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Abstract

The research efforts addressing the control of robot behavior have been polarized; most robots are either fully guided
through “strong” programming, or given a few learning algorithms and left alone to explore the world. This paper explores
the area in-between, looking atrobot fostering, referring to techniques by which skills can be transferred to robots through a
close interaction with humans. While robot fostering can be the basis of interaction with a variety of robotic shapes, it is most
natural and human-friendly when the robot apprentices are anthropomorphic/humanoid. Fostering techniques discussed here
include teaching/learning by imitation, teaching by description/explanation, reinforcement, aid and collaboration. The paper
illustrates an experiment in teaching/learning by imitation. The human fosters the robot by first imitating its uncoordinated
arm movements, thus helping the robot develop its sensory-motor associative system. The human then shows arm movements
and the robot visually tracks them; consecutively, the robot is able to learn arm movements by imitation. Fostering techniques,
in addition to robot learning/acquisition techniques and more efficient man–machine interaction are considered key elements
contributing to the nascence of a new research field,developmental robotics, which would focus on the robotics counterpart
of human cognitive and motor development. © 2001 Published by Elsevier Science B.V.
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1. Introduction

Humans extract information from the surrounding
environment and act upon the environment, transform-
ing it for their benefit. For some tasks they introduced
robots as intermediates. Robots are defined by their
relationship with the environment and the humans.
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E-mail address:adrian.stoica@jpl.nasa.gov (A. Stoica).

Robots receive orders and report on their interaction
with the environment from which they extract infor-
mation and upon which they act. Thus, robots can be
seen as artifacts that:

• extend human capabilityfor interacting with the
environment (e.g. through them we can “see” on
Mars);

• replace humansin some of their roles in this inter-
action.

The shape of the robot is chosen to fit the environment
and the task to be performed. There are situations in
which a non-human size and/or shape is not only desir-
able, but in fact necessary. For example, a worm-like
shape is more appropriate than human shape for small
robots that would burrow to penetrate ice on Europa;
this is anextensionof a capability since humans could
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have never performed this task directly. In other cases,
where humans have already been performing the tasks,
the choice of the robot form is more subtle. By specif-
ically defining the roles in which the humans are to be
replaced, one can design non-anthropomorphic, tai-
lored solutions that are more efficient than humans. For
example, industrial robots on the fabrication lines are
more efficient solution than humanoid robots at han-
dling machine-customized tools. It should be noted,
however, that those robots function in fully artificial,
structured environments, mainly doing repetitive tasks.
When roles and tasks previously performed by humans
are very broad, environments in which they operate
are human-oriented, and interactions with humans are
a primary factor, anthropomorphic designs may offer
some advantages.

The focus of this discussion is the development of
robots dedicated to assist or substitute for humans in
some of their roles. While “extension” robots may
have various shapes, “substitution” robots can greatly
benefit from anthropomorphism. This paper will con-
centrate on anthropomorphic/humanoid robots.

The main objectives of this paper are: (1) to argue
for the need of humanoid robots, (2) to introduce
the concepts and bring justification for robot foster-
ing and developmental robotics, and (3) to provide
an example on fostering humanoid robots to learn
motor skills by imitation. The paper is organized as
follows. Section 2 discusses the need for humanoids,
and introduces developmental robotics. Section 3 dis-
cusses fostering techniques for cognitive and motor
development. Section 4 presents an example in which
the robot acquires eye–arm coordination and arm
movements/patterns/skills. Section 5 summarizes and
presents the conclusions.

2. Humanoid development

2.1. Anthropomorphic robots and humanoids

“My research is not just in function, but in shape.
In thirty years, in the twenty-first century, I think that
human form will be essential in robots. In factories,
which are for work, robots can be of any shape, but the
personal robot, or “My Robot” as I call it, will have
to exist in a regular human environment and be able to
adjust to humans.” (Ichiro Kato of Waseda University,

the “father” of WABOT-1 first biped walking robot —
1973.)

We are now 30 years later, and the date when we
think humanoids will be around has been pushed by
some studies for another 30 years or so [12,19]. Nev-
ertheless, in recent years, due to research advances in
robotics and some impressive demos such as that of
the Honda robots, the idea of building humanoids be-
comes more commonly accepted, and a series of yearly
international meetings has started [8]. This section
presents some key arguments for humanoids and ad-
dresses the degree of anthropomorphism that is needed
or useful for human substitution robots. Where direct
human substitution is not important other shapes may
be more efficient and will continue to be developed.
The arguments arise in the following areas: (a) adap-
tation to human-dedicated environments/artifacts (in-
cluding habitats, transportation systems, and tools), (b)
interaction with (and acceptance by) humans, (c) effi-
ciency of teaching/programming, and (d) testbeds for
human-related studies (intelligence, prosthetics, inter-
faces, theories of behavior).

2.1.1. Adaptation to human-dedicated
environments/artifacts (including habitats,
transportation systems, and tools)

Environments designed and built for humans have
the imprint of human shape. Buildings have stairs and
elevators; trains and airplanes have seats and narrow
corridors. All these impose constraints on the shape.
Anthropomorphism could be the simplest solution for
human-substitutes functioning in these environments
and cooperating with humans. Human environments
alone may not require human shape if robots are not
required to be human-substitutes. Cats and spiders can
live in human environments. But they do not change
light bulbs, lay out the table, clean the house, and
cannot carry humans in their arms to rescue them from
a fire.

The designs of future habitats, particularly in space,
could be modified, of course, if the environments
we build put inconvenient pressure on the shapes of
human-substitutes. But, at least as an intermediary
step before we redesign the world, is it is not simpler
to first develop a robot that fits this world, for which
we already have a model available? Interestingly, en-
vironments themselves will become more and more
intelligent. Our concept of robotics may entirely
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change as perception and intelligent systems become
ubiquitous.

Human-substitution also implies the very important
capability of using all the same artifacts/tools as hu-
mans do. Robots may be able to use other tools as
well for performing the same tasks; this should not be
perceived in the limiting sense, so long as retain back
compatibility with human tools. Is anthropomorphism
required for this? That is less obvious, but anthropo-
morphism could be a good starting point.

2.1.2. Interaction with, and acceptance by, humans

2.1.2.1. Interaction. Human interaction with robots
will be easier if the robots are humanoid. The more
humanoid the robot, the easier it will be for a human
to intuitively understand its limitations and capabili-
ties, to plan its actions, and to communicate directions
clearly. Ideally, interacting should be so natural that
even a child could easily utilize robot assistance.

“For a human-level intelligent robot to gain experi-
ence in interacting with humans, it needs a large num-
ber of interactions. If the robot has humanoid form,
then it will be both easy and natural for humans to in-
teract with it in a human-like way. In fact it has been
our observation that with just a very few human-like
cues from a humanoid robot, people naturally fall into
the pattern of interacting with it as if it were a human.
Thus, we can get a large source of dynamic interac-
tion examples for the robot to participate in. These ex-
amples can be used with various internal and external
evaluation functions to provide experiences for learn-
ing in the robot. Note that this source would not be
at all possible if we simply had a disembodied human
intelligence. There would be no reason for people to
interact with it in a human-like way.” [4].

2.1.2.2. Acceptance.“One of the most delicate and
important factors to take into consideration for the
success of service robots relates to the psychologi-
cal aspects and to the implementation of techniques
for human–robot interaction in “unprotected” and
“unstructured” environments such as a house” [5].

Humans have a tendency to develop affinities based
on resemblance. We can relate better to a chimpanzee
than to a snake. Similarly, we find it easier to in-
teract with a humanoid than with a large insect-like
robot.

One should mention, however, that beyond the to
anthropomorphization of the robots, some studies and
theories such as the theory of Social Responses to
Communication Technologies, indicate that on a more
fundamental level, people’s interaction with comput-
ers are identical to those between other human beings
[28]. The recent field of interactive robotics, which
includes personal robotics and service robotics [28],
will play an important role in developing appropriate
human–robot interaction means.

2.1.3. Efficiency of teaching/programming
Human intelligent behavior derives in part from in-

teraction with the external environment. Attempting
to create similar robot behavior may require similar
interaction, i.e. similar ways of gathering information
and perceiving and acting upon the environment, and
that may require similar shape.

Human-oriented teaching of robots has impor-
tant advantages. Humans teaching each other make
great use of teaching by demonstration. This is more
efficient than describing the movements in sym-
bols/words, although these can also help the instruc-
tion. For example, in a context where the operator
can visualize a target but the exact coordinate values
of the position are not known, guiding via conven-
tional software control is too complicated but ana-
logic teaching can help [18]. For controlling complex
motions a teaching pendant or a joystick are not as
efficient as teleoperation in a master–slave configu-
ration. The most efficient teleoperation is when the
master and slave are identical; hence for a human
it would be most natural and efficient to control an
anthropomorphic robot.

Most current methods of extracting movement data
rely primarily on sensors attached to joints and have
important limitations. Giving robots vision to watch
the movements themselves could significantly increase
their capabilities. Humanoids can watch human body
movements, e.g. arm movements, and then imitate
them. In order to imitate the arm movement, the robot
must have the necessary ability to transform images of
the human arm into commands for its own arm. This
visuo-motor coordination can be learned, as demon-
strated, e.g., in [23]. There, an anthropomorphic robot
learned to control its arm and then imitate the 3D
movements of a master arm. The approach can be ex-
tended to other parts of the body.
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An interesting possibility enabled by anthropomor-
phism is to have robots learn from videos/movies of
humans.

In addition, according to the arguments of Johnson
and Lakoff, the shape of our bodies is critical to the
representations that we develop and use for both our
internal thought and our language. If we are to build a
robot with human-like intelligence, then it must have a
human-like body in order to be able to develop similar
sorts of representations [4].

Opinions differ about whether non-human entities
can ever develop human-like intelligence. It is easy
to imagine a video simulant displaying human-like
intelligence, but how do we get this trait into real
hardware and software? Experience seems necessary,
but what kind of experience can an immobile com-
puter have? A computer can simulate virtual life in a
virtual reality; however, doing so in a realistic manner
still requires solving most of the problems of robotics.
Physical bodies may not be essential for artificial
intelligence, but they would at least be convenient.
Certainly the more humanoid the robot, the easier it
would be to give it useful human behaviors.

2.1.4. Testbeds for human related studies
(prosthetics, interfaces, theories of behavior)

Humanoids are potentially the best real-world mod-
els of humans; consequently they could provide the
most efficient testbed for learning about humans. Pros-
thetics, ergonomics, and safety testing are among the
first disciplines that could make use of human-like
robots. Theories of child development, concept for-
mation, motor behavior, intelligence, etc. find an ideal
testbed in humanoids. Another important aspect is the
effect of such a challenge (building a humanoid) in do-
mains such as Artificial Intelligence. Now that IBM’s
Deep Blue has won a competition with the world’s
human chess champion, new challenges need to be
formulated to drive artificial intelligence research.

2.2. Hot jobs for humanoids

Two “areas of employment” are seen as the
most promising from the perspective of “human
substitutes”: earth jobs in the areas of robot assistants,
service robotics, and hazard rescue and jobs in the
area of collaborative space exploration. Engelberger
[7] predicted that service robotics will outstrip in-

dustrial robotics sometime early in the 21st century.
While in 1994, the industrial robot industry shipped
about 65,000 robots, the market prediction for elderly
care robots alone amounts to millions [7]. We are at
the dawn of a new era in robotics. Many households
now have a personal computer; not far in the future
it may become common to have a personal robot.
Response to unexpected hazards such as smoke, fire,
steam, floods, and radiation, in which robots would
perform rescue missions in human habitats, appear as
well to be high pay-off application.

2.2.1. Attack on disabilities
An IEEE Spectrumarticle [26] cited US Census Bu-

reau statistics indicating that 49 million people in US
were in some way disabled. Nearly half of these, i.e.
almost a 10th of the US population have a severe dis-
ability in which a physical shortfall is coupled with a
mental illness such as Alzheimer disease. Humanoid
robots can play a major role in acting as personal as-
sistants for people affected by these disabilities. In
addition, byproducts of the development of anthropo-
morphic systems are likely to benefit the human reha-
bilitation process.

2.2.2. Human–machine partnership
on planetary outposts

Long duration, affordable and productive hu-
man presence in space will require a seamless
human–machine partnership in which collaboration
is the key. Humanoid robots are expected to play
an important role in future human populated space
colonies, as well as on Earth. They could assist as-
tronauts during missions. They could build facilities
prior/between human visits.

2.3. Developmental robotics: growing robot
cognitive and motor skills

Current robots depend largely on being pro-
grammed in the same way computers are programmed.
This is awkward for in field programming, e.g. teach-
ing the robot new ways of solving problems or ma-
nipulate objects directly in the real-world workplace,
in particular in space. The robots lack the capabil-
ity of being taught easily, in a human-oriented way.
New research efforts address human-centered tech-
niques of teaching/programming robots, which would
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Fig. 1. Teaching and learning ensemble.

provide a paradigm shift from programming robots
in machine-oriented language to teaching/fostering
robots in similar ways we teach humans [22]. These
techniques target humanoids with similar types of
sensory-motor capabilities as the humans. Humanoid
robots are the best candidates for learning by imita-
tion, from the demonstration of human motor behav-
iors, and for being fostered, e.g. in learning to walk.

It appears impossible to program a humanoid from
beginning to end. It may be easier instead to grow it
like a child. Thus, a new area of research is foreseen,
which is referred here asdevelopmental robotics. Its
aim would be to develop knowledge, methods, and
techniques for having the robots, like the humans,
develop gradually their cognitive and motor skills
from the interactions with humans, other robots, and
environment. Very much like child cognitive devel-
opment [14], robot development would benefit from
play, dreams and imitation. Teaching would become
as important component as learning. Fig. 1 illustrates
the current separation in addressing teaching and
learning. While the learning area has received, by
comparison, more attention, teaching has been less
explored. In developmental robotics these two aspects
would be treated as an ensemble.

The idea of developmental robotics has been sug-
gested independently by several researchers, e.g.
Stoica [22,25] and Asada [1]. To cite from the earliest
reference known to this author: “Investigation in this
area could lead to a new direction of robotics research,

possibly calleddevelopmental robotics, aiming at
building robots based on mechanisms similar to hu-
man cognitive and motor development.” [22, pp. 146].

3. Fostering techniques for cognitive
and motor development

The degree to which the human controls robot be-
haviors tends to polarize toward the extremes. At one
end the human is in charge of everything: controlling
the robot as a marionette (Fig. 2, left), or feeding its
brain with everything one assumes the robot should
know (Fig. 2, right).

At the other end, the robot is seldom provided with
a set of learning algorithms and left alone in the world
to learn by exploration, build maps, make sense of
it by itself. This is a very challenging task, and in
many respects we throw the robot to the lions (i.e. the
dangers in the real, unpredictable world) (Fig. 3).

The midway is to have an active, continuous in-
volvement of a human (or of a teacher robot) during
the development of the set of capabilities the robot
needs in the world. In the animal world fostering is
considered an important component to ensure survival
of the species. Interestingly, it is been observed that
the more “advanced” a species, the longer the period
of immaturity of its offspring — in other words the
longer the parents need to foster their children [3]. It
is this period when the young ones develop the skills
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Fig. 2. Human in charge of everything: (left) controlling the robot as a marionette, or (right) feeding its brain with everything one assumes
the robot should know.

that would make them successful in life. The parents
act as first teachers taking the young ones through
various phases of learning. In time the grown-up will
in turn teach others (not seldom themselves learning
more through teaching) (Fig. 4).

3.1. Phases of learning

Humans learn by themselves or from others. In the
initial learning phase they may learn movements with-

Fig. 3. Throw robot to the lions: endow the robot with a set of
learning techniques and let it explore the world alone.

out any information or control from others, while later
they may learn under total guidance and control. When
the learner does not know what controls to give to
the muscles, he can learn by exploration — children
learn their first movements this way. For example,
during learning eye–hand coordination they randomly
flail their hands and record the perceptions they get
for the applied controls, associating perceptions with
actions. (Piaget called this mechanismcircular reac-
tion). Adults may also learn by exploration, e.g. when
they first move in an unknown environment, such as
water or snow, especially when their limbs change

Fig. 4. Robot fostering: giving the robot a helping hand.
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their shape because of wearing flippers, skates or skis,
etc.

After learning the sensory-motor coordination hu-
mans can learn motor skills by imitation. Interestingly,
it appears that human children are more inclined to use
imitation than young chimpanzees [13]! When learn-
ing by imitation the learner observes a solution to the
motion control problem, which he converts to a ref-
erence system associated with his own body, creating
thus a solution that can be used directly or as a refer-
ence model. In the latter case, he tries to minimize the
difference between his behavior and that of the model.

Learning can also be cognitive, in which case a
trainer describes or explains the movement. This in-
formation can be used to build a controlling cogni-
tive model or simply for guidance of the body during
the movement. Once the correct movement has been
achieved it is usually repeated with increasing perfor-
mance, until it becomes reflex.

Robots could learn in the same ways humans do.
Several authors [9,11] describe systems in which the
robots learned sensory-motor control by exploration,
following the circular reaction mechanism. Explo-
ration is one way to generate examples of associa-
tions between actions and perceptions; another way
to generate examples is to have a teacher guide the
robot through the movement. The guidance can be
done by analogic teaching [18], which is particularly
useful when the precise coordinates where the robot
should go are not known exactly, but the operator
can see where he wants the robot to move. In most
cases this is done using a teaching pendant; in other
cases the human drives the robot directly. This is the
case with NAVLAB, a vehicle that learned to drive
on the freeway from recorded example pairs of visual
scenes and the associated wheel steering commands
used by the human while driving during a training
session [15]. The most popular recent technique for
learning sensory-motor control from examples em-
ploys neural networks (NNs); this was used in the
eye–hand coordination examples mentioned [9,11]
and in vision-guided mobile robots such as NAVLAB.

A simulation in which the robot starts with a cog-
nitive phase (a descriptive knowledge of the move-
ment) is presented in [10]. The knowledge is initially
stored in a knowledge base, and the robot moves
according to the description in the knowledge base.
An NN gradually takes over the movement control,

learning to produce the same motor control sequence,
the movement becoming reflexive. But obtaining the
knowledge about the movement may be non-trivial:
knowledge acquisition is the acknowledged bottle-
neck of knowledge-based systems. Movements may
be difficult to describe in words, even if simple to
perform. (Once learned,the knowledge of how to
movecould be captured from the first learning robot
in a generation and directly transferred/downloaded
to new, similarly looking robots.)

3.2. Imitation

Humans prefer to demonstrate movements, rather
then describe them linguistically. By demonstration
they offer a visual model, which can be used for learn-
ing by imitation. Thus, from the perspective of learn-
ing motor skills humanoid robots have an unmatched
advantage on other robots: they have a body shape that
allows them to imitate humans.

The most straightforward way to force a robot to
imitate human movements is to completely take con-
trol over its actions, moving it by telemanipulation.
For example, NASA Johnson Space Center (JSC) has
a full immersion telepresence testbed (Fig. 5), which
allows operators to be virtually immersed in the en-
vironment where a two-arm dexterous anthropomor-
phic robot operates [6]. The operator headset allows
the human to see through robot’s eyes — the cameras
mounted on the robot head, and special gloves allow
the operator to move the robot arms, while also get-
ting force feedback.

An extension forcing overall body imitation is pos-
sible if the body is covered with appropriately placed
sensors. Imitation and capturing of elements of human
movement is of great interest not only to robotics en-
gineers but also to computer-assisted movie and game
makers. For such users, Sarcos (Salt Lake City, Utah)
has developed the SenSuitTM (illustrated in Fig. 6),
that enables real-time teleoperator control of robotic
figures and computer-generated icons [16].

Early references on the use of imitation for an-
thropomorphic/humanoid robots (1992–1995) include
[20,22–24,29]. The topic was not much in the atten-
tion of researchers, partly because the whole field
of humanoids was largely non-existent outside Japan.
The only notable exception was the COG project [4],
which in its early phase focused more on using ideas
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Fig. 5. NASA JSC full immersion telepresence testbed (after [6]).

related to the subsumption architecture and behavioral
robotics — that has changed a few years later to em-
phasize the interaction with human users. Learning by
watching was a precursor of the learning by imitation,
yet the focus was on task learning and not how to
move. More recently, imitation learning has received a
much larger attention, the role of learning by imitation
for humanoid robots being well argued in the work of
Schaal and Vijayakumar [17,27], and also Mataric’s
group, e.g. [2].

Researchers worldwide are working on different
aspects of imitation. For example, researchers at
Tokyo University developed a human skull shaped
robot imitating the facial expression of a human
teacher. (The analysis and understanding of human
gestures has recently received considerable interest
from the perspective of developing a next genera-

tion of human-friendly computer interfaces.) Schaal’s
work uses the SARCOS humanoid robot and is likely
the most advanced current work on imitation by
humanoids.

Real imitation is when the robot itself watches and
moves freely to reproduce human movements. This
paper presents the first work in the area of learning
by imitation using a real anthropomorphic/humanoid
robot arm, first describing how an anthropomorphic
robot arm learns to imitate the movements of a teacher
(see [22] for a more detailed presentation of the sub-
ject). The robot learner and the teacher (a human or
an identical anthropomorphic robot) stay next to each
other and the eye of the learning robot watches to its
side the movement of the teacher. Fig. 7 shows the
set-up of a 2D imitation experiment detailed later in
the paper.
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Fig. 6. Operator in Sarcos’ SenSuit controls a virtual anthropomorphic creature (copyright Sarcos, reprinted with permission).

Fig. 7. Anthropomorphic robot arm imitates the movements of master arm.
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Learning by imitation appears promising for mak-
ing humanoid robots move like the humans, how-
ever, many other important aspects (e.g. correlating the
movement with the task) need to be addressed when
aiming for such an endeavor.

3.3. Collaboration/aid

Fostering expands greatly beyond providing ex-
amples for imitation. Very importantly, teachers can
set-up learning experiments and provide reinforce-
ment. They can also get directly involved in inter-
acting physically with the robot while it is learning.
They can help the robot by providing learning aids.
Consider biped motion control, which must contend
with the problem of maintaining stability. One can,
however, alleviate the need for a very stable design
by initially supporting the robot on a walker, such as
a circular ring at waist level used to maintain stabil-
ity, on which the robot’s hands lean on, and which
is pushed along when the robot walks. Force sensors
would then provide feedback, and the control of the
robot could be adaptively changed. Thus the robot
could learn to walk while trying to minimize the
force applied to the walker (an optimization prob-
lem); when finally no force is put on the walker, the
robot will be able to maintain by itself a stable biped
motion. This approach would lessen the possibility of
an expensive robot accidentally losing stability and
falling, possibly damaging itself.

A human can give a helping hand too, providing
the required balance for the first steps. This can be
done when teaching other movements require main-
taining balance such as learning to use a bicycle. In
fact this can be taken gradually too as for most chil-
dren, a tricycle is the first step in learning to ride.
“A tricycle has only two things to teach a child:
steering and pedaling. The steering usually comes
first, because the child can stand on the back step
with one foot and push along with the other. Once
the basic concept of steering has been learned, the
child can start to use the pedals.” (From “Teaching
Kids to Ride”, by Sheldon “Two Wheeler” Brown,
http://www.sheldonbrown.com/teachride.html). Pre-
paring the right set of learning experiences is an
important part of fostering.

In unsupervised (robot) learning the teacher’s pri-
mary role would be to prepare the environment. It

would provide structure, order the tasks in increasing
degree of difficulty, and provide tests and playground.
In reinforcement learning the humans provide either
direct feedback or interaction. Robots can also teach
each other.It is possible that the capacity of teaching,
and not that of learning, is the decisive factor that en-
sures human species’ superiority.

4. Fostering by imitation

Humanoids could learn by imitation. One way
would be to initially rely on teleoperation by a hu-
man. For example, for walking a teleoperator in an
appropriate suite, say a “Cyber Suite” (an extension of
“cyber gloves”) could walk (or in another context ride
the bicycle, or manipulate objects for certain task).
However, the approach that is perceived as the most
promising for humanoid learning is imitation. This
includes learning from a present instructor or from
recorded/broadcasted images of humans moving. In
the following approach, fostering starts with human
imitation of the robot; once the eye–arm coordination
is learned the robot will imitate the human and learn
from his examples.

4.1. A model for eye–arm coordination

This section describes an approach to the transfer of
motor skills to such robots, in which the robot’s capa-
bility to control its limbs starts with the learning of mo-
tor coordination using self-directed exploration. Once
it has control over its limbs, the robot could imitate
the movements of an instructor, or execute movements
described verbally or as a succession of coordinates
in Cartesian or joint spaces. The approach described
in this section uses learning by imitation (or teaching
by demonstration, as seen from human’s perspective),
considered promising because it is human-friendly
and efficient in illustrating postures hard to capture in
linguistic descriptions or quantified in programming
instructions. The model of eye–arm sensory-motor
coordination proposed here is characterized by a
system of equations, solved numerically using NNs.

Motor skills can be broadly divided into two
large categories: planning skills, i.e. the know-how
expertise, and motor control skills, i.e. the ability
acquired after performing a movement many times.
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Fig. 8. Planning skills and motor control skills.

Accordingly, the mapping between process charac-
teristics and actions can be divided in a mapping
between process characteristics and desired actions
(determining the planning skills), and the mapping be-
tween desired and performed actions (corresponding
to motor control skills), as in Fig. 8.

The former are related to strategies at a higher level,
while the latter refer to dexterity and motor abilities.
In the case of arm coordination, the mapping between
desired and actual performance is subject to a repre-
sentation in which a motor controller maps the desired
performance into commands, and the arm plays the
role of the controlled plant, mapping commands to ac-
tual performance. The motor controller also performs
a transformation from a sensory coordinate system to
a motor coordinate system.

In order to be able to place its arm in a desired po-
sition, the robot needs to have a model of its eye–arm
coordination. Traditionally, visuo-motor coordination
in robotics addressed eye–hand coordination. For
redundant manipulators (including here the human
arm and anthropomorphic robot arms), the associ-
ated inverse kinematics problem is under constrained,
admitting more than one solution. In the context of
acquiring motor skills by imitation, when the task
requires specific postures, or imposed by obstacles
in the environment, eye–hand coordination is insuffi-
cient. This is illustrated in the 3D situation in Fig. 9,
where posture (1) given by an eye–hand model is
unacceptable due to an obstacle, while a posture (2)
shown by an instructor provides a feasible alternative.

Eye–arm coordination adds to other models of co-
ordination as shown in Fig. 10.

The following presents a model of eye–arm coordi-
nation model schematically illustrated in Fig. 11. Dur-
ing the learning of the visuo-motor model the visual
inputs could be from the robot’s own arm, from the
arm to follow, or from another teaching arm. During
the imitation of human arm movements, the visual in-
puts are images of the human arm. The model (W) can
be considered to reflect the mapping between visual
inputs (X) and joint motor commands (Y).

The inputs (X) to the model are low-resolution im-
ages originating in the images obtained from video
cameras. The first experiment uses a 2-link arm. The

Fig. 9. Two-arm postures for the same hand position.
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Fig. 10. Models of arm coordination.

Fig. 11. A model of visuo-motor coordination.

output (Y) is associated with shoulder and elbow joint
angles as in Fig. 12.

Model identification from training examples con-
sists in finding W, for given X and Y pairs. In order to
identify a model it is necessary to obtain input–output
data characterizing it. In this case, one needs to as-
sociate visual inputs to motor control outputs, which
would position the arm in a posture similar to the vi-
sual input (showing the teacher arm). In most prob-

Fig. 12. Arm skeleton showing shoulder and elbow angles.

lems the associations are between actions and deter-
mined perceptions through the same system. Here the
robot must give controls to the own arm to place it
like what it sees for the teacher’s arm. To surpass this
problem, in the technique adopted here for collecting
training examples,the human (teacher) imitates the
robot. The robot randomly flails its arm, and for each
position of the arm, the human places his arm in a
similar posture giving also a validation signal. Thus,
the robot receives the information how the human arm
looks like when it is in a posture similar to that of his
arm resulted as an effect of controls Y. Whenever will
need to achieve a posture like X the robot will have
to provide the commands Y.

A first type of experiment involved a robot imitat-
ing human arm movements performed in a horizontal
plane. In its horizontal performance, the robot is an-
thropomorphic (see Fig. 7). The second type of exper-
iments targeted the extension of this approach to 3D
performance.

Two identical looking robots (RTX) were used, one
learning to imitate the other (shown before in Fig. 4).
The human operator controlled the teacher robot via
a computer. This time the camera was placed at the
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Fig. 13. Set-up for 3D learning.

Fig. 14. Shoulder and elbow neurons that map images to joint commands.

Fig. 15. Low-resolution image.
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approximate position of the human eye, gazing at
an oblique angle to the teacher arm, as illustrated in
the drawing in Fig. 13. The image-command pairs
were selected to (approximately) uniformly cover the
workspace. A total of 97 image-command pairs was
collected, and separated in a training set (88 pairs) and
a test set (nine pairs), the number of pairs in the test
being about 10% of the training set. Both addressed
models (a neural and fuzzy-neural one) used only one
neuron per joint (one neuron for the shoulder and one
neuron for the elbow, for the 2D case in Fig. 14).

The inputs (X) came from a 192 pixels(12× 16)
low-resolution image (Fig. 15), obtained by averaging
regions of 16× 16 neighboring pixels of a higher res-
olution image obtained from the frame-grabber. Their
intensity values were in the [0,1] interval, with 256
gray levels. Similarly, the outputs Y were normalized
to [0,1], which was the required definition domain for
the fuzzy-neural model.

Details of the implementation can be found in
[21,22]. The performance of the neural model (eval-
uated on the test set and on the quality of imitation
in a performance illustrated in the following) was
considered good.

4.2. Robot imitates the human
and learns arm movement

The robot used the neural models determined by
training to imitate (track) the movements of the teacher
arm. The qualitative evaluation consisted of subjec-
tive assessments of the closeness of the posture of the
robot arm to the posture of the human master arm. A
series of images during imitation is shown in Fig. 16.
When the training set included data from several dif-
ferent looking human arms the model generalized and
become robust to variation in the appearance of the
teacher arm.

In another set of experiments the robot apprentice
as illustrated in Fig. 17 imitated 3D movements of a
robot master arm.

4.3. Future work

The work described in this section is only a first
attempt to learn motor skills by imitation. The tech-
nique proposed here for obtaining training examples
is general and can be applied to learning other types

Fig. 16. Images showing human arm and imitation by robot arm.

of movement. The models employed here are simple
and of limited power. The neural models used in this
section require that the vision system always see the
teacher’s shoulder at the bottom of the image. To ob-
tain a robust system tolerant to position and rotation
variations, one could expand the described system
by introducing pre-processing models that perform
appropriate compensating image transformation. A
similar pre-processing is also needed to insure scale
invariance, etc. When imitation becomes possible in
real-world environments, the issue of correlating the
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Fig. 17. Master arm and slave arm: imitation in 3D.

Fig. 18. Toward 3D imitation of arm movement.
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motor behavior to the task to which it relates, needs to
be addressed. For example, a robot may imitate quite
well human arm movement in hammering a nail, with
the small exception of hitting one millimeter away
from the nail, or hitting the nail at a low speed: it
is necessary to have someunderstandingof the pur-
pose of the movement. Imitation has the important
role of providing a rough example of a movement,
however, to enable task-related motor skill learning
one needs more sophisticated models than those for
simple perceptual skill addressed here.

Future experiments will benefit from a 7-DOF an-
thropomorphic arm and a stereovision system, illus-
trated in Fig. 18. The experiments will target learning
human-like 3D movement from imitation of an arm
performing unconstrained in the environment.

5. Summary and conclusion

The paper argued in favor of developmental
robotics: perfecting techniques inspired from hu-
man motor and cognitive development for form-
ing/educating robots.

The focus technique explored here is fostering: a
role that the teacher assumes to facilitate robot learn-
ing. The teacher can prepare experimental environ-
ments conditioning data for unsupervised learning,
provide reinforcement depending on how the robot
does during learning, interact (including physically)
with the robot helping the robot perform the task,
showing the robot how to do the task.

An example was given to illustrate a fostering role:
the teacher initially imitated a robot in its action; later
it acted as a model and the robots imitated him, thus
getting examples of how to do things. The example
showed the learning of eye–arm coordination and then
the learning of arm movements by imitation. In an-
other example, the teacher’s role was played by an-
other robot: it appears useful for the future to have the
robots teach and foster themselves.
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