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method of PID control for the robot manipulator based on
the responses of the closed loop system. Several properties
of the robot control are used, such as any PD control can
stabilize a robot in regulation case, the colsed-loop system
of PID control can be approximated by a linear system,
and the control torque to the robot manipulator is linearly
independent of the robot dynamic. By using these properties,
a novel systematic turning method for the PID control is
proposed. Simulations and experimental results of an upper
limb exoskeleton give validation of this PID tuning method.

I. INTRODUCTION

The proportinal-integral-derivative (PID) control has
simple structure and clear physical meanings for its three
gains. The control performances are acceptable in the most
of industrial processes. It has been used in more than
90% of various practical control systems [1][2]. Three
parameters of PID controller are tuned such that the
performances at transient, including rise-time, overshoot,
and settling time, steady-state error, are satisfied, mean-
while the closed-loop system is stable and robust against
plant modeling uncertainty and disturbances. The study on
tuning methods of PID controller mainly focused on linear
systems [19]. The tuning methods for PID controllers can
be grouped according to their nature and usage:

o Analytical methods: PID parameters are calculated
from analytical or algebraic relations between a plant
model and an objective [5][6][16].

o Heuristic methods: These are evolved from practical
experience in manual tuning [25][4][2], and from
artificial intelligence techniques [22][14][11].

« Frequency response methods: frequency characteris-
tics of the controlled process are used to tune the PID
controller [20].

o Optimization methods: These can be regarded as a
special type of optimal control, where PID parameters
are obtained ad hoc using an offline numerical
optimization [12].

o Adaptive tuning methods: These are for automated
online tuning, using one or a combination of the
previous methods based on real-time identification
[24].
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Most robot manipulators employed in industrial oper-
ations are controlled by PID algorithms independently at
each joint [23]. Compared with the above linear systems-
based tuning algorithms, there are some difficulties to
design a systematic tuning method for robot PID control

« Robot manipulators are strong nonlinear systems, and
the torque of one joint affects the other and vice versa.

o If the gains are tuned heuristically [25], Cohen-Coon
method [4] and optimization [12] methods. There are
too many gains to tune simultaneously for robot. A
6-degrees-of-freedom robot manipulator has 18 gains
to be tuned. When one gain is tuned, it requires to
tune the other 17 gains in turn because of dynamics
coupling in robot.

o Based on stability analysis, the upper bounds of
PD gains and lower bound of derivative gain can
be derived. However, these bounds cannot guarantee
desired performances.

There are few research regarding PID gains tuning
for robot manipulators. PID tuning algorithms cannot be
used straight because the responses are nonlinear. The
intelligent techniques have been applied for PID gains
tuning, for example fuzzy logic [22], neural networks
[14] and genetic method [11], but the final controllers are
no longer linear PID, they become complete intelligent
control systems. Another PID tuning method for robots
is impedance control [13], which first uses inverse dy-
namics to transfer the robot into a linear system. Then
some mechanical impedance ideas are applied to tune
PID gains. In [5] discrete-time approximation of inverse
dynamics was calculated such that PID parameters could
be adjusted. Lyapunov approach was used in [7] to adjust
PID controller such that it follows linearization control. All
above methods need the models of robot manipulators, and
their PID controllers do not have clear physical meaning.

In this paper, three important properties of PID control
of robot manipulator are applied for PID gains turning.

1) Any PD controller can stabilize a robot in regulation
case when its gains are positive

2) The behavior of the colsed-loop system of PID
control is simple, and it can be approximated by
a linear system

3) The control torque to the robot manipulator is inde-
pendent of the other robot dynamic.



By using these properties, we propose a new systematic
tuning method for PID control. The turning steps are as
follows

1) a) Stabilize the robot with a PD control

b) Add a step input to the closed-loop system in
(a), and save the step response.

c¢) Search a linear time-invariant model, which has
a similar step response with (b).

d) Tune PD/PID gains similar with the linear
system in (c)

e) Refine PID gains in (d) by prior knowledge.

Finally, we apply this method on an upper limb ex-
oskeleton. The experimental results show this PID tuning
method is effective for robot manipulator

II. PID TUNING FOR ROBOT MANIPULATORS

The dynamics of robots are derived from Euler-
Lagrange equation. It can be written as

M(q)i+C(q,4)4+9(q) +d(q) =u 1)

where ¢ € R™ represents the link positions. n is joint num-
ber, M (q) is the inertia matrix, C' (¢, q) = {cx;} € R™*"
represents centrifugal force, g(q) is vector of gravity
torques, d (q) is unknown disturbance. u € R™ is control
input.
Classical linear PID law is
t
u:er—i—Ki/ e(r)dr + Kqé )
0
where e = ¢? — ¢, q? is desired joint angle, K,,, K; and
K are proportional, integral and derivative gains of the
PID controller, respectively. This PID control law can be
expressed via the following equations

u=Kye+ Kqé+¢
EZKZ'67 5(0) :EO

It is known that in regulation case, any positive gains
of the PD controller

(€)

u= Kpe+ Kqé @)

can guarantee stability of the closed-loop system, see
Spong and Vidyasagar (1989). PD control does not guar-
antee the achievement of the position control objective
because manipulators dynamics contain the gravitational
torques vector, unless gravity compensation is applied. The
integrator is the most effective tool to eliminate steady-
state error, in this way PD control (4) becomes PID
control (2). However, integrator gain has to be increased
when the robot is heavy. This causes big overshoot, long
settling time, and less robust. An approximation model
compensation can decrease integrator gain, see Kelly et
al. (2005).

It is known that if the PD control law (4) is applied to
each joint, the position tracking error is bounded within a
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ball whose radius decreases approximately ————

L , see
v >\min(Kp)

Lewis et al. (2004). Theoretically, PD control is sufficient
for robot control. However, in order to decrease steady-
state error caused by gravity and friction, derived gain K,
has to be increased. The closed-loop system become slow.
Usually, the big settling time does not allow us to increase
K, as we want.

Although adding an integrator can extraordinarily de-
crease steady-state error, the overshoot of the closed-loop
system becomes larger and robustness property deterio-
rates.

A. Tuning in closed-loop

Since it is danger to send a step command to the joints
of the exoskeleton robot. We use closed-loop identification
and tuning method. Here we use two properties of the
robot dynamics:

« The control torque of the robot is dependent of the

other terms;

o PID control is linear.

It is well known the robot (1) is open-loop unstable, and
positive gains of a PD controller can guarantee closed-
loop stability (bounded) in regulation case , see Spong
and Vidyasagar (1989). We first use a PD control (2) with
K; = 0, and small K, and Ky, to stabilize the robot.
When the desired position is constant, the closed-loop
system is stable,

M (q)i+C(a.4)4+g(qa)+d(q) = PDy
Considering gravity compensation, the closed-loop system
is

M(q)G+C(a,4)¢+39(q) +dlg) = PDo—g(q) (5

where g (q) = G(q) + g (q), §(q) is estimated gravity.

Now we will use a tuning rule to find another PID
controller PID; for this closed-loop system. If we define
the final control torque as

uw=PID; + PDy— g(q)
Obviously, the closed-loop system is
M (q) §+C (g:4) 4+9 (a)+d(q) —PDo+§ (q) = uc (6)
The control for the closed-loop system is
ue. = PID,

Since the PID control is linear, this idea can be extended
to general case,

m

M(q)i+C(g,d)4+§(a) +d(a) = _ PID; —§(q)

j=1
where m is tuning times, and

m

m m t m
ZPID]- = ZKP7j€+ZK’7j/O e(r) dT+ZKd7jé
j=1 j=1 =1

= j=1



This means we can start from small PID gains to stabilize
the robot first, then tuning the other PID controllers
independently. The final PID control is the summarization
of all these controllers.

B. Linearization of the colsed-loop system

There are several methods to linearize robot models. If
the velocity and gravity are neglected, the terms C (g, ¢) ¢
and g (q) in the nonlinear dynamics (1) are zero, resulting
in a linear model of the form,m see Goldenberg and
Bazerghi (1986)

M(q)Gg=mu @)

It is an oversimplified model and is impossible for PID
tuning, because velocity and gravity are main control
issues of robots. Most of robot, the gravity loading is a
dominant component of the dynamics.

The velocity dependent term C'(gq,q)q representing
Coriolis-centrifugal forces, can be assumed to be negli-
gible for small joint velocities. This is a rate linearization
scheme, see Golla et al. (1981), which results in a linear
model of the form

AG+ Bg=u

®)
where A =M (q) |4=q0» B= afé((f) ly=qo» Qo is operating
point. But many experiments, see Swarup and Gopal
(1993), showed that even at low speeds C (g, ) should
be accounted for.
When the robot model is completely known, Taylor
series expansion can be applied, see Li (1989). At the
operating point ¢g,the nonlinear model (1) can be approx-

imated by

Aj+ DG+ Bg=u 9)

where A = M (q) [g=q,, B = mg(g)gich l=qo> D =
9C(@.4) | _

9q  19=90

Although the physical and mathematical structure of
the complete dynamic robot model is analytically coupled
and nonlinear, the observed transient response of robot
dynamics appears to resemble the transient response of
the linear systems. Consequently, each joint of the robot
can be characterized as a single input-single output (SISO)
system. In this paper, we use this identification-based
linearization method. For each joint, typical linear model
is a first order system with transportation delay as
B (10)

1+7T,,s
The response is characterized by three parameters, the
plant gain K,,, the delay time 7,,, and the time constant
T,.. These are found by drawing a tangent to the step
response at its point of inf lection and noting its intersec-
tions with the time axis and the steady state value.

Sometimes the first model cannot describe the complete
nonlinear dynamic of robot. A reasonable linear model of

—TmS

Gy
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robot is Taylor series model as in (9). The model can be
written in frequency domain

= ~Tms 11
w; (s)  T2s2+28,Thms+1 (i
or
qi(s) _ K, s
u; (s) (L4 Tmas) (1 + Thnas)

The responses of this second order model are similar with
mechanical motions. If there exists a big overshoot, a
negative zero is added in (11)

4qi (8) — Km (]' + Tm38) 6_7—"”8 (12)

Uj (S) (1 + Tmls) (1 + TmQS)

The normal input signals for PID tuning are step and
repeat inputs.

C. PD/PID tuning

The linear PID law in time domain (2) can be trans-
formed into frequency domain

(2

U(s) = K. (1+Tl +Tds>E(s)_Gc(s)E(s)

where K. = K, is proportional gain, T; = ﬁl is integral
time constant and T,; = % is derivative time constant.

Because the robot can’be approximated by a linear
system. Some tuning rules for linear systems can be
applied for the colsed-loop system tuning. We first give
PD tuning rules. When each joint can be approximated by
a first-order system,

p— Km
14 Tps
The PD gains are tuned as in Table 1, here Model 1 is from

Huang et al. (2005), Model 2 is from Chien and Fruehauf
(1990).

—Tm$S

Gp

Table 1. PD turning for the first-order model

| [ K. | T | Ta_|
Ziegler-Nichols tuning am— 0.57
iegler-Nichols tuning Km T . m
Cohen-Coon method K_:'l?_: (% + 4_7—'1@7;) 11%::143—27—1”
Our Method ?{71;2 Tml

Here K,,, T,, and 7, are obtained from Figure 1.

In Table 1 we list Ziegler-Nichols and Cohen-Coon
methods, they are PI controllers. From the best of our
knowledge, PD turning rules are still not published and
applied. If each joint is approximated by a second-order
system,

u; (s)  T2s?+2&Tms+1

The PD gains are tuned as in Table 2.

Table 2. PD tuning for the second-order model
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Fig. 1. Step response of a linear system
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When PD control cannot provide good performances,
PID control should be used. The PID gains for the first-
order model is decided by Table 3.

Table 3. PID tuning for the first-order model

Ziegler-Nichols tuning a K_TTWEE 5 27-m 0 . 5Tm
Cohen-Coon method T T Tm (32T m +67m ) AT Ty

_ . Koy Ty 4T, 137, +871m 117, +27,,
Our Method T7—7;2 Tm2 Tm1

The PID gains for the second-order model is decided
by Table 4.

Table 4. PID tuning for the second-order model

K. T; Ty
| I
o 4_5 Toni&m Tm1+0.1 § m
Method 1 Ko, Tons 2Tm 1 f m 0BTt
Method 2 Zm2 Tm2 Tm 1
TZ
Our Method M 1 557’7’! Tm 1_761

If the above four tables cannot give us good perfor-
mances, we use Table 5 to refine PID gains as PIDs.

Table 5. Effects of PID gains

Overshoot

Rise Settling Steady Error Stability

Small

P T Decrease Increase Decrease Degrade

Increase

Small Large

IT Increase Increase

Degrade

Decrease Decrease

Small Minor

D T Decrease Decrease Improve

Decrease Decrease

The procedure of PD/PID tuning for robot control is
described as follows

Step 1 Gravity modeling § (q): the objective of this step
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is to decrease integrator gain, such that overshoot
is small

Step 2 PD control PDy: use small PD gain to generate
a stable closed-loop system.

Step 3 Obtain the step responses of the closed-loop
system for each joint. Now the robot has been
compensated by gravity model, i.e.

M (q)G+C(q,4) 4+ g(q) = PDo — g (q)

Step 4 Use the first-order or the second-order linear
models to approximate the step responses of the
closed-loop systems. PID gains are obtained by
Table 1-Table 4, it is PIDq

Step 5 Refine PID gains with Table , it is PIDs

Step 6 The final control for the robot is

U= PDy+ PID; + PIDsy — §(q)

III. APPLICATION TO AN EXOSKELETON

Exoskeletons are wearable robots, which are worn by
the human operators as orthotic devices. The exoskeleton
links, joints and work space correspond to those of the
human body. The system may be used as a human input
device for tele operation, human-amplifier, and physical
therapy modality as part of the rehabilitation process [10].
Although great progress has been made in a century-long
effort to design and implement robotic exoskeletons, many
design challenges continue to limit the performance of
the system. One of the limiting factors is the lack of
simple and effective control systems for the exoskeleton.
The PID/PD control is the simplest scheme that can be
used to control robot manipulators. The exoskeletons are
usually heavy, it is not easy to obtain an ideal PID for
an exoskeleton robot. The 7-DOF upper limb exoskeleton
shown in Figure 2 is composed of a 3-DOF shoulder
(J1-J3), a 1-DOF elbow (J4) and a 3-DOF wrist (J5-J7).
J1-J3 are responsible for shoulder f£1exion-extension, ab-
ductionadduction and internal-external rotation, J4 create
elbow flexion-extension, J5-J7 are responsible for wrist
f lexion—extension, pronation-supination and radial-ulnar
deviation.

The computer control platform of the UCSC 7-DOF
exoskeleton robot is a PC104 with an Intel Pentium4@?2.4
GHz processor and 512 Mb RAM. The motors for the first
four joints are mounted in the base such that large mass
of the motors can be removed. Torque transmission from
the motors to the joints is achieved using a cable system.
The other three small motors are mounted in link five.
The real-time control program operated in Windows XP
with Matlab 7.1, Windows Real-Time Target and CT7.
All of the controllers employed a sampling frequency of
1kH z. The properties of the exoskeleton with respect to
base frame are shown in Table 8.

Table 8. Parameters of the exoskeleton
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Fig. 2. The UCSC 7-DOF exoskeleton robot.

| Mass (kg) | Center (m)

Joint Length (m)
| 34 3 i

2 1.7 .05 1

3 v N 0.2

4 1.2 .02 .05

5 1.8 .02 .05

6 2 .04 A

7 5 .02 .05

The two theorems in this paper give sufficient conditions
for the minimal values of proportional and derivative gains
and maximal values of integral gains. We first use the
following PD control to stabilize the robot

K, = diag [150, 150, 100, 150, 100, 100, 100] 13)
K, = diag [330, 330, 300, 320, 320, 300, 300]

The joint velocities are estimated by the standard filters

~ bS

i(s) = 18s

a(s) = 57304

sS+a

(s)

The PD regulation of the first four joints are shown
in the sold lines of Figure 3. Then we use open-loop step
responses of linear systems to approximate the closed-loop
responses of the robot.

_ 0.93
G = 6052J595+1
G = 57—
2052+3s+1
S (14)
3= 5.552Jg4s+1
G _ 0.85
4 = 30s2+8s+1

The step responses of the following four linear system are
shown in the dash lines of Figure 3.

Here the main weight of the exoskeleton is in the first
four joints. The potential energy is

U =maglis1 +mag (I181 + c2las1) + magazsi sz

+myg [agcy (c183 + cacssy) + agsy (103 — €28183) + asgsy sa]
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PD control of the exoskeleton and step responses of linear

The gravity compensation in (5) is calculated by g (¢) =
U (q)-

We will design a PID tuning rule for these linear
systems and apply the tuned PID controllers to the robot.
In order to tuning PID gains for the linear systems (14),
we rewrite the PID (2) as

%

o1t -
PIDt:KC<q—|—F/ q(T)dT+qu>
0

where K. = K, is proportional gain, T; = % is integral
time constant and T,; = % is derivative time constant.
We use the following tuning rule

_ 2060 T T:E
K, 4770

to tune the PID parameters. This rule is similar with Huang

et al. (2005), and Chien and Fruehauf (1990), in their case

— 5Tm1§m A _ Tp140.1€,, .
K, = Smlen T, = 2T, Ty = 0 Tt is

different with the other two famous rules, Ziegler-Nichols

and Cohen-Coon methods, where K, = a—Lon— T, =

mTm’
27T, Ty = 0.57, or K, = L= (§+4—Tﬁ), T, =
Tm (32T +6Tm AT Ton
( )7 Td =

KmTm
13T, 187 T Becauge their rules are
suitable for the process control, our rule is for mechanical
systems.
By the rule (15), the PID; gains are

Kp1 =90, Ki1 = 1, K41 = 540,
sz = 30, Ki2 = 2, Kdg = 60
Kp3 = 40, K3 = 20, K43 = 20,
Kps =90, Ky = 1.5, Kgy = 270

(16)

We apply these PID controllers PID; to the robot, the
new closed-loop system

M(q)G+C(g,d)4+3g(q) — PIDo +§(q) = PID;
The control torque becomes

w=PID; + PDy — §(q) (17)
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Fig. 5. Final PID control.

Since we use linear PID control, the gains of PID; and
PIDy can be added together. The control results of Joint
1 are shown in Figure 4.

After this refine turning, the final PID control is PID,
their gains are

K; = diag[5,4,5,6,3,4,2]
K, = diag [320,280, 210, 250, 210, 210, 220]
K4 = diag [410, 400, 420, 430, 410, 410, 410]

The final control is
U=PDy+ PIDy+ PIDy; — G(q)

The control results are shown in Figure 4 and Figure 5.

IV. CONCLUSIONS

In this paper, a new systematic tuning method for PID
control is proposed. This method can be applied to any
robot manipulator. By using several properties of robot
manipulators, the tuning process becomes simple and is
easily applied in real applications. Some concepts for PID
tuning are novel, such as step responses for the closed-
loop systems under any PD control, and the joint torque is
separated into several independent PIDs. We finally apply
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this method on an upper limb exoskeleton, real experiment
results give validation of our PID tuning method.
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