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Abstract—
Driven by performance demands and energy-efficiency re-

quirements, computational systems of the future will most likely
be composed of many heterogeneous processing units. In these
systems, only a small set of workloads can benefit from a custom
functional unit. FPGA-like reconfigurable architectures have the
ability to adapt and, thereby, meet the specific computational
needs of a wider range of workloads. As current research efforts
make these devices more accessible to application developers,
we expect these devices to find a place in the computational
paradigm in many different domains, integrated in a variety of
different ways. Hence, to cover the wide range of possibilities,
we need tools that automate the process of selecting, retargeting
and executing parts of an application on these reconfigurable
devices. Furthermore, there is also a need for domain specific
customization of the reconfigurable fabric, which will help to
maximize the benefits from reconfigurability.

Index Terms—heterogeneous computing, reconfigurable com-
puting, automated customization, reconfigurable architecture

I. INTRODUCTION

THE demand for computational power has constantly risen
over the years, driven by applications that are becoming
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increasingly complex. In the past, however, processor perfor-
mance kept abreast with this demand through architectural im-
provements and clock frequency scaling. As advancements in
semiconductor technology continue to add more transistors per
die, power and thermal dissipation concerns in modern proces-
sors have virtually put an end to frequency scaling. To sustain
the growth in processor performance, architects resorted to
adding multiple processing units on a single die. Additionally,
to improve the energy efficiency, modern microprocessors,
like the IBM/Sony’s Cell Processor [2], Intel’s Sandy Bridge
[3] and AMD’s Llano [4], are embracing heterogeneity. In
heterogeneous systems, the individual processing units are
specialized to handle specific types of computational tasks.
This permits the heterogeneous system to outperform and be
more energy-efficient than a homogeneous one. Keeping with
this trend, computation systems of the future are likely to
add many more heterogeneous units to satisfy the demand for
performance and energy-efficiency.

Programming modern heterogeneous systems already repre-
sent a significant challenge to developers, and current solutions
are often a mix of ad hoc approaches. To make application
development for these systems easier, developers need to be
assisted by a good programming model. Since heterogeneity
in computational systems is expected to grow in the future,
a healthy programming model should be able to target a
wide range of custom functional units and be easily extended
to add new ones. Merge [6] is a promising library based
programming model for heterogeneous, multi-core systems.
Merge’s library based approach enables it to target a wide
range of processing units and be extended to support new
ones as well. However, the Merge-framework currently does
not support reconfigurable platforms.

Reconfigurable platforms, like FPGAs, have shown the
ability to adapt to varying workloads and, thereby, improve
the energy-efficiency of computation for a wide variety of
applications. In the heterogeneous computation paradigm of
the future, the ability to reconfigure to match workload pattern
would be a welcome feature. However, platforms like FPGAs
are yet to gain a significant acceptance beyond certain niche
areas. The primary reason for this is, we believe, the difficulty
in their programming. When using Hardware Description
Languages (HDLs), the developer is exposed to the low
level hardware details like clock management, state machines,
pipelining and explicit memory management etc. One of the
research efforts to address this issue is CHiMPS [7], a C-to-
HDL compiler that permits developers to retarget C code to
FPGAs. In addition to making it easier to write programs for
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Fig. 1. Considering the computing paradigm of the future, we have Merge [6]
that helps developers write programs for heterogeneous hardware, CHiMPS
[7] that makes FPGA-CPU systems more accessible, and ReMAP [5] that
explores new reconfigurable architectures for future system. However, we still
need a system to help programers target reconfigurable, heterogeneous systems
of the future. We need a matching Runtime-and-Manager to control the con-
figuration of the reconfigurable fabric and enable them to communicate with
the other units in the system. We also need new reconfigurable architectures
that better adapted to certain specific domains.

FPGAs, CHiMPS instantiates multiple caches on the device,
which avoids computation stalls due to unavailability of data.
Hence, as research efforts mitigate the challenges in pro-
gramming reconfigurable platforms, like FPGAs, they would
increasingly become a part of the heterogeneous computational
paradigm.

Figure 1 shows a high-level organization of the reconfig-
urable, heterogeneous paradigm we expect to see in the future.
We believe that depending on the domain and the typical
computational workload therein, different systems would opt
for different approaches to integrate reconfigurable fabrics.
CHiMPS shows one approach, where an FPGA connects to
the CPU via the system bus forming a separate accelerator.
In ReMAP [5], a reconfigurable architecture designed to
accelerate applications on a large-core Chip Multi-Processor
(CMP), a specially designed reconfigurable fabric is connected
to a group of processors as a shared execution unit. Hence,
with a slew of different approaches, one topic that interests
us, indicated as P1 in Figure 1, is automating the selection,
retargeting and execution of parts of an application on the
reconfigurable fabric depending to specificities of the system
architecture. Another topic of interest, indicated as P2 in
Figure 1, is redesigning reconfigurable fabrics to make them
better at mapping the workload from a specific domain or for
specific purpose; ReMAP is a good proponent of this idea.

The remainder of this document is structured as follows.
Section II discusses the selected papers in details and essen-
tially draws on existing research to rationalize the proposed
research direction. In Section III, the final section, we propose
the direction for future research.

II. SURVEY OF SELECTED PAPERS

In this section, we summarize the work done in three papers
to gain an idea of what exists and to motivate the direction
for future research. The promising ideas we picked for dis-
cussion are: Merge–A programming model for heterogeneous
systems; CHiMPS–A compiler for programming FPGA-CPU

Merge
Program IA32, X3000

Function Variants 
(Written using CHI)

CPU Intel x3000 GPU

EXO Interface

Fig. 2. Sketch of Merge framework. The program, written in the map-reduce
pattern, is then compiled into tasks which are pushed onto the task-queue.
Work units are dynamically dispatched from the queue, distributing the work
among the processing units for which function variants exist in the library.
[6]

system using C; ReMAP–A novel reconfigurable architecture.
Figure 1 portrays the problems tackled by these papers and
our focus for future research.

A. Merge: A Programming Model for Multi-Core Heteroge-
neous Systems

Merge is a general purpose programming model targeting
heterogeneous multi-core systems. Merge proposes to replace
the ad hoc approaches to programming heterogeneous sys-
tems with a library-based methodology that can automatically
distribute work among the available processing resources. By
dynamically assigning tasks to processing units, deciding the
task assignment based on the specific characteristics of the
unit, Merge can achieve a high performance and energy-
efficiency. Being a library based approach, Merge has the
flexibility needed to target systems differing in architecture
and processing units.

To target a wide range of heterogeneous processing re-
sources, Merge uses EXOCHI [1] to interface to and write
programs for these resources. EXOCHI consists of two parts.
Exoskeleton Sequencer (EXO) enables the code running on
the CPU to interface to the other processing resources. And, C
for Heterogeneous Acceleration (CHI) permit the programmers
to write programs for these accelerators (function intrinsics).
Hence, an application written for Merge, when executing,
would run function intrinsics written using CHI on the pro-
cessing resources interfaced to using EXO.

The Merge framework, which can be seen on Figure 2,
consists of three components: (1) a high-level parallel pro-
gramming language which is based on the map-reduce like
pattern of functional languages; (2) a predicate-based library
system for managing and invoking functions, each of which
might have multiple variants targetting different architectures;
and (3) a compiler and runtime which together implement the
map-reduce pattern by dynamically selecting the best function
variant from the library to execute a given task.

Merge applications are written using a parallel programming
language that is based on the map-reduce pattern. In this
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Fig. 3. The hierarchical decomposition of tasks for the k-means algorithm.
Granularity variants exist for the given kernel and at each granularity variant,
there are multiple target variant that run on different accelerators. [6]

language, all computations are decomposed into a set of map
operations and a set of reduce operations. A map operation
splits a task into multiple non-overlapping units that can be
executed in parallel, and the reduce operation combines the
results from these individual map operations to obtain the
result for the original task. As shown in Figure 3, a Merge
application can use map operations recursively; hence, it can
be viewed as being composed of a hierarchical set of tasks
that break down the computation into successively smaller
operations, called granularity variants. For a given task in that
application, the Merge-Library contains multiple implementa-
tions, called target variants, which execute on different targets.
Hence, at each level in the hierarchy, the application can either
target one of the implementations available in the library or
choose to decompose that task further into smaller units.

In Merge, the variants for a function that target different
accelerators are contained in a predicate-based library. While
implementing a function variant, the programmer annotates it
by specifying the target architecture, and any other precon-
ditions needed for its correct execution. The annotations in
Merge are implemented as predicates or groups. Predicates
are logical axioms that include constraints on the structure
or size of inputs, and groups are collections of variants
formed based on the specific accelerator they run on. These
annotations are automatically processed at compile time by
the Merge-Library manager, the Bundler, to produce meta-
wrappers for the function. Functions performing the same
task share the same meta-wrapper. The programmer can now
use the meta-wrapper interface to invoke functions. Inside the
meta-wrapper, the conditions specified by the annotations are
used to decide on a specific function variant to be used for
a particular task invocation, thereby, eliminating the need for
selective compilation or manual dispatch code. Using these
meta-wrappers permits the Merge-Runtime to dynamically dis-
tribute work among the available heterogeneous accelerators
and also makes it easier to extend an existing system to include
new accelerators. The meta-wrappers produced by the bundler
also permit querying up target variants and calling a specific
variant; this gives the programmer full control over the variant
selection process when it is needed.

The Merge-Compiler is responsible for converting the map-
reduce statements into standard C++ code, which interfaces
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Fig. 4. Runtime variant selection and invocation flowchart. For every task in
the task queue, the runtime performs this lookup process to decide on function
variants to execute for that given task. [6]

with the Merge-Runtime system. First, the compiler trans-
lates the map and reduce statements into a multi-dimensional
blocked range, each part of which can potentially be executed
in parallel. This is possible because, the dataflow of a map-
reduce pair can be seen as an implicit tree with the map
operation at the leaves and the reduce operation at the joins.
Hence, each leaf represents a potentially independent task that
can be mapped to a function variant. In the next step, the
compiler inserts speculative function lookups to retrieve the
applicable variants for each map and reduce operation. The
results from the speculative lookup are used by the Merge-
Runtime to pick the best variant to use for the operation.
Each map or reduce operation, represented by a leaf or join in
the tree, is performed by a unit-node function; for multi-core
architectures, multi-node function that encompass multiple
leaves or joins, performing the equivalent of multiple unit-
node functions, can produce better performance. Hence, the
Merge-Runtime, besides selecting the best variant, also tries
to pick multi-node variants over unit-node ones. This selection
process is shown in the Figure 4.

One of the big concerns in Merge is the overhead of the
predicate dispatch mechanism and that of the Merge-Runtime.
The map-reduce semantics are granularity agnostic and too
fine granularity can degrade performance on platforms sensi-
tive to this runtime overhead. Therefore, on such platforms,
the decomposition needs to be cut-off at coarser granularities.
Single function library synthesis, where unit-node variants are
wrapped in loops to create coarser grained function variants,
is one technique used in Merge to ensure good performance.

The Merge framework was prototyped on two heteroge-
neous platforms and tested with a set of informatics bench-
marks. The benchmarks were ported into the map-reduce like
language and the libraries were enhanced with function vari-
ants that would use the different processing unit on the tested
system. On a platform consisting of an Intel Core 2 Duo CPU
and a 8-core 32-thread Intel Graphics and Media Accelerator
X3000, Merge was able to achieve between 3.6 to 8.5 times
the performance obtained from running the code on the CPU
alone. On a homogeneous 32-way Unisys SMP system with
Xeon processors, a performance boost between 5.2 and 22
times was achieved compared to running on a single processor.
These results were produced using the same implementation
of the benchmarks. Hence, it shows the capability of Merge
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to run the same application on differing architectures and use
the heterogeneous cores to generate meaningful performance
improvement for it.

Discussion: Merge’s library based approach permits it to
target a wide range of accelerators. The use of the EXOCHI
interface in Merge makes it easy to extend it to support new
accelerators that support the lightweight EXO interface. This
makes Merge a flexible programming model for heterogeneous
systems. But, Merge does have some drawbacks. Merge de-
pends on a central control entity to distribute and orchestrate
the application execution among the heterogeneous units.
Besides, consuming a processing resource, as the number of
processing units and the applications running simultaneously
on the system increases, this central control can potentially
become a bottleneck. In the current implementation, Merge
relies on the programmers to decide the hierarchy of function
variants. When the number of function variants increases, de-
ciding this hierarchy becomes harder; this is only compounded
when the hierarchy of variants change according to size of
the data that needs to be processed. Yet another constraint
with Merge is the choice of programming language. The
map-reduce like programming language requires programmers
to explicitly parallelize their applications by decomposing it
into a set of map and reduce operations. Chafi et. al [8]
use Domain Specific Languages (DSLs) with Scala as an
embedding language to program heterogeneous hardware. A
similar approach can be used to generate code for Merge’s
underlying framework, making it easier for application devel-
opers to use Merge. More importantly, for Merge to support
reconfigurable platforms, like FPGAs, an EXO interface needs
to be developed for them.

B. CHiMPS: Performance and Power of Cache-Based Recon-
figurable Computing

Field Programmable Gate Arrays (FPGAs) are composed of
distributed, configurable processing resources and memory re-
sources that are interconnected by a configurable interconnect
fabric. This configurability of the FPGA enables it to speed
up various applications by either organizing its processing
resources into deep pipelines or into customized circuits that
exploit the inherent parallelism in the application. The biggest
hurdle to the adoption of FGPAs into the general computing
paradigm is the difficulty in programming them. Programming
in HDLs is very different compared to general programming
languages like C. It requires knowledge of hardware concepts
like clock-management, state-machines, pipelining etc. Addi-
tionally, unlike in general programming languages, developers
need to even handle issues like scheduling of data movement
and memory access conflict resolution etc.

As stated in the paper, the key to efficiently supporting,
C-like, random memory accesses on an FPGAs is to employ
caches. CHiMPS, shown in Figure 5, is a C-to-FPGA compiler
that mitigates the difficulty of programming commercially
available FPGAs and supports caching on them. CHiMPS
builds multiple caches using the distributed Block RAMs
(BRAMs) in the FPGA. Each cache holds data from a par-
ticular data structure or memory region, and is customized
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Fig. 5. This is the CHiMPS toolflow. The CHiMPS compilation engine is
divided into two main sections: (1) Compiling from C to CTL and (2) Mapping
form CTL to VHDL. The VHDL is converted into an FPGA programming file
using a commercial CAD tool. Most of the CHiMPS modules have a part in
the multi-cache creation: DFG extraction, alias analysis, cache identification
and specification, resource estimation, hardware cache generation and post-
HW-generation optimization. [7]

to match the characteristics of memory operations on that
data structure or in that region. This avoids the bandwidth
bottleneck that might arise when using a single, monolithic
cache to feed a highly parallel computing fabric in an FPGA.
The CHiMPS compilation engine performs analysis and opti-
mizations in two stages that result in (1) adding multiple cache
banks, (2) creating multiple caches to increase the memory
performance. In the first stage, which is platform agnostic, it
compiles the application code into a Data Flow Graph (DFG)
which is represented using an intermediate language called
Chips Target Language (CTL). The second stage, which is
platform specific, generates the VHDL for the FPGA from the
CTL, optimizing the VHDL to get the best performance and
optimum resource usage on that specific FPGA. This two-stage
approach allows CHiMPS to easily be adapted for different
FPGAs. Figure 6 show the outputs generated from the two
compilation stages in CHiMPS for given input.

During the first compilation stage, CHiMPS converts all
control dependencies into data dependencies to generate the
CTL, which is specified in a static single assignment form to
increase computation and memory parallelism. To identify op-
portunities to create multiple, multi-banked caches, CHiMPS
identifies the distinct memory regions accessed in the function;
it then creates region-specific caches to hold data from these
region. A memory region is considered distinct if, during a
function call, the pointers pointing to it only point to a location
within that region. CHiMPS customizes each region-specific
cache according to the memory access pattern and the amount
of memory parallelism in that region. Additionally, within
each distinct region, CHiMPS identifies potential memory
access ordering conflicts between instructions, and mark these
dependencies in the CTL. This information ensures that the
generated circuit performs the same function as the C code.
For nested-loops, during the first phase, CHiMPS identifies the
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int foo(int w, int x,
        int y, int z)
{
   int u = x + y;
   int v = w - z;
   int s = z + v;
   int t = u & (y+z);
   int q = t | (s-v);
   return q;
}

(a) C Code

Enter foo; w,x,y,z
  reg u,v,s,t,q
  reg _f1, _f2
  1: add x,  y;  u
  2: sub w,  z;  v
  3: add z,  v;  s
  4: add y,  z;_f1
  5: add u,_f1;  t
  6: sub s,  v;_f2 
  7: or  t,_f2;  q
Exit foo; q

(b) CTL Instruction Blocks

Enter

2 Sub 1 Add 4 Add

3 Add FIFO 5 Add

6 Sub 7 Or

Exit

z w

w x y

u _f1v

s
_f2

t

(c) VHDL Blocks

Fig. 6. Outputs from stages of the CHiMPS toolflow. (a) A simple example C function. (b) The C function translated into CHiMPS Target Language (CTL)
instruction blocks. (c) The resulting circuit synthesized into the FPGA.

operations that can run in parallel. In cases where the inner
loop has tight, loop-carried dependencies, CHiMPS performs
loop interchanges to maximize the operation parallelism within
the inner loop; this would significantly speed up the loop
iteration when synthesized on the FPGA.

Once the DFG is generated in the CTL format, the nodes
of the DFG are instantiated as hardware instruction blocks
that are connected together according to the graph. The
execution scheduler for these hardware blocks is dynamic and
distributed, with each block starting execution as soon as its
inputs are available and feeding its output to the block it is
connects to. In this scheme, multiple instructions can execute
in parallel, exploiting both instruction-level parallelism and
pipeline parallelism better than on a conventional CPU. To
gain the most of this parallelism, the bandwidth of the connec-
tion between the computational resources and the caches must
be match the parallelism of the memory access operations. To
adjust the bandwidth of this connection, CHiMPS analyzes the
number of simultaneous reads and writes that can happen to
given memory region and decides the number of banks on
each cache. However, creating a large, multi-banked cache
using a large number of BRAMs would impair the clock
frequency at which the cache can operate. Hence, once the
number of banks is determined, CHiMPS resizes the cache to
ensure the best performance. This is done using a platform-
specific model that considers the correlation between the size
of the cache, expected miss-rate for that size and the frequency
of resulting cache. Additionally, to ensure good performance,
while constructing the port arbitration tree to a given cache
block, CHiMPS tries to unbalance the tree by giving higher
priority to reads and write from the inner loop over accesses
from the outer loop. Finally, in the Post-Hardware-Generation
phase, CHiMPS tries to improve the performance further
by employing two techniques: loop unrolling and tiling. In
loop unrolling, CHiMPS replicates the loop instruction blocks
and the associated caches to parallelize the computation. The
indices of the loop instruction blocks are adjusted so that
both the replicas can operate in parallel. In tiling, CHiMPS
tries to coarsely partition the data arrays to create separate
tiles. Each tiles is now a separate set of hardware blocks
and the associated caches that compute on an different array
partition. Tiling, hence, improves locality and exploit task-
level parallelism to improve performance.

CHiMPS was evaluated on a CPU-FPGA platform consist-

ing of an Intel Xeon processor and an FPGA connected using
the processor’s Front Side Bus (FSB). To guarantee good per-
formance, the FPGA has a low-latency, high-bandwidth access
to the main memory with a global, shared address space. The
first ensures that large chunks of memory can be accessed with
minimum latency; the latter avoids the overhead of copying
between different address spaces. For the evaluation, a set of
High Performance Computing (HPC) kernels were used with
sections of code that exhibit good amounts of parallelism being
executed on the FPGA and the rest of the code being run on the
CPU. For applications where CHiMPS was able to expose the
memory parallelism and, thereby, benefit from the many-cache
architecture, there was significant speed-up; more than 7 times
improvement compared to running on CPU for the benchmarks
considered. In experiments where CHiMPS was constrained
to generate a single cache or a cache with a single bank, the
speed up achieved was much lower, proving the benefit of the
many-cache architecture. Hence, parallelism in computation
infrastructure will not deliver maximal benefits unless it’s
supported with a sufficiently high bandwidth memory access,
as the many-cache architecture does. The experiments also
reveal that parts of the application executed on the FPGA
consumed much lower power; on an average, about 1/4th of
that when run on the CPU.

Discussion: CHiMPS compiler was able to generate from
a largely unmodified C code the bit-stream for an FPGA and
improve the performance for the evaluated benchmarks. The
emphasis in CHiMPS was not maximum performance, but the
ease of use. This supports the notion that the real problem with
FPGA like reconfigurable logic is their accessibility rather than
performance benefits. However, CHiMPS uses an FPGA as a
separate accelerator to speed-up whole functions. Hence, it
does not cover the case of using the FPGA as a functional
unit for fine-grained co-operation with the CPU. Additionally,
in a full system, to reap the benefit of reconfigurability, there
need to be an additional system that manages the configura-
tion of the FPGA, changing it depending on the workload’s
computational requirements.

C. ReMAP: A Reconfigurable Heterogeneous Multicore Archi-
tecture

ReMAP is a reconfigurable architecture that is geared
towards accelerating and parallelizing applications within a
large-scale, heterogeneous CMP. In a CMP, the reconfigurable
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fabric can be used to accelerate both the computation in single-
threaded applications and the computation and communication
in multi-threaded applications.

ReMAP consists of clusters of generic processing cores
and reconfigurable clusters, shown in Figure 7, composed
of processing cores that share a reconfigurable fabric. The
reconfigurable fabric in ReMAP is called Specialized Pro-
grammable Logic (SPL) and it is shared temporally in a
round-robin fashion among the four cores in the same clus-
ter. The SPL interfaces to the cores in the cluster as a
reconfigurable functional unit and it connects to the memory
system using a decoupled, queue-based architecture. To reduce
contention among the cores due to sharing, the SPL can also
be partitioned among the cores where each partition is used,
independent of one another, for different types of computation.

As shown in Figure 7, the SPL is a highly pipelined structure
that is composed of 24 rows. Each row contains 16 cells
and each cell is responsible for computing on 8-bits of data.
A cell performs the same computation on all the 8-bits it
receives. To perform this computation, each cell contains a
4-input LUT, some 2-input LUTs, a fast carry-chain, barrel
shifters and flip-flops. This design of the SPL enables it
to accelerate single-threaded applications. To support multi-
threaded applications, SPL contain additional structures like
the Thread-to-Core Table and the Barrier Table. The Thread-
to-Core Table enables fine-grained communication between
the cores that share the SPL; the Barrier Table assists the
threads running on these cores to synchronize at a barrier.

The row-based structure of SPL makes it easy to express
the computation requirement of any operation in terms of
the number of SPL rows that are needed. If an operation
needs more rows than is available to the core running that
operation, the function can be virtualized on the fabric. When
a function is virtualized, a single physical row is used to
perform the computation of multiple virtual rows at a cost

of performance. This ability to virtualize an operation means
that operations needing the SPL can continue to execute even
when the number of free SPL rows available is lesser than the
operation’s demand.

There are three main ways ReMAP’s architecture enables
it to accelerate computation. These are 1) using the SPL for
computation, 2) using the SPL for fine-grained inter-thread
communication, and 3) using the SPL for barrier synchroniza-
tion. Additionally, in the case of inter-thread communication,
the SPL can also be configured to perform some computation
on the data being communicated between the cores; and, in
the case of barrier synchronization, the SPL can be used to
perform a global function when the barrier is hit and to com-
municate the computed result to all the threads participating
in the barrier.

For computation workloads that are suitable to be executed
on the SPL, the structure of the SPL permits multiple opera-
tions to remain in flight and, hence, produce a higher effective
throughput compared to executing it on the processor core.
Consider the computation shown the flowchart in Figure 8(a);
if the computation of Block 2 is a good candidate to be
accelerated by the SPL, it can be performed in the SPL. This
has been shown on Figure 8(b). The benefit of using the
SPL in this manner, to accelerate single-threaded execution,
was also seen in the experimental results where performance
improvements of up to 4 times were obtained in certain cases.

ReMAP’s architecture also enables efficient fine-grained
communication among the threads sharing the fabric, creating
parallelization opportunities in multi-threaded applications that
are too costly for conventional software-based methods. The
Thread-to-Core Table in the SPL permits the output of an
operation started by one core to be sent to the output queue
of another core, hence, enabling fine-grained communication
between threads. Such fine-grained communication greatly
benefits applications having a producer-consumer type of
interaction between threads. In a classic producer-consumer
application, where the SPL acts as the communication queue
between the producer and the consumer, each thread can run
independently as long as the queue is not empty/full. Addi-
tionally, some of the computation from either the producer
or consumer can be pushed onto the SPL; here, the SPL
performs computation as the data moves from the queue-input
of one core to the queue-output of another. This ability of
the SPL to enable efficient, fine-grained communication, along
with computation, can benefit highly pipelined and streaming
applications.

For the computation on the flow-chart in Figure 8(a), Fig-
ure 8(c) illustrates how SPL can be used to accelerate it using
two threads working in a producer-consumer relationship.
Here, the computation of Block 1 is performed on one core
and that of Block 2 and Block 3 are performed on another
core. In this case, the SPL is used as queue to transfer data
between the two threads. In Figure 8(d), the computation of
Block 2 is now moved into the SPL where it is performed as
the data moves from the producer to the consumer thread.

The ability to perform some computation on the SPL is
extremely useful because it can help to balance the work done
at the producer and at the consumer. This alleviates stalls
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Fig. 8. Computation workload and Communication workload. (a) The flowchart of the processing task performed using the SPL, (b) Performing the
computation using the SPL only for computation, (c) Performing the computation using two cores of the SPL cluster in a producer-consumer configuration
and using the SPL as a queue, (d) Performing the computation in using two cores of the SPL cluster in a producer-consumer configuration and using the SPL
to perform computation on the data as it moves form the producer to the consumer. [5]

Compute Block A

Compute Block C

Compute Block A

Compute Block C

Compute Block B

(a)

SPL

Core0

Compute Block A

Compute Block C

Compute Block B

Compute Block A

Compute Block C

(b) Core0 Core3

SPL

Compute Block A

Compute Block C

Compute Block A

Compute Block C

Compute Block B

c)(Core3

Fig. 9. Barrier synchronization and barrier synchronization along with computation. (a) The flowchart of the task needed synchronization at a barrier, (b)
Performing the barrier synchronization alone using SPL (b) Performing barrier synchronization followed by some computation on the SPL. In this scheme,
the need for the second barrier is removed as the cores wait until the SPL finishes the computation task. [5]

due to the difference in the rate of data production and the
rate of data consumption, permitting more efficient pipelining.
Moving conditional statements into the SPL can reduce the
stalls due to branch misprediction. Performing computation
in the SPL decreases the number of instructions executed at
either the producer or the consumer, which improves their
execution times and also reduces the pressure on structures
like ROB, instruction cache etc. All these factors contribute
to make performing fine-grained communication on the SPL
very beneficial, as also seen from the experimental results.
The experimental results also reveal that using the SPL to
perform both communication and computation results in the
best performance and energy-efficiency.

Barriers are one of the most common means to synchro-
nize threads in multithreaded applications. The overhead of
performing barrier synchronization can be quite significant,
particularly when the thread count is high. The Barrier Table
in SPL enables it to synchronize among the threads executed
on cores attached to it. To perform barrier synchronization, the
SPL has a barrier instruction that remains blocked until all the
participating threads arrive at the barrier. Additionally, in cases
where a barrier is followed by a serial function performed on
one of the threads, this function can be synthesized on the
SPL with the computation output being communicated to all
the participant cores. In this manner, the SPL can also improve
upon dedicated schemes that support barrier synchronization
alone.

In the execution flow shown in Figure 9(a), the two threads
need to synchronize at two barrier. The SPL can be used to
perform the barrier synchronization, as shown in Figure 9(b).
However, the best performance is obtained when the SPL is
used to perform both the barrier synchronization, as well as,
the computation in Block B, as shown in Figure 9(c). In this
case, the need for the second barrier is also averted as the
threads remain blocked until the SPL communicates the result

of the computation. The experimental results reveal that using
the SPL to perform barriers synchronizations improved the
performance of selected benchmarks. However, the best per-
formance and energy-efficiency is obtained while performing
both the barrier synchronization and the computation.

Discussion: ReMAP manages to improve the performance
and energy-efficiency for both single-threaded and multi-
threaded benchmarks using a specifically designed reconfig-
urable fabric. The row-based reconfigurable fabric, which
is different in comparison to that of an FPGA, exemplifies
the benefits of redesigning the reconfigurable fabric to suit
different processing needs. However, currently, ReMAP has
no compiler support and the benchmarks used for the test
had to be manually partitioned to be run on the SPL cluster
and normal cluster. Hence, it is yet unclear if a compiler can
be developed that will exploit the full potential of a highly
flexible architecture like ReMAP. Without compiler support,
the benefits of ReMAP would remain, largely, inaccessible to
developers of applications.

III. FUTURE RESEARCH DIRECTION

As noted in ReMAP [5], reconfiguration platforms can
provide high performance and energy efficient computation
on workloads that maps well onto them. This makes them
very interesting computing platforms for data centers and
mobile devices where power and energy-efficiency are major
concerns. However, in spite of their suitability, FPGA like
reconfigurable platforms have not gained much acceptance,
except for certain niche areas like high performance computing
or some ad hoc application specific computing.

We believe that one of the possible reasons for this trend is
the lack of suitable programming models that cover platforms
like FPGAs, thereby, making it harder for application devel-
opers to use them. Merge [6] provides a library based pro-
gramming model for heterogeneous systems that, we believe,
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can be extended to enable the integration of reconfigurable
units, like FPGAs. The other, perhaps more serious, problem
that limits the visibility of FPGAs as a general computation
platform is the incompatibility of high-level languages in von
Neumann model to program it. CHiMPS [7], the C to FPGA
compiler, was able to generate from a largely unmodified C
code FPGA bit-stream that produced a significant performance
improvement, compared to running the C code on the CPU.
With a lot of the difficulties in programming being mitigated
and due to the inherent energy efficiency of FPGAs over CPUs,
it seems inevitable that reconfigurable fabrics, like FPGAs,
would gain popularity in the heterogeneous computational
paradigm. Hence, in general, our objective is to work on
problems relating to adding reconfigurability into the hetero-
geneous computing infrastructure of the future.

The problem we see is that integrating reconfigurability into
the computing paradigm, however, will most likely be domain
dependent. In domains like high-performance computing or
cloud computing, the volume of data being computed upon
is typically quite large. Hence, the computation kernels that
can be run on the reconfigurable fabrics might be working
on a huge amount of data, perhaps, working in parallel to
and independent of the CPU for a significant amount of time.
This suggests that adding a reconfigurable element like an
FPGA as a separate accelerator might be a good approach
in these domains. However, in other applications like mobile
computing, where the amount of data processed is small,
the objective might be to assist the main processor and,
thereby, increase the performance and energy-efficiency of
computation. Hence, in the mobile domain a good approach
might be to integrate the reconfigurability into the main
processor, permitting fine-grained task assignment and data
sharing between the processor and the reconfigurable fabric.

The question of how and where to integrate the recon-
figurable elements can also depend on the typical workload
handled by the system. A good example to elucidate this is
a project we are working on where we attempt to accelerate
databases that use solid-state disks as the back-end storage
media. Database queries like table scans have a huge amount
of parallelism, and for data-analytics they form a significant
portion of the system workload. For these queries, the data
access is the bottleneck, with the limited bandwidth on the
interface to the back-end storage being the main culprit.
In a solid-state disk, the data is stored on multiple flash
chips and hence can be accessed in parallel. Therefore, in
order to accelerate these database queries, we integrated an
FPGA close to the flash media, connecting it directly to
the flash controllers. While executing a query, the host-
processor configures the FPGA resources to perform some
of the computation close to the data and, thereby, reducing
the amount of data that needs to be sent over the interface.
Based on the objective to accelerate table scans, the operations
mapped on the FPGA were projection, some filtering and
some aggregation operations performed on the database pages.
This choice of operations was based on their suitability to be
mapped efficiently on the FPGA and the need to reduce the
total data communicated over the interface.

Hence, considering different scenarios, there are a plethora

of different schemes for integrating a reconfigurable fabric
into a system. Depending on the specificities of the domain,
the computational workload and how the reconfigurable fabric
has been integrated, the kind of computation that can be
beneficially accelerated using the reconfigurable fabric varies.
Hence, to cover the wide the range of possibilities, we need
to develop tools that will help us automatically identify and
retarget parts of the application to be executed on the recon-
figurable fabric. In addition to this, we also need to design
runtime systems that will manage the configuration of the
reconfigurable resource and schedule tasks to be run on it. This
is one topic we would like to look into during my research.

Another topic that interests us is designing reconfigurable
fabrics that can efficiently map the workloads from a given
domain, like mobile computing, better than the commercial
FPGAs available today. The problem we see is that the design
focus of FPGAs has mostly been flexibility. A good indicator
of this is that reconfigurable tile in the FPGA is designed
for computation on bits rather than on bytes or words as
processors cores are. This suggests that there might be a
scope to modify the FPGA’s reconfigurable tile to make it
more suitable to map computation task on. ReMAP’s [5]
reconfigurable tile, which looks very different to an FPGA
tile, supports this argument. In markets where the computation
workload can vary significantly and energy-efficiency is key,
like in the mobile computation space, reconfigurable fabrics
tailored to specific needs on the domain can be better to help
reap the benefits of reconfigurability.
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