Preliminary experiments were conducted to establish the accuracy of the orientation

estimates and the dynamic response of the system [Ref. 6.]. These experiments were

completed using a Hass rotary tilt table [Ref. 31.]. The table has two degrees of freedom

and is capable of positioning to an accuracy of 0.001 degrees at rates ranging from 0.001

to 80 degrees/second. In order to mitigate any possible magnetic field effects generated by

the servos of the tilt table, the sensor package was mounted on a nonferrous extension

above the table. The extension was approximately the length of a human forearm.

The preliminary test procedure consisted of repeatedly cycling the sensor through

various angles of roll, pitch and yaw at rates ranging from 10 to 30 deg./sec. After each

motion, the table was left static for approximately 15 seconds. The estimates produced by

the tracking system where converted to Euler angle form for easier comparison to the tilt

table rotations.

Figure 39 is a typical result of the dynamic accuracy experiments. The overall

smoothness of the plot shows excellent dynamic response. Accuracy was measured to be

better than one degree. The small impulses which can be observed each time motion is

initiated are hypothesized to be linear acceleration effects exaggerated by the “whipping”

motion of the extension on which the sensor was mounted. In qualitative tests, the

quaternion filter exhibited no difficulty in tracking orientations in which pitch angles

equaled or exceeded 90 degrees.

E. QUALITATIVE TESTING

1. Weighted Least Squares

The weighted least squares modification to the quaternion filter algorithm is

designed to allow orientation estimation to continue in the presence of changing magnetic

fields. Significantly reducing the weight given to magnetometer data will allow drift about

the vertical axis. However, this reduction may also make it possible to avoid large short

time period rotations about the vertical axis in the presence of changing magnetic fields.
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To examine the weighted least square function of the filter, a MARG sensor was

repeatedly subjected to a magnetic source. In each trial a speaker magnet was passed over

the sensor at a distance of approximately 1 cm. Magnetometer weighting values of 0.25,

0.5, and 1.0 were used. The filter gain, k, was 4.0 in all trials. Figures 40 through 42 plot

the rms difference between the orientation estimate before exposure to the field and during

exposure. As expected using a magnetometer weighting factor of 0.25 allows the greatest

immunity to magnetic field effects as reflected by Figure 42.

2. Posture Estimation

The purpose of the human body tracking system is to estimate the orientation of

multiple human limb segments and use the resulting estimates to set the posture of the

human body model which is visually displayed. Numerous experiments were conducted to

qualitatively evaluate and demonstrate this capability.

In each experiment three MARG sensors where attached to the limb segments to be

tracked. Due to the minimal number of sensors available tracking was limited to a single
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Figure 39: 10 Degree Roll Excursions At 10 deg/sec From [Ref. 6.]
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Figure 40: rms Change In Orientation Estimate During Exposure Magnetic Source,
Magnetometer Weighting Factor: 1.0, k = 4.0

Figure 41: rms Change In Orientation Estimate During Exposure Magnetic
Source, Magnetometer Weighting Factor: 0.5, k = 4.0
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arm or leg. In the case of arm and limb segments, sensor attachment was achieved through

the use of elastic bandages. In most cases this method appeared to keep the sensors fixed

relative to the limb. Sensor attachment was the most time consuming task when preparing

to track a new individual. Calibration for sensor/limb axes misalignment was the achieved

in a nearly instantaneous manner. Adjustment for differences in anthropometric

measurements were carried out on an “as needed” basis to allow capture of closed loop

postures.

Video recordings of the system in operation indicate that posture estimation was

accurate and showed very little lag. Figures 43 through 44 depict inertial tracking of

various limb segments.

3. Reduced Rate Drift Correction

It was hypothesized that increasing the drift correction interval for each sensor/filter

pair would allow full body tracking without an increase in processing power. To test this

Figure 42: rms Change In Orientation Estimate During Exposure Magnetic
Source, Magnetometer Weighting Factor: 0.25, k = 4.0
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Figure 43: Inertial Tracking Of the Left Arm Using Three MARG Sensors

Figure 44: Closed Kinematic Chain Posture Using Three MARG Sensors
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hypothesis, posture estimation was evaluated qualitatively while operating three actual and

13 simulated filter software objects. Filter update rates were maintained at 100 Hz.

However, only one filter object performed drift correction calculations on each update

cycle. This is equivalent to performing drift corrections for each filter object at a rate of

approximately 6 Hz. Filter gains where not changed to compensate since the most recently

derived drift correction factor was still used on every update cycle. Qualitative evaluation

of posture tracking indicated the effects of increasing the drift correction interval for each

filter object were negligible.

F. INTERSENSE INERTIACUBE

The InertiaCube (Figure 46) is an integrated inertial sensing device manufactured

by InterSense Inc. The InertiaCube senses angular rates about and linear acceleration along

each of three orthogonal body axes [Ref. 26.]. Manufacturers literature indicates that it

contains at least a two axis magnetometer [Ref. 37.] and thus is very similar in overall

Figure 45: Inertial Tracking Of the Left Leg Using Three MARG Sensors
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capability to the MARG sensors used in this research. InertiaCube data is processed by a

complementary separate-bias extended Kalman filter based upon an Euler angle

representation of orientation [Ref. 27.]. It has a six-dimensional state vector containing the

three Euler angles and three angular rate bias terms. Though the system was designed for

head tracking, head dynamics are not modeled. Nonlinear attitude computation is

accomplished through a second order integration step formula. System error dynamics are

obtained by normalizing about a nominal trajectory [Ref. 27.].

Qualitative evaluation of an Intersense IS-300 orientation tracking system was

completed using both the manufacturers demonstration software and the body tracking

software developed for this research. When using the demonstration application the basis

of the filter in Euler angles becomes apparent each time the InertiaCube is subjected to a

pitch angle approaching +/- 90 degrees. In this attitude the roll and yaw values gyrate

widely while maintaining a constant sum or difference. When tested with the body tracking

software, the system was configured to output a quaternion representation of orientation.

While operating in this mode it was not possible to detect any singularities.

The ability of the InertiaCube to continuously correct for rate sensor drift was tested

by subjecting the sensor to a series of accelerations and then placing it on a flat surface.

When using either the demonstration application or the body tracking software, the system

exhibited its inability to correct for drift unless in a stationary state. Each time the sensor

was replaced on the flat surface the orientation estimate failed to match the true orientation

for a short time period before making a sudden and abrupt correction. This phenomenon

occurred regardless of the operating mode of the Intersense system and is in marked

contrast to continuously corrected estimates produced by the MARG sensor and the

quaternion attitude filter.

The strength of Kalman filtering lies in the inclusion of a dynamics model for error

correction and prediction. In the absence of an accurate model, use of a Kalman filter is

likely to result in an unnecessarily complex algorithm which is prone to errors when the

model does not match the dynamics of the modeled system [Ref. 14.]. Since Kalman filter
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predictions are primarily based upon dynamics models, any prediction produced by a

model-less filter should be viewed with suspicion. The inclusion of adjustable gains to

control rms estimation error and attenuate magnetometer inputs raises doubts that the

Intersense system is actually using a Kalman gain to attain a statistically optimal estimate

of the system state. It appears instead that the system may implement a highly expensive

extended Kalman filter algorithm to perform a task which could be done quicker and faster

by a simpler algorithm such as the quaternion filter algorithm described in this research.

While the inability of the

Intersense system to continuously

correct for drift may not be a drawback

in head tracking applications, it is

doubtful that it will be able to function

properly in a constant high acceleration

applications such as full body tracking.

There are no periods of still time for the

limbs of a human being while walking.

Though no singularities were observed

in the experiments described here, the

use of Euler angles to describe the

orientation of a human arm which can

assume any attitude is questionable. The decision to date of Intersense not to allow direct

access to the signals produced by the InertiaCube sensor severely limits the application of

inertial tracking technology with this sensor.

G. SUMMARY

This chapter presents a limited set of experiments designed to document the

performance parameters of a prototype inertial/magnetic body tracking system. The

accuracy of system orientation estimates was quantitatively evaluated both statically and

Figure 46: Intersense InertiaCube
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dynamically. The overall ability of the system to model human posture in real-time was

evaluated qualitatively. Examination in the light of human body tracking was also made of

the Intersense InertiaCube and filtering algorithms.

The experimental results presented indicate that with the application of the proper

algorithms and representations, inertial/magnetic orientation tracking can be used to

accurately track the posture of the human body. The static stability and convergence tests

show that the orientation estimates are stable and that linear analysis of quaternion filter

analysis is valid. The static accuracy and dynamic response experiments show the system

can produce orientation estimates which are accurate and timely enough to be used in real-

time body tracking applications. For applications in which the system may be subjected to

variable magnetic fields, the weighted least square experiments show that inertial/magnetic

tracking may still be expected to produce usable orientation estimates. Qualitative

experiments show increased drift correction intervals may be used to implement a tracking

system which operates a larger number of filters simultaneously using limited processing.

Video recordings of the system in operation demonstrate that inertial/magnetic

orientation estimation produces accurate body posture estimates in real-time. Sensor and

body model calibration algorithms make the technology robust and easy to use. With the

addition of a wireless link and an appropriate position tracking technology, it is apparent

that the prototype system represents a means of simultaneously tracking a large number of

users in a large work area without the shortcomings of current motion capture technologies.

Experimentation with gains and scale factors makes is apparent that it is useful to

think of the rate sensor data as primarily serving to “quicken” the orientation estimates

produced using accelerometer and magnetometer data. In head tracking applications this

may be necessary in order to reduce lag and avoid the possibility of simulator sickness.

Quickening may also be needed in feedback control applications to ensure stability.

However, in some body tracking applications it may be possible to use simpler sensors

including only magnetometers and accelerometers with a relatively high filter gain. This

possibility presents an important area for future research.
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VIII. SUMMARY AND CONCLUSIONS

A. INTRODUCTION

This research lays the groundwork for a system capable of sourceless tracking of

the entire human body. The technology of such a system should allow the tracking of

multiple users over a wide area. Ultimately, each user could be inserted into a networked

synthetic environment in a fully immersive manner. While the basic ground work and

theory have been completed in this dissertation, much research remains to complete a full

body tracking system. Numerous technologies must be merged and adapted to produce a

practical body tracking system for networked synthetic environment applications.

The following outlines the work which needs to be done to achieve full body

tracking and makes suggestions regarding what directions this work should take. The

implications of this research are discussed. The final section of this document examines

what conclusions might be drawn from its contents.

B. MARG SENSORS

An optimal inertial sensor would have the same size and form factor as a

wristwatch. It would include an embedded microprocessor on which the filter algorithm is

implemented. The sensor would be have a self-contained power source and would

wirelessly transmit orientation data.

New sensor components continue to appear on the market. These sensors have

capabilities which are at least equal to and are often superior to those of the preceding

generation and are an order of magnitude smaller in size. Current technology already

permits the construction of sensors which are much smaller than either the prototype

MARG sensors described here or the InterSense InertiaCube. Honeywell now offers the

HCM1023 three-axis magnetoresistive sensor in a sixteen pin package with an 8.13 x 3.81

mm footprint. This unit is less than half the size of the HMC2003 with a nearly equal

sensitivity [Ref. 38.]. The Analog Devices ADXL202E is a two axis acceleration sensor
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integrated onto a single monolithic IC chip. It measures 5 x 5 x 2mm and has a digital output

[Ref. 2.]. Tokin America Inc. now offers a smaller version of the CG-16D ceramic gyro

designated the CG-L33. The CG-L33 measures 8 x 16 x 5mm and has slightly improved

performance characteristics [Ref. 83.].

Smaller and cheaper integrated inertial sensors are on the horizon. In the Spring of

2001, it is expected that Micro Sensors, Inc. will release a 5 x 5mm micromachined rate

sensor with capabilities equal to those of the CG-L33 [Ref. 63.]. In the Fall of 2000, Tokin

America, Inc. released in prototype the MDP-A3U7 3D Motion Sensor [Ref. 82.].

Manufacture’s literature states that this sensor unit contains in combination ceramic gyros,

acceleration sensors and terrestrial magnetism sensors and is capable of detecting the 3-

dimensional posture angle of a body to which it is attached in real time. The sensor

measures 25 x 36 x 22.5mm and interfaces via USB (Universal Serial Bus). Maximum

errors in all axes are claimed to be +/- 15 degrees. Maximum pitch and roll angles are

limited to +/- 60 degrees. It is likely that the large magnitude of the estimation errors as well

as the limited pitch and roll capabilities are due to manufacturer’s data processing

algorithm and are not characteristics of the sensors themselves.

The prototype MARG sensors used in this research output nine analog signals

corresponding to the nine sensor axes. The Texas Instruments TLC2543 is an 11 channel,

fully configurable, analog to digital converter (ADC) on a single IC. [Ref. 81.] Incoporation

of an ADC into the MARG sensor would ease data handling by replacing the 15 wires per

MARG sensor with 3 data wires and 2 power wires. The 3 data lines could be merged into

a data bus of 15 other MARG sensors. The ADC would also automate the magnetometer

set/reset circuit by providing clocked and, therefore, constant readings of set and reset

produced magnetic data. Using the difference of the two magnetic readings taken during

the set/reset cycle will result in magnetic data that is automatically temperature

compensated. This is something that was not possible with the analog MARG sensor used

in this research.
148



In earlier body tracking work, the angular rate sensors were bias compensated in

software [Ref. 6.]. In the research described in this document, the hardware is considered

stable enough to eliminate the need for these additional calculations. However, integration

of a biased angular rate signal will cause a steady state error in a complementary filter. In

order to achieve better system performance, this correction should be hardware

implemented in the rate sensor conditioning circuitry using capacitive coupling. Such a bias

compensation circuit is depicted in Figure 47.

It is expected that use of the components described here would result in a sensor

which is as much as five times smaller than the prototype used in this dissertation. Such a

sensor would be less expensive, easier to calibrate and mount to a human body and perhaps

more accurate as well.

Figure 47: MARG Rate Sensor Bias Compensation Circuit Schematic
From [Ref. 61.]
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C. HUMAN BODY MODELING

The purpose of the human model used in this research is to demonstrate the

simplicity of the mathematics underlying an articulated body model designed to use

accurate fixed reference frame orientation data. Speed of rendering and length of

development where primary considerations rather than visual appearance.

Future research should expand this paradigm to include anatomical data to make the

model correspond more closely to the human skeleton in overall proportion and relative

placement and attachment. The model should remain mathematically simple. Due to the

accuracy and low cost of inertial/magnetic orientation tracking, there is no need to include

joint angle constraints or the ability to track multiple segments using a single sensor.

Continuing the direct use of quaternions to orient limb segments and vector addition to

position them, may or may not be advantageous depending upon the rendering speed

advantages of matrix based graphics hardware and the available network bandwidth.

Current human animation standards model articulated structures using segments

and joints [Ref. 33.][Ref. 10.]. Unlike the model used in this research which orients limb

segments individually using data referenced to an earth-fixed frame, typical humanoid

animation is performed by altering the angle or angles for each individual joint. The

orientation of each limb segment is described relative to the inboard segment to which it is

attached. Conversion of earth-fixed reference frame data to a series of relative joint angles

could be accomplished. However, joint angle animation is actually less efficient than the

method used in this research while the network bandwidth requirements are roughly

comparable. Thus, joint angle based standards should be expanded to allow this alternate

method of setting body posture. Alternatively, efficient routines for converting earth-fixed

limb segment orientations to sequential relative joint angles might find wide use.

The current calibration algorithm is effective and easy to use. Once the subject of

the tracking experiment stands in a predefined reference posture, sensor to limb segment

offset compensation can be accomplished in a time period which appears to be

instantaneous. The calibration is based on the assumption that the limb segment coordinate
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axes are aligned with earth-fixed axes referenced to the local magnetic field. Since it is

difficult to have a human subject stand in a very precise pose, in reality there is likely to

always be some misalignment between the two coordinate systems. Using the ability of the

sensor mounted magnetometers to find the local north will allow the implementation of a

two step calibration algorithm. The human subject will still be required to stand in a

predefined position, however there will no longer be any requirement to face the local

magnetic north. This north finding ability will also make it possible to reduce offset errors

further when the subject does face the local north. “Visual tuning” of offsets could be

accomplished by “on-screen” adjustment of the displayed posture.

In order to ensure that the user can effectively interact with the virtual environment,

the model used by the inertial tracking system must be scaled to the user's dimensions [Ref.

78.]. This type of calibration ensures that, for example when a subject touches their right

shoulder with their left fingertips, their virtual human representation will do so as well.

Currently, the model is calibrated to body dimension ratios manually through physical

measurement. This is an extremely error prone and time consuming process. Some body

dimensions such as inseam are easily measured. Using a minimal set of such dimensions it

should be possible to accurately calculate other dimensions through a calibration algorithm.

The algorithm might involve placing the subject in a series of predefined positions as well

as model adjustment based on the rendered posture while in these positions. Such an

algorithm would make it possible for a user of any size to easily enter the virtual

environment.

At the time of this writing, 3D color laser scanning is being used to digitize the

dimensions of recruits at the Marine Corps Recruit Depot in San Diego, CA. The scanning

process requires a total of 15 - 20 seconds and produces a detailed anatomical model of each

subject [Ref. 19.].This same technique could be used to produce a human model that is

perfectly sized for each individual.

There is no end to the amount of effort that could be expended to produce a body

model with a realistic appearance. A great deal of research has already been done in this
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area. Limb segment surfaces could be made anatomically accurate. Muscles and fat could

be modeled. Realistic clothing could be added. Hair and facial expressions could be

modeled. Individual fingers could be tracked using another technology. In the end, the

rendering hardware and the application will dictate how much of this work should be

applied to the human body model presented here.

D. INTERGRATION OF INERTIAL AND RF TECHNOLOGIES

The ultimate goal of this project is to insert humans into a networked virtual

environment. A network of 15 MARG sensors will track body posture. In order to

accurately place the icon of the user in the virtual environment, it will be necessary to know

body location as well as the posture of the body. To achieve this, the position of one body

limb segment must be tracked. Unlike acoustic position tracking, Radio Frequency (RF)

positioning systems are very fast and long range by their nature. Large working volumes

can be covered using a minimal amount of equipment and positional error magnitudes

remain constant though out. RF positioning systems can penetrate objects, walls, and the

human body, and are able to operate with no line-of-sight. Thus, RF positioning is currently

seen as the technology which will best complement the sourceless capabilities of inertial/

magnetic sensing and enable tracking of a multiple users over a wide area.

Current examples of RF positioning systems include the Global Positioning System

(GPS) and Long Range Navigation (Loran). In an outdoor application where extremely

accurate positioning is not required, GPS might be used to locate the position of the tracked

subject. DGPS has already been successfully integrated with inertial and magnetic sensors

in AUV navigation systems such as the SANS described in [Ref. 7.][Ref. 96.]. Recently,

MIT has developed an RF positioning system that shows excellent performance for indoor

tracking [Ref. 24.]. This system has an accuracy of 2mm within a range of about 5 meters.

For 3 DOF tracking, a minimal system requires four transmitter stations placed at known

locations, and a receiver unit attached to the body. Such a system could be easily integrated

with a 15 MARG sensor system.
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E. WIRELESS COMMUNICATIONS

Tethering a tracked subject to a workstation with wires increases user encumbrance

and limits the application of hybrid inertial body tracking technology. The MARG sensors

are sourceless sensors, and RF positioning systems are self-contained receiving units. They

do not require wire connections to any external sources in order to operate. Thus, a practical

hybrid system would incorporate multiple MARG sensors, at least one RF position tracker

and a wearable electronics unit capable of processing sensor data. This sensor data would

be packaged into a serial bit-stream for wireless transmission to a base electronics package.

The base unit would further process the sensor data for submission to a networked virtual

environment and possible retransmission along with other virtual environment data back

the user.

The wearable electronics could be a wearable computer such as ViA II PC from

ViA Inc. [Ref. 89.] The processor and batteries of Flex PCs are configured as a waist belt

that can be easily and comfortably worn. Data from MARG sensors and the RF position

system could be routed to such a wearable PC. The role of the wearable PC would be to

collect and process the data into a desirable state vector form, and wirelessly transmit the

state vector to a VE station. The state vector may contain body position coordinates and

limb orientation data as well as other forms of body posture representation.

The wearable PC and the SE base station would be linked through a wireless local

area network (WLAN). One possible implementation of the WLAN is to use Lucent

Technologies WaveLAN wireless products. The minimum implementation requires one

WavePOINT wireless bridge and one WaveLAN PCMCIA card. Based on experimental

results, the data rate of such a WLAN is about 1.4 Mbps at a range of 100 meters. The range

can be up to 300 meters, but data rate will decrease to 100~500 Kbps, depending on the

transmission environment. The maximum data rate requirement for the body suit is

162Kbps, assuming that the body suit has fifteen 9-axis MARG sensors sampled at100Hz,

and each axis is sampled by a 12-bit AD converter. If sensor data is processed by embedded
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microprocessors or by the wearable computer and 15 unit quaternions are transmitted, the

bandwidth requirement could be decreased to approximately 54Kbps.

Power will be supplied by rechargeable, hot-swappable batteries. By making

batteries hot-swappable, endurance would not be a problem as long as each battery charge

allows operation for a reasonable length of time.

F. FILTERING

The theory and development of the quaternion attitude filter described in this

document and in [Ref. 51.] is largely complete. Experimental work involving the selection

of filter gains in various operating regimes remains to be completed. Though Kalman filters

are considered statistically optimal, it remains to be see whether such a filter could be

developed for and would be of benefit to this application. Only after a Kalman filter has

been developed will it be possible to determine whether it would be a better choice than the

complementary filter based on Gauss-Newton iteration described in this research.

Kalman filtering is highly dependent on the quality of the incorporated process

model. When applied to human body motion tracking, Kalman filter design requires an

adequate dynamic model of the human musculoskeletal system, and the measurement

statistics of the MARG sensors and RF positioning system to be used [Ref. 14.]. Dynamic

models of the musculoskeletal system are well established and widely used for computer

simulations of human body motions [Ref. 34.]. These models are given in the form of

second order differential equations containing parameters representing body segment mass,

center of mass, and moments of inertia. Though these models are ideal for computer

simulations of human body motions, they are computationally too complex to work in a

system requiring real-time tracking of multiple users wearing multiple sensors.

One possible approach to the modeling problem is to develop a model that is

adequate but not overwhelmingly complex. Each limb segment could be considered

independently of the others, or possibly motions of upper body segments could be

considered independently of motions of lower body segments. This approach suggests that
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the process model needed for Kalman filtering may not need to make use of articulated

body models, but could treat each limb segment as a single rigid body moving under the

influence of forces produced by muscles and connective tissues [Ref. 96.][Ref. 28.]. The

availability of reliable MARG sensors allows the gathering of statistical data needed to

construct the model.

[Ref. 48.] describes the preliminary development of a reduced order Kalman filter

for body tracking applications. To reduce the dimension of the state vector and simplify and

linearize the state equations, Gauss-Newton iteration is utilized to compute the optimal

quaternion relating measured to computed acceleration and magnetometer values. This

filter work, like that described in [Ref. 27.], makes no attempt to model the dynamics of

human motion.

G. A PROTOTYPE INERTIAL TRACKING BODY SUIT

In order to track a human in a VE, it will be necessary to outfit the user with a body

suit. This suit would incorporate multiple MARG sensors, at least one RF position tracker

and an electronics unit capable of processing sensor data. Avoiding encumbrance to the

user and the method of sensor attachment would be primary concerns in designing the suit.

Processing of data would be divided between the sensors themselves, the wearable PC and

a base system. Decisions would have to be made regarding where exactly these divisions

should be made. Such decisions would be driven by the need to reduce latency and increase

resolution and registration. Factors involved would include transmission bandwidth and the

processing power of the various components.

Two key factors must be considered when determining sensor placement and the

method of attachment. The sensors must be reasonably stable relative to the bone structure

of the user and the body suit and sensors must be easily donned. Relative motion between

the bone structure and the sensor will be an additional source of noise and cause the sensors

to report attitudes which do not correspond to the actual posture of the user. Most human

models only attempt to approximate the human skeleton system. For instance the actual
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complexities of the shoulder and spine are not captured by the human model described in

this research. Thus, sensors must be attached and placed in a manner which will not

exaggerate the simplifications of the model. [Ref. 78.]

H. POSTURE DATA IN A NETWORKED SYNTHETIC ENVIRONMENT

Networked synthetic environments suffer from limitations of bandwidth,

processing power and minimum transmission times. Work needs to be completed to

facilitate the insertion of a high-resolution human into a networked synthetic environment.

This goal requires research into different methods of encapsulating gesture data and the

trade-offs involved in processing at various nodes in the network. Once this has been

completed an efficient method for sending and processing this data could be developed.

Quaternion representation of orientation allows all attitudes to be represented

without singularities. If a human model is composed of 15 separate segments, describing

this posture using unit quaternions requires 45 floating point numbers. If the same model

has 60 degrees of freedom, then 60 joint angles must be transmitted. Transmission of

homogenous transform matrices will require five times the bandwidth of either method.

Joint angle representation will require the use of forward kinematics. Update of the posture

of a 15 segment human model using quaternions will require 840 scalar operations. This is

an order of magnitude less than the 3,780 scalar operations needed to reset the posture using

transform matrices or joint angles. Quaternions do not allow the possibility of applying

joint constraints, but given adequate tracking accuracy this should not be a drawback.

The lag or delay of the posture data being received at remote nodes of the network

presents another problem area. For instance, in a virtual battlefield simulation network

delays may cause entities to be targeted based on a position they no longer occupy since an

updated position has not yet been received. It is not likely that network transmission times

will be significantly reduced in the near future. A common approach to this problem is

prediction or dead reckoning based on the last update received [Ref. 98.]. Of course,

predicting the future position or posture of a human is more difficult than predicting that of
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a vehicle due to numerous degrees of freedom, and the wide ranges of speed and motion in

each limb segment. To accomplish such a prediction, velocity or rate data as well as

location data must be sent across the network. Between position updates, the latest velocity

data could be integrated or Kalman filtering could be used to predict the current position.

Using this scheme, position updates could be sent only occasionally to correct errors due to

inaccuracies in the velocity measurements.

I. CONCLUSIONS

This research has demonstrated a new technology for tracking the posture of an

articulated rigid body. The technology is based on the use of inertial/magnetic sensors to

independently determine the orientation of each link in the rigid body. Though the primary

application described here was motion capture for inserting humans into networked virtual

environments, inertial/magnetic orientation tracking could be applied to a broad range of

problems which require tracking of an articulated structure without being continuously

dependent upon an artificially generated source. The articulated body can be either animal

or machine.

At the core of the system is an efficient complementary filter which uses a

quaternion representation of orientation. Formulation of the filter is based upon the

Orthogonal Quaternion Theorem which is presented and proved in this document. Error

minimization is accomplished using Gauss-Newton iteration. The filter can continuously

track the orientation of human body limb segments through in all attitudes without

singularities. Drift corrections are made continuously with no requirement for still periods.

Though the filter is nonlinear, it is shown through nonlinear simulations and actual system

performance that linear analysis of the filter is relevant and can by used as a method for

selecting scale factors and predicting performance.

The filter processes data from MARG sensors which contain components typically

combined to form an inertial navigation system. The sensor has nine axes which include

three orthogonal angular rate sensors, three orthogonal linear accelerometers and three
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orthogonal magnetometers. All sensor components are of a small form factor. Methods for

conditioning and digitizing the output of the individual components are presented.

Magnetometer and accelerometer data are used to create earth-fixed reference vectors. Rate

sensor data is used to quicken the orientation estimates. While this quickening is typically

necessary in feedback control applications, it may not be needed in low acceleration

applications [Ref. 57.]. Sensor calibration is achieved using a novel calibration routine

which requires no specialized equipment.

Articulated body posture is represented using a model based entirely on quaternion/

vector pairs. Individual limb segments are oriented independently using a quaternion

representation of the orientation relative to an earth-fixed reference frame. The model is

mathematically simple. This simplicity reduces significantly the number of calculations

needed to set the model posture. The underlying simplicity makes possible a quick and

accurate calibration algorithm which compensates for misalignments between sensor and

limb segment coordinate axes. The model may be adjusted to match the anthropometric

measurements of an individual human subject.

The implemented system tracks human limb segments accurately with a 100 Hz

update rate. Experimental results demonstrate that inertial/magnetic orientation estimation

is a practical method of tracking human body posture. With additional sensors, the

architecture produced could be easily scaled for full body tracking. This new technology

overcomes the limitations of motion tracking technologies currently in use. It is potentially

capable of providing wide area tracking of multiple users for synthetic environments and

augmented reality applications.
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APPENDIX A. DERIVATION OF GAUSS-NEWTON ITERATION
EQUATIONS

Eq. (5.9) defines the quaternion filter error vector as

(5.9)

where denotes a measured value and is the calculated value based on the current

estimate . The square of the error or the scalar squared error criterion function is given by

Eq. (5.10)

(5.10)

The criterion function is minimized by finding an “adjustment” to termed .

The non-linear function, can be approximated by linearizing about . The

linearization is completed using the first two terms in the Taylor series expansion

(A.1)

where and are treated as four-space column vectors and X is the 6 x 4 multi-

dimensional derivative of with respective to . (See Appendix B for further discussion

of the X matrix) Ignoring the non-linear portion of the Taylor series expansion and

substituting Eq. (A.1) into Eq. (5.9) produces a linear approximation of the error vector.

(A.2)

From the inverse law of transposed products, it follows that

(A.3)

Thus from Eq. (A.2) and Eq. (A.3), the criterion function can be approximated by

(A.4)

If X is of full rank (full column rank) this is a positive definite form in . Each of the terms

in Eq. (A.4) evaluates to a scalar. By noting this fact and again using the inverse law of

transposed matrices, it follows that
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(A.5)

This result allows the approximated error criterion function to be written

(A.6)

From differential calculus, the minimum or maximum of a function occurs where

the slope of its tangent or derivative is equal to zero. The gradient (vector derivative) of

squared error criterion function, is given by

(A.7)

When the criterion function is a positive definite form, the unique minimum of Eq. (A.6) is

found by equating the gradient to zero and solving for . This result is the Gauss-Newton

step given by Eq. (5.11) as

(5.11)

The above approximation ignores the term based on the assumption that Eq.

(5.11) will be evaluated iteratively [Ref. 51.]. Simulations have demonstrated that Newton

iteration, which takes in account this term, performs no better if it is assumed that all

estimation errors are relatively small.
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APPENDIX B. DERIVATION OF THE X MATRIX

There are an infinite number of quaternions that can be used to represent any given

orientation. These quaternions differ by a scalar multiplier. If q is a unit quaternion and

where is any non-zero scalar, then

(B.1)

and

(B.2)

The elements of the 6 x 4 X matrix are the partial derivatives of the computed

measurement vector, with respect to each of the components of the estimated

orientation quaternion, .

Given

(B.3)

Then, the X matrix is given by

(B.4)

The ith column of X is

(B.5)
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By the product rule of differential calculus, it follows that

(B.6)

Similarly for columns two through three

(B.7)

(B.8)

(B.9)

Also from the product rule of differential calculus

(B.10)

Solving for produces

(B.11)

This result can be substituted into Eq. (B.6) through Eq. (B.9) to produce the general form

(B.12)

To complete this derivation of X, the partial derivatives of with respect to a of any

length are written
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When using a of any arbitrary length, an X matrix derived using the above method will

not be of full rank and the resulting regression matrix will be singular and non-invertible.

This is due to the result given by Eq. (B.2). Constraining to be of unit length will

eliminate this problem.

The following partial derivatives of the inverse of q are derived by assuming q is a

unit quaternion so that . Under this assumption

(B.17)

(B.18)

(B.19)

(B.20)

Since Eq. (B.17) through Eq. (B.20) are partial derivatives of constrained vectors, Lagrange

multipliers should be used in their formulation [Ref. 76.]. Evidently, Lagrange multipliers

were not used in the simple derivations shown here. However, computational experiments

show that the X matrix so derived is of full rank so that the inverse of the regression matrix

exists and can be used to correctly obtain by Gauss-Newton iteration [Ref. 51.].

In this dissertation, this 4 x 4 problem is further reduced by combining Eq. (B.17) through

Eq. (B.20) with the orthogonal quaternion theorem to achieve a still simpler 3 x 3 matrix

inversion Gauss-Newton method.
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APPENDIX C. VIDEO DEMONSTRATION

This section briefly describes the contents of each portion the video appendix.

1. Sensor Calibration

This portion demonstrates the sensor calibration algorithm. The calibration process

is described as each step is completed. For comparison purposes, tracking performance is

shown both before and after calibration.

2. Body Model Calibration

This portion demonstrates the body model calibration algorithm. The reference

position is described and visually displayed. The effect of the calibration algorithm on the

displayed posture can be seen.

3. Posture Tracking

This portion demonstrates the dynamic performance of the prototype inertial/

magnetic body tracking system. The tracking of various limb segments is shown.

Adjustment of the model dimensions is performed to allow display of closed loop postures.

Various filter gains are used through out this video segment.

4. Magnetic/Gravity Tracking

Dynamic performance of the system without the use of rate sensor data is shown.

5. Reduced Drift Correction

The dynamic performance of the system when performing drift correction at a rate

of approximately 6 Hz is shown. Overall performance is observed to vary little from that

seen in the Posture Tracking segment of the video demonstration.

6. InterSense InertiaCube
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Video demonstration of the inability of the filtering algorithms associated with the

InterSense InertiaCube to continuously correct for drift. This performance is contrasted

visually against the MARG sensor and the quaternion filter algorithm.
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