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Abstract— This paper presents an approach to the devel-
opment of bipedal robotic control techniques for multiple
locomotion behaviors. Insight into the fundamental behaviors
of human locomotion is obtained through the examination of
experimental human data for walking on flat ground, upstairs
and downstairs. Specifically, it is shown that certain outputs
of the human, independent of locomotion terrain, can be char-
acterized by a single function, termed the extended canonical
human function. Optimized functions of this form are tracked
via feedback linearization in simulations of a planar robotic
biped walking on flat ground, upstairs and downstairs — these
three modes of locomotion are termed “motion primitives.” A
second optimization is presented, which yields controllers that
evolve the robot from one motion primitive to another — these
modes of locomotion are termed “motion transitions.” A final
simulation is given, which shows the controlled evolution of a
robotic biped as it transitions through each mode of locomotion
over a pyramidal staircase.

I. INTRODUCTION

The study of bipedal robotic locomotion has a rich history.
An enormous variety of control approaches have been devel-
oped, including: passivity control [1], [2] and passive walkers
[3], computation of zero-moment point [4], and clever use
of compliance [5], [6], among others. Robotic stair-climbing
has been achieved in [7], [8]. Bipedal robots are even now
available [9] both commercially and for research. Impacts ex-
tend beyond the field with significant advances in prosthetic
devices [10], [11], [12] and exoskeletons [13].

The quintessential model of bipedal locomotion — the hu-
man body — has an even richer history. Thousands of years
of evolution has rendered the human locomotion system a
highly effective, low-level control system. We suggest that
examination of this system will yield unparalleled insight
into the design of bipedal robotic locomotion controllers.
Granted, the physical human system, which utilizes 57 mus-
cles in locomotion [14], is far too complex to replicate with
current hardware and computational capabilities; however,
we claim that one can construct a low-level representation
of the human locomotion system. That is, certain outputs of
the human locomotion system can be represented as second
order system responses.

This paper presents two main results; the first is an
extension of [15], in which the author presents a method
of automatically obtaining robotic walking controllers, via
an optimization, from a set of human walking data. In the

Department of Mechanical Engineering, Texas
A&M University, College Station, TX 77843, e-mail:
{mjpowell,huihuazhao,aames}@tamu.edu

The work of M. J. Powell is supported by NASA grant NNX11AN06H.
The work of A. D. Ames is supported by NSF grant CNS-0953823.

present paper, it is shown that an augmentation of the op-
timization can be successfully applied to multiple modes of
locomotion. Specifically, the presented technique yields robot
locomotion controllers for walking on flat ground, upstairs
and downstairs. The second result is a method of obtaining
controllers which evolve the robot from one locomotion
mode to another; that is, controllers which yield transition
modes between walking on flat ground, and traversing stairs.
The combination of these two results is a collection of
controllers, automatically obtained from optimizations about
human data, which form a continuous, multi-modal system.

The study begins with examination of the human loco-
motion system. An experiment is performed, which yields
human xyz-position data for flat ground walking, walking
upstairs and walking downstairs; this data forms the foun-
dation of our control approach. Using the method of [15],
it is shown that certain outputs of the human data for flat
ground walking, can be characterized by the response of a
linear spring-damper system under constant force; this result
is extended to accommodate walking upstairs and downstairs.
Specifically, the extended canonical human function (2) is
shown to represent sets of data, from all three modes of
locomotion of interest, with high correlation in each case.
The fact that the same function can be applied to different
modes of locomotion further illustrates the validity of the
proposed low-level representation of the human system.

A classification scheme for hybrid systems — the meta-
hybrid system — is presented, in which a distinction is
made between primary and auxiliary modes of locomotion,
which are termed motion primitives and motion transitions,
respectively. Motion primitives are fundamental modes of
locomotion; the three motion primitives of this study are:
walking on flat ground, walking upstairs and walking down-
stairs. To switch between different motion primitives in a
stable manner, auxiliary modes, termed “motion transitions,”
are introduced.

Implementing the extended canonical function via feed-
back linearization, stable locomotion is achieved on a planar
bipedal robot in simulations of each of the three motion
primitives. Motion transitions are used to construct sim-
ulations which show the composition of multiple motion
primitives together; that is, a simulation is given which shows
the controlled evolution of a biped as it ascends and then
descends a staircase.

II. HUMAN LOCOMOTION DATA

For guidance and insight in the control design process, we
turn to the most prevalent source of information on bipedal



walking found in nature — the human body. The following
sections provide an overview of the analysis and the insights
obtained through examination of the data.

A. Human Locomotion Experiments

A set of four human subjects participated in this
study; each was outfitted with 19 LED sensors placed
at key locations on the body, as illustrated in Fig. 2.

Fig. 1: Human experiment for
walking upstairs.

As a test subject
performed the desired
task, data were collected
from these sensors via
the Phase Space Motion
Capture System [16].
An experiment consisted
of a single test subject
performing three distinct
modes of locomotion:
walking on flat ground,
ascending a stairway and
descending a stairway.
The stairway used in this
experiment has a 0.25
meter stair height and a
0.27 meter stair depth.

For this paper, we selected the subject whose data contained
the least noise; and as we will discuss in the proceeding
subsections, the analysis of these data forms the basis of
our locomotion controller design.

B. Automated Domain Breakdown

Here, the domain breakdown specifies the beginnings and
ends of steps in human data. The domain breakdown is
traditionally obtained via a position threshold which spec-
ifies when the heel is on the ground; however, we present
an alternative method, which involves the examination of
acceleration, rather than position, data to identify the specific
times associated with maximum heel acceleration. The max-
imum heel accelerations occur prior to heel-ground impact
and as the heel lifts.

This method is similar to the analysis of foot-ground
forces, which is common in the biomechanics community
[17], [18]. The general idea in these experiments is to collect
force data from subjects walking on force-plate-forms, and
then determine the domain breakdown through the periods
of time in which the force on the plate is minimal. The
advantage of using forces or accelerations, as opposed to
position thresholds, is that the domain break down process
is performed without user input, and thus, can be applied
more readily to different sets of data.

The domain breakdown plays a critical role in the human-
inspired locomotion controller design process; that is, the
complete-step time intervals obtained through the domain
breakdown specify the intervals of data over which our
function fitting method is valid.
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(a) Fitted hip position
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(b) Fitted nonstance slope
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(c) Fitted stance knee angle
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(d) Fitted nonstance knee angle

Fig. 2: Fitted extended canonical human functions and cor-
responding human data.

C. Extended Canonical Human Function

In [19], it is shown that certain kinematic outputs of
human walking can be represented by a single, universal
function termed the “canonical human function” — which
is the solution to a system of linear spring dampers under
constant force. Examination of the data for walking up and
down stairs, however, reveals a need for the augmentation
of this function. It is found that both walking up and down
stairs can be considered as the response of a spring-damper
system to a constant force with sinusoidal excitation, which
has the form

y =e−ζωn

(
c0 cos(

√
1− ζ2ωnt) + c1 sin(

√
1− ζ2ωnt)

)
+ c2 cos(ωt) + c3(ωn, ω, ζ, c2) sin(ωt) + y0. (1)

Intuitively, one can consider the constant force as gravity and
the sinusoidal excitation is incurred via the elevation change
of the impact surface (stairs). Manipulation of (1) yields the
following equation, which we term the extended canonical
human function:

yH(t) = e−a1t(a2 cos(a3t) + a4 sin(a3t)) + (2)
a5 cos(a6t) + κ(α) sin(a6t) + a7.

where κ(α) = (2a1a5a6)/(a21 + a23 − a26). In the proceeding
subsection, it is shown that the extended canonical human
function represents, with high correlation, certain outputs of
human locomotion data.

D. Function Fitting

We now seek various constraints of the human data which
seem to describe the fundamental outputs of the human
locomotion system. A total of four kinematic constraints are
required for the 4-DOF robot model in consideration. The
constraints which seem to most fully describe the human



locomotion system are: the forward position of the hip,

phip = Lc sin(−θsf ) + Lt sin(−θsf − θsk),

where Lc and Lt are the lengths of the calf and thigh,
respectively; the nonstance slope,

mnsl =
pxnsf − pxhip
pznsf − pzhip

,

which defines the slope of a virtual line segment connecting
the hip and the non-stance foot; the stance knee θsk; and the
non-stance knee, θnsk. These constraints are illustrated on
the robot model, in Fig. 3(c).

To fit a function to the data, we find the set of parameters
ai which minimizes the error between the function and the
data; mathematically, this can be written as an optimization
problem

min
{ai}7i=1

K∑
k=1

(yd(τ [k], ai, . . . , a7)− x[k])2, (3)

where τ [k] and x[k] represent the time and human data,
respectively, with k ∈ [1, . . . ,K] ⊂ Z an index for the K
data points, and yd(·) the fitting function with parameters
a1, . . . , a7. The parameters obtained through this process
are given in Table I, together with the correlation of each
function to the corresponding set of data. Additionally, the
functions for each kinematic constraint and each locomotion
behavior are plotted with the corresponding data in Fig. 2.
These functions are used in the development of locomotion
controllers, as described in section IV.

III. ROBOT MODEL

Naturally, we choose to create a robot based on the
human test subject. To reduce computational intensity, while
preserving the form of the human lower-body, we construct
the model as a serial chain of rigid links. Each link l has
a length Ll and a mass ml, which is a “lumped”, or point,
mass located a distance rl from the base of the link. The
resulting model configuration is shown in Fig. 3(a), while
the mass and length distribution is shown in Fig. 3(b). The
specific values of these parameters are obtained by applying

TABLE I: Fitted parameter values for human functions.
yd1 = a1t, yd2 = yH(t) given in (2)

f. a1 a2 a3 a4 a5 a6 a7 Corr.
pfghip 0.921 0 0 0 0 0 0 0.9982
puship 0.273 0 0 0 0 0 0 0.9954
pdship 0.357 0 0 0 0 0 0 0.9976

mfg
nsl -1.135 0.062 6.495 0.217 0 0 0.150 0.9995

mus
nsl -0.515 0.057 5.515 0.162 0.046 14.864 -0.017 0.9996

mds
nsl 0.475 0.242 6.937 0.149 0.008 23.294 -0.076 0.9999
θfgsk 2.475 -0.188 10.248 -0.011 0 0 0.358 0.9861
θussk 2.013 1.028 3.705 0.639 0.023 14.375 0.514 0.9994
θdssk 1.775 -2.383 0.6909 -8.130 -0.130 11.374 2.852 0.9390
θfgnsk -0.849 -0.288 9.131 -0.123 0 0 0.593 0.9976
θusnsk 0.089 -0.850 5.367 -0.161 0.157 14.268 1.046 0.9996
θdsnsk -1.222 0.330 6.266 0.312 -0.066 15.422 1.289 0.9999

(a) Robot configuration. (b) Robot mass-length. (c) Robot outputs.

Fig. 3: The modeled robot’s configuration, mass & length
distribution, and virtual constraints.

Winter’s [20] mass and length distribution to the human test
subject.
Modeling Assumptions As is common in the robotic litera-
ture [21], we assume that each leg terminates in a point foot,
and the evolution of the biped consists of alternating phases
of single and double support. In single support, the support
leg, labeled the “stance” leg, is pinned to the ground, while
the “non-stance” leg swings freely. Double support phases
occur instantaneously and effect a relabeling of the legs, i.e.
the previous stance leg becomes the new non-stance leg and
vice-versa.
Single Support Dynamics. To obtain the equations of mo-
tion for the continuous phase of the robot model, we choose
to use the method of Lagrange; specifically, we compute the
Lagrangian L of this system as:

L(q, q̇) = K(q, q̇)− V (q), (4)

where K(q, q̇) is the kinetic energy and V (q) is the potential
energy of the system. The Euler-Lagrange equations,(see
[22]), can then be used to obtain the dynamic model:

D(q)q̈ +H(q, q̇) = B(q)u (5)

with inertia map D(q) and torque distribution map B(q), and

H(q, q̇) = C(q, q̇)q̇ +G(q)

containing terms resulting from the Coriolis effect and
gravity; C(q, q̇) can be found using standard methods [22].
Manipulation of (5) leads to the control system for single
support, FG:

ẋ = f(q, q̇) + g(q)u, (6)

where f(q, q̇) and g(q) are defined as:

f(q, q̇)=

[
q̇

−D−1(q)H(q, q̇)

]
, g(q)=

[
0

D−1(q)B(q)

]
. (7)

Double Support Dynamics. As indicated in the model-
ing assumptions, the double support phase occurs instanta-
neously; therefore, the dynamic response is modeled as an
impact on the system. Specifically, the method of [23] is
used, in which plastic rigid-body impacts are modeled as
impulse responses. To apply this method, it is necessary to
assume that the stance foot is free to move; this requires the
augmentation of the configuration space Q to include the
position of the stance foot. Let p be the xz-position of the



stance foot, then the generalized coordinates can be written
as: qe = (px, pz, q) ∈ Qe = R2 ×Q.

Without loss of generality, we assume that the values of
the extended coordinates are zero throughout the gait, i.e. the
stance foot is pinned at the origin. Therefore, we introduce
the embedding ι : Q → Qe defined by q 7→ (0, 0, q);
which associates the generalized coordinates with the shape
coordinates.

The impact model [23] under consideration assumes that
an impulsive force is applied at the non-stance foot upon
impact with the ground. Therefore, let Υ(qe) be the planar
position of the non-stance foot relative to the position of the
stance foot, p. Let J(qe) = dΥ(qe) be the Jacobian of Υ.
The impact map gives the post-impact velocity in terms of
the pre-impact state:

q̇+ = P (qe, q̇
−
e ) = (8)

(I −D−1(qe)J
T (qe)(J(qe)D

−1(qe)J(qe))
−1J(qe))q̇

−
e

with I the identity matrix.
To affect the modeling statement that the legs be

“switched” at impact, and thereby reduce the complexity
of the model, a coordinate transformation R (i.e., a state
relabeling procedure) is introduced. The practice of leg
switching is common in bipedal robotic literature [24] and
can be implemented in the reset map as follows:

∆(q, q̇) =

[
R 0
0 R

] [
π ◦ ι(q)

π∗ ◦ P (ι(q), ι∗(q̇))

]
, (9)

where ι∗ is the pushforward of ι and π is the canonical
projection associated with ι with pushforward π∗. The reset
map (9) maps the robot from a double support phase to a
single support phase.

IV. CONTROLLER DESIGN

The purpose of this section is to specify a controller, u,
for the given control system (7). Motivated by the desire to
obtain human-like, bipedal robotic locomotion, we seek to
construct a controller which drives outputs of the robot to
corresponding outputs of the human. Formally, we seek a u
which guarantees that ya(q) → yd(t) as t → 0, where ya

is the actual value of the constraint on the robot and yd is
the value of the extended canonical human function. As the
dynamics of the robot model are highly nonlinear, the natural
choice of control method for this system is Input/Output
Linearization [25].
Parameterization of Time. Attracted by the perks of au-
tonomous control, we introduce a state-based parameteri-
zation of time in our system; this is a common practice
in [26], [21]. Examination of human data reveals that the
forward position of the hip evolves in an approximately-
linear manner with respect to time, that is phip(t, vhip) ≈
vhipt, where phip denotes the forward position of the hip
and vhip denotes the forward velocity of the hip. Taking
advantage of this observation, the following parameterization
of time is formed:

τ(q) =
pRhip(q)− pRhip(q+)

vhip
. (10)

where pRhip is the forward position of the robot’s hip at the
beginning of the current step, and vhip is the forward velocity
of the human hip, obtained from the locomotion data.
Controller Specification. With the parameterization of time
in place, the control law can be formed. The construction of
this control law uses the human walking functions considered
in Sect. II. In particular, in that section we found that human
outputs are described by the human walking functions, or
that we can write:

pdhip(t, vhip) = vhipt, md
nsl(t, αnsl) = yH(t, αnsl),

θdsk(t, αsk) = yH(t, αsk), θdnsk(t, αnsk) = yH(t, αnsk),
(11)

for yH the canonical walking function in (2) and where, for
example, αnsl ∈ R7 are the parameters in this equation. Note
that all of the parameters can be combined into a single of
parameters: α = (vhip, αnsl, αnsk, αsk) ∈ R22. With these
functions in mind, we define the (relative degree 2) actual
outputs of the robot to be the output function considered
in Sect. II and the desired outputs to be the outputs of the
human as represented by the walking functions:

ya,2(q) =

 mnsl(q)
θsk
θnsk

 , yd,2(t) =

 md
nsl(t, αnsl)
θdsk(t, αsk)
θdnsk(t, αnsk)

 .
(12)

Similarly, with the goal of controlling the velocity of the
robot, we define the relative degree 1 outputs to be the
velocity of the hip and the desired velocity of the hip:

ya,1(q, q̇) = dphip(q)q̇, yd,1 = vhip. (13)

The goal is for the outputs of the robot to agree with the
outputs of the human, motivating the final form of the outputs
to be used in feedback linearization:

y1(q, q̇) = ya,1(q, q̇)− vhip, (14)

y2(q, q̇) = ya,2(q, q̇)− yd,2(τ(q)) (15)

As y1(q, q̇) is the forward velocity of the hip, the system has
a mixed relative degree. Group the output functions as:

y(q, q̇) = (yT1 (q, q̇), yT2 (q))T , (16)

where y1 and y2 are the relative degree one and two outputs,
respectively. The feedback linearization controller, u(q, q̇),
can now be stated as:

u(q, q̇) = −A−1(q, q̇)

([
0

LfLfy2(q)

]
(17)

+

[
Lfy1(q, q̇)

2εLfy2(q, q̇)

]
+

[
2εy1(q, q̇)
ε2y2(q)

])
,

with control gain ε and decoupling matrix A(q) given by

A(q, q̇) =

[
Lgy1(q, q̇)
LgLfy2(q, q̇)

]
The goal of Sect. V will be to determine the parameters,
α, of this control law to achieve different walking behaviors
based upon the human data.



V. HYBRID AND META-HYBRID SYSTEMS

In this section, it is shown that primary modes of bipedal
locomotion - such as walking, running, standing, jumping
and traversing stairways - can each be represented by a
unique hybrid control system. However, control of functional
bipedal robots requires dominion over multiple primary
modes of locomotion. Therefore, to develop a functional
locomotion control scheme, one must introduce auxiliary
hybrid systems, which evolve the state of the robot during
transitions between primary modes. To this end, we propose
the concept of a meta-hybrid system, which consists of both
primary and auxiliary hybrid systems.

A. Hybrid Systems

The next step in the modeling process is to develop an
abstract mathematical representation of the dynamics of the
robot. Given the Lagrangian and impact dynamics of the
robot model in Section III, a natural choice of mathematical
representation for this model is a hybrid system, or system
with impulse effects [24], which exhibits both continuous
and discrete dynamics.

Definition 1: A hybrid control system is a tuple,

H C = (D, S,∆, f, g, U),
where
• D is the domain with D ⊆ X a smooth submanifold of

the state space X ⊆ Rn,
• S ⊂ D is a proper subset of D called the guard or

switching surface,
• ∆ : S → D is a smooth map called the reset map,
• (f, g) is a control system on D, i.e., ẋ = f(x) + g(x)u,
• U ⊆ Rm is the set of admissible control.
A hybrid system is a hybrid control system with U = ∅,

e.g., any applicable feedback controllers have been applied,
making the system closed-loop. In this case,

H = (D, S,∆, f),

where f is a dynamical system on D ⊆ X , i.e., ẋ = f(x).

Hybrid Period Orbits and the Poincaré Map. In order to
establish the stability of k-periodic orbits, we will use the
standard technique of studying the corresponding Poincaré
map. In particular, taking G to be the Poincaré section, one
obtains the Poincaré map, P : G → G, which is a partial
map defined by:

P (z) = c(τ(z)).

where c(t) is the solution to ẋ = f(x) with c(0) = R(z)
and τ(z) is the time-to-impact function. In particular, if
z∗ is a k-fixed point of P (under suitable assumptions on
z∗, G, and the transversality of O and G) a k-periodic
orbit O with z∗ ∈ O is locally exponentially stable if and
only if P k is locally exponentially stable (as a discrete-time
dynamical system, zi+1 = P (zi)). Although it is not possible
to explicitly compute the Poincaré map, one can compute a
numerical approximation of this map through simulation and

thereby test its stability numerically. This gives a concrete
method for practically testing the stability of periodic orbits.
Hybrid System for the Biped. Given the preceeding defi-
nitions, we can now build a hybrid system representation of
the robot model of this study. Formally, we begin by writing
the hybrid control system for the robot as:

H CR
h = (DRh , SRh ,∆R, fR, gR, UR), (18)

which depends on a unilateral constraint function, h, that
represents the environment, or terrain of the hybrid system.
Specifically, h is the height of non-stance foot above the
walking surface, e.g. a staircase or flat ground; h character-
izes the allowable configuration, i.e. the domain, which is
given by:

DRh = {(q, q̇) ∈ TQ : h(q) ≥ 0} . (19)

The guard is just the boundary of the domain with the addi-
tional assumption that the unilateral constraint is decreasing,
i.e., the vector field is pointed outside of the domain, or

SRh =

{
(q, q̇) ∈ TQ : h(q) = 0 and

∂h(q)

∂q
q̇ < 0

}
. (20)

The remaining elements are specified by the dynamics of the
robot; that is, they are intrinsic to the model and consistent
for all hybrid system representations of the robot, yet they
are independent of the terrain. These elements are given by
• ∆R is the reset map — corresponding to the (impact

equations) in the double support phase — as defined in
(9),

• (fR, gR) is a control system on DR — which governs
the evolution of the single support phase — as defined
in (7).

• UR = R4, as we assume full control authority.
For the hybrid control system H CR

h , we apply the human-
inspired control law (17) to obtain a hybrid system:

H R
(h,α) = (DRh , SRh ,∆R, fRα ), (21)

with
fRα (q, q̇) = fR(q, q̇) + gR(q, q̇)u(q, q̇).

Here, we have made the dependence of fRα on the parameters
α ∈ R22 of the human walking functions explicit (note that
fR also depends on the control gain ε, but since the same
gain will be used in all cases for the robot it is not explicitly
stated). The end result of the modeling process is a hybrid
system H R

(h,α) that depends on both the terrain it is walking
in (through h) and the parameters of the human inspired
control α.

B. Meta-Hybrid Systems.

A meta-hybrid system is a hybrid system of hybrid sys-
tems, which contains multiple locomotion behaviors and
transitions between these behaviors.

Definition 2: A meta-hybrid system is a tuple,

MH = (Γ,M ,T )
where



• Γ = (V,E) is a directed graph, with V a set of vertices,
or nodes, and E ⊂ Q × Q a set of edges; for e =
(q, q′) ∈ E, denote the source of e by sor(e) = q and
the target of e by tar(e) = q′.

• {Mv}v∈V is a collection of motion primitives, each
represented by a hybrid system:

Mv = (Dv, Sv,∆v, fv, Uv).

• {Te}e∈E is a collection of motion transitions, repre-
sented by hybrid systems of the form:

Te = (Dtar(e), Star(e),∆tar(e), fe).

That is, Te has the same domain, guard and reset map
as Mtar(e), but has a different vector field fe.

It is important to note that the meta-hybrid system of a
hybrid system, except that we have placed explicit restric-
tions on the structure of this system so as to be applicable
to bipedal robots that switch between different walking
behavior. In particular, as will be seen, we will construct
three motion primitives and transitions behaviors to form a
meta-hybrid system as illustrated in Fig. 4.

VI. MOTION PRIMITIVES & TRANSITIONS

In this section, we will explicitly construct a meta-hybrid
system for a bipedal robot, with the motion primitives—
walking on flat ground, walking upstairs and walking
downstairs—and transitions between these behaviors. The
behavior of the robot performing these transitions and motion
primitives will be supported through simulation results. More
formally, the goal of this section is to construct a meta-hybrid
system for the bipedal robot:

MH R = (ΓR,MR,T R).

Since the three motion primitives we are interested in are
walking on flat ground, walking up stairs, and walking down
stairs, we have the directed graph ΓR = (V R, ER), where

V R = {fg, us, ds}
ER = {(fg, us), (us, fg), (fg, ds), (ds, fg)}

or we allow transitions between walking on flat ground and
going up and down stairs (but not transitions between going
up stairs and going down stairs). The graph ΓR can be seen
in Fig. 4. The remainder of this section will be devoted to
constructing the motion primitives and motion transitions.

A. Motion Primitives

Motion primitives are the core modes of locomotion of this
study; this section discusses the development of controllers
for motion primitives and the simulations resulting from the
application of these controllers to the robot model.
Motion Primitive Collection. Using the concepts developed
throughout this paper, and specifically Sect. IV, we can
now construct mathematical representations a bipedal robot
traversing each of the three different terrains of interest:
walking on flat ground fg, up stairs us, and down stairs
ds. In particular, for each of the three terrains we obtain a

fg

fg − us us

us− fg

fg − ds

ds

ds− fg

Fig. 4: Graph of a meta-system representation for the three
motion primitives in consideration.

hybrid system (of the form given (21)) modeling the biped
in this terrain:
• Flat Ground:H R

(hfg,αfg)
, where hfg(q) = znsf (q) is

the height of the foot above flat ground,
• Up Stairs: H R

(hus,αus)
, where hus(q) = znsf (q)−zstair

is the height of the foot above a stair (with the stair
above the stance foot).

• Down Stairs: H R
(hds,αds)

, where hds(q) = znsf (q) +
zstair is the height of the foot above a stair (with the
stair below the stance foot).

To achieve motion primitives from these hybrid systems, it
is necessary to design controllers for each motion primitive,
i.e., determine the control parameters αv , v ∈ V R, that will
result in stable walking for the robot in each terrain.

Controller Development. To obtain the control parameters
αv , v ∈ V R, for each motion primative, we use the method
of [15] which uses human data in the form of an optimization
subject to constraints that imply stable walking. In particular,
we solve the optimization problem (22) of [15]:

α∗v = argmin
α∈R22

CostvHD(α) (22)

s.t. ∆R(SRhv
∩ Zα) ⊂ PZα

where CostvHD is the human-data-based cost function, (11) of
[15], which is the weighted-sum of squared errors between
the output functions and corresponding data; note that since
this cost depends on the human data, it is indexed by v ∈
V R since for each motion primitive one obtains a different
cost. Moreover, the constraints of the optimization depend
on the constraint function hv , v ∈ V R, i.e., they depend on
the specific terrain being considered. Finally, Zα is a zero
dynamics surface of the system, on which ya,1(q, q̇) = yd,1

and ya,2(q) = yd,2(q) for all time; PZα is a partial zero
dynamics surface of the system, on which ya,2(q) = yd,2(q)
for all time. Due to space constraints, we refer the reader to
[15] for further details.

By solving the optimization problem (22) for each motion
primitive, we obtain control parameters α∗v , v ∈ V R that
yield stable walking behavior for each motion primitive (this
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Fig. 5: Optimized extended canonical human functions with
parameters obtained by solving the optimization problem
(22) and the corresponding human data.
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Fig. 6: Phase portraits for the motion primitives.

will be justified through simulation in the next paragraph).
That is, we have thus obtained the motion primitives for
MH R given by MR

v = H R
(v,α∗

hv
), v ∈ V R. Plotting the

human walking functions with the specific parameters α∗v
found by solving this optimization problem, as compared
against the human data, can be seen in Fig. 5. By inspecting
that figure, it can be seen that the canonical human walking
functions that yield walking for each motion primitive have
very good agreement with the human walking data.

Simulations. A simulation for each motion primitive was
performed. The resulting locomotion gaits from simulation
are given in Fig. 7; these figures show the evolution of the
robot during the single support phase of the gait, each of

(a) Walking on flat ground.

(b) Walking upstairs.

(c) Walking downstairs.

Fig. 7: Snapshots from robotic locomotion simulations ex-
hibiting the three motion primitives.

which qualitatively resembles the corresponding human gait
quite well. The phase portraits for each motion primitive
simulation are shown in Fig 6. Numerical approximations of
the Poincaré map yield eigenvalues which are all less than
one, which implies the corresponding motion primitives are
stable.

B. Motion Transitions

This section discusses the development and simulation of
motion transitions, which are explicitly built upon the motion
primitives obtained in the previous section.
Motion Transition Collection. We are interested in devel-
oping motion primitives based upon the meta-hybrid system
graph ΓR, which gives the allowable transitions between
different walking behaviors. Based upon the definition of
a mete-hybrid systems (Definition 2), the motion transitions
must satisfy very specific conditions with regard to the mo-
tion primitives. Therefore, specific motion transition hybrid
systems we are interested in must have the form:
• Walking on flat ground to up stairs: H R

(hus,α(fg,us))

• Walking up stairs to flat ground: H R
(hfg,α(us,fg))

• Walking on flat ground to down stairs: H R
(hds,α(fg,ds))

• Walking down stairs to flat ground: H R
(hfg,α(ds,fg))

Therefore, to define the transition behaviors, it is necessary
to determine the control parameters αe, e ∈ E. This will
be achieved through another optimization, but one that uses
the walking behavior of the motion primitives to smoothly
transition from one behavior to another.
Controller Development. To determine the parameters αe,
e ∈ E, of the motion transitions we use the fixed points
corresponding to the stable walking of each motion primitive.
In particular, let (q∗v , q̇

∗
v) ∈ SRhv

, v ∈ V R, be the fixed point
of each motion primitive; this is the unique point on the
periodic orbit that intersects the guard. Using this, and at
a high level, the goal of the motion transition optimization
is to generate desired output functions, which have smooth
connections with the corresponding source and the target



motion primitives. Formally, these objectives can be stated
in an optimization problem:

α∗e = argmin
α∈R22

ẏd,2αe
(τ(q∗tar(e))) (23)

s.t yd,2αe
(0)− yd,2α∗

sor(e)
(0) = 0

ẏd,2αe
(0)− ẏd,2α∗

sor(e)
(0) = 0

yd,2αe
(q−)− yd,2α∗

tar(e)
(τ(q∗tar(e))) = 0

where here, yd,2α (t) is the desired output of the robot con-
sisting of the human walking functions (12) (where we have
made the dependence of this function on the parameters α
explicit), α∗tar(e) are the parameters of the motion primitive
MR

tar(e) obtained by solving the optimization problem (22),
(q∗tar(e), q̇

∗
tar(e)) is the fixed point of the periodic orbit for

this motion primitive, and τ is the parameterization of time
in (10). Solving this optimization problem yields parameters
α∗e , e ∈ ER, and we thus obtained our motion transition
hybrid systems: Te = H R

(htar(e),α∗
e)

with e ∈ ER.

Simulations. Three simulations were performed in which
motion primitves and motion transitions were combined.
To construct a Poincaré map, and thus establish a notion
of the stability of a meta-system, the biped must start and
end in the same mode; therefore, we chose to simulate two
locomotion cycles: walking on flat ground to walking up
stairs to walking on flat ground (F-US-F) and walking on flat
ground to walking down stairs to walking on flat ground (F-
DS-F). Numerical approximation yields eigenvalues for both
simulations; the maximum eigenvalue of each is below unity
which implies that both meta-systems are stable. Finally, we
simulated all three motion primitives together with the four
motion transitions; snapshots from the simulation can be seen
in Fig. 8.

VII. CONCLUDING REMARKS

In this paper, we examined experimental human data on
three modes of walking. It is shown that certain outputs of
the flat ground and stair-climbing data can each be repre-
sented by the response of a linear spring-damper system. An
optimization of the parameters in (2) gives virtual outputs for
feedback liberalization controllers; implementation of these
controllers yields stable, periodic locomotion in simulation.

A second optimization yields controllers which effect
transitions between motion primitives; these intermediate
modes are termed motion transitions. Simulations are given
which display bipedal robots walking in a varying terrain. A
future project will be to expand the set of motion primitives
to additional locomotion behaviors.
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[23] Y. Hürmüzlü and D. B. Marghitu, “Rigid body collions of planar
kinematic chains with multiple contact points,” Intl. J. of Robotics
Research, vol. 13, no. 1, pp. 82–92, Feb. 1994.

[24] J. W. Grizzle, G. Abba, and F. Plestan, “Asymptotically stable walking
for biped robots: Analysis via systems with impulse effects,” IEEE
TAC, vol. 46, no. 1, pp. 51–64, Jan. 2001.

[25] S. S. Sastry, Nonlinear Systems: Analysis, Stability and Control. New
York: Springer, Jun. 1999.

[26] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero
dynamics of planar biped walkers,” IEEE TAC, vol. 48, no. 1, pp.
42–56, Jan. 2003.


