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Abstract. The work presented in this paper is our first step toward tiveldp-
ment of an exoskeleton for human gait support. The device veséar should be
suitable for assisting walking in paralyzed subjects armlikhbe based on myo-
electrical muscular signals (EMGs) as a communication chdretgleen the hu-
man and the machine. This paper concentrates on the designiafadhanical
model of the human lower extremity. The system predicts subjeténtions from
the analysis of his/her electromyographical activity. Oudeidakes into account
three main factors. Firstly, the main muscles spanning the &artérilation. Sec-
ondly, the gravity affecting the leg during its movement. Hinat considers the
limits within which the leg swings. Furthermore, it is capablestimating several
knee parameters such as joint moment, angular acceleratigmaawelocity, and
angular position. In order to have a visual feedback of tieelisted movements we
have implemented a three-dimensional graphical simulatiorheiaan leg which
moves in response to the commands computed by the model.
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Introduction

Several research projects are currently focused on théagewent of devices to support
human movements and although the results are promisingaithe proposed solutions
provide an effective control system for such machines §212,13]. This work repre-

sents our initial effort toward the realization of a weaeatbotic device (exoskeleton)
to assist people who are denoted by a limited control of tlogier limbs during basic

but pivotal motion tasks such as sitting on a chair, standingstaying erect, starting
and stopping walking. Although those tasks might seem ciitgle, they are actually
essential for an effective rehabilitation process as thieyige a first level of autonomy
to the patient. The device we want to develop will be endowét & control system

capable of understanding the subject’s intentions thrdhghanalysis of myoelectrical
signals (EMG signals) and defining a proper level of actumatmindependently move
the robotic orthosis for assisting injured patients.
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We decided to focus our efforts on the development of supmpdevices for the
human leg because of the lack of research regarding suchimaatompared with the
advancements on upper extremity exoskeletons. While tter ladve been studied for
more than ten years, only recently particular attentionbdeen put on lower extremity
exoskeletons and human gait support despite the poteriadle number of consumers
for such machines [7,9,11,13]. As a matter of facts, evear genumber of people are
suffering neuropathologies affecting the lower limbs. Aiddally, the amount of aged
people is supposed to increase by the 2030 with a ratio dstihta be the 20% of the
EU population [8].

From the beginning of our work we started a tight cooperatidth the Depart-
ment of Rehabilitation at Sant’Antonio Hospital in Padualyl This allowed to clearly
define patients’ needs as well as to understand how indivithigh muscles are acti-
vated to generate joint moments and movements, and how Hogy @ordinated knee
torques [12]. Only a proper model of the relations betweerGCEdnals and the associ-
ated movements will yield to the design of an effective rabekoskeleton suitable for
supporting neurologically injured patients or aged pe@d|@,7].

Hereafter, we will firstly motivate our choices regarding tknee features we de-
cided to take into consideration (section 1). Then, we wésatibe the structure of a
biomechanical model of the human leg (sections 2 and 3) Wélptirpose of recognizing
the subject’s intentions (we considered to be the numbeerbfextension movements)
by performing an analysis of the electromyographical @gtiwinally, we will present
the implementation of a three-dimensional graphical satioh of a human lower ex-
tremity which moves in response to the prerecorded EMGsi¢sed). The comparison
between the number of varying knee flexo-extensions anduhwar of simulated ones
allowed a validation of the model (sections 4 and 5).

1. Preliminary Remarks

We have chosen to concentrate on the knee as it plays a sagmifale in the human mo-
tion. We will only consider the knee torsion movement astihesmain task performed by
the knee articulation. We neglected any modeling of the ko&sion as its contribution
is not significant to the whole set of possible movementseduaut by a subject [6]. In
order to improve our previous work based on a simplified wersif the virtual knee ac-
counting for only two muscles [14], we now present a new modmlrporating four thigh
muscles. This extension is motivated by the partial unbéite of the previous model.
The only extensor muscle we selected was, in fact, the réatogris which is mainly ac-
tive during low force movements only. Therefore, wheneterdubject performs higher
force extensions the predicted movement might be imprééjs@he inclusion of only
one flexor muscle could lead to rather accurate simulatidreswvpure knee flexion mo-
tion tasks are studied. Nevertheless, for more complex mewgs the inclusion of ad-
ditional flexor muscles is recommended [7]. The selectedciaasvith theiPhysiologi-
cal Cross-sectional Are@PCA) [15] are the following onesectus femorig8%), vastus
lateralis (20%), semitendinosué3%), andbiceps femorig10%). They cover a total of
41% of the cross-sectional area of all thigh muscles. Thaing area is occupied by
the vastus medialis (15%), the semimembranosus (10%) astesintermedius (13%),
the gastrocnemius (19%), the sartorius (1%), and the gda¥o) [7]. While the lat-
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Figurel. (a) Forward Dynamics Approach and Graphical Interface. (&1 leg modeled as a rigid swinging
body.

ter two are negligible due to their small force output, thetggcnemius has not been
recorded because it spans both knee and ankle articulatiahg is not possible to re-
late its activity to the knee without considering also th&lenThe vastus intermedius
is not recordable using surface electrodes [6]. Since we teadefine the smallest set
of muscles that assure correct simulations of the flexorsit@ movement regardless of
the amount of force involvement, we decided to leave out amyribution of the vastus
medialis and semimembranosus and verify whether this diggilon compromised the
model accuracy (sections 4 and 5). Finally, we have usedveafdrdynamic approach
in the study of the human movement (fig. 1a). This choice has leacouraged by the
results in Buchanaet al.[3]. A detailed description of the phases involved in thetomin
of the virtual knee will be provided in the following sect&n

2. EMG Interpretation
2.1. Signal Acquisition and Muscle Activation

A raw EMG signal is a voltage that can be both positive and tigand changes as the
neural command calls for increased or decreased muscidat. &f is quite difficult to
compare the absolute magnitude of an EMG signal from diffeneuscles because the
magnitudes of the signals can vary depending on many fa@agsgain of the ampli-
fiers, the types of electrodes, etc.) [3]. In order to use tM&Esignals in a neuromuscu-
loskeletal model, we first need to normalize them into a $jpaginge (between 0 and 1)
so that we can eventually compare them one with another. i§halgesulting from the
processing stage is a value that is calledscle activatiorand is meant to describe the
process that makes the electrical activity to spread a¢hesmuscle causing its activa-
tion. Hereafter we will present the steps we adopted to parthis transformation which
have been inspired by the Bucharetral's study [3].

The acquisition stage comprises the sampling and the miocesf the EMG sig-
nals while the subject executes flexions and extensionsdédi The signals have been
sampled at 1 kHz while the BIOPAC MP35 data acquisition uris wonnected to a per-
sonal computer. During the acquisition stage the signale baen amplified (differen-



tial amplifier, gain of 100%) on both channels and successively bandpass filtered from
20 to 450 Hz [5]. Successively, the resulting signals hawntfall wave rectified and
normalized via software to approximate thetivationof the muscleq(t).

2.2. Muscle Force

We expressed the muscular force as a function of the musaatsation,a(t), previ-
ously computed:

O =7 [l @

where T is a temporal window specifying the dimension of tierval during which
the calculation of every sample is executed. The indeas been introduced to identify
which muscle, the force and the activation refer to. Equedid is a very rough approx-
imation of the muscular force. However, we do not want to qranfa careful clinical
analysis of the muscles behavior. We just want to understamdime interval during
which the muscles are active along with the intensity of otton. Refer to section 4
to see how our approximations did not negatively affect theikation phase.

2.3. Driving the Virtual Knee

Once all the muscle forces are calculated, we can computeattiesponding contri-
bution to the joint moment. This requires knowledge of thesalet moment arms. Ac-
cording to the results of Herzoet al [10] they can be valuated as follow;(6) =
bo+by-0+by-60%+b3-0°+by- 6%, wheref is the knee joint angle expressed in degrees,
while by, b1, b2, b3, by are coefficients related to the i-th muscle. The correspanjint
momentM can now be estimated:

m

M(0,t) = (r:(0) - fi(t)). )

i=1

The muscle forcef;(t) is obtained from Equation 1. The joint moment, in turn, will
cause the movements. The knee angular acceleration andl&tedr command signal
are calculated directly from the computed joint moment gdaé®ed in the following
section.

3. The Biomechanical Model

The human lower extremity has been modeled as a rigid bodygémg between ©and
13 (fig. 1b). Our software simulates the action of the gravifgeting the rigid body
during its movement, the action of the extensor and flexorcteufsrces as well as some
contact forces that limit the range within which the leg n®ysee section 3.1). The
anthropometric data for modeling the rigid body are defimgd] and represent average
values. We considered a center of mass of the rigid body glat@1.65 cm from the
knee joint and with a weigh of 3.8 Kg.

Figure 2a shows the structure of the biomechanical modethwpredicts the an-
gular position from the subject electromyograms. In the fitage the muscular forces,
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Figure 2. (a) Biomechanical Model Structure. (b) Virtual Wall placeca= 0° (in the outlined square).

along with the gravity, are coupled with their respectivenmeat arms (according to the
equation 2). The net knee joint moment,, is then combined with the inertial coeffi-
cient and the resulting acceleratidris composed with the action of the Virtual Walls
(Section 3.1) placed at = 0° and ato = 130°. The resulting signal is integrated twice to
obtain the angular positiofi used as a command signal for the virtual knee (see fig. 2a
and 2b).

3.1. The Virtual Walls

The Virtual Walls generate impulsive forces for the purpoigtopping the motion of the
leg before it reaches undesired positions. These forcesaqu@ed only in the correspon-
dence of the temporal instants in whialgets equal to Dor to 130 (critical instantg.
These limits to the motion simulate: (1) the natural resticaffecting the knee torsion
that prevents it to be further extended once the shank isedi¢p the thigh (this is what
happens in a healthy human knee), (2) the restriction ofonaaused by an hypothetical
exoskeleton worn by a subject that impedes the leg to bedufigxed beyond a certain
threshold (130 in our specific case). Hereafter we will concentrate on tteedtion of
the wall placed atv = 0° (fig. 2b) as the wall atv = 130° behaves in a similar manner.
The virtual wall constantly checks the knee angle and as asdtgets negativex< 0°)

an unitary impulse is generated and multiplied by the seallare of the velocity at which
the leg swings (see fig. 2b). As this process always take® pldoen the leg reaches
undesired positions, we obtain a sequence of impulsesreeinba the correspondence
of critical instants. Each impulse has an area that is eguakt value of the velocity the
leg assumed in each critical instant. This impulse traitédutput of the virtual wall
(see fig. 2b). In order to stop the motion of the leg we now neeetto zero the velocity
that the leg assumes at every critical instant. To achiggenth first subtract the resulting
impulse train from the acceleration signé(t). Then, we integrate the resulting signal:
r(t) =d(t) -, d(t —t.), whered(t —t.) is an impulse centered on the critical instant
t.. T'(t) is now integrated as foIIowg?f;f: C(t)dt = 9(t) — 3, (t — t.) wheret sq,¢
andtg,, indicate, respectively, the starting and stopping timehef simulation, while
Y. S(t — t.) is a step train (resulting from the integration of the impuiisain) whose
steps are centered on the critical instants. The resulatghie velocity signaf’(t) is set
to zero by the action of the integrated impulse train exdotie correspondence of the
critical instants (see fig. 3).
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Figure 3. Graphs (a), (b) and (c) show the muscle force contractiondyinwg the computed control signals.
Graphs (d),(e) and (f) show that the velocity is set to zerangulsive forces at the critical instants.

4. Experimental Evaluation
4.1. Simulated Graphical Environment

To graphically see the behaviour of our model we implememtedrtual leg (fig. 1)
driven by EMG signals. The original 3D image representirgtiver extremity has been
developed at the Department of Anatomy of the Universitée.de Bruxelles (ULB) and
itis anatomically correct [1]. By using tH2ata Managemprogram, also developed at the
ULB, we exported every single part of the 3D knee to the VRMinfat [1]. A VRML
program has been written to integrate all the exported jp@dsa single virtual leg that
can be controlled via EMG signals. We chose to adopt VRML ffier tendering phase
because it makes the communication between the MATLAB Sitkidiomechanical
model and the virtual knee easier to setup.

4.2. Experimental Results

To verify the accuracy of our simulator in predicting the lammovement, we performed
three tests. The testing phase is based on the gradualomdditmuscles to the model
for the purpose of observing changes in the system behagjmertling on the number
of included muscles. All the tests required the subjectaodtup right and to flex and
extend his leg several times. The computed command signgll@r position) and the
number of knee torsions reproduced by the virtual knee haga bompared with the ac-
tual subject’s muscle contractions. The number of simdl&tesions has been intended
as the only assessing parameter. For the purpose of thisamgrikalidation of the com-
puted angle has been neglected as we were only interestedagnizing the patient’s
intentions that in our case were expressed by the numberxofértensions.



In the first test we only considered the flexor muscle actifbigeps femoris). Fig-
ure 3a shows that after every muscle contraction (blue line)biomechanical model
generated an appropriate command signal (red line) whiaterttee virtual knee to cor-
rectly reproduce all the seven torsions originally perfednby the subject. In the sec-
ond test we recorded the rectus femoris extensor muscle lagsvihe biceps femoris
flexor muscle activity (fig. 3b, green and blue lines respebt). Figure 3b shows that
after each couple of extensor and flexor muscle contragtibesbiomechanical model
generated an appropriate command signal (red line) thatlaied all the four torsions
originally performed by the subject. The third test was dbyeecording all the four
muscles electrical activity. Four torsions have been paréal by the subject and, as well
as in the previous experiments, all the four flexo-extersioare correctly reproduced
(see fig. 3c). However, likewise the second test, some uredksscillations in between
torsions had taken place duedoss-talkinterferences between the recorded electromyo-
grams. As the number of selected muscles increases, thentuofocross-talk interfer-
ences grows too. This behaviour can be adjusted by imprdtiegrocessing stage of
the EMG signals. Figures 3d, 3e and 3f show the behavior ofitheal walls previously
described. More precisely, it is possible to see that, fohdast, the angular velocity
had been set to zero in the correspondence of every critistnt by the generation of
impulsive forces.

5. Conclusions

This paper presented a study on the control of a virtual krzsed on the analysis of
biological signals. We developed a néwur-muscles-based modilat extends our pre-
vious one which was based on two muscles only [14]. This ext@nwas motivated by
two reasons. Firstly, to assure accurate predictions afeestension movements regard-
less of the actual force involvement. Secondly, to allowtari study on more complex
movements, such as sitting on a chair or standing up. Thosements would require
a higher force involvement compared to the knee flexo-exdendoreover, they could
not be properly modeled by using EMG signals recorded from extensor and one
flexor muscle only [3,7]. The tests we carried out (sectiomwdje aimed at estimating
the accuracy of oufour-muscles-based modiel recognising the flexo-extensions per-
formed by the subject. Experimental results demonstrateddcts. First of all, our cur-
rent model correctly recognised all subject’'s movemengpitie some cross-talk inter-
ferences. Second of all, a biomechanical model based onxteosors and two flexor
muscles allows to carefully simulate the flexo-extensioveneent with no need of in-
cluding the vastus medialis and the semimembranosus. @ditian would eventually
complicate the model without offering valuable improvensen

6. Future Work

Although the results derived from our experiments are gsatiisfactory, the inclusion
of a geometry modelhat takes into account thferce-lengthrelationship of muscles
would significantly improve the accuracy of the model forufat research on dynamic
movements. Several studies show that EMG-to-forcerelationship strongly depends



on the muscle’s fibers length indeed. A non-inclusion of iyrtesd to predictions off
by 50% or more, depending on the joint angle [3,7]. We alseridtto make our model
both portable and able to run in real-time. Moreover, we wdile to make use of angle
sensors in order to properly compare the predicted angle thé@ one of the subject’s
knee.
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