Exploring Time-Scales of Closed-Loop Decoder Adaptation in
Brain-Machine Interfaces

Amy L. Orsborn*, Student Member, IEEE, Siddharth Dangi*,
Helene G. Moorman, and Jose M. Carmena, Senior Member, IEEE

Abstract— Performing closed-loop modifications of a brain-
machine interface (BMI) decoder is a technique that shows
great promise for improving performance. We compare two
algorithms for implementing adaptations that update decoder
parameters on different time-scales (discrete batches vs. online),
and present experimental results of a non-human primate
performing a standard center-out BMI task. To ensure that
our experimental training models are representative of a broad
range of paralyzed patients, our decoders were initially trained
using neural activity recorded during subject observation of
cursor movement. We find that both closed-loop adaptation
algorithms can be used to boost BMI performance from 20-30%
to 80%, yielding movement kinematics similar to natural arm
movements. Based on insights derived from the performance of
each algorithm, we propose that a hybrid of batch and online
decoder adaptation may be the best approach.

I. INTRODUCTION

Brain-machine interfaces (BMI) aim to help patients with
motor disabilities by allowing users to control external ac-
tuators using their neural activity. BMI research has shown
tremendous potential, with many demonstrations of primates
and humans controlling devices using neural activity [1], [2].
However, significant challenges must be addressed before
these systems can become clinically viable.

BMI decoding algorithms are typically trained offline by
fitting neural activity against actual or desired movements.
Training decoders offline, however, ignores differences be-
tween closed-loop and open-loop BMI. During closed-loop
BMLI, the subject can alter their neural activity in response to
feedback to improve performance. Offline decoding does not
account for this difference, and as a result, offline prediction
power does not directly correlate with online performance
[3]. Recent work has instead taken a closed-loop view of

This work was supported in part by the Natiaonal Science Foundation
Graduate Research Fellowship (ALO, HGM), the DARPA Contract N66001-
10-C-2008 (JMC), and the National Science Foundation CAREER CBET-
0954243 (JMC).

*ALO and SD contributed equally to this work.

A. L. Orsborn is with the University of California, Berkeley -
Unviversity of California, San Francisco Graduate Program in Bio-
engineering, University of California, Berkeley, CA 94729 USA.
amyorsborn@berkeley.edu

Siddharth Dangi is with the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA 94720 USA.
sdangi@eecs.berkeley.edu

Helene G. Moorman is with the
Institute, University of California, Berkeley,
helenem@berkeley.edu

J. M. Carmena is with the Department of Electrical Engineering and
Computer Sciences, Helen Wills Neuroscience Institute and Program in
Cognitive Science, University of California, Berkeley, CA 94720 USA.
carmenal@eecs.berkeley.edu

Helen Wills Neuroscience
CA 94720 USA.

BMI, emphasizing the important roles of brain and machine
adaptation. For instance, adaptation of neural activity can
yield performance improvements [4]. Alternately, others have
shown that closed-loop decoder adaptation (CLDA), where
closed-loop errors are used to update the decoder, can also
yield performance improvements [1], [S]-[7].

The high-performance achieved with CLDA proves its
validity as a method for improving decoder performance.
However, there are many potential methods of performing
these adaptations. For instance, different methods have used
various time-scales for decoder updates — [5] updated de-
coder parameters in real-time, while [6], [7] used a batch-
based method with periodic decoder updates. The best time-
scale for online decoder updates has not been investigated.

Closed-loop decoder modifications and choice of training
algorithm may be particularly important for BMIs in disabled
patients. For patients that cannot move, initial decoders are
often seeded using neural activity evoked from imagined
or intended movements [8]. This seeding may yield less
robust initial performance than decoders seeded with actual
movement, since sensory feedback experienced during move-
ment contributes significantly to decoding power [9]. CLDA
methods do not depend, in theory, on the decoder’s initial
seeding. In practice, however, boosting performance starting
from a poor initial decoder may be more difficult, making it
critical to develop a high-performance CLDA algorithm.

Towards developing clinically viable, robust BMI systems
for patients, we present experimental results that investigate
the appropriate time-scale for CLDA. We compare batch-
based and online algorithms’ ability to improve decoder per-
formance using initial decoders seeded with neural activity
from movement observation.

II. KALMAN FILTER MODEL

The goal of a BMI decoding algorithm, or decoder, is
to estimate a subject’s intended movements from observed
neural activity. In our experiments, we used the Kalman
Filter (KF), a common decoder for BMI applications [10].
Let x; represent the kinematic state of a computer cursor and
let y, represent binned neuron spike counts. The KF assumes
the following state evolution and state observation models:

Ty = A.Tt_l + Wi
Y =Cay +qu

where w; ~ N (0, W) and ¢ ~ N(0,Q) are noise terms.
We use a position-velocity KF, as in [6], [7], where z; is
defined to include the cursor’s position and velocity in both

the horizontal and vertical directions, as well as a constant
1 to account for non-zero mean observations y; (i.e. the
neurons’ baseline firing-rates).

Since we aim to achieve BMI control that mimics natural
arm movements, the state transition matrices A and W
(which model cursor dynamics) are estimated using arm
kinematic data as the subject performs a center-out reaching
task (see Section IV). For all decoder adaptations, this
dynamics model is held fixed, and only the observation
matrices C' and (), (which model how neural activity relates
to cursor kinematics) are updated.

III. ONLINE TRAINING PARADIGMS

In offline decoder training, where intended kinematics
are explicitly observed, decoder parameters are estimated
to minimize the discrepancy between predicted and actual
arm kinematics. In the online regime, however, errors arise
due to the difference between the BMI's decoded kinematics
and the user’s intended (desired) kinematics, where the latter
is unobserved. Thus, to retrain a decoder online, we must
estimate the user’s intended kinematics.

For a standard center-out task, various groups have devised
clever methods of guessing a subject’s intended kinematics
[5]-[7]. We use the cursorGoal method developed by Gilja
et al., which assumes the monkey always intends to move
towards the target, and thus estimates intended velocities that
point toward the current target [6], [7].

Given an estimate of intended kinematics, there are mul-
tiple ways to adjust a decoder’s parameters. One paradigm
is the “’batch” approach, which updates decoder parameters
only after collecting a certain amount of data [6], [7].
Alternatively, one could apply parameter updates on a much
faster time-scale in the extreme case, during every KF
iteration. We explore methods for both approaches below.

A. Batch estimation of KF parameters

The batch approach of parameter estimation entails col-
lecting data and processing the entire batch at once to update
the decoder’s parameters. One standard batch estimate of the
KF parameters C' and @ is the maximum likelihood estimate:

C=YXT(xx")!
Q= %(Y - CX)(y —ox)T

where the Y and X matrices are formed by tiling recorded
neural activity and intended kinematics, respectively [11].

To implement batch-based decoder updates, the subject
uses a decoder to perform closed-loop control while cursor
kinematcs and neural data are collected. Once enough data
is collected, a new decoder is trained using the inferred
intended kinematics and observed neural activity.

B. Online updates of KF parameters

Decoder adaptation can also be implemented by updating
parameters at every KF iteration. The Adaptive Kalman
Filter, a recently developed KF decoder training variant
for closed-loop BMI [12], is one example of an adaptive
algorithm that updates decoder parameters in real-time.

The Adaptive KF’s update equations for C' and () are
CltD = o) _ | '0”2 (CO2 =)l)
Tt

QUMY = aQ + (1 — a)qigf)

where ¢, e y —C (i+D g, and x; is the estimate of intended
kinematics. The step-size p is typically chosen to be closer
to 0, and « is typically chosen closer to 1. The update (1) is
based on stochastic gradient descent, while the update (2)
effectively implements an exponentially weighted moving
average (see [12] for derivations).

To implement online updates, the subject uses the current
decoder to perform closed-loop control. At each time-step,
observed kinematics are transformed to intended kinematics,
and the decoder parameters are updated using the above
equations. The updated decoder is then used to predict cursor
kinematics at the next time-step, and so on.

IV. METHODS

Moveto oy Reach Hold
1 center 1 1 1 1

N
7

I 1 J] L)
Center Target Go At Reward

Appears Cue Cue Target

Fig. 1. Center-out task schematic (A) and structure (B).

One rhesus macaque (macaca mulatta) was trained to
perform a self-paced center-out (CO) reaching task to 8
uniformly spaced radial targets (Fig. 1A) with its right arm
inside a KINARM exoskeleton (BKIN Technologies, On-
tario). Fig. 1B outlines the task structure. After training, the
subject underwent neural implant surgery. Electrophysiology
and data collection were performed using methods outlined
in [4]. Briefly, arrays of 128 electrodes were chronically
implanted in both hemispheres, targeting dorsal premotor
(PMd) and primary motor (M1) cortical areas. Single and
multi-unit activity were recorded and sorted online (Plexon
Inc, Dallas, TX). All experimental procedures conformed to
the Guide for Care and Use of Laboratory Animals and
were approved by the University of California, Berkeley
Institutional Animal Care and Use Committee.

Closed-loop BMI control was implemented by using
PlexNet (Plexon Inc, Dallas TX) to stream neural data on
a local intranet from the Plexon system to a dedicated com-
puter running Matlab (The Mathworks, Natick, MA). The KF
was used for all decoding, using a 100ms bin width. Neural
ensembles of 24-33 units from the left hemisphere were used.
Consistent with a paralyzed patient model, decoders were
seeded using neural activity recorded during observation of a

>

100 Batch Refitting 1 Fixed
@ 75 |
g — /rwj,—\/_
5 50 | Hold error
g 25 I
o
0
0 10 20 30 40
Time (min)
B Batch Refits, Early Batch Refits, Late Fixed
: 3]
£
s 0 NS
>
-5
c 5 0 5 D '
X {cm)
Y Vel Weight
20
Refitting
w 20 10
s
= 0 A
5 0 12 24
Q
g | " Firing-Rate Weight
3 3
H o]
| 1
0
0 1 2 3 0 12 24
Reach Time (s) Time (min)

Fig. 2. Performance of batch CLDA for one representative session where
4 batch refittings were performed. (A) Task performance rates (quantified
using a 100-trial sliding average). Only successfully initiated trials were
analyzed. Note that the decoder was updated between the batch refitting
and fixed session. (B) Successful reach trajectories (4 per direction) at the
beginning and end of decoder adaptation (left and center), and immediately
after the decoder was held fixed (right). (C) Distribution of reach-times for
the first 100 trials during decoder adaptation, and after fixing the decoder.
(D) Progression of decoder weights (C' matrix terms) for one representative
neuron, for Y velocity (top) and baseline firing-rate states (bottom).

cursor moving through the CO task for 8-10 minutes (visual
feedback, VFB). The subject viewed artificially generated
movements (Gaussian speed profiles, straight reaches, 800ms
movement duration) while sitting in a primate chair (arms at
his side). Although no effort was made to constrain subject
behavior during this period, the subject typically sat quietly
and looked at the screen.

After a decoder was trained with VFB, the decoder was
retrained during closed-loop BMI operation using either the
batch or online adaptive methods (Sections III-A and III-B,
respectively). During BMI, the subject’s arm was at its side,
unconstrained within the primate chair. Batch sizes of 6-10
minutes were used. Learning rates for the online adaptive
updates were: p € [0.1,0.2] and o = 0.999834979 (corre-
sponding to a "half-life” decay of 7 min). Task requirements
were held fixed throughout the decoder refittings (target sizes
1.5-1.8cm radii, hold times 300-400ms, reach time-limit 2.5-
4s). Adaptation was performed until the subject achieved
control to all reach targets and performed approximately >
6-10 trials per minute. Algorithms were tested on separate
days. No effort was made to conserve units across days.

V. RESULTS

Figures 2 and 3 summarize typical session performance
of the batch and online decoder adaptation methods, respec-

>

100 | Success Fixed

Hold error

Adaptive 1
75

25 I

Percentage
o
=]

0 20 40 60 80 100 120
Time (min)

Adaptive, Early

Adaptive, Late Fixed

¥

Y Vel Weight

R

Adapt, earl
20 P! y

h

0 30 60

Ill 0 Firing-Rate Weight
hi I[nll

ol | DYl
2 4

Reach Time (s)

w

Percentage of Trials

0 10 20 30

Time (min)

Fig. 3. Performance of online CLDA for one representative session. Format
as in Fig. 2. (C) includes reach times for first and last 100 trials during
adaptation, and the first 100 trials after fixing the decoder. Note that time-
scale in the lower pannel of (D) is reduced to show more detail.

tively. Despite starting from poorly performing decoders,
both methods were successful in improving performance.
For the batch method, multiple batch sessions were required
to achieve adequate task performance (the example session
required 4 6-minute refitting sessions). Task performance
(Fig. 2A) for the batch method shows very non-linear ramps
due to the discrete decoder updates, and little improvement
was seen until after 2 batches. By comparison, the online
adaptive method shows slow, but steady, improvements in
task performance (Fig. 3A). Both methods improved reach
kinematics significantly, with reaches becoming straighter,
faster, and more stereotyped (Figs. 2B,C and 3B,C).

The batch method showed faster overall improvement. Ap-
proximating a linear slope of improvement (using start and
end performance calculated with a 100-trial sliding window),
batch improved at a rate of 1.34 + 0.39 %/minute (mean
+ standard deviation) (n = 5), while the online method
improved at 0.7140.11 %/minute (n = 2). However, because
the online method updates more frequently, the subject sees
improvement more immediately. The batch method requires
the subject to persist with a poorly performing decoder
during the entire batch session (6-10 minutes), which can
reduce the subjects level of task engagement. In the first
10 minutes, the subject attempted to initiate nearly twice
as many trials in the online sessions as compared to batch
(batch: 56 =21 (n = 5), online: 96.5 + 4.9 (n = 2)).

The ultimate goal of decoder adaptation is to create a
decoder the subject can easily control to perform many
tasks. In many cases, particularly unstructured tasks, the

subject’s intended kinematics cannot always be inferred.
Thus, it is important that a subject is able to maintain task
performance after decoder adaptation has stopped. To test
this, after the subject achieved adequate performance (>6-
10 trials/min), the decoder was held fixed as the subject
continued to perform the task. The batch method yielded
stable task performance (Fig. 2A) and reach kinematics
(Fig. 2B). The online adaptive method, however, showed
significant degradation in performance after the decoder was
fixed. While performance rates only show a slight drop,
movement quality is significantly reduced in the form of
more variable trajectories and slower reaches (Fig. 3B,C).
Inspection of the decoder weights across time (Fig. 3D) give
insight into one possible reason for this drop in performance.
Kinematic coefficients (e.g. y-velocity) for neurons show
clear trends over time, though somewhat noisy. Coefficients
for the baseline firing rates, which would be expected to
remain similar across the session, show high frequency
oscillations. This suggests the online adaptive method may
be overfitting the data in time, thus reducing the decoder’s
performance once fixed.

VI. DISCUSSION

We have demonstrated that CLDA methods operating on
different time-scales can improve online BMI performance,
thus showing these methods’ potential for producing high-
performance neuroprostheses for patients. Despite starting
with initial decoders that exhibited poor performance (20-
30%), closed-loop adaptations allowed the subject to achieve
performance over 80%. Furthermore, the subject was able to
generate straight, rapid (< 1.5s) movements to all targets,
approaching performance levels of natural arm movements.

Our results also highlight an important observation about
using CLDA when starting with poor initial decoders. Pre-
vious work using batch decoder adaptation that started with
moderatel closed-loop performance required only one batch
update to significantly improve performance [6], [7]. How-
ever, our results indicate that multiple batch updates are re-
quired when starting with significantly reduced performance.
This suggests that CLDA effectively boot-straps BMI perfor-
mance, and that significant improvements do not occur until
some minimum level of performance is achieved (see the
non-linear performance slope in Fig. 2). This phenomenon
may be due, in part, to the fact that poor initial decoder
performance can reduce subject engagement. Furthermore, in
response to low performance, subjects may alter their control
strategies more frequently, effectively adding variance to the
data and making it more difficult to update the decoder.
The fact that subject engagement increased significantly with
online updates indeed suggests that decoder improvement
may involve a positive-feedback mechanism.

To be useful in practical situations, an ideal closed-
loop adaptation algorithm should: 1) rapidly improve per-
formance, 2) actively engage the subject in the task, and
3) update the decoder so that the subject can maintain
performance after adaptation is stopped. While both the batch

and online adaptive methods do indeed improve performance,
neither method fulfills all of these requirements.

Batch adaptation achieves faster improvement and yields
stable performance after the decoder is fixed, but its low
decoder update frequency can reduce subject engagement
when starting with with poorly performing decoders. Online
adaptation also improves performance (albeit more slowly),
and its high decoder update frequency helps keep the subject
continually engaged. However, it overfits decoder parameters
on short temporal scales, leading to deterioration of perfor-
mance after adaptation stops. While the learning rate could
be reduced to avoid overfitting, this would be at the cost of
slowing performance improvements during adaptation.

Given that neither algorithm is optimal, we instead propose
a new, hybrid approach. Estimating decoder parameters with
batches of data avoids temporal overfitting, but reduces the
decoder update frequency. Using small batches reduces the
accuracy of parameter estimates, and thus is not a feasible
solution on its own. Instead, one could use small (1-2 minute)
batches to modify decoder weights using update equations
similar to those of the online adaptive method. This hybrid
algorithm may combine the observed benefits of batch and
online adaptive methods, yielding a more optimal approach
to rapidly and reliably boost decoder performance.

REFERENCES

[1] D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz, “Direct
cortical control of 3d neuroprosthetic devices,” Science, vol.
296, no. 5574, pp. 1829-1832, 2002. [Online]. Available:
http://www.sciencemag.org/content/296/5574/1829.abstract

[2] J. M. Carmena et al., “Learning to control a brain-machine interface
for reaching and grasping by primates,” PLoS Biol, vol. 1, no. 2, p.
e42, 10 2003.

[3] S. Koyama et al., “Comparison of braincomputer interface decoding
algorithms in open-loop and closed-loop control,” J Comp Neurosci,
vol. 29, pp. 73-87, 2010, 10.1007/s10827-009-0196-9.

[4] K. Ganguly and J. M. Carmena, “Emergence of a stable cortical map
for neuroprosthetic control,” PLoS Biol, vol. 7, p. €1000153, 07 2009.

[5] L. Shpigelman, H. Lalazar, and E. Vaadia, “Kernel-arma for hand
tracking and brain-machine interfacing during 3d motor control,” in
Proc. Neural Information Processing Systems, pp. 1489-1496, 2008.

[6] V. Gilja et al., “A high-performance continuous cortically-controlled
prosthesis enabled by feedback control design,” 2010 Neuroscience
Meeting Planner, San Diego, CA, 2010.

, “High-performance continuous neural cursor control enabled by
feedback control perspective,” Fronteirs in Neuroscience. Conference
abstract: Comp and Sys Neurosci (COSYNE), Salt Lake City, UT,
2010.

[8] J. P. D. Wilson Truccolo, Gerhard M. Friehs and L. R. Hochberg,
“Primary motor cortex tuning to intended movement kinematics in
humans with tetraplegia,” J Neurosci, vol. 28, no. 5, pp. 1163-1178,
January 2008.

[9]1 A. H. F. Aaron J. Suminski, Dennis C. Tkach and N. G. Hatsopoulos,
“Incorporating feedback from multiple sensory modalities enhances
brainmachine interface control,” J Neurosci, vol. 30, no. 50, p. 16777,
2010.

[10] W. Wu et al., “Bayesian population decoding of motor cortical activity
using a Kalman filter.” Neural Computation, vol. 18, no. 1, pp. 80—
118, January 2006.

[11] M. H. Hayes, Statistical Digital Signal Processing and Modeling.
Wiley, March 1996.

[12] S. Dangi, S. Gowda, R. Héliot, and J. M. Carmena, “Adaptive kalman
filtering for closed-loop brain-machine interfaces,” in Proc. of 5Sth
International IEEE EMBS Conf on Neural Eng, Cancun, Mexico,
2011.

