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Abstract: - This paper presents a robust control approach to control the movement of a prosthetic hand based on 

an estimation of the finger angles using surface electromyographic (sEMG) signals. All the available prosthesis 

uses the motion control strategy which is pre-programmed get initiated when some threshold value of the 
measured sEMG signal is reached for a particular motion set. Here we use a novel approach to model the finger 

angle which utilizes System Identification (SI) techniques. The dynamic model obtained allows the 

instantaneous control for the finger motions. sEMG data is acquired using an array of nine sensors and the 
corresponding finger angle is acquired using a finger angle measuring device and a data glove. A nonlinear 

Teager–Kaiser Energy (TKE) operator based nonlinear spatial filter is used to filter sEMG data whereas the 

angle data is filtered using a Chebyshev type-II filters. An EMG-angle estimation model is proposed then the 

estimated angles are used to control to control movement of a prosthetic hand using a robust approach which 
can deal with modeling uncertainty. The overall performance of the prosthetic hand are measured based on 

numerical simulation. The resulting fusion based output of this approach plus the robust controller gives 

improved the prosthetic hand motion control. 
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1 Introduction 
over 1.6 million people were reported to have 

amputations during 2005 in the United States, [1]. 

The ongoing wars in the Afghanistan and Iraq 

results in the continuously increase of this number, 

[2]. This makes it important to have an efficient and 

dexterous prosthesis that can improve the daily lives 

of the amputees. Currently available prosthesis lacks 

the tactile or proprioceptive feedback for grasping 

which makes the 30-50% of the upper extremity 

amputees not to use their prosthesis [3, 4]. One of 

the most important aspects of the prosthesis is to 

have a good control for the daily life tasks which is 

a prime factor to make the amputee to accept the 

device for regular use. There is lots of work need to 

be done before we reach to have a fully dexterous 

hand and the precise and effective control is of high 

demand. The prosthetic hand need to be able to have 

good control for the intended finger angle sand 

forces to perform a certain task. The input signal for 

the control of the prosthesis is the surface 

electromyographic (sEMG) which is originates from 

the mind of the amputee. The sEMG signals can be 

acquired from skeletal muscles on the residual part 

of the upper extremity. In this work, we assume that 

the amputation is transradial, and hence sufficient 

muscle mass is accessible for sEMG data 

acquisition. There are two types of EMG electrodes 

available for use, one that needs to be imbedded in 

the muscle mass i.e. needle electrodes and the others 

are the surface electrodes. This makes the sEMG an 

obvious choice as a control input signal because it 

eliminates the problems associated with surgeries 

and regular hygiene for the user of implanted 

electrodes. sEMG signal is an electric voltage signal 

with amplitude ranging between -5 and +5 [mV]. 

The sEMG signals are highly dynamic in nature 

which changes with different limb movements and 

required/applied forces for these movements and 

other tasks. The issue of muscle fatigue makes the 

sEMG signal further intricate. Therefore to have 

prosthesis with good control of hand/finger 

positions, required forces and at the same time that 

can compensate for the issue of muscle fatigue, the 

sEMG seems to be the best choice. Almost all of the 

currently available prosthetics using EMG or sEMG 
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sensors and compute some threshold value of this 

signal – for example the RMS value – to activate a 

pre-programmed motion and/or force set of the 

artificial prosthetic hand. The user only initiates the 

resulting motion/force, but the further control is not 

available which is quite different than what a 

healthy subject uses to control his/her hand. The 

natural hand of a non-amputee executes the complex 

motion sets by controlling the motion of the fingers 

at every instance in time. To mimic this 

characteristic of the natural hand, we propose to use 

dynamic models relating sEMG data with finger 

movement. The potential of such models is obvious 

from the operational point of view, but also allows 

the incorporation of muscle fatigue dynamics to be 

included in the control algorithm [9-13]. 

The control algorithm of a prosthetic hand can be 

divided into two parts. The first part is extracting 

information from sEMG signal to find the intended 

motion, and the second part is using this command 

signal to control a robotic hand. 

Previously there have been numerous efforts to 

extract the useful information the sEMG signals [5]. 

Some of these methods are based on the wavelet 

analysis, artificial neural networks, and other feature 

extraction methods to make use of sEMG for 

prosthetic control [5]. sEMG is presented as an 

autoregressive (AR) model with the delayed 

intramuscular EMG signal as the input in the 

research work of [6]. In our work, we rely only on 

sEMG since no injected electrodes will be used to 

obtain EMG signals. Hence the task is to develop a 

model and an estimation scheme for describing the 

dynamics of the skeletal muscle force and finger 

angles from the sEMG signals. Some of the recent 

efforts in this direction are evident in the research 

work of [7-13]. 

Present research focus on the dynamic modeling and 

estimation of the angles of the proximal 

interphalangeal (PIP) joint of the index and the 

middle finger with the corresponding sEMG signal 

and Robust Control design for prosthetic hand to 

follow this signal. Two different systems and 

experimental set-ups are used to acquire the data for 

the index and middle finger angles and the 

corresponding sEMG signals. For the index finger 

data an array of nine sEMG sensors is used to record 

sEMG signals and joint angles are recorded using a 

wheel potentiometer from the arm of a healthy 

subject. For the middle finger data an array of three 

sensors is used to record sEMG signals and joint 

angles are recorded using a NODNA X-IST  

2  EMG Angle Estimation Model 

The filtered sEMG and angle data is smoothed with 

a smoothing-spline curve fitting. Smoothing spline 

is a piecewise polynomial computed from a 

smoothing parameter     of 0.993 is fitted to the 
filtered sEMG and angle data. Smoothing parameter 

    is a number between 0 and 1. By varying the 

value of   from 0 to 1 we can change the smoothing 

spline. For     the smoothing spline is a least-
square straight-line approximation to the data, 

whereas for     it gives the "natural" cubic spline 

interpolant to the data [1]. Smoothing spline   is 

designed for a specific weight (  ) and smoothing 

parameter and minimizes the function   , which is 

given as: 

                
         

   

    
       (1) 

where    and    are predictor and response data 

respectively. By choosing a suitable value of the 

smoothing parameter   we make the error      

             
 

  and roughness   
   

    
    small. 

In our case we took the smoothing parameter   as 
0.993 [1]. 

Both the filtered and smoothed sEMG and angle 

data (input and output) are used to make model by 

applying System Identification (SI) techniques. The 
sEMG is the input to the system and the intended 

PIP joint angle is the output. Multiple linear and 

nonlinear models are obtained for modeling of 
sEMG and PIP joint angle signals for the index 

finger of the dominant hand of a healthy subject. 

Five linear and three nonlinear models are obtained 

for the input and output data set. 

The model order of the various models used in this 

work are as follows: linear models for the input and 

output data set, OE model of order 16, ARX model 
of order 18, ARMAX model of model order 16, 

State-Space model with subspace method (N4SID) 

of order 18 and a State-Space model with prediction 
error/maximum likelihood method (PEM) of order 

12 are obtained using SI, [2]. 

The nonlinear models for the input and output data 

set are obtained as, the nonlinear Wiener-
Hammerstein models with nonlinearity estimators of 

‘piecewise linear – pwlinear,’ ‘sigmoidnet,’ and 

‘wavelet network,’ [2]. 
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All these linear and nonlinear models are simulated 

and the simulated output i.e. estimated angle data 

and the measured angle data is used in an adaptive 

data fusion based algorithm to obtain the final 
fusion based output. The final fusion based output is 

used as a control signal to design a controller which 

controls the angles of the joint of the two link robot. 
Results are presented in the following parts. Fig. 1 

shows the measured and data fusion based angle 

signal. This signal is used as a control input for the 
controller. 

 

 

Fig. 7: Curve Fitted Vs. Data Fusion Based Angle 

Using Linear-Nonlinear Models. 

 

3 Prosthetic Hand Control 

The controller performance of a prosthetic hand is 

relying on two factors. Accurate intention 

estimation model and powerful control algorithm to 

which use the command signal from the estimation 
model and provide accurate movement for robotic 

part of the hand. The later part good performance 

requires the consideration of efficient dynamic 
models and sophisticated control approaches. 

Traditionally, control law is designed based on a 

good understanding of system model and 
parameters. Thus, a detailed and correct model of a 

robotic hand is needed for this approach [21, 22]. 

A finger can be considered as a 3 link robot, while 

in extracting the model for angle estimation, the PIP 
joint (the second) angle is considered, the third link 

angle normally has about 70% of the second joint 

angle and the first link angle is not considered in 
this research. As a result a two-link planar robot is 

considered as a plant to investigate the control 

approach performance. 

A dynamic model can be derived from the general 

Lagrange equation method. The modeling of a two-
link planar nonlinear robotic system with 

assumption of only masses in the two joints can be 

found in the literature, e.g., [3, 4]. However, in 
practice, the robot arms have their mass distributed 

along their arms, not only masses in the joints as 

assumed. Thus, it is desired to develop a detailed 
model for two-link planar robotic systems with the 

mass distributed along the arms. We present a new 

detailed consideration of any mass distributions 

along robot arms in addition to the joint mass. 
Moreover, it is also necessary to consider numerous 

uncertainties in parameters and modeling. Thus, 

robust control, robust adaptive control and learning 
control become important when knowledge of the 

system is limited. We need robust stabilization of 

uncertain robotic systems and furthermore robust 
performance of these uncertain robotic systems. 

Robust stabilization problem of uncertain robotic 

control systems has been discussed in [21-24] and 

many others. Also, adaptive control methods have 
been discussed in [21,23] and many others. Because 

the closed-loop control system pole locations 

determine internal stability and dominate system 
performance, such as time responses for initial 

conditions, papers [26,28] consider a robust pole 

clustering in vertical strip on the left half splane to 

consider robust stability degree and degree of 
coupling effects of a slow subsystem (dominant 

model) and the other fast subsystem (non-dominant 

model) in a two-time-scale system. A control design 
method to place the system poles robustly within a 

vertical strip has been discussed in [22, 23], 

especially [24] for robotic systems. However, as 
mentioned above, for accurate prosthetic hand 

control there is a need of a detailed and practical 

two-link planar robotic system modeling with the 

practically distributed robotic arm mass for control. 

Therefore a practical and detailed two-link planar 

robotic systems modeling and a robust control 

design for this kind of nonlinear robotic systems 
with uncertainties considered for robust control 

approach with both H∞ disturbance rejection and 

robust pole clustering in a vertical strip. The design 
approach is based on the new developing two-link 

planar robotic system models, nonlinear control 

compensation, a linear quadratic regulator theory 

and Lyapunov stability theory. 
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4 Modeling of Prosthetic Hand 

Systems 

The dynamics of a rigid revolute robot manipulator 
can be described as the following nonlinear 

differential equation [21, 22, 24]: 

                              (2) 

                           (3) 

where      is an n x n inertial matrix,         an n 

x n matrix containing centrifugal and coriolis terms, 

     an n x 1 vector containing gravity terms, q(t) 

an n x1 joint variable vector,    an n x1 vector of 

control input functions (torques, generalized forces), 

  an n x n diagonal matrix of dynamic friction 

coefficients, and        an n x 1 Nixon static friction 

vector. 

However, the dynamics of the robotic system (2,3) 

in detail is needed for designing the angle control, 

i.e., especially, what matrices       ,          and 

     are. 

Consider a two-link planar robotic system 

representing the prosthetic hand finger in Fig. 8, 

where the system has its joint mass    and    of 

joints 1 and 2, respectively, robot arms mass     

and      distributed along arms 1 and 2 with their 

lengths     and    , generalized coordinates    and 

   , i.e., their rotation angles,           , control 

torques (generalized forces)    and    ,           . 

 

 

Fig 8- A two link robot system representing 
prosthetic hand 

 

5 Robust Control 

In view of possible uncertainties, the terms in (2,3) 

can be decomposed without loss of any generality 

into two parts, i.e., one is known parts and another is 

unknown perturbed parts as follows [22, 23]: 

                         (4) 

where   ,   ,    are known parts,   ,   ,    are 

unknown parts. Then, the models in previous 
section can be used not only for the total uncertain 

robotic systems with uncertain parameters, but also 

for a known part with their nominal parameters of 

the systems. 

Following [24], we develop the torque control law 

as two parts as follows: 

                                 

               (5) 

where the first part consists of the first three terms 

in the right side of (5), the second part is the term of 

u that is to be designed for the desired disturbance 

rejection and pole clustering,   is the desired 

trajectory of , however, the coefficient matrices are 
with all nominal parameters of the system. Define 

an error between the desired    and the actual  as: 

           (6) 

From (2) and (4)–(6), it yields: 

                                       
                                                  (7) 

                 ,      

                         

                                (8) 

From [24], we can have the fact that their norms are 

bounded: 

                                 (9) 

Then, it leads to the state space equation as: 

                                    (10) 
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                             (11) 

    
  
  

     
 
 
                   (12) 

The last three terms denote the total uncertainties in 

the system. The desired trajectory    for 

manipulators to follow is to be bounded functions of 

time. Its corresponding velocity     and acceleration 

   , as well as itself    , are assumed to be within 
the physical and kinematic limits of manipulators. 

They may be conveniently generated by a model of 

the type: 

                                         (13) 

where      is a 2-dimensional driving signal and the 

matrices    and    are stable. 

The design objective is to develop a state feedback 

control law for control u in (7) as 

                           (14) 

such that the closed-loop system: 

                                     (15) 

has its poles robustly lie within a vertical strip : 

                                  (16) 

and a -degree disturbance rejection from the 

disturbance  to the state , i.e., 

                  
                     (17) 

                                 (18) 

we derive the following robust control law to 
achieve this objective is discussed in [20,24]. 

Consider prosthetic hand uncertain system (15) with 

(2)–(18) where the unstructured perturbations in (8) 
with the norm bounds in (9), the disturbance 

rejection index     in (17), the vertical strip  in 

(16) and a matrix    . 

With the selection of the adjustable scalars    and 

  , i.e., 

               ,                     (19) 

there always exists a matrix     satisfying the 

following Riccati equation: 

                      
  

 
       

 
  

  
    

 

   
                                 (20) 

where 

            
      
     

                           (21) 

Then, a robust pole-clustering and disturbance 
rejection control law in (7) and (14) to satisfy (17) 

and (18) for all admissible perturbations  and  in 
(11) is as: 

                            (22) 

if the gain parameter  satisfies the following two 
conditions: 

                                               (23) 

                        
  

  
             

                           (24) 

Proof for the approach is provided in [24]. 

It is also noticed that: 

     
  
   

                   (25) 

It is evident that condition (i) is for the    degree 

stability and  degree disturbance rejection, and 

condition (ii) is for the     degree decay, i.e., the left 

vertical bound of the robust pole-clustering. 

There is always a solution for relative stability and 

disturbance rejection in this form. It is because the 

Riccati equation (20) guarantees a positive definite 
solution matrix P, and thus there exists a Lyapunov 

function to guarantee the robust stability of the 

closed loop uncertain robotic systems. The 

nonlinear compensation part in (7) has a similar 
function to a feedback linearization.  
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6 Numerical Simulation 

Based on the proposed control approach, a two link 

robot is modeled considering uncertainties. Then the 

input signal from sEMG-Angle estimation model is 

used as reference signal to the plant and the 
performance is evaluated. 

The system parameters are: link mass:       
       , lengths            ,  angular 

positions           , applied, torques          . 

The initial states are set as              , and 

               . The parametric uncertainties 

are assumed to satisfy (11) with        ,        

,       . Select the adjustable parameters 

       ,         from (19), disturbance 

rejection index       , the relative stability index 

        , and the left bound of vertical strip 

        since we want a fast response. We 

solved the Riccati equation (20) 

to get the solution matrix P and the gain matrix as: 

   
             
            

  

                     

 

Numerical simulation is done in Matlab software. 

For the plant the above mentioned parameters is 
used. Two sets of simulation are done. In the first 

simulation nominal plant is used and for the second 

simulation the perturbed model considering 

uncertainty is tested. The input signal for both 
simulations is measured angles from the above 

mentioned experiments from PIP joint. For the third 

joint the 70% of the measured angle of PIP joint 
used which is a good estimate of that signal.  

The system response with nominal plant and 

perturbed plant to the input signal respectively are 

shown in Fig. 9 and Fig. 10. As it is shown the input 
and output signals are close and system is capable of 

following the command signal with sufficient 

accuracy. Obviously the system has a better 
performance in case of nominal plant compare to the 

perturbed model in which the uncertainties are 

applied.  

 

Fig. 9- System response to the nominal plant 

 

Fig. 9- System response to the perturbed plant 

 

7  Conclusion  

The dynamic modeling of the filtered and smoothed 

sEMG and PIP joint angle of the index and middle 

finger is achieved using SI with sEMG as the input 

and the joint angle as the output. Multiple linear and 

nonlinear models are obtained for the input and 

output data. To achieve a better estimate of the 

finger angles, an adaptive probabilistic Kullback 

Information Criterion (KIC) for model selection 

based data fusion algorithm is applied to the linear 

and nonlinear models outputs. The estimation 

method is mixed with a robust control algorithm for 

a two link robot to show the performance and 

functionality of the prosthetic hand. 

As this initial study shows potential in the pursuit of 

controlling an artificial hand on an instantaneous 

basis, we will further this work in the future by 

improving the data collection techniques and 

optimizing the experimental procedure as well as 

using other advanced control techniques as adaptive 

control. 
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