Ballistic Walking Design via Impulsive Control
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Abstract: Mathematical models of a biped and quadruped walking are considered. The planar five-link biped consists of a one-link trunk
and two identical two-link legs. In the single support motion (swing phase), the biped has five degrees of freedom and is described by a
system of nonlinear ordinary differential equations of the 10th order. These equations are written in a visible matrix form. A seven-link
planar biped with massless feet is also considered. In this paper, the swing motion of the biped is assumed a ballistic (passive) one. There
are no active torques in the interlink joints during the single support motion—only the gravity force and ground reaction forces are applied
to the biped. The problem of design of ballistic swing motion is reduced to the boundary-value problem for the system of nonlinear
differential equations with given initial and final configurations and the duration of the half-step. It is assumed that there is no friction in
the interlink joints (note that the friction in the human joints is very small). Therefore, in the ballistic swing motion the complete energy
of the system (kinetic energy plus potential one) is conserved and the system has the energy integral. Due to this fact some properties of
symmetry of ballistic motions are proved. Linearized model can be reduced to the canonical Jordan form. Then the linear boundary-value
problem can be solved analytically. Using numerical investigations of the linear model we have animated the biped walking, which occurs
“similar” to the human gait: the transferring leg moves over the support, the legs bend with knees forward, and the trunk makes one
vibration during one half-step. All these features have not been prescribed beforehand in the statement of the problem. Iteration process
is used to solve the nonlinear boundary-value problem. For some cases, several solutions of this nonlinear problem are found numerically.
The symmetry properties of the ballistic motions help to find numerically the solutions of this complex nonlinear problem. The ballistic
motion is also designed numerically for the three-dimensional biped model with 6, 8, 9, and finally with 11 degrees of freedom. The
double-support phase is assumed an instantaneous one. During this phase there is a collision of the transferring (swing) leg and the
support. Active impulsive torques are applied in the interlink joints at this instant. These impulsive torques and ground reaction forces are
described by delta functions of Dirac. Thus, with this impulsive control, most of the efforts are applied in the double-support phase.
Formulas for the energy cost of impulsive control actions have been found. Some problems of optimal distribution of the impulsive
actions between the joints are discussed. A planar seven-link model of biped with arms is considered. This model consists of a one-link
trunk, two identical one-link arms, and two identical two-link legs with point feet. Ballistic gait of this biped model is studied. The goal
of this study is to find the optimal amplitude of the arms swinging, minimizing the energy consumption. We show numerically the
existence of the optimal amplitude of the arms swinging. Ballistic walking of a quadruped is investigated too. Three types of quadruped
gaits, bound, amble, and trot, are considered. For each kind of the gait, ballistic locomotion is designed and energy consumption is
evaluated.
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Introduction Taking into account the opinion mentioned above, we study
locomotion with purely ballistic swing phases and instantaneous
double-support phases. It means there are no active torques in the
interlink joints during the single support motion. But at the instant
of the double support, the impulsive torques are applied in the
joints. These impulsive efforts are described by Dirac delta func-
tions.

The problem of the ballistic swing motion design is reduced to
the boundary-value problem for the equations, describing the
single support phase. The analysis of the infinitesimal double sup-
port is reduced to the study of the algebraic equations, describing
the jumps of the velocities under impulsive efforts. Our approach
can be considered as an asymptotic one because the impulsive
torques, describing by delta functions of Dirac, cannot be realized
in practice.

According to some authors [see, for example, Mochon (1981);
Mochon and McMahon (1980); McMahon (1984); Vitenzon
(1998)], human and animal motions comprise alternating periods
of muscle activity and relaxation. Perhaps for this kind of motion
less energy is consumed. Furthermore, they suppose that during
human walking, most of the efforts take place in the double-
support phase. Besides, in the human gait the time of the double
support is less than 20% of the whole step period.
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The problem of the ballistic motion design for a biped has
been stated by Formal’skii et al. (1975, 1977, 1978, 1980) and
Formal’skii (1978). Later it has been considered in a number
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Fig. 1. Scheme of the biped

of papers [see, for example, Mochon (1981); Mochon and
McMahon (1980); McMahon (1984); Formal’skii (1982, 1994a,b,
1997); McGeer (1989, 1990); Aoustin and Formal’skii (2008)]. In
the monograph (Formal’skii 1982), the results of the papers
(Formal’skii et al. 1975, 1977, 1978, 1980; Formal’skii 1978)
have been summarized and extended. Using ballistic motions, it is
shown in Aoustin and Formal’skii (2008) that the optimal ampli-
tude of arms swinging exists and it is found numerically. The
problem of ballistic walking design of a quadruped is studied in
Formal’sky et al. (2000) for different gaits.

Equations-of-Motion of Five-Link Biped

We consider the biped walking in the sagittal plane. The planar
five-link model contains the torso OC and two identical legs OBA
and ODE (see Fig. 1). Each leg consists of the thigh (OB and
OD) and the shin (BA and DE). All these five links are massive
and absolutely rigid. Neglecting the friction in the interlink joints
we assume them as ideal. This assumption comes from the fact
that the friction in the human joints is very small.

Seven generalized coordinates x, y, {5, o, &y, 3, and 3, de-
scribe the position of the biped in the plane XY (Fig. 1). Here x
and y are the Cartesian coordinates of the mass center of the body
OC. Let I'| and I, be the torques acting between the torso and the
thighs, I'; and I'y be the torques applied in the knee joints, and
R|(R\,R;,) and Ry(R;,,R,,) be the forces applied to the leg tips
A and E (Fig. 2). The walk modeled here consists of the alternat-
ing phases of single and double supports. In the double-support
phase, both legs are on the bearing surface (on the ground) and
the forces R, and R, are the ground reaction forces. During the
single support motion, one of the reaction forces R; or R, is the
ground reaction, but the other one equals zero.

Using the second Lagrange method we come to the motion
equations of the biped. Omitting the intermediate calculations, we
can submit these equations in a visible matrix form

B(2)Z + gFllsin z| + D()||]l| = C(2)Q (1)

Here

130 / JOURNAL OF AEROSPACE ENGINEERING © ASCE / APRIL 2010

Fig. 2. Torques and forces
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B(z)=symmetrical and positively definite inertia matrix of the
size (7X7); F=diagonal (7 X7) constant matrix of the potential
energy; D(z) and C(z)=matrices of the size (7X7) and (7 X 10),
respectively; and g=gravity acceleration. The matrices B(z), F,
D(z), and C(z) are not presented here because of their inconve-
nience. These matrices can be found in Formal’skii et al. (1975,
1977, 1978, 1980) and Formal’skii (1978, 1982).

We have to add to system (1) the conditions for fixation of the
supporting point foot in order to obtain a model of the swing
motion. But to obtain this model we can also exclude the ground
reaction force R, for the supporting leg from system (1) and put
for the swing leg R;=0. The scheme of the biped in the swing
motion is shown in Fig. 3.

In the swing motion, the point foot E is motionless. We as-
sume that it is connected with the bearing surface by an ideal
joint. But during the locomotion of a human or walking robot the
bearing surface does not keep the supporting legs. Thus, the
ground reaction in the point foot £ must be directed upward. In
the swing motion, the biped has five degrees of freedom and five
generalized coordinates: {5, oy, tp, B, and B, (see Fig. 3). Putting
the reaction force in the swing leg equals zero and excluding the
ground reaction force of the supporting leg from system (1), we
come to the equations of the swing motion in the following matrix
form:

H(Q{+ gL|sin | + M(Q)[1EF]| = NT 2

~—

Here
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Fig. 3. Scheme of the biped in the single support
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The matrix H({) of the kinetic energy is symmetrical and posi-
tively defined: H({)=H*({)>0 (asterisk means transposition).
The matrix L of the potential energy is a diagonal and constant
one: L=diag||l;]]=const. The matrix M({) is an antisymmetric
one: M(L)=-M*(L). All matrices H({), L and M({) are of the size
(5X5). N is a constant matrix of the size (5X4). The matrices
H({) and M(L) depend on the differences between the angles s,
oy, Qy, By, and B,, that is, on the interlink angles only. Matrix
H({) contains cosines of these differences; matrix M({) contains
sines. Having solved the matrix equation [Eq. (2)] we can check
whether the vertical component of the ground reaction is directed
upward and the supporting leg does not take off.

Problem Statement

The statement of the problem contains two parts. The one part
concerns the swing motion; the other part is about the double-
support phase.

Swing Motion

We assume that there are no active torques in the interlink joints
during the swing motion. Therefore, we call this motion ballistic.
However, active impulsive torques are applied in the instanta-
neous double-support phase. Thus, we consider ballistic (passive)
swing motion with I'(r)=0. The matrix equation of this ballistic
single support motion can be obtained from Eq. (2)

HQL + gLsin ¢l + M) =0 3)

77777777

Fig. 4. Boundary configurations of the biped in the swing phase:
i—initial configuration; f—final configuration

Let the biped at the start of the step (r=0) be in the initial
configuration shown in the left-hand side of Fig. 4 (position i). It
is described by the vector

£(0) = [[+(0), 1 (0), 22(0), 8,(0), B (0)[|" (4)

In this initial configuration, the front and hind legs are both
placed on the support.

At the time >0 the front leg remains on the support, while
the hind leg is being transferred. We want to transfer the biped
into the final configuration (at the end of the half-step) shown in
the right-hand side of Fig. 4 (position f) in fixed time r=T. This
final configuration is described by the vector

L(T) = [W6(T), 0y (1), 5(T), By (1), Bo(D* (5)

To obtain the cyclic gait on the horizontal surface this final con-
figuration should coincided with the initial one (at the start of the
half-step) with swapped legs. It means that the final configuration
[Eq. (5)] has to satisfy the following equalities:

W(7) =(0)

Oll(T) = 0‘2(0), 0‘2(T) = 0‘1(0)

B1(T) =B1(0), Bo(T)=P4(0) (6)

In the absence of the active torques the biped can be trans-
ferred from the given initial pose [Eq. (4)] to the given final pose
[Eq. (5)] by choosing five initial angular velocities of the links

$(0), @(0), 6x(0), By(0), By(0) (7

So, it is required to find the suitable vector £(0)=|s(0),a;(0),

,(0),8,(0),B,(0)||" of the initial angular velocities. Hence the
problem of the ballistic swing motion design is reduced to the
mathematical boundary-value problem for the matrix differential
equation [Eq. (3)]. We want to find the solution {(z) of Eq. (3)
under boundary conditions [Egs. (4) and (5)]. After solving the

boundary-value problem the vector £(0) of the initial angular ve-
locities becomes known. The vectors 7(0) and Z(7) of the initial
and terminal velocities become known too.

In the statement of the problem, we do not ensure that the
transferred leg tip moves above the support, the legs bend “knee
forward,” the body does not fall down, and the reaction force is
directed upward. But we check these conditions in the solution of
the boundary-value problem after solving it.

The first part of the problem statement is formulated above.
This part concerns the swing motion. But after the single support
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Fig. 5. Three subphases of the double-support phase

phase, the double support takes place. The second part of the
problem statement concerns the instantaneous double support.

Instantaneous Double Support

In the human double-support phase, there is a transition of the
support from one leg to another, and the duration of the double
support is less than 20% of the whole step period. In our state-
ment of the problem, the duration of the double support is as-
sumed an infinitesimal one. Thus, the double support is assumed
as instantaneous.

Let T be the instant when the double-support phase occurs. We
divide this phase into three subphases. These subphases are pre-
sented in Fig. 5.

First Subphase

Let us assume that 7-=7-0 is the instant just before the front leg
touches the ground. At the instant 7~ the leg tip A does not touch
the ground yet and the reaction force R (77)=0. Let us apply at
the instant 7~ impulsive torques in the four interlink joints, that is

F()=IA(-T) (8)
Here A(r)=Dirac delta function and
r=l

is the vector of the intensities of the impulsive actions (the
weights of Dirac A functions). At the instant 7~ the ground reac-
tion force in the hind leg becomes also impulsive under the im-
pulsive torques

R2x(T_) = II_QZxA(t - T_)’ RZ)(T_) = II_QQyA(t - T_)

Here I . and I  =intensities of the two components of the
ground reaction force. The vertical component R,,(T") of the
ground reaction has to be directed upward. Consequently, the in-
equality rRz)' =0 has to take place, and it is necessary to check this
inequality during the numerical investigations.

Let us integrate the matrix equation [Eq. (1)] on the infinitesi-
mal time interval (7-,7T). Then we come to the matrix algebraic
equation, which connects the vector z(7") of the velocities just
before the impulsive action (8) and the vector z% of the velocities
just after the impulsive action (8)

BNz - (1)) = (D)l ©)

Here z(T)=given configuration of the biped at the end of the
swing motion (in the double support); the vector Z(7~)=known
from the solution of the boundary-value problem; and

o= 55100, o i I

The difference 7—z(T") is the jump of the velocity vector. The
vector z“ contains seven unknown variables. For the swing phase
with supporting hind leg, the linear velocities X and y“ can be
expressed through the angular velocities of the links. Thus, sys-
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tem (9) contains seven scalar equations with 11 unknown vari-
ables, U, af, &3, BY, B3, 11, I, I3, Iy, Ty o and I .

Second Subphase

At the instant 7, just after the impulsive action (8), let a passive
impact of our biped succeed. It means there are no active impul-
sive torques in the interlink angles at the instant 7. At this instant
a constraint is imposed on the transferred leg, that is, its tip A
becomes stationary with respect to the support surface. It results
in action of an impulsive ground reaction force

Ri(T) = I (At =T), Ryy(T) = Ig JAt=T)

We suppose that the hind leg takes off and the reaction force
R,(T)=0. The velocities of the biped links change instantaneously
at the instant 7. Let z” be the vector of the velocities just after this
passive impact. Using the matrix motion equation [Eq. (1)], we
come to the matrix algebraic equation, which connects the vector
2% of the velocities just before the passive impact and the vector 7°
of the velocities just after this impact

Blz(D)][2" - 1= Clz(D)]iy (10)

Here

|*

IQ = 0’0’070’IR1X’IR1}”0’0

The vector z” contains seven unknown variables. But for the
swing phase with a supporting front leg, the linear velocities x
and y® can be expressed through the angular velocities of the
links. Thus, system (10) contains seven scalar equations with
seven unknown variables, q}b, olll’, a’;, B'f, BS, IRIx, and IRly' After
the second subphase with the passive impact the vertical compo-
nent of the velocity of the hind leg tip £ has to be directed up-
ward. The inequality I ,=0 has to take place, it is necessary to
check these conditions during the numerical investigations.

Third Subphase

After the passive impact the next single support motion starts.
But at the beginning of this next swing motion, at the instant
t=T*=T+0 (just after the passive impact) we apply another im-
pulsive actions in the four interlink joints

T'(t)=I'A(t=T") (11)
Here
I =0,6.0,0]

is the vector of the intensities of the impulsive actions. At the
instant T7"=T+0 the ground reaction force in the front leg be-
comes also impulsive

Ri{TY) =I5 At=T"), Ry(T") =1 At~ T*)

under the impulsive torques [Eq. (11)]. Using the matrix equation
[Eq. (1)], we come to the matrix algebraic equation, which con-
nects the vector 2% of the velocities just after the passive impact
and the vector z(T*) of the velocities just after applying impulsive
torques [Eq. (11)]

B[z(T)][(T") - "= Cl(D)]I, (12)
Here

o= I8 I L o ,0.0

1Y |*
Since we design periodic biped walking, the vector z(7*)=z(0).
At the same time, the vector Z(0) is known from the solution of
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the boundary-value problem for the swing motion. System (12)
contains seven scalar equations with six unknown variables, IT s
I I I Ty and I

The configuration of the biped does not change during these
three subphases because they are instantaneous. The velocities of
the links change only (instantaneously). Vectors 7 and z° are two
intermediate vectors of the velocities. Systems (9), (10), and (12)

contain 21 scalar equations and 24 unknown variables, {“, a{, 5,

1 B3 I b I I Ty Ty 0, 0, 65, B0 BY. T o Ty 11 IS,
I3, Iy, I . and I . Therefore, this system has an infinite number
of solutions. It is possible to choose a single solution by minimiz-
ing some function of the torque intensities. The vertical compo-
nents of the reaction forces have to be directed upward. In
addition, the vertical component of the velocity of the leg tip,

which takes off, has to be directed upward.

Energy of the Impulsive Torques

Let us evaluate the energy expenses A; of the control torque I',(7)
(i=1,2,3,4), acting on the time interval [7,,1,], by the following
integral:

5]
AFflm%ﬁwz (13)
1
Here 9, (i=1,2,3,4)=interlink angle, which is equal to the dif-
ference between the corresponding absolute angles. Let torque
I',(¢) be an impulsive one

() =LA(t—T) (14)

Here I;=intensity of the impulsive action and A(z—T)=Dirac
delta function, which does not equal to zero at some instant,
t;<7<t,, only. Then the energy expenses A; of the impulsive
torque [Eq. (14)] can be calculated by the following formula:

7+0
A= f |Fi(f)8[(t)|dt
70
18,(1=0) +8,(t+0)| if 8,(t—0)3,(t+0)=0
== 82(1—0) +82(1+0)

2 S 0)—5n— 0 if §,(t—0)3,(r+0) <0

I

(15)

Using expression (15) we can calculate the energy expenses A
corresponding to the control torques I',(¢) (i=1,2,3,4)

4
A=A (16)
i=1

Minimizing function (16) with respect to the torque intensities, it
is possible to find the optimal distribution of the impulsive
torques in the biped joints at the infinitesimal double-support
phase.

Properties of Symmetry of the Ballistic
Swing Motion

System (3) of the equations of the ballistic swing motion is con-

servative (it has energy integral). Due to this fact its solutions

have the following symmetry properties.

1. If the function {(¢) is a solution of system (3), then the func-
tion —{(7) is a solution of this system as well. The configu-

ration —{(¢) is symmetric to the configuration {(¢) with
respect to the vertical axis, passing through the ankle joint of
the supporting leg. It means that if the function {(#) describes
the forward locomotion of the biped, then the function —{(r)
describes the same locomotion of the biped but in opposite
direction.

2. If the function {(¢) is a solution of system (3), then the func-
tion {(~7) is a solution of this system as well. Each mechani-
cal conservative system with even Lagrange function has this
property. It is easy to prove properties in Items 1 and 2 by
substituting the functions —{(r) and {(-f) into system (3).
Along with the solution {(7) system (3) has the solution
{(T+1) because this system is an autonomous one. Conse-
quently, we obtain from Item 2 the following property.

3. If the function {(7) is a solution of system (3), then the func-
tion {(T—1) is a solution of this system as well. This property
means particularly the following. If the function {(r) de-
scribes the locomotion of our biped model from the given
configuration {(0) to the given final configuration {(T), then
the function {(7T—t) describes the locomotion from the con-
figuration {(7) as the initial one back to the configuration
£(0) as the final one (with the same stick diagram). From
Items 1 and 3 the next property follows.

4. If the function {(¢) is a solution of system (3), then the func-
tion —={(T-1) is a solution of this system as well.

Now let the boundary configurations [Egs. (4) and (5)] be
symmetrical with respect to the vertical axis, passing through
the ankle joint of the supporting leg, i.e.

£0)=-4(1) (17)

If the solution of the boundary-value problem [Egs. (3)—(5)]
exists and is unique, then, according to property in Item 4,
we obtain the following identity:

) =-4T-1 (18)

The stick diagram of the motion (sequence of the configura-
tions), satisfying identity (18), is symmetrical with respect to
the vertical axis, passing through the ankle joint of the sup-
porting leg. It follows from identity (18) that:

{(172)=0 (19)

Equality [Eq. (19)] means that at the instant 7/2 all five links
of the biped are placed on the vertical axis. If in the interval
0<t<T/2 the transferred leg bends knee forward, then in
the interval 7/2<<t<T it bends “knee backward.” Using
property in Item 4, we can prove the following assertion.

5. The equality {(T/2)=0 exists only for the symmetric solu-
tion {(r), satisfying identity (18). This symmetric solution
can be designed by extending on the interval [0, T] the solu-
tion with boundary conditions {(0) and {(7/2)=0.

In Fig. 6, the stick diagram of the symmetrical solution of
the nonlinear boundary-value problem [Egs. (3)—(5)] is shown.
This solution is obtained numerically for the five-link model
with some anthropomorphic parameters. We have chosen these
parameters for a person of mass M =75 kg and height of 1.75 m.
In this solution, the half-step length Ax=0.45 m and its duration
T=0.5 s. The boundary conditions are the following:

(7)) =v(0)=0
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Fig. 6. Stick diagram of symmetric solution of the nonlinear
boundary-value problem

0‘1(T) = B1(T) = 0‘2(0) = 82(0), 0‘2(T) = Bz(T) = 0‘1(0) = 81(0)
(20)

These equalities mean that in the boundary configurations the
torso is oriented strictly vertically and the legs are straight.

The gait shown in Fig. 6 does not look like human gait. All
links of the biped at the middle time r=0.25 s of the half-step
are oriented vertically. For the same boundary configurations
[Eq. (20)], we have also found numerically another solution of the
same nonlinear boundary-value problem—with the same half-step
length Ax=0.45 m, the same boundary configurations, and time
duration 7=0.5 s. This solution is an asymmetric one. In Fig. 7,
the stick diagram of this solution is shown.

The gait with this stick diagram looks like human gait; be-
cause the transferring leg moves over the support, it bends the
knee forward, the supporting leg remains almost straight all the
time, and the torso makes just one oscillation close to the vertical
(with small amplitude).

According to property 4 the function —{(T-7) is also a solu-
tion of the same boundary-value problem (with the same bound-
ary conditions). This solution describes the backward walking.
So, with given above boundary configurations [Eq. (20)], the non-
linear boundary-value problem [Egs. (3)-(5)] has at least three
solutions. For the boundary configurations, which are close to the
considered above [Eq. (20)], this problem has at least three solu-
tions as well.

Linearized Boundary-Value Problem
Let us linearize system (3) near the equilibrium state {=0

H(0){ +gL{=0 (21)

The resulting linear autonomous system (21) is conservative.
Therefore, using a linear nonsingular transformation with con-

)

/

t=0 t=0.1 t=0.2 t=0.3 t=0.4 =05

Fig. 7. Stick diagram of asymmetric solution of the nonlinear
boundary-value problem
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stant matrix R (p=||p;| is a new unknown vectorial variable with
i=1,....5)

{=Rp (22)

we reduce this system to the canonical form (to normal coordi-
nates) (Chetaev 1961, 1989)

pitolpi=0 (i=1,2) (23)

pi=ip;=0 (i=3,45) (24)
Here
M=o (i=1,2) and \;=—w? (i=3,4,5)
are the roots of the characteristic equation
det|[H(O)\ — gL = 0 (25)

The characteristic equation [Eq. (25)] has two positive )\,-:miz
(i=1,2) and three negative \;=—w; (i=3,4,5) roots because our
model with five links has three inverted links—the thigh, the shin
of the supporting leg, and the torso.

The boundary configurations for new systems (23) and (24)
can be calculated with the following formulas:

p(0)=R'5(0), p(T)=R"'YT) (26)

The formulation of the boundary-value problem for systems (23)
and (24) is the following. It is required to design the solution p(r)
of systems (23) and (24) with the boundary conditions [Eq. (26)].
Obviously, the required solution p(¢) has the form

_ pi(T)sin wit + p(0)sin[o(T-1)]

sin w,T

pilt) (i=12) (27)

{(T)sinh w;f + p;,(0)sinh[w,(T - 1)]

sinh ;T

pilt) =" (i=3,4,5) (28)
Solutions [Egs. (27) and (28)] of Egs. (23) and (24) with any
boundary conditions [Eq. (26)] exist and are unique if and only if

oT#wk (i=1,2; k=1,2,3,...)

It is possible to go back to the original variables using transfor-
mation (22).

Thus, formulas (27) and (28) describe analytically the solution
of the linear boundary-value problem. But it is necessary to carry
out the numerical investigations in order to clarify the properties
of the biped gait. Numerical solutions are obtained for the model
with anthropomorphic parameters with different step lengths Ax,
its duration times 7, and boundary configurations. We have used
the animation procedure to estimate the pattern of the synthesized
locomotion. It is possible to choose the boundary configurations
[Egs. (4) and (5)] and times T so that the corresponding gaits in
some sense look like human gait.

Nonlinear Boundary-Value Problem

In contrast to the linear boundary-value problem, the solution of
the nonlinear boundary-value problem can be found using an it-
erative numerical procedure only. It is important to choose suit-
able initial approximation for the angular velocities s(0), c,(0),
a,(0), B,(0), and B,(0) since, in other case, the iterations do not
converge or converge very slow.

Downloaded 10 Dec 2010 to 128.253.99.83. Redistribution subject to ASCE license or copyright. Visithttp://www.ascelibrary.org



ibbAA

t=0 0.5 t=0.55s

Fig. 8. Stick diagram with Ax=0.7 m, T=0.55 s, and {(0)={s(7)=
-0.075

In Fig. 8, the stick diagram of the gait, corresponding to
the solution of the nonlinear problem for the half-step length
Ax=0.7 m, duration T=0.55 s, and torso inclination (initial and
final) {s(0)=Us(T)=-0.075, is shown. (Recall that in this paper,
all parameters are chosen for a person of mass M=75 kg and
height of 1.75 m.) The legs in the boundary configurations are
straightened. One can see from Fig. 8 that the transferred leg
moves above the support with the knee moving forward [a,(7)
> 3,(1)]. The supporting leg remains all the time almost straight
[a;(£)=B,(1)]. The torso does not fall down making one oscilla-
tion near the vertical. For this case, the graphs of the horizontal
R, (t) and vertical R,,(f) components of the ground reaction force
of the supporting leg are shown in Fig. 9. The vertical component
R, of the ground reaction force is always positive during the
walking. Its maximal value is less than the biped weight Mg. Do
not forget that at the boundaries of the swing motion, impulsive
ground reaction forces are applied to the biped. Due to this fact
the theorem about the momentum is not violated. The sign of the
horizontal component R,, changes once per half-step as in human
walking. Initially it is directed against the biped motion and then
along the motion.
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Fig. 9. Time dependency of the ground reaction components in the
swing motion
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Fig. 10. Stick diagram of the walking of the seven-link model with
massless feet

Planar Seven-Link Model with Massless Feet

The statement of the problem for the seven-link model is similar
to the one for the five-link biped model without feet. Similarly the
problem of the swing motion design is formulated mathematically
as a boundary-value problem.

In the swing phase, the foot of the supporting leg is motion-
less; i.e., it is in equilibrium. But the ground reaction force is
applied to the foot of the supporting leg, and in order to keep this
foot in equilibrium we apply the torque in the ankle joint. This
torque has to compensate the torque due to the reaction force. If
the foot is massless, then its equations-of-motion become equilib-
rium conditions. The torques in the knee and hip joints are zero
during the swing motion similarly to the five-link model. Thus,
the motion of the seven-link model with the feet is not completely
ballistic. We have investigated the nonlinear boundary-value
problem for the seven-link model. Fig. 10 shows the stick dia-
gram of the gait generated for the model with the feet. The bound-
ary conditions are the same as above: Ax=0.7 m, 7=0.55 s, and
U(0)=(T)=-0.075. The legs in the boundary configurations are
straightened.

Optimal Amplitude of Arms Swinging for Biped
Walking

In this section, we consider planar model of a biped without feet
(with point feet) but with arms. This model consists of seven
links: a one-link trunk, two identical two-link legs, and two iden-
tical one-link arms. The dynamic equations for this model are
designed in Lagrange form. The structure of these equations is
similar to the structure of Eq. (1) or (2) (for the single support).
Ballistic gait of this biped model is studied (Aoustin and
Formal’skii 2008). The structure of the dynamic equations in the
ballistic swing motion is similar to the structure of Eq. (3). To find
the ballistic single support motion we assign the half-step dura-
tion 7 and the boundary configurations of the biped (Fig. 11). The
final configuration (at the end of the half-step) coincides with the
initial one (at the start of the half-step), but the legs and arms are
swapped. In these configurations, the arms are deflected from the
vertical. The problem of ballistic single support motion design is
reduced to the boundary-value problem. To obtain a cyclic gait
the seven-link biped is controlled via corresponding impulsive
torques at the instantaneous double support. These impulsive
torques are applied in six interlink joints: knee, hip, and shoulder
joints. For given boundary configurations and the half-step dura-
tion 7, infinity of the solutions exists to find the intensities of the
impulsive torques (as for the five-link biped). The unique solution
is chosen by minimization the energy cost function. This function
is calculated using formulas (15) and (16).
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Fig. 11. Boundary configurations of the biped with one-link arms:
i—initial configuration; f—final configuration

The goal of this study is to find the optimal amplitude of
the arms swinging, in other words to find the optimal deflection of
the arms in the boundary configurations. An optimization criterion
is the energy consumption. The physical parameters for a biped
are chosen from average human data for a person of mass
M =75 kg and height of 1.75 m. In Fig. 12, the energy consump-
tion (in N-m) as a function of the half-amplitude (in degrees) of
the arms swinging is shown. The results are obtained for the
half-step length Ax=0.45 m and duration 7=0.45 s. We see from
Fig. 12 that with amplitude 2 X35° the energy consumption is
minimal. It means that this amplitude is optimal for the chosen
half-step length and duration.

Thus, using ballistic trajectories and impulsive control, we
have shown numerically the existence of the optimal amplitude of
the arms swinging. The energy consumption is minimal if the
arms swing with this amplitude. The numerical study shows that
if the velocity of the biped decreases, the optimal amplitude of the
arms swinging increases.

Three-Dimensional Ballistic Walking of the Biped
Model with Many Degrees of Freedom

The investigation, described in this section, has been executed
together with Yuriy Zavgorodniy and Andriy Telesh from Otto
von Guericke University in Magdeburg (Germany). First of all,
we add to our planar five-link model (without feet and arms) one
degree of freedom in the ankle joint of the supporting leg. The
new generalized coordinate is the angle between the shin and the
vertical in the frontal plane. This new degree of freedom let the
biped model deviate from the sagittal plane and incline in the
frontal plane. Thus, due to this degree of freedom the motion
becomes three-dimensional. Now the biped model in the swing
motion has six degrees of freedom. To solve the new boundary-
value problem we choose as initial approximation of the five an-

gular velocities s(0), a;(0), a,(0), B,(0), and B,(0) the values
from the solution of the boundary-value problem for the previous
planar model with five degrees of freedom. In this case, the itera-
tive process converges to the solution quickly.

Then we add one degree of freedom in each hip joint. With
these two new degrees of freedom biped model in the swing
motion has eight degrees of freedom. Due to these new degrees of
freedom the transferring leg and the pelvis can be deflected in the
frontal plane during the locomotion. To solve the new boundary-
value problem we choose as initial approximation for the six an-
gular velocities the values from the solution of the boundary-
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Fig. 12. Energy cost versus amplitude motion of the arms

value problem for the previous three-dimensional (3D) model
with six degrees of freedom.

Then we add to our model one degree of freedom between the
trunk and the pelvis in the frontal plane. Now the biped model in
the swing motion has nine degrees of freedom. Then we add two
one-link arms. Each arm has one degree of freedom in the sagittal
plane relative to the torso. Thus, we obtain finally a model with
11 degrees of freedom.

For each new model with the larger number of degrees of
freedom we solve the corresponding boundary-value problem. As
the initial approximation for the new boundary-value problem we
use the initial angular velocities from the solution of the
boundary-value problem for the previous model with less number
of degrees of freedom. To see the locomotion of the model with
11 degrees of freedom we have animated this motion. The loco-
motion looks like human gait: the biped deviates little bit in the
frontal plane, the transferring leg moves over the support, it bends
the knee forward, the right and left arms move synchronously
with the left and right legs, respectively, each arm oscillates rela-
tive to the torso once per half-step, and the torso slightly oscil-
lates near the vertical.

It is difficult to design a mathematical model for the system
with many degrees of freedom based on the Lagrange formalism.
The Newton-Euler formalism (Schilling 1990) is used here for the
models with many degrees of freedom.

Ballistic Walking Locomotion of a Quadruped

Ballistic locomotion of the walking quadruped on an even hori-
zontal plane is investigated (Formal’sky et al. 2000). A quadruped
model consists of a body (platform) and four identical two-link
legs. Each leg of the quadruped model consists of a thigh and a
shin. Each thigh is connected to the body by a one-degree-of-
freedom rotating haunch joint and to the shin by a one-degree-of-
freedom rotating knee joint [Fig. 13(a)]. The axes of all eight
joints are parallel to the transverse axis of the quadruped’s body.
The body is symmetric with respect to its horizontal, longitudinal,
and transverse planes passing through the geometric center of the
body, which is also the center of mass of the body.

Three types of quadruped gaits, bound, amble, and trot, are
studied. None of these gaits complies with a flight phase, but they
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Fig. 13. Description of the studied quadruped and its gaits

all involve simultaneous and identical motion of two legs. The
swing phase is ballistic, i.e., no active control torques are exerted.
The ballistic motion is achieved due to appropriate choice of the
initial velocities of the links. These velocities result from the im-
pulsive active control torques and the ground reaction forces ex-
erted at the boundary instants of the swing phase.

In the locomotion called bound here, both fore legs move iden-
tically with respect to the body and both hind legs move identi-
cally as well. This means that the fore legs (hind legs) of our
quadruped are coupled [Fig. 13(b)]. We also suppose that at least
two legs (fore or hind) are always on the support; our bound does
not contain any flight phase. Obviously, a virtual leg can represent
each pair of the coupled legs (Raibert et al. 1986). Thus, the
model of the quadruped with coupled fore and coupled hind legs
is equivalent to the model with two virtual legs [Fig. 13(e)].

For the amble gait, both right legs (both left legs) move always
identically with respect to the body. This means that right legs
(left legs) are coupled [Fig. 13(c)]. We also suppose that at least
two legs (left or right) are always on the support. The simple
model with two virtual legs considered for the amble gait is
shown in Fig. 13(f).

For the trot gait, the diagonal legs move identically with re-
spect to the body, as is shown in Fig. 13(d). Moreover, we sup-
pose that either two or four legs are always on the support. A
simple model with two virtual legs is introduced to study the trot
gait [see Fig. 13(g)]. Each virtual leg is connected to the body at
its center of mass by a one-degree-of-freedom rotating joint. The
platform (body) of the quadruped for the trot gait with two virtual
legs always remains horizontal.

Thus, for all three kinds of quadruped gaits the modeling of a
four-legged robot gait is reduced to the modeling of a two-legged
robot walking.

For each type of quadruped gait, the mathematical model is
designed using the second Lagrange method. The boundary-value
problem for the single support motion design is formulated. From
a mathematical point of view, the design of the gaits is reduced to
a boundary-value problem for the differential equations (describ-
ing the single support motion of the quadruped without active
control torques) and the algebraic equations (describing the in-
stantaneous phase between neighboring ballistic motions). Sym-
metry properties can be proved for the quadruped ballistic
locomotion. These properties are similar to those formulated
above for the biped ballistic locomotion. Iterative procedure is
used to solve the nonlinear boundary-value problem. For all three
kinds of quadruped gaits, the ballistic walking is designed. In
Fig. 14, the stick diagram (sequence of the configurations) of two
half steps of the quadruped for the bound gait is shown. These
half steps are different.

The designed quadruped motions seem natural. All ballistic
motions are admissible because the swing leg tip moves over the
ground during the single support phase, and the reaction forces
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Fig. 14. Stick diagram of the quadruped’s two half-steps for the
bound gait

exerted by the ground satisfy the physical constraints. These prop-
erties are the intrinsic features of the quadruped ballistic motions;
they are not inferred by the statement of the problem. The coast of
the active impulsive torques like Egs. (15) and (16) is lower for
the amble and the trot than for the bound. It means that the amble
and trot gaits are more efficient.

Conclusion

The problem of the ballistic locomotion design for a biped is
formulated. In this problem statement, the locomotion is decom-
posed. First of all we design the single support motion consider-
ing the boundary-value problem. Then the impulsive control
torques applied in the double support can be found.

The boundary-value problem is investigated both analytically
and numerically. It has some symmetry properties, which are im-
portant to reveal the general pattern of the gait. For the linearized
equations-of-motion the solution of the boundary-value problem
is found analytically and it is almost always unique. For the com-
plete nonlinear boundary-value problem a numerical solution can
be found using an iterative procedure. Several solutions can be
feasible for the nonlinear problem with some given boundary con-
figurations.

In the numerical investigations, we have used anthropomor-
phic parameters. The boundary configurations and the duration of
the step can be chosen such that the legs move over the support
with the knee forward, the torso does not fall down and slightly
oscillates near the vertical once per half-step. The vertical com-
ponents of the ground reaction forces are directed upward both in
single and in double-support phases. It is necessary to point that
these “human” features of the gait are not prescribed by the prob-
lem statement. Hence they are intrinsic features of the ballistic
motion. The designed ballistic gaits are in some sense humanlike.
This resemblance gives additional hints to suppose that human
walk contains some intervals of movement, which is close to
ballistic.

The existence of the optimal amplitude of the arms swinging is
shown numerically using biped ballistic locomotion.

Ballistic movements of the 3D biped model with many degrees
of freedom are designed. Motion equations in the Newton-Euler
form are used to solve the boundary-value problem for this
model.

The problem of the ballistic locomotion design is stated and
studied for the different paces of quadruped: bound, amble, and
trot.
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