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Abstract

In this internship report the development of an impedance control method for
an anthropomorphic lower extremity exoskeleton is described. This exoskeleton
can be used to restore the gait of paralyzed people. Webots simulations are
used to test the control method.

Therefore a realistic model of both the human as the exoskeleton has to be
made. The lower extremities of the human model have 6 DOF all in the sagital
plane. The human model has only passive elements simulating that the human
is fully paralyzed. The actuation is done by the exoskeleton. The human model
is compared to a Matlab model of the TU Delft. The joint angle trajectories of
both models are approximately the same.

The exoskeleton model is anthropomorphic and is assumed to be rigidly at-
tached to the user. The actuation is done directly at the joints, so that all sup-
plied power is converted into joint rotation. The parameters of the impedance
control, stiffness, damping and reference trajectory, are phase dependent. They
are determined using particle swarm optimization. The optimizations are able
to find a gait pattern of the human model wearing the exoskeleton. This gait
pattern is compared to the gait of a healthy subject, tracked by the University
of Twente. The joint angles of the simulated gait have large similarities with
the tracked angles.

The developed model can be used to develop and test more complex control
methods. By using a monotone fitness function and an adjusted fitness function
the result can further improve.
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1 Introduction

In this report the results are presented of my internship at the BioRob group of
École Polytechnique Fédérale de Lausanne (EPFL). This internship is part of
the MSc Biomedical Engineering education program at the TU Delft. During
this internship my knowledge of modeling, control methods and optimizations
of a human gait model is improved.

The goal of the project is to develop active impedance control for a lower
extremity exoskeleton. This control method can eventually be used to restore
the human gait. In the best case the human interact with the exoskeleton rather
than react to it.

Initially, it is not practical to test the developed control method with a real
exoskeleton. Therefore simulations are used to test the control algorithm. The
simulation software used is Webots. Webots is a development environment used
to model, program and simulate mobile robots. In this case the robot simulated
is a human wearing an exoskeleton. First a good model of the human and the
exoskeleton has to be made. Then the control algorithm can be tested.

The impedance control demands varying reference position, stiffness and
damping of the joints depending on the phase of the human gait. These values
cannot be calculated, but are determined by optimizations.

In chapter 2 the developed model is described and validated. In chapter 3
the implementation of the impedance control is presented. The conclusions are
presented in chapter 4. Some recommendation for future research are made in
chapter 5.
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Figure 1: Webots segment model. Segments in green, joints in grey

2 Human model

In this section the development of the human model is described. At the Biorob
group there was already a 12 DOFs Webots segment model present, shown in
figure 1. The segments length and mass were obtained from a three-dimensional
inverse model and log files provided by the University of Twente. The joints in
the model are simulated with position controlled motors. The reference angle
is set to zero to fix the angle between the segments. There are no dynamics
implemented to describe tendon and ligament properties nor there is a ground
contact model. For simplicity balance problems are not taken into account in
this project, therefore movements are only possible in the sagital plane. Because
this model is only used to simulate the human gait, the joints angles of the
upper body are fixed and not further modified. Human limbs are not position
controlled, but torque controlled. For this reason the position controlled motors
of the lower extremities are substituted by torque controlled motors.

2.1 Passive damping and stiffness

Human joints cannot move without resistance and only in a certain range. This
is caused by ligaments and the anatomy of the joints. These passive properties
need to be present in the model for a more realistic result. The ligaments and
tendons introduce passive damping and stiffness, which exert torque on the
joints depending on the velocity and the angle.

2.1.1 Method

The damping and stiffness values are joint specific and are obtained from data
provided by the University of Twente. The torque introduced by passive ele-
ments can be calculated as follows:

Ti(t) = Tk(θact) + b · θ̇act(t) (1)

Tk(θact) = −Mmin(i) ∗ e−Pmin(i)∗(θact(i)−θmin(i)) +

Mmax(i) ∗ e−Pmax(i)∗(θmax(i)−θact(i)) (2)
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Constant Hip Knee Ankle
Mmin 2.60 3.10 3.70
Mmax 8.70 10.50 9.30
Pmin 5.80 5.90 13.10
Pmax 1.30 11.80 15.40
b 1.09 3.17 0.46
θmin -0.38 -1.21 -0.84
θmax 0.74 0.10 0.39

Table 1: Passive damping and stiffness constants, obtained by the University of
Twente

Figure 2: Passive stiffness of the ankle

The damping constant b relates the velocity θ̇act(t) linear to the applied
torque Ti, with i the joint number. The torque added by the stiffness Tk(θact)
is calculated using equation 2, which is angle θact specific, see figure 2. The
torque Tk(θact) also defines the boundary angles of the joints. In table 2.1.1
the values of the constants can be found. The focus in this project is on the
lower extremities, so damping and stiffness are only applied on the hip, knee
and ankle.

The modified Webots model is validated by comparing it with the human
Matlab model of the TU Delft. The implementation of the passive elements
at the lower extremities is tested by performing a passive swing test in both
models. Therefore, the model is attached at the back far above the ground so
that ground clearance is guaranteed. The initial angle of the left hip is set to
−π/4 and the initial angle of the right hip to π/4. The legs are released at t = 0
seconds.

2.1.2 Results & Discussion

The results of both simulation environments can be found in figure 3. The
results confirm that the implementation of the passive damping and stiffness is
correct, because the angles of the different models overlap well. Only at the right
ankle some difference can be seen. This is caused by a small length difference
between the left and right leg in the Matlab model. In the Webots model the
legs have the same length.
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Figure 3: Passive stiffness and damping with initial positions of the hips π/4 and −π/4
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2.2 Ground contact model

Every gait cycle the feet interact with the ground during toe off and heel strike.
It is essential for finding a realistic walking pattern to have a realistic ground
contact model. The used ground model is described and tested in this section.

2.2.1 Method

In Webots there is a ground contact model present. It consists of two parts:
a normal and a tangential part. The normal part simulates the impact of the
foot, the tangential part simulates the slip or friction of the foot.

The Matlab model simulates the ground as a large spring, the force becomes
larger when the penetration in the ground is larger. In Webots the reaction
of the ground is simulated by inverting the velocity ẏ into the ground and by
scaling its value:

ẏ = −ẏ · bounce, with bounce [0..1] (3)

In both the Matlab as the Webots model the tangential forces are calculated
using Coulomb friction forces. Depending on the normal force Fn there is a
tangential friction force Ff applied:

Ff = µ · Fn, with µ the coulomb friction component (4)

The implementation of the ground contact model is separately tested for the
normal and tangential forces. To test the normal forces the model is fixated at
the back. Both hip angles were initial set to π/4. The ground level is set at
such height, that the legs impact into the ground in order to test the ground
model. To test the tangential forces the ground level was set somewhat lower, so
that the legs slide over the ground. The other initial conditions were the same.
These two tests were performed with both the Webots as the Matlab model.
The bounce parameter was set on 0.1 and µ = 2.

2.2.2 Results & Discussion

In figure 4 the results can be found of the normal force simulation of the ground
contact model. The trends of the Webots and Matlab models are the same.
There is some strange behavior in the beginning of the Webots simulation, this
is caused by setting the initial positions of the joints in the controller. When
the initial conditions are applied in the Webots world the models calculate the
same angles as in the Matlab model. Again some variation can be seen between
the left and right leg, caused by the length difference. There are some small
deviations in the final angles, which is not thought to be a problem for the
simulation of the exoskeleton.

In figure 5 the results can be found of the tangential simulation of the ground
contact model. The left leg shows the best results for this test. Because of the
leg length difference in the Matlab model the right leg collides at 0.7 seconds.
This can best be seen in the angle of the right ankle. The Webots simulation
again shows the problem with setting the initial positions. The trends however
are the same.
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Figure 4: Feet collide with the ground, initial position of the hips π/4
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Figure 5: Feet sliding over the ground, initial position of the hips π/4
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3 Exoskeleton model

In this section the exoskeleton model is described and tested. First, all individual
components of the exoskeleton are discussed in section 3.1. In section 3.2 the
developed model is compared to human gait data.

3.1 Method

The simulated exoskeleton is a massless and anthropomorphic structure, it fits
exactly along the joints and the segments of the human body. It is assumed that
the exoskeleton is rigidly attached to the user. The actuation is done directly
at the joints, so that all supplied power is converted into joint rotation. The
exoskeleton is impedance controlled. The values for reference position, stiffness
and damping are phase dependent and they are determined by an optimiza-
tion algorithm combined with polynomial fitting. In the following sections the
components are explained one by one.

3.1.1 Impedance control

Robots were initially constructed to perform position tasks. These robots were
made very rigid to obtain reasonable positional accuracy by utilizing simple
control laws [3]. However, a problem with position-based control is that precise
motion tracking requires high output impedance. This is needed in order to
dictate a joint trajectory, but it results in a stiff exoskeleton. It forces the user
to react to the exoskeleton rather than interact with it [8].

Joint torques however can also be generated by an impedance-based ap-
proach. There are several ways to do this. Sup et al. [8] characterize the active
knee and ankle behavior with passive spring and damper constants that vary
over some finite states. The power is added by switching between the gaits.
Pratt et al. [4] use series elastic actuators to actuate the joints. The spring
decouples the actuator and the mass of the leg, resulting in low impedance,
making it more compliant.

In this project impedance control is used to actuate the joints. The control
law used is:

Ti = k(t) · (θact(t) − θref (t)) + b(t) · (θ̇act(t) − θ̇ref (t)) (5)

With: Ti Torque applied on joint i
k(t) Stiffness value depending on the time t
b(t) Damping value depending on the time t
θact(t) Current angle depending on the time t
θref (t) Reference angle depending on the time t

The phase dependent stiffness, damping and reference angle are determined
by polynomial fitting and an optimization algorithm. The time dependent stiff-
ness, damping and reference angle are calculated by the CPG network. The
reference velocity is calculated by differentiating the reference position.
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Figure 6: Monotone Hermite interpolating polynomial

3.1.2 Polynomial fitting

The values for the reference trajectory, active stiffness and active damping are
found with an optimization algorithm. However these three parameters all de-
pend on the phase and calculating new values for every phase step cause a lot
of calculation effort. An optimization algorithm however can also be used in
combination with polynomial fitting. The optimization algorithm calculates in
this case only 4 points of a walking phase and a curve is fit through those points.

The used polynomial fitting is monotone piecewise cubic Hermite interpolat-
ing polynomial (pchip) [2]. The Hermite curves are used to smoothly interpolate
between key points, see figure 6. The advantages of this method are that there
is no overshoot and less oscillations in comparison to other fitting methods.

The walking gait is a rhythmic movement so the found curves need to be
rhythmic as well. Therefore the pchip method is extended so that the start and
end point of the found polynomial are the same and have the same derivatives.

3.1.3 CPG network

The control of locomotion is regulated in a lot of animal species with a cen-
tral pattern generator (CPG). CPGs are biological neural networks that can
produce coordinated multidimensional rhythmic signals, under the control of
simple input signals. Artificial neural networks are made to better understand
the biological neural networks and to profit from the advantages. A model,
approximating the human CPG, makes online trajectory generation possible
[6, 7].

At Biorob [7] a system was developed of coupled adaptive nonlinear oscilla-
tors that can learn arbitrary rhythmic signals in a supervised learning frame-
work. Parameters as intrinsic frequencies, amplitudes and coupling weights can
automatically be adjusted to replicate a teaching signal. When the teaching
signal is removed the repeating trajectory remains. The system does not need
external optimization algorithms, because the learning is embedded into the
dynamical system, nor any preprocessing of the teaching signal. The developed
system can modulate the speed of locomotion and even allow reversal of the
direction.

In this project there are only simple open loop CPG networks used. The
idea of implementing the CPG network is that in a next step easily a more
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sophisticated network can be integrated. Then more benefit is taken from the
properties of CPG networks. In this case each joint has its own open loop CPG
network in which the stiffness, damping and reference angle curves are deter-
mined. The time dependent curves are found using the following differential
equations:

θ̇ref (t) = c · (θpchip(φ) − θref (t)) + θ̇pchip(φ) · φ̇ (6)

φ̇(t) = ω + sin(θref,left(t) − θref,right(t) − φbias) (7)

With: θref (t) Reference trajectory depending on time t

θ̇ref (t) First time derivative of θ(t)
c Convergence factor
θpchip(φ) Reference angle depending on phase φ

θ̇pchip(φ) First phase derivative of θpchip(φ)
ω Angular frequency
φbias The phase bias, between θref,left and θref,right

The damping and stiffness curves are found by substituting θ in equation 6
with respectively b and k. The CPG network is in this case used for smooth
switching between the initial straight stance position to the walking movement.
The CPG network also maintains the phase difference between the left and right
joints at π by the coupling in equation 7. The frequency of the oscillators is
equal to ω. The frequency defines the duration of the gait cycle. In this project
the frequency is set on 1 Hz.

3.1.4 Optimization

In this section the optimization is discussed. First the optimization algorithm is
explained, second the fitness function is presented, third the physical stops are
discussed, then the sagital plane fixation is introduced and at last the explode
functions are enumerated.

Optimization algorithm The values for the reference position, stiffness and
damping, that are used by the polynomial fitting, are found by particle swarm
optimization (PSO) [1]. PSO spreads a predefined number of solutions (particles
named) in the parameter space and calculates their fitness. The movements of
the particles over iterations are guided by the current best particles in the
parameter space. The best particle of all particles and iterations is called the
global best. The best solution of a particle over all iterations is called the local
best. Both global as local best particles are used to calculate the position of the
particle in the next iteration. This results in the following equations:

xi(k) = xi(k − 1) + ẋi(k) (8)

ẋi(k) = ẋi(k− 1) + c1 ·R · (xi,local−xi(k− 1)) + c2 ·R · (xglobal−xi(k− 1)) (9)

With: xi(k) The position of particle i at iteration k
xi(k − 1) The position of particle i at iteration k − 1
ẋi(k) The velocity of particle i at iteration k
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ẋi(k − 1) The velocity of particle i at iteration k − 1
R Random number
c1, c2 Scaling factor for convergence to local or global best
xi,local Local best of particle i
xglobal Global best

The dimension of the parameter space depends on the amount of free pa-
rameters. This also determines the dimension of the position vector of each
particle. In this case the position, stiffness and damping are interpolated be-
tween 4 points, which need both a x and a y coordinate. This results in 24
parameters per joint. Because the parameters are the same for the left and the
right leg with a phase difference of π, there are in total 72 parameters.

For this project the number of iterations was set on 300, with a population
size of 60 particles. The boundaries for the optimization are parameter specific.
The position boundaries are set on θmin and θmax, see table 2.1.1. The stiffness
boundaries are set between 0 and 400 N/m and the damping boundaries between
0 and 40 Ns/m.

Fitness function Next the fitness function has to be defined. There are a lot
of possibilities, so after testing the following fitness function is used:

Fitness =
Time

TorqueActive
·Distance (10)

Time is the elapsed simulation time, it gives a boost to the optimization,
so that more solutions are found that do not collapse. The maximal simulation
time is set on 10 seconds, which makes the Time range between 0 and 10.
TorqueActive is the active torque integrated over the time, it minimize the total
torque needed to make a movement. The human gait is very energy efficient so
it is expected that minimizing the total active torque will result in a human like
gait. The Distance is added to achieve a certain speed.

Physical stops In section 2.1.1 passive stiffness and damping is implemented
at the joints for a more realistic swing behavior. This also defines the joint
angle range, because when the joint angle becomes larger the passive force will
repulse the joint, see figure 2. However, the exponential curve is only realistic
up to certain angles, outside this range the passive torque becomes too high.
This makes the walking pattern instable and let the model collapse. It is hard
for the optimization algorithm to find a solution if a lot of solutions collapse.

Physical stops are implemented to reduce the chance of overstretching. The
stops are placed in the Webots world at: θmin − 0.1 < θact < θmax + 0.1. θact
is the angle joint, θmin and θmax are defined in table 2.1.1.

Sagital plane fixation The upper body of the model is also fixated in the
sagital plane to make the optimization easier. With this constrain the body
cannot tilt or rotate in the coronal plane. The implementation in the Webots
world is done by attaching two fixed sliders at the back. One slider makes it
possible to move in the direction of the gait, the other makes it possible to move
up and down.
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With the introduction of this constrain and the physical stops the model
cannot fall on the ground anymore, but it will hang in its physical stops. There-
fore, there is chosen to make the back joint a little flexible, by reducing the
maximum force of the position controlled motor.

Explode functions The parameter space contains regions that result in phys-
ically unrealistic solutions. Calculation effort can be saved by stopping the cal-
culation, when the solutions are out of the physical possible range. This is done
with the following explode functions:

• If very high torques are applied, it is possible that the physical stops do not
work, resulting in too large angles. Therefore the simulation is terminated,
when the joint angle θact becomes too small or too large in comparison
to the minimum angle θmin respectively to the maximum angle θmax, see
table 2.1.1: θmin − 0.2 < θact < θmax + 0.2

• Falling or jumping of the model is prevented by terminating the simula-
tion, when the height of the center of mass yCoM of the model becomes
too low or too high: 0.4 < yCoM < 1.5

After the simulation is stopped, the fitness value is still calculated and used
in the optimization. The fitness gets however a penalty, because the fitness
function takes the simulation time into account, see equation 10.

3.2 Results & Discussion

In this section the simulation results of the human model with exoskeleton are
presented and discussed. There is a lot of variation between the results of
different optimization runs. The initial positions of the particles have a large
influence on the final solution. Therefore the optimization is run several times.
The solution with the best fitness value is used to present the results in this
section.

3.2.1 Fitness curves

In figure 7 the maximum and mean fitness values are showed over 300 iterations.
This is done for the individual parts of the fitness function as well as the total
fitness function, equation 10.

The time fitness shows a nice result, the maximum time fitness is after
approximately 30 iterations always at its maximum value and the mean time
fitness keeps rising.

The maximum distance fitness goes up after 40 iterations, so when the time
fitness is optimized. There is chosen to take the absolute value of the fitness
before calculating the mean distance. This is done because there is only a slight
difference in parameters values for walking forward and backward, resulting in
positive or negative fitness values. Otherwise the negative and positive values
are cancelled out in the mean fitness. As can be seen in the figure the mean
distance fitness increases as well.

The torque fitness shows some strange behavior. The optimization algorithm
decreases the torque fitness, apparently it gives more profit to increase the
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Figure 7: Fitness function over iterations

distance than to decrease the torque. This can be changed by increasing the
order of the torque in equation 10.

The fitness function increases over all iterations, although the curve is very
erratic. This is an indication of the difficulty of this optimization problem. A
small variation in the parameter values can result in a completely different gait
or collapsing body.

3.2.2 Gait cycle

In this section the gait cycle of the maximum fitness is analyzed. The maximum
fitness is: 0.166 N−1, with the Torque at 1041 Nms, the distance at 17.32
m over a time of 10 s. The speed, after switching from stance to walking,
is approximately 1.9 m/s. In figure 8 snapshots of the simulated gait of the
maximum fitness can be seen. The pictures are taken with an interval of 0.1
seconds.

The gait cycle looks natural, the ankle is used for toe off and the foot is in
the right position for the heel strike. The foot clearance is guaranteed, without
using the rotation of the hip.

However, the simulated gait is very fast compared to the optimal human
walking speed of 1.33 m/s [5]. This results in a model which makes large steps
and has a short double stance phase. This could be avoided by putting more
emphasis on minimizing the total torque.
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Figure 8: Simulated gait, sample frequency 0.1 s

3.2.3 Simulation curves

In figure 9 simulation data of the left leg can be found from 10 till 13 seconds.
In this period 3 gait cycles were completed, the grey area marks the swing
phase. In the figure the interpolated reference angle, stiffness and damping of
all lower extremity joints are shown in blue. The red crosses are the optimized
interpolation points. The actual angle and real recorded human angles from the
University of Twente are plotted in the same figure as the reference angle. The
Twente data is scaled to fit the speed of the simulated data.

First there has to be noticed that there is an error in the implementation of
the monotone piecewise cubic Hermite interpolating polynomial, section 3.1.2.
The interpolated curves are not monotone as clearly can be seen in for example
the stiffness of the ankle and the damping of the knee. This even results in neg-
ative stiffness values for both the hip and ankle. This introduces some strange
behavior in the position of the ankle discussed below.

Position The figures of the position of the hip and knee show that the actual
joint angle is well attracted by the interpolated reference angle. However, the
ankle reference position is only followed well half the gait cycle. This is probably
caused by the negative stiffness values of the ankle. The reference trajectory in
equation 6 has to become opposite, when the stiffness is negative. In the figure
can be seen that when the optimized interpolation point is flipped in the x-axis
it lies near the actual angle.

In green the recorded data of Twente is plotted. For the actual angle of the
hip and knee the trends are comparable to the Twente data. For the ankle it
is again somewhat less clear. The actual angle is extreme if the Twente data is
extreme, but in between the amplitude of the actual angle is much larger than
the amplitude of the Twente data. This can again be caused by the negative
stiffness value or the absence of hip abduction, making the foot clearance more
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difficult.

Stiffness It feels logical that during the swing phase the joint stiffness is low
to let the leg swing freely. This can clearly be seen at the stiffness of the knee.
At the hip and ankle stiffness this is somewhat less clear, however, the stiffness
of the hip is at the lowest level during the swing phase and the stiffness of the
ankle is decreased rapidly.

At the end of the swing phase the stiffness is expected to be high to prepare
for the ground contact. This is not well reflected in the simulation results. The
hip and ankle stiffness are instead really low at heel strike. Anyway, based on
this figure it cannot be said that the hypothesis is wrong, because of the wrong
implementation of pchip and because the active torque is not minimized. The
knee stiffness is increasing at the end of the swing phase.

The high stiffness of the joints just before the swing phase is possibly caused
by the need of high control gains for the toe off.

Damping The damping of the hip and knee is high just before the swing
phase. It is useful to slow the limbs down, because in the swing phase the
direction is inverted for both hip and knee. During swing phase the damping is
decreased fast to make a movement with low friction. Apparently the hip need
damping at the heel strike, where there is no damping needed at the knee.

The damping of the ankle remains more or less the same. Only just after
heel strike the damping is increased to prevent oscillations with the ground.

3.2.4 Phase transition

In figure 10 the first 4 seconds of the simulation are shown. In this first seconds
the model switch from stance position to walking. After approximately 1 gait
cycle the gait becomes steady.

In this figure the soft implementation of the gait pattern can be seen by the
CPG network. It results in a smooth movement. It would be interesting to see
how other phase transitions, using a more advanced CPG network, will look
like.
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Figure 9: Joint angle, stiffness and damping
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Figure 10: Starting of the simulation: Joint angle, stiffness and damping
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Figure 11: Proposed distance fitness function

4 Conclusion

This project shows that it is possible to actuate an exoskeleton with impedance
control. The simulated joint angles show great similarities with the tracked
human gait angles. The time dependent stiffness and damping values do not
always show the expected values, but this may improve when the polynomial
fitting is made monotone. It can be concluded that an optimization problem of
72 parameters is solvable.

The model made in this project can be used to test more sophisticating CPG
networks. In this case only an open loop CPG network is used, but when this
is extended to a closed loop network, it is for example also possible to adjust
the gait pattern to the environment and deal with stability problems.

5 Future Directions

In this section some recommendations are done for future research.
First, the polynomial fitting has to be made monotone. The incorrect fitting

of a curve through the 4 optimized points introduces a random effect, which
makes the optimization more difficult.

Second, the total active torque is hardly decreased over the optimization
runs. Apparently it is more efficient to increase the distance than to decrease
the torque. This can be done in two ways: increasing the order of the torque
in the fitness function or reshaping the distance fitness function. The proposed
distance fitness curve can be found in figure 11. The preferred speed is the
optimum speed of 1.33 m/s [5]. This results in an optimum distance of approx-
imately 12 m, with a simulation time of 10 s and taken into account the phase
transition between standing and walking. The fitness curve has both positive
and negative values, because the variance in the parameters, between walking
forward and backward, is really small. Therefore the fitness can also be negative,
to make it possible to calculate the derivative of the fitness.
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