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Abstract

Modelling of human motion is used in a wide range of applications. An important

aspect of accurate representation of human movement is the ability to customize mod-

els to account for individual differences. The following work proposes a methodology

using Hill-based candidate functions in the Fast Orthogonal Search (FOS) method

to predict translational force at the wrist from flexion and extension torque at the

elbow. Within this force estimation framework, it is possible to implicitly estimate

subject-specific physiological parameters of Hill-based models of upper arm muscles.

Surface EMG data from three muscles of the upper arm (biceps brachii, brachioradi-

alis and triceps brachii) were recorded from 10 subjects as they performed isometric

contractions at varying elbow joint angles. Estimated muscle activation level and

joint kinematic data (joint angle and angular velocity) were utilized as inputs to the

FOS model. The resulting wrist force estimations were found to be more accurate

for models utilizing Hill-based candidate functions, than models utilizing candidate

functions that were not physiologically relevant. Subject-specific estimates of opti-

mal joint angle were determined via frequency analysis of the selected FOS candidate

functions. Subject-specific optimal joint angle estimates demonstrated low variability

and fell within the range of angles presented in the literature.
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Chapter 1

Introduction

Modelling of human motion is used in a wide range of applications such as assess-

ment of athletic performance, diagnosis of pathogenic motion, assessing rehabilitation

from traumatic events such as spinal cord injury or stroke and control of prosthetic

devices [17, 47, 71, 85]. Therefore, it is important to achieve an accurate representa-

tion of human movement and be able to customize models to account for individual

differences. Such modelling is often performed using biomechanical methods, where

information on joint position is obtained using kinematic methods, net joint reaction

forces are measured and individual muscle forces are estimated through calculation

or using measurements of muscle activity via surface electromyography (sEMG). Iso-

metric muscle contractions which are performed at a constant joint angle have often

been used for the development of biomechanical models, because joint position re-

mains fixed, and the interaction between muscle activity and resulting force output

can be observed more easily. Assessment of dynamic motion such as in gait analysis

introduces more variables and thus may be more difficult to accurately model.

Models to estimate joint torque can be developed using non-linear identification

1
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methods such as neural networks [87], second-order dynamic models [34] and other

methods [14, 5, 96]. However, these are “black box” models where inputs are mapped

to outputs, but the internal structure of the model may not be known. Building upon

the classic work of A.V. Hill [38], Hill-based models [8, 30, 47, 100] reflect the neuro-

muscular behaviour of individual muscles and are commonly used for skeletal muscle

modelling. Hill-based muscle models describe muscle behaviour as three elements

arranged in series and in parallel and estimate the forces generated by individual

muscles. These force estimates depend on accurate representation of physiological

parameters to ensure reliable results [48]. Therefore, accurate estimation of these

parameters from individuals using non-invasive techniques is critical.

1.1 Estimation of Physiological Parameters

The number of physiological parameters included in a Hill-based muscle model de-

pends on the complexity of the model, however a few key parameters are almost

always used. These include the optimal muscle length, tendon slack length, maxi-

mum isometric force, physiological cross-sectional area and muscle specific tension.

The optimal muscle length (L0) is the muscle length (Lm) at which a muscle can

generate a maximum isometric force (F0). L0 and the associated joint angle (optimal

joint angle θ0) are also often inferred as the length or joint angle where maximal

torque about a joint is measured [6, 10, 45, 81]. However, this may not be a valid

assumption, as torque measured at a joint is net torque, and is the result of multiple

muscles acting simultaneously on the joint. Tendon slack length (LTs) is tendon length

when the tendon becomes taught and tension begins to develop [100]. LTs has been

measured in some cadaver studies [53, 74], however it is generally estimated as the
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L0

LTs

LMTmin

Lm min

Lm max

LMTmax

Figure 1.1: Relationship between optimal muscle length L0, tendon slack length LTs,
and the minimum and maximum lengths of a muscle Lmmax and Lmmin

and musculotendon unit LMTmax and LMTmin adapted from [31]

difference between maximal musculotendon length (LMTmax) and L0 [7]. Figure 1.1

illustrates the interaction between L0, LTs and LMTmax. Physiological cross-sectional

area (PCSA) is defined as the total cross-sectional area normal to the longitudinal

axis of the muscle fibres [46] and muscle specific tension σ is defined as the maximum

force that is developed per unit of cross-sectional area [6]. Further information on

these parameters including a summary of values provided in the literature can be

found in Appendix A.

Due to the challenges associated with measuring muscle physiological parameters

in-vivo, values presented in the literature are compiled from a range of sources in-

cluding measurements from cadaver studies [1, 2, 53, 74, 91], imaging techniques such

as ultrasound and MRI [64] or estimations through optimization procedures using

musculoskeletal models [31, 48]. Computer models of the musculoskeletal system are

available [17], however subject-specific scaling is required to represent differences in

subject physiology from the generalized model [27]. A wide range of parameter values
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are available in the literature, however it has been shown that neuromusculoskeletal

models in which these parameters are used may be sensitive to errors in these values

[78, 86]. Obtaining accurate measurements in vivo for subject-specific applications

can be difficult, but is necessary to ensure accuracy and reliability of subject-specific

neuromusculoskeletal models.

1.2 Proposed Fast Orthogonal Search (FOS) Model

The methods used in this study build upon the techniques of biomechanical modelling,

using surface EMG to estimate muscle activation, and measuring joint position and

velocity. Rather than using forward or inverse dynamics with a traditional Hill-based

model, or an optimization routine to determine individual muscle forces and moment

contributions about the joint of interest, this work proposes the use of a non-linear

identification method called Fast Orthogonal Search (FOS) to map the relationship

between muscle activation, joint kinematics and the resulting net moment for the

muscles about the elbow, expressed as force at the wrist. The method will be based

on equations describing the Hill-based model parameters.

The FOS method was first developed by Korenberg [49, 51] as an efficient, non-

parametric model-based identification method. The method selects terms from a pool

of candidate functions to build a model in which the error between the predicted and

measured output is minimized.



CHAPTER 1. INTRODUCTION 5

Figure 1.2: Proposed force observer. Dashed lines represent signals used for training.

1.3 Thesis Objectives

The aim of this research is to use a FOS-based identification method that utilizes

muscle activation information from sEMG measurements and joint kinematic data to

develop a model that accurately maps these inputs to the net force generated at the

wrist. A schematic of the proposed system is provided in Figure 1.2. FOS candidate

functions will be tailored to reflect the neuromuscular behaviour of the muscles using

the Hill-muscle model. The objectives of this work are to:

• develop a Hill-based muscle model to describe the force generated by various

components of muscle for isometric contractions.

• utilize the FOS method to more accurately predict the force induced at the wrist

from flexion and extension torque at the elbow using physiologically relevant

model components.

• utilize the FOS method to obtain subject-specific Hill-based muscle model pa-

rameters.

• lay groundwork for more comprehensive candidate function development.
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1.4 Organization of Thesis

The thesis is divided into six chapters that are organized as follows:

Chapter 2: provides a description of the Hill-muscle model and an overview of

some examples of Hill-based muscle models provided in the literature. This chapter

also includes a detailed review of methods used to estimate muscle activation using

surface electromyography, musculoskeletal geometry in vivo, and an overview of the

relationship between EMG and muscle force.

Chapter 3: provides an overview of the methods used to develop the Hill-based

muscle model candidate functions for the (FOS) method.

Chapter 4: provides details about the experimental set-up and the procedures used

to collect and process sEMG and kinematic data from human subjects. Experimental

results for both isometric and dynamic studies are presented, including values for

subject-specific Hill-muscle-model parameters.

Chapter 5: includes an assessment of the results and how these may have been

affected by some simplifying assumptions used in the model development. A descrip-

tion of the method used to validate results for one muscle of the upper arm is provided

as well as suggestions for additional methods, which can be used to validate results

in the future.

Chapter 6: A summary of the work concludes this thesis and suggestions for future

research are provided.



Chapter 2

Background

2.1 Elbow Joint Dynamics

Flexion and extension of the elbow results from muscles acting across the elbow joint.

These are classified into two categories: flexors (i.e. biceps brachii, brachioradialis

and brachialis) which generate a moment about the elbow, causing the arm to bend,

and extensors (i.e. triceps brachii and anconeous) which generate a moment in the

opposite direction, causing the arm to straighten. An illustration of the key muscles

acting on the elbow is provided in Figure 2.1.

Elbow joint motion is a result of the contraction of multiple muscles working

together to create smooth and controlled joint rotation. The moment generated by

each muscle is a function of the force produced by each muscle, and the moment

arm of the muscle, which is defined as the minimum distance perpendicular to the

line-of-action of the muscle, and the centre of the elbow joint [74] and is shown in

Figure 2.2. The net moment about the elbow, Melbow can be calculated as the sum

7
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Figure 2.1: Muscles of the upper arm [37]

of individual moments generated by each muscle, that is

Melbow =
I∑

i=1

Fi ·MAi (2.1)

where i represents an individual muscle, I is the number of muscles considered to

be acting on the joint, Fi is the force generated by muscle i, and MAi is the moment

arm of muscle i.

Force at the wrist induced by a moment about the elbow can be measured using

a force transducer positioned at the wrist, with the shoulder and wrist held in a fixed

position. It is then possible to quantitatively determine the net moment about the

elbow from the force measured at the wrist and using the length of the forearm as

the moment arm as follows:

Melbow = Fw ·MAforearm (2.2)

where Fw is the measured wrist force and MAforearm is the forearm moment arm,

as illustrated in Figure 2.3.

The challenge is to separate the calculated net moment into individual muscle
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Muscle moment arm

Muscle line of action �
Figure 2.2: Example of the line of action and moment arm for the biceps brachii

(adapted from [61]). Elbow joint angle θ is defined as the external elbow
angle, where zero degrees occurs when the arm is at full extension.

forces for each muscle acting on the elbow. Muscle force can be described as the

result of “activation dynamics” and “contraction dynamics” as illustrated in Figure

2.4. “Activation dynamics” refers to the activation of the contractile components of

muscle tissue in response to neural signals from the Central Nervous System (CNS)

and will be discussed in Section 2.5. “Contraction dynamics” describes the process

of force generation in the contractile component of the muscle [100]. Many models

exist to estimate the force produced in muscles, including the Hill-muscle model.

2.2 Modeling Hill-Muscle Model Components

Hill-based muscle models are often used to estimate of the magnitude of force gener-

ated in individual muscles. As shown in Figure 2.5, the classic Hill model is composed

of a contractile element (CE), a series elastic element (SE), and a parallel elastic ele-

ment (PE) [94].
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Figure 2.3: Calculation of the net elbow moment Melbow using the force measured at
the wrist Fwrist and the length of the forearm lforearm [29]
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Figure 2.4: Block diagram of process of muscle activation and contraction [100]

The force generated by the CE (FCE) is equal to that in the SE (F SE), and the

total muscle force Fmuscle is equal to the sum of the forces in each of the two parallel

sections of the model, that is

FCE = F SE (2.3)

Fmuscle = FCE + F PE (2.4)

2.2.1 Contractile Element

Force generated by the CE (FCE) can be interpreted as the activity of the contractile

units within the muscle fibre, called sarcomeres, which contract and generate tension
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Figure 2.5: Structure of the Hill muscle model adapted from [94]

following stimulation from a motor nerve. The amount of tension that can be devel-

oped depends on the muscle length, and the maximum amount of tension that the

muscle generates (F0) when it is maximally activated at its optimal length L0.

The muscle force-length relationship describes the force that a muscle generates

as a function of the length of the muscle. As shown in Figure 2.6, the peak contractile

force that can be generated by a muscle occurs at the L0 and this force is reduced to

zero at lengths of approximately 0.5L0 and 1.5L0, respectively [100].
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Figure 2.6: Isometric contractile element force FCE curve (solid line) and the parallel
elastic force F PE (dashed line) extracted from [31]

The muscle contractile force also depends on the speed at which a contraction
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takes place. The force-velocity relationship only applies to dynamic contraction of

muscle, and represents the ability of the muscle fibres to generate force when the

muscle is actively shortening (i.e. during a concentric contraction). During isometric

contractions, the shortening velocity is zero and the maximum force achieved by a

muscle will equal F0. As shown in Figure 2.7, the force generation capabilities of

muscle diminish with the contraction velocity (vce). In contrast, muscle force can

exceed the isometric force during eccentric (lengthening) contractions. A lengthening

contraction occurs when the load that the muscle is acting against is heavier than the

muscle can actively support. The muscle fibres will lengthen and the tension in the

fibres will help support the extra weight. This behaviour is illustrated in Figure 2.7.

Lengthening       Shortening v
ce

F0

F
o
rc

e

Figure 2.7: General shape of the force-velocity relationship. The vertical axis repre-
sents zero velocity or an isometric contraction

FCE can therefore be expressed as the product of F0, the force-length (fl) and

force-velocity (fv) relationships and muscle activation a(t) [100], that is

FCE = F0 · fl · fv · a(t) (2.5)

Muscle activation is commonly estimated using EMG signals recorded from the
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active muscle. Since F0 is a constant value for each muscle, and assuming that muscle

activation can be estimated from EMG measurements, approximations of the force-

length and force-velocity relationships are required in order to calculate FCE.

2.2.2 Parallel Elastic Component

The force generated by the PE component (F PE) is attributed to the stretch resistance

in inactive muscle. Behaving similarly to an elastic band, the PE only exerts tension

when it is stretched beyond its resting length, which is equivalent to the optimal

muscle length L0. As the muscle lengthens beyond L0, tension builds up slowly at

first, and then increases quickly. The general shape of the F PE is illustrated in Figure

2.6.

2.2.3 Series Elastic Component

The SE component represents elastic material connected in series with the contractile

component and refers to elastic energy that is stored within the individual sarcomeres,

[100] as well as inherent elasticity in the tendon. An isometric contraction is defined as

the development of muscle tension with no visible muscle shortening [24, 28]. This is

accomplished via active shortening of the CE to generate active muscle force, which

is offset by an extension of the series elastic element. The SE component is often

neglected in Hill-based models by assuming that the tendon is infinitely stiff [80].
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2.3 Determining the Relationship between Muscle

Length and Isometric Force

Early investigations into the force generated by muscle fibres were performed on single

in-vitro fibres and muscles from amphibians (i.e. frogs) and small animals [56]. The

classic work of Gordon et al. [33] presented the traditional shape of the force-length

curve for frog muscle fibres, while later studies identified optimal sarcomere lengths

for human tissue [92]. Identifying the in-vivo force-length characteristics is important

to describe, understand and predict human motion.

Early studies looking at individual sarcomeres of in-vitro muscle tissue identified

an optimal sarcomere length (LS0) as the length at which maximal overlap of actin and

myosin myofiliments occurred. Suggested values for LS0 for human skeletal muscle

range between ∼ 2.0 − 2.8µm [33, 84, 92]. Optimal length of whole muscle can be

represented as muscle fibre length (LF ) normalized to the optimal sarcomere length

using measured sarcomere lengths (LS), and assuming a value of 2.8µm for LS0 as

follows:

L0i = LF
2.8

LS

(2.6)

Several researchers have described the force-length relationship in human muscles

for maximal voluntary contraction and /or artificially evoked contractions. In general,

evoked contractions involve injecting low frequency current via surface stimulating

electrodes to activate skeletal muscle and mimic voluntary contraction. The use

of electrical stimulation to isolate specific muscles removes the problems associated

with several muscles contributing to net joint torque, as the measured torque or force
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is a result of activation of only the stimulated muscle fibres. In addition, subject

motivation and the associated variation in maximal voluntary contraction are not

factors and researchers are able to maintain a constant level of activation between

trials [56].

Leedham and Dowling [56] used electrical stimulation to isolate the contribution

of the biceps brachii to elbow joint torque. They also examined joint torque at various

joint angles for maximum voluntary contraction of the biceps brachii. The resulting

joint angle curves are shown in Figure 2.8.

Figure 2.8: Torque-length curves for the biceps brachii obtained from maximal volun-
tary contractions (solid line) and electrical stimulation (dashed line) [56].
In this study, full elbow extension was defined as a joint angle of 3.14rad
or 180◦

.

Koo et al. [48] used electrical stimulation to determine torque-angle curves for the

biceps brachii and brachioradialis at stimulation parameters of 20mA of current, pulse

width of 0.3ms and at a frequency of 30Hz [48]. Elbow torque was measured over a

range of joint angles and individual muscle force was calculated using an optimization

solution procedure of a Hill-based model. The joint angle where the maximum muscle
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force was achieved was used as the optimal joint angle as shown in Figure 2.9.

Figure 2.9: Examples of torque-angle and force-angle curves obtained through sub-
maximal electrical stimulation of the biceps brachii and brachioradialis
[48]. Full extension is defined as 0◦

.

Some studies have investigated the effect of contractions at a percentage of max-

imum on the shape of the force-length curve and suggest that the maximal force

output of the force-length relationship is shifted towards longer lengths for submaxi-

mal muscle activation [35, 84] as well as following eccentric exercise [81].

2.4 Muskuloskeletal Geometry

2.4.1 Optimal Joint Angle

A key parameter for upper arm muscles that has not been widely reported in the

literature is the optimal joint angle associated with optimal muscle length. Many

researchers provide muscle optimal length measurements from cadaver studies [1, 2,

53, 74], or estimates from biomechanical models [9, 31, 32, 40, 48]. Some researchers

have provided relationships between muscle length and joint angle [57, 83], but only

three studies were found that provided estimates of both the optimal muscle length

and joint angle for the same subjects [9, 48, 74]. In many studies the optimal joint
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angle is inferred as the angle where maximal torque about a joint is measured [6, 10,

45, 81]. Table 2.1 provides a summary of optimal joint angle values for upper arm

muscles presented in the literature. An elbow angle of 0◦ represents full extension.

In the majority of studies, optimal joint angles were reported for the biceps brachii

and brachioradialis, or were grouped giving one optimal flexion angle.

Table 2.1: Optimal Joint Angle for muscles about the elbow as presented in the lit-
erature

Optimal Joint Angle (deg)
Reference Study Size (n) Biceps Brachioradialis Triceps

An et al., 1981 [2] 6 75 80 –
Buchanan, 1995 [6] 11 90 90 108

Chang et al., 1999 [9] 7 110 50 –
Jaskolska et al., 2006 [45] 22 – – 83-90

Koo et al., 2002 [48] 4 20 17 –
Lieber et al., 2005 [60] 8 – 94 –
Murray et al., 2000 [74] 10 20 20 ∼70-90

Philippou et al., 2004 [81] 14 67 67 –
Van Zuylen et al., 1988 [90] 4 ∼90 – –

Average 67.4 59.7 88.2

2.4.2 Estimating Muscle Moment Arms

In order to translate the force generated in a muscle, into torque about a joint, the

moment arm of the muscle is required. As previously described, the moment arm

is the minimum distance perpendicular to the line-of-action of the muscle, and the

centre of the elbow joint [74]. A number of estimations of how this value changes

with respect to joint angle are available in the literature [3, 57, 83], and a few key

methods are summarized below.
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Figure 2.10: Muscle moment arm (cm) for the biceps brachii, brachioradialis and
triceps brachii estimated as a function of joint angle [57]

Lemay and Crago [57] presented a polynomial model of the moment arm (in cm)

for muscles of the arm as a function of elbow joint angle (in radians). Polynomial

approximations of the moment arm models were estimated from moment arm curves

presented by Amis et al. [1]. These polynomial relationships are provided below,

where MAbi,brd,tri refer to the moment arm of the biceps brachii, brachioradialis and

triceps brachii, respectively. The shapes of the resulting curves are presented in Figure

2.10.

MAbi = 1.963− 1.440θ + 3.031θ2 + 0.887θ3 − 1.418θ4 + 0.285θ5 (2.7)

MAbrd = 2.015− 0.458θ + 3.058θ2 − 1.081θ3 + 0.159θ4 − 0.0187θ5 (2.8)

MAtri = −2.363− 1.015θ + 1.920θ2 − 1.035θ3 + 0.257θ4 − 0.0262θ5 (2.9)

Murray et al. (1995) [76] looked at 2 cadaver specimens to generate a model of

moment arm for muscles of the upper arm. Moment arms were calculated as the
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partial derivative of the muscle-tendon length ∂l, with respect to joint angle ∂θ as

per the “tendon excursion” method outlined in [3]. The tendon excursion method can

also be used with imaging techniques such as ultrasound or MRI to determine muscle

moment arm for subjects in-vivo. A point on a tendon is marked on an ulrasound

image, and as the joint rotates, the distance that this point moves is quantified.

The muscle moment arm is approximated by taking the derivative of the tendon

displacement over joint rotation. Figure 2.11 presents an example from Ito et al.

[44] where an ultrasound image was captured for each 5◦ of joint rotation, and the

moment arm MA = ∆x/∆a, was found where ∆x is the distance travelled by point

x in each image and ∆a is 5◦.

Figure 2.11: Longitudinal ultrasound image of the Tibialis Anterior (TA) [44]. The
point X represents the selected point of attachment between the muscle
fascicle and aponeurosis. The distance travelled by X over a range of
images taken every 5◦ was measured with a ruler

In a subsequent study, Murray et al. (2002) [75] examined 10 cadaver specimens

(5 male, 5 female) and quantified the moment arm for muscles of the upper arm with

respect to joint angle. Their moment arm measurements are shown in Figure 2.12.

It is clear that the range of moment arm for brachioradialis and biceps is variable

between the cadaver specimens especially around 90-100◦ of flexion. This variability

corresponds to approximately 2cm or 33% of the peak moment arm length.

An additional method used to determine muscle moment arm is the “muscle line
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Figure 2.12: Elbow muscle moment arms vs. elbow angle (deg) for 10 cadaver speci-
mens [75]

of action” method. Images of a joint centre of rotation as well as the action line of

a tendon are obtained using X-rays or MRI [65]. The perpendicular distance from

the joint centre to the action line of the tendon is measured directly from the images

taken in the plane in which the joint operates.
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2.4.3 Computer Models

Computational models of the human neuromuscular system have become commonly

used by researchers for simulating the control of movement, athletic performance

and medical treatments such as surgical tendon transfer [17, 30, 40, 60]. A widely

used commercially available system called Software for Interactive Musculoskeletal

Modelling (SIMM) is a software platform that enables researchers to build models of

musculoskeletal structures in the body [17]. It is based upon rigid segments (bones)

connected by joints and surrounded by muscles and ligaments. Users can alter the

line of action of a muscle and properties associated with force generation, measure

muscle length and moment arm for various positions, or input muscle activation

data and receive the resulting muscle forces and/or joint moments. The system

incorporates traditional Hill-based model components such as force-length and force

velocity relationships for muscle and tendon and muscle parameters such as maximal

isometric force (F0), optimal muscle length (L0), tendon slack length (LTs), pennation

angle (α) and maximal contraction velocity (Vmax).

2.5 Measurement of Muscle Activation

Muscle activation a(t) is defined as the neural input for a desired muscle force and is

commonly estimated from recorded EMG. The EMG is a recording of the electrical

signals known as action potentials, that are generated in muscle fibres when they are

instructed to contract, and can be influenced by many factors.



CHAPTER 2. BACKGROUND 22

2.5.1 Generation of the Action Potential

A muscle is comprised of many motor units, where a motor unit is a group of muscle

fibres, all of which are directly innervated by a single motor neuron. Thus the motor

unit is the smallest functional unit in a muscle. The location at which the motor

neuron branches terminate on the muscle fibres is called the motor end plate, or

neuromuscular junction [59].

When an action potential arrives at the motor end plate from the motor nerve,

action potentials are, in turn, generated in the muscle fibres. These action potentials

travel away from the end plate in both directions as shown in Figure 2.13. These

travelling electromagnetic waves can be detected using appropriate sensors called

electrodes.

Figure 2.13: Example configuration of two motor units; Number 1 of which has just
been excited [52]

Electrodes placed within this electromagnetic field will be able to detect a potential

difference between the muscle tissue and ground. Figure 2.14 illustrates an example

of this process for n muscle fibres of one motor unit. The spatio-temporal sum of the

individual action potentials for all muscle fibres in one motor unit form the motor

unit action potential (MUAP), given in Figure 2.14 as h(t) [4].
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Figure 2.14: The contribution of individual muscle cell action potentials to the mea-
sured motor unit action potential (MUAP) [4]

2.5.2 Surface Electromyography

Metal electrodes that are placed on the surface of the skin over a particular muscle can

be used to detect the sEMG signal. Electrodes are primarily arranged in monopolar

or bipolar configurations. As the names suggest, monopolar signal recording uses one

recording electrode placed over a muscle with a reference electrode located elsewhere

on the body. In bipolar signal recording, two recording electrodes with a relatively

small inter-electrode distance are attached on the skin surface, with the electrode axis

parallel to the underlying muscle fibres. Electrodes are generally placed between the

innervation zone and terminal tendon of the muscle [73]. The configuration and an

example of the resulting raw EMG signal are illustrated in Figure 2.15.

The use of bipolar electrodes have the advantage of good signal-to-noise-ratio

(SNR) through a process called differential amplification. A differential amplifier

(shown in Figure 2.16) subtracts the signals from each terminal of the bipolar elec-

trode, effectively removing the noise signal that is common to both terminals of the

surface EMG electrode. The resulting signal is then amplified by gain A [93]. The
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Figure 2.15: Conceptual placement of EMG electrodes with respect to innervation
zone (top electrode) and tendon (bottom electrode) [16]

benefits associated with active electrodes are based on the fact that the differential

amplification of the signal takes place onboard the EMG sensor, rather than carrying

the signal through wires and differentially amplifying the signal at a computer. This

effectively eliminates the amplification of any noise signals that may be caused by

high skin impedance or cable motion artifact.

Prior to sampling, EMG signals are filtered. A high pass filter with corner fre-

quency ∼20Hz removes low frequency motion artifact, and a low pass filter with a

cutoff frequency of just less than half the sampling frequency prevents aliasing effects

[15]. Cross-talk, or signal contamination from nearby contracting muscles can also

affect EMG signal measurement. Unfortunately, it is difficult to identify and remove

cross-talk from EMG signals, due to the fact that cross-talk signals exist in a similar

frequency range as the desired muscle signal, therefore removal of extraneous signals

by traditional filtering methods is not an option. A variety of methods for reducing
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Figure 2.16: Differential amplifier subtracts the signals from each terminal of the
EMG electrode to eliminate the noise common to both signals [93]

the effects of cross-talk are reviewed in [23].

2.5.3 Amplitude Estimation

EMG is a stochastic signal that varies about a zero-mean value [73]. The signal am-

plitude is generally considered to provide an estimate of the level of muscle activation

a(t). Two common methods used to estimate EMG amplitude are the smoothed, rec-

tified EMG (also referred to as the linear envelope) and the root mean square (RMS)

value of the EMG which are computed as:

LE =
1

N + 1

N/2∑

i=−N/2

|ui(t)| (2.10)

RMS =

(
1

N+1

∑N/2
i=−N/2 |u2

i (t)|
)0.5

(2.11)

where ui(t) are the EMG samples and N + 1 is the window length [73].
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2.6 Methods used to Relate EMG to Muscle Force

EMG amplitude is observed to increase when an individual generates more force in

a muscle. The magnitude of force generated by a particular muscle is modified by

varying the number of motor units which are instructed to contract (recruitment),

or by adjusting the frequency at which the motor units fire (rate coding) [52]. Many

researchers have attempted to define a relationship that describes the dependence of

force on EMG, however this has proved to be a difficult task [16]. A brief overview of

methods used in the past to estimate muscle force or joint torque from EMG signals

follows.

2.6.1 Linear and Non-linear Approximations

Early studies attempting to compare processed EMG signals from a variety of muscles

suggested that the relationship between normalized muscle force and EMG was quasi-

linear for small muscles of uniform muscle fibre composition, and non-linear for larger

muscles of mixed fibre composition [4, 55, 99]. It has come to be understood, however

that these simple relationships are not entirely accurate, as many factors can influence

the relationship between measured joint torque or muscle force and EMG signals,

including co-contraction of agonist-antagonist muscles and signal cross-talk, especially

for small muscles.

Additional work by Clancy et al. [14, 13] provided a model to estimate joint

torque about the elbow as a function of EMG contribution from two inputs (an elbow

flexor and extensor). Using a least-squares method they determined fit parameters

to accompany processed EMG amplitude in order to estimate torque contribution

from the elbow flexor and extensor. Problems with this method however are due to
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the fact that the model assumes contribution from only one muscle in flexion (biceps

brachii) and one muscle in extension (triceps brachii). This simplification neglects

contribution to elbow torque from additional muscles such as the brachioradialis and

brachialis.

2.6.2 EMG-Driven Models

EMG-driven or Hill-based muscle models have been used for muscle force or joint

torque prediction in a wide range of applications. Langenderfer et al. [54] utilized

an EMG-based upper-arm model to predict the force in the long head of the biceps

to aid in clinical assessment of superior labrum anterior posterior (SLAP) lesions.

Other researchers have developed their own Hill-based models to describe motion

of specific joints [39, 95], regions of the body [30, 40, 43] or to assess pathologic

movement [25, 47]. Often an optimization procedure is implemented within the model

to further refine internal parameters and achieve more accurate force prediction [31,

48, 54], however it has been demonstrated that these types of models may have trouble

predicting co-contraction in antagonist muscles [11].

2.6.3 Artificial Neural Networks

To take into account the non-linearities between EMG and joint torque or muscle

force, artificial neural networks (ANN) have become a common method to predict

joint torque based on muscle activity and joint kinematics. Neural networks are

composed of many small neurons, which are connected together and arranged in

layers. Weighting factors are assigned to each connection and modified during training

procedures, where inputs are mapped to a desired output. Sepulveda et al. [87]
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successfully used an ANN with a back-propagation algorithm to map EMG signals

from muscles in the leg to joint torques at the hip, knee and ankle during human gait.

Liu et al. [63] utilized a 3-layer ANN to predict tendon force in the cat soleus from

measured EMG measurements and achieved an estimation accuracy with root-mean-

square-error less than 15%. Figure 2.17 provides an example of the ANN structure

from [63].

Figure 2.17: An ANN configuration for predicting force from EMG [63]

Rosen et al. [85] compared the use of ANN to Hill-based models for predicting

joint torques and concluded that while the ANN was slightly more accurate in its

ability to predict joint torque, the method is hampered by its high computational

demand and reliance on specific training data. For applications where force or torque

prediction is required in real-time, Hill-based models may be more desirable because

they are more computationally efficient during model training, especially compared to

neural networks with many hidden layers and a large number of nodes. As well, Hill-

based models are more widely applicable for different individuals and generalizable

across varying movement conditions.
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2.6.4 Fast Orthogonal Search (FOS)

First developed by Korenberg in [49] and further described in [50, 51], the Fast Or-

thogonal Search (FOS) method is a nonlinear identification method that forms a sum

of M linear or nonlinear basis functions pm(n) and coefficient terms am and aims to

minimize the mean square error between the estimate and the system output. The

FOS model takes the form:

y(n) =
M∑

m=1

ampm(n) + e(n) (2.12)

where y(n) is the actual system output, e(n) is the estimation error and n is

the discrete time sample index. The FOS method searches through a number, N,

of available candidate basis functions, where N >> M and iteratively selects those

functions which contribute the most reduction in mean square error (MSE) between

the model estimate and the actual system output. Complete details about the FOS

method including the algorithm used to generate the FOS models are provided in

Appendix B.

In previous research [70], a set of candidate functions composed of common math-

ematical terms were identified to predict force at the wrist during flexion and exten-

sion of the elbow. The resulting candidate functions are summarized in Table 2.2.

The resulting FOS models were able to predict force at the wrist and demonstrated

equivalent estimation error to models generated with multi-layer perceptron neural

networks. Evaluation error for models trained and evaluated with isometric data was

given in terms of percent mean square error (%MSE) and ranged from 6% to 19%

across 5 subjects. Neural network models trained and evaluated with the same data

resulted in an evaluation %MSE ranging from 5-17%.

FOS has been used in a wide variety of applications including nonlinear system
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Table 2.2: Candidate functions suggested for use in Mobasser et al. (2007) [70], where
eBi,Brd,Tri refer to the processed EMG signals for the biceps brachii, bra-
chioradialis and triceps brachii respectively

Common Functions
offset θ̇
eBrd eTri

eBi

cos θ · eBi sin θ · eBi

cos θ · eTri sin θ · eTri

cos θ · eBrd sin θ · eBrd

cos θ · eBrd · eTri sin θ · eBrd · eTri

cos θ · eBi · eBrd sin θ · eBi · eBrd

cos θ · eBi · eTri sin θ · eBi · eTri

(c) Square Root Functions
cos θ · √eBrd sin θ · √eBrd

cos θ · √eBi sin θ · √eBi

cos θ · √eTri sin θ · √eTri

cos θ · √eBrd · eTri sin θ · √eBrd · eTri

cos θ · √eBi · eTri sin θ · √eBi · eTri

cos θ · √eBi · eBrd sin θ · √eBi · eBrd

identification and process control [20] spectral analysis [12, 67], predicting response

to drug treatment [88] and estimating the speed of AC induction motors [68], to name

a few. Many aspects of FOS make it a desirable method for estimating time series

data, especially compared to neural networks. The FOS method develops models

extremely quickly because the orthogonal candidate functions do not need to be com-

puted directly. The method circumvents these costly calculations by finding only the

coefficients of the orthogonal functions. Therefore, the computational time required

to develop models is significantly faster than the time required for neural networks,

especially for complex networks with many hidden layers and a large number of nodes.

As well, compared to least-squares methods, FOS is able to generate a model solution

with fewer terms. This means that estimates of the system will be less likely to fit

noise, and will be more generalizable to system inputs [70].



Chapter 3

Hill-Based FOS Model Design

3.1 Hill-Based Muscle Model Design

The Hill-based model used in this study includes estimates for the force generated in

the contractile element and in the parallel elastic element. Descriptions of the methods

used to estimate these force components are provided in the following sections.

3.1.1 Contractile Element

Force-Length Relationship

Models of the force-length relationship typically relate output force to the muscle

length. However, since accurate measurements of muscle length are difficult to obtain,

we wish to use a model relating output force to joint angle, θ. Lemay and Crago [57]

derived a polynomial relationship between elbow joint angle and change in muscle

length (∆Li) from a position of full extension, for muscles of the upper arm. Estimates

of the relationship between muscle length and elbow joint angle from Amis et al. [1]

31
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were integrated to obtain the change in muscle length with respect to joint angle.

Polynomial fits of these curves were found and are provided in the following equations:

∆Lbi = 0.145 + 0.307θ + 2.460θ2 − 0.472θ3 (3.1)

∆Lbrd = 0.107 + 0.946θ + 1.798θ2 − 0.127θ3 (3.2)

∆Ltri = 0.0299− 2.775θ + 0.352θ2 − 0.0312θ3 (3.3)

where θ is the external elbow joint angle in radians and the change in muscle length

∆Li=Bi,Brd,Tri for muscle i is given in cm. According to equations 3.1 to 3.3, a positive

change in muscle length occurs for muscles which shorten as joint angle increases, i.e.

as the elbow is flexed. However, for the purposes of this research, the sign convention

was reversed and the equations modified such that a positive change in muscle length

denotes muscle lengthening, while a negative change denotes muscle shortening. This

modified relationship is shown in Figure 3.1 with joint angle converted from radians

to degrees. Full extension of the arm is given as an angle of 0◦, while full flexion

occurs between 120◦ and 140◦ depending on the individual and the testing apparatus.

It is assumed that at maximal extension of the elbow, LMTmax of the arm flexors

(biceps brachii and brachioradialis) is attained, while at full flexion of the elbow,

LMTmax for the extensors (triceps brachii) is reached. Therefore, if the maximal

musculotendon length for the relevant muscles is known, it is possible to use the

relations in 3.1 to 3.3 to estimate the length of the muscles over a range of elbow

joint angles. Lemay and Crago [57] provided estimates from their upper arm model of

LMTmax for the biceps brachii and brachioradialis in positions of full elbow extension

and pronation, while LMTmax for the triceps brachii was estimated at full elbow
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Figure 3.1: Change in muscle length (cm) for the biceps brachii, brachioradialis and
triceps brachii estimated as a function of joint angle [57]

flexion. Values for LMTmax from a second source [8] were used to calculate an average

LMTmax for each of the muscles. A summary of these values are provided in Table

A.1 in Appendix A.

Muscle lengths Lm for the biceps brachii and brachioradialis were determined by

subtracting the value of ∆Lbi,brd from LMTmaxbi,brd
from θ = 0◦ to θ = 140◦ in 10◦

intervals. Lm for the triceps brachii was calculated by subtracting the value of ∆Ltri

from LMTmaxtri
starting at θ = 140◦ to full extension at θ = 0◦. Calculated muscle

lengths are plotted in Figure 3.2 and given in Table 3.1.

Values reported in the literature for optimal muscle length L0 for each of the

muscles across the elbow vary substantially [1, 2, 31, 40, 48, 53, 74]. A summary

of values for the biceps brachii, brachioradialis and triceps brachii is provided in

Table A.3 in Appendix A. Weighted average values for each muscle (averaging across

multiple muscle heads) were calculated to estimate the optimal muscle lengths. Values

from studies with larger sample sizes were weighted more heavily than studies with

only a few specimens or subjects. Translating the weighted average L0i found for each



CHAPTER 3. HILL-BASED FOS MODEL DESIGN 34

0 20 40 60 80 100 120 140
5

10

15

20

Joint Angle (deg)

E
st

im
at

ed
 M

us
cl

e 
Le

ng
th

 (
cm

)

 

 
Biceps
Brachioradialis
Triceps

Figure 3.2: Estimated muscle length (cm) for the biceps brachii, brachioradialis and
triceps brachii as a function of joint angle

muscle in Table A.3 using the muscle-length-to-joint-angle relationship presented in

Figure 3.2, the optimal lengths would correspond to optimal joint angles (θ0) of 73.3◦,

37.5◦ and 98.0◦ for the biceps brachii, brachioradialis and triceps brachii respectively.

However, considering the range of L0 values in Table A.3, the extreme minimum and

maximum values of L0 for each muscle give optimal joint angles ranging from 40◦ to

101◦ for the biceps brachii, 0◦ to 92◦ for the brachioradialis and 40◦ to 140◦ for the

triceps brachii. To address the variability in values of L0, we chose to calculate and

test a wide range of potential L0 representing a range of joint angles from 20◦ to 120◦

for each muscle. This range represents the range of comfortable functional range of

motion for subjects positioned in the data collection apparatus.

The force-length relationship was previously introduced in Section 2.2.1 and an

example is illustrated in Figure 2.6. The force-length curve is commonly depicted

as a normalized force-length curve, where muscle force is normalized to the maximal

isometric force and is therefore presented on a scale of 0-1. If muscle length is nor-

malized with respect to L0, the peak force will be achieved at a normalized muscle
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Table 3.1: Estimated muscle length for the biceps brachii, brachioradialis and triceps
brachii as a function of joint angle

Muscle Length (cm)
Angle (deg) Biceps Brachioradialis Triceps

0 18.1 18.9 5.8
10 18.0 18.7 6.1
20 17.7 18.3 6.4
30 17.3 17.9 6.7
40 16.8 17.4 7.0
50 16.3 16.8 7.3
60 15.6 16.1 7.7
70 14.9 15.3 8.0
80 14.2 14.4 8.4
90 13.4 13.4 8.8
100 12.6 12.4 9.2
110 11.8 11.3 9.6
120 11.0 10.2 10.0
130 10.2 9.0 10.5
140 9.5 7.7 11.0

length of 1. The normalized muscle length can also be given in terms of the difference

in muscle length (∆Lm) from L0, in which case the peak force will be achieved at a

difference in muscle length of zero.

Here, we have adopted a force-length model presented in Cavallaro et al. [8] for

the biceps brachii, brachioradialis and triceps brachii, where the normalized force-

length curve is given with respect to ∆Lm. The force-length curve is modeled as a

Gaussian function as in equation 3.4:

fli = exp

(
−0.5

(
∆Lmi

L0i
−ϕm

ϕv

)2)
(3.4)

where the Gaussian fit parameters ϕm and ϕv represent the the mean and variance of

the Gaussian distribution respectively. The choice of ϕm is such that the force-length
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model will have a maximum value at ∆Lm=0. Values for ϕv were optimized in [8]

within the range [0.1, 0.8].

The force-length relationship in equation 3.4 was modified so that the curve is

a function of normalized muscle length by changing the numerator (∆Lm/L0) to

(Lm/L0) and setting the value of ϕm to 1. With respect to the value of ϕv, the range

provided in [8] was quite wide. An example of the force-length curves generated using

the entire range of ϕv = [0.1− 0.8] for the biceps brachii is presented in Figure 3.3.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Muscle Length (L
m

/L
0
)

N
or

m
al

iz
ed

 F
or

ce
 (

F
/F

0)

 

 
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Figure 3.3: Example force-length curves from [8] for the biceps brachii for the full
range of ϕv = [0.1− 0.8]

Zajac [100] suggested that the magnitude of the force-length curve should be zero

at muscle lengths of 0.5L0 and 1.5L0. Looking at the shape of the curves in 3.3, values

of ϕv = 0.1− 0.3 were selected visually as most compliant with this requirement. In

addition, a value of ϕv=0.19 was given in a study by Rosen et al. [85], using the same

model as presented in [8].

Force-length curves were generated using the relationship in Figure 3.1 for a range

of optimal muscle lengths equivalent to joint angles of 20◦-120◦ for each of the three

muscles. Example curves generated for the biceps brachii with L0 = 17.7cm and
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11.0cm (equivalent to θ0 = 20◦ and 120◦) are presented in Figure 3.4.
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Figure 3.4: Example force-length curves for the biceps brachii with L0i = 17.7cm and
11.0cm or θ0i = 20◦ and 120◦ and ϕv = [0.1− 0.3]

The force-length curve is shifted along the x-axis for different L0. Figure 3.4 shows

complete curves over a total muscle length of 30cm, depending on which muscle length

was chosen as L0. However, the length values for the biceps brachii calculated in Table

3.1 corresponding to a functional range of motion of θ = 0◦− 140◦ suggested that the

muscle length is a minimum at 9.5cm and a maximum at 18.1cm. Therefore, we are

forced to focus on a limited region of the force-length curve because of the limits on

the functional range of motion. The left-side of Figure 3.5 provides example force-

length curves for the biceps brachii, brachioradialis and triceps brachii with L0i which

are equivalent to θ0i = 20◦ and 120◦, over muscle lengths limited by the functional

range of motion, 0◦ − 140◦.

While it is difficult to measure the length of a muscle in vivo, obtaining a direct

measurement of elbow joint angle is very easy. Therefore, it is in our interest to

re-define the force-length model from [8] in terms of joint angle rather than muscle

length. By changing the force-length relationship in [8] into a function of θ, the shape



CHAPTER 3. HILL-BASED FOS MODEL DESIGN 38

5 10 15 20
0

0.5

1
Biceps brachii

5 10 15 20
0

0.5

1

N
or

m
al

iz
ed

 F
or

ce

Brachioradialis

5 10 15 20
0

0.5

1

Muscle Length (cm)

Triceps brachii

0 50 100 150
0

0.5

1
Biceps brachii

0 50 100 150
0

0.5

1
Brachioradialis

20°−0.1
20°−0.2
20°−0.3
120°−0.1
120°−0.2
120°−0.3

0 50 100 150
0

0.5

1

Joint Angle (deg)

Triceps brachii

Figure 3.5: Example force-length and force-angle curves for the biceps brachii, bra-
chioradialis and triceps brachii over the functional range of motion with
θ0i = 20◦ and 120◦ and ϕv = [0.1 − 0.3]. Figures on the left are given
as a function of muscle length while figures on the right are given as a
function of joint angle.

of the force-angle relationship can be defined as:

fli = exp

(
−0.5

(
θ
θ0
−ϕmT

ϕvT

)2)
(3.5)

The shape of the force-length curve changes when it is represented as a function

of joint angle rather than as a function of muscle length, because the relationship

between joint angle and muscle is non-linear. New values of the Gaussian fit param-

eter representing the width of the force-angle curve ϕvT ε [0.07− 4.08] were required
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to adequately represent the force-angle relationship. These values were calculated

by minimizing the MSE between the new force-angle curves and original force-length

curves expressed as a function of joint angle. Table 3.2 provides a summary of ϕvT .

Example force-angle curves calculated using equation 3.5 for the biceps brachii, bra-

chioradialis and triceps brachii with θ0i = 20◦ and 120◦ are presented in the right-side

of Figure 3.5. It should be noted that since 0◦ represents full extension, the biceps

brachii and brachioradialis shorten with increasing joint angle.

Table 3.2: Values for ϕvT calculated to estimate force-length curves as a function of
joint angle to correspond with values of ϕv = 0.1, 0.2, 0.3 for the biceps
brachii, brachioradialis and triceps brachii

ϕvT

θ0 Biceps ϕv Brachioradialis ϕv Triceps ϕv

0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
20 1.65 2.82 4.08 1.58 2.59 3.56 0.77 1.67 2.67
30 1.05 1.74 2.5 1.00 1.58 2.18 0.57 1.24 1.96
40 0.77 1.24 1.78 0.72 1.12 1.52 0.47 1.01 1.60
50 0.58 0.97 1.38 0.53 0.87 1.16 0.41 0.87 1.37
60 0.42 0.80 1.15 0.38 0.70 0.96 0.37 0.77 1.18
70 0.31 0.66 0.99 0.27 0.56 0.82 0.35 0.69 1.02
80 0.24 0.54 0.86 0.20 0.44 0.70 0.33 0.62 0.91
90 0.19 0.43 0.71 0.15 0.33 0.57 0.31 0.57 0.83
100 0.16 0.34 0.57 0.12 0.25 0.44 0.29 0.53 0.78
110 0.14 0.28 0.46 0.09 0.19 0.32 0.28 0.51 0.74
120 0.12 0.24 0.37 0.07 0.15 0.24 0.30 0.49 0.72

Force-Velocity Relationship

The force-velocity relationship was assumed to be negligible in this study as all ex-

periments were performed with isometric contractions. Therefore, the value of the

force-velocity component of FCE was set equal to 1.
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3.1.2 Parallel Elastic Element

The non-linear behaviour of F PE is often modeled as an exponential relationship.

The following model for F PE was introduced in Cavallaro et al. [8]:

F PE =

(
F PE

max

es−1

)(
e((S/∆LPEmax)∆LPE) − 1

)
(3.6)

where F PE
max is the maximum force exerted by the PE for a maximum change in

length ∆LPEmax, S is a shape parameter defined in [8] that is related to the stiffness

of the PE and ∆LPE is the change in length of the PE as it is stretched beyond the

tendon slack length.

Using this model, F PE curves were generated for the biceps brachii, brachioradialis

and triceps brachii using values of S = 0.9 for each muscle [8]. F PE
max and ∆LPE were

defined in Cavallaro et al. [8] for each muscle as:

F PE
max = 0.5F0 (3.7)

∆LPE = LMTmax − (L0 + LTs) (3.8)

where LTs and F0i were approximated from literature values as reported in Tables

A.2 and A.6 respectively, in Appendix A.

Each of the resulting F PE curves was approximated using a 2nd-order polynomial

for computational simplicity, over a range of L0i equivalent to values of θ0i spanning

20◦-120◦ of flexion in 10 degree intervals, that is
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F PE =





Aiθ
2
i + Biθi + Ci ∀





θi < θ0i i=bi, brd

θi > θ0i i=tri

0 Otherwise

The coefficients for each polynomial approximation were found using the polyfit func-

tion in MATLAB. The shapes of the parallel elastic curves for each of the muscles is

provided in Figure 3.6.
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biceps brachii, brachioradialis and triceps brachii calculated using varying
θ0i



CHAPTER 3. HILL-BASED FOS MODEL DESIGN 42

3.2 Model Generation using Fast Orthogonal Search

(FOS) Method

As previously described, FOS is a nonlinear identification method that aims to gen-

erate the a sum of M functions that are selected from a large pool of N potential

candidate functions (N >> M), to minimize the mean square error between the sys-

tem output and the measured value. In this work, the set of candidate functions was

based on the Hill muscle model in an attempt to create a more physiologically rele-

vant FOS model representation. The new pool of N candidate functions incorporates

the Hill-based muscle model estimates for FCE and F PE previously described for the

biceps brachii, brachioradialis and triceps brachii, into functions which represent the

expression of each muscle’s contribution to elbow moment at the wrist, that is

Candidate Functions =





FCE(θ0i, ϕvT i) · MAi

MAforearm
= F0i·fli(θ0i,ϕvTi)·fvi(θ0i)·ai(t)·MAi

MAforearm

F PE(θ0i) · MAi

MAforearm
= F PE(θ0i)·MAi

MAforearm

(3.9)

where i represents the specific muscle, MAforearm is the measured length of the sub-

ject’s forearm and MAi is the moment arm of muscle i. The parameter arguments in

the parentheses denote the dependency of the corresponding function. For candidate

functions used with isometric data, fvi is set equal to 1.

To take advantage of the ability of FOS to generate coefficients for each candi-

date function, constant terms in the FCE equations, F0i and MAforearm, and in the

F PE equations, MAforearm, were set equal to 1. This allows FOS to choose values
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which best represent the physiology of the specific subject. Values for the muscle

moment arm MAi were calculated in two ways. As previously described in Section

2.4.2 a polynomial approximation from [57] can be used to represent the change in

MAi (known as the Polynomial moment arm method or PMA). In addition, models

were also developed for the case where muscle moment arms MAi in the FCE and

F PE equations were set equal to 1 (known as the Constant moment arm method or

CMA). While a polynomial moment arm is expected to better reflect the physiological

nature of the muscle moment arm as it changes with joint angle, the applicability of

the relationship to subjects with varying physiological make-up has not been tested.

Therefore, using the CMA and allowing the FOS coefficient terms to adjust for this

value may lead to more accurate force prediction.

In order to generate the FCE candidate functions for each muscle, nine optimal

joint angles (θ0i = 20◦, 30◦, . . . , 120◦) were identified based on the range of values

for L0i reported in the literature. The force-length component of the FCE equation

depends on the value chosen for θ0i as well as one of three Gaussian shape parameters

(ϕv = ϕ0.1, ϕ0.2, ϕ0.3). Therefore, 33 FCE functions were created for each of the

three muscles, resulting in a total of 99 FCE functions included in the candidate

pool. Similarly, F PE equations were generated for each of the 11 chosen values of

θ0i, resulting in a total of 33 F PE equations. Therefore, the candidate pool included

a total of N=132 functions. A summary of all candidate functions included in this

pool is provided in Table C.1 in Appendix C.

Examples of candidate FCE and F PE equations for the biceps brachii, with an

optimal joint angle of 60◦ and using a force-length curve with a Gaussian fit parameter

ϕv = ϕ0.1 are provided below:
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FCE
bi (θ0, ϕvT ) = (fli(60◦, 0.42) · abi(t)) ·MAi (3.10)

F PE
bi (θ0) =





F PE(60◦) ·MAi ∀θi < 60◦

0 Otherwise

(3.11)

Models were generated with a pre-determined model size of 7 candidate functions for

data from each subject based on findings from Mobasser et al. [70]. The FOS method

is structured such that the first function selected by any model is assigned a value

of 1, with a coefficient term to account for bias in the system. Following this first

iteration, all subsequent functions are tested from the candidate pool, and the one

which contributes the most error reduction to the model is selected. When a function

is selected, it is removed from the candidate pool so that it will not be selected again

for that particular model. In addition, the first function selected for a particular

muscle is classified based on the value of θ0 used in its calculations. The optimal

angle in that function is then defined as θ0 for that muscle for the entire model and

the remaining pool of functions for that muscle is limited to only those functions with

the same θ0±10◦. For example, looking at the list of candidate functions in Table C.1,

if a function from grouping “BI-5” (corresponding to an optimal joint angle of 60◦)

is the first candidate function selected for the biceps brachii, then for the remainder

the model, only candidate functions from groupings “BI-4”, “BI-5” and “BI-6” will

be considered for selection. Since FCE is a function of the shape parameter of the

force-length curve, ϕvT , more than one FCE function for each muscle (all with the

limited range of θ0 and different values of ϕvT ) may be included in each model.



Chapter 4

EMG Data Collection and Model

Identification

4.1 Experiment Setup

4.1.1 1-DOF Experimental Testbed

Experiments were conducted on a 1-Degree-of-freedom (DOF) exoskeleton testbed

that holds the shoulder and wrist of each subject in a fixed position, and constrains

flexion and extension of the right arm to the horizontal plane as shown in Figure 4.1.

The apparatus is composed of a platform supporting a Maxon DC motor, an 8:1 cable

driven power system, and a pivoting aluminum bar to support the subject’s forearm.

Force at the wrist (Fw) is measured using an ATI 6-DOF Gamma force/torque sensor

secured on the aluminum bar.

A subject’s arm is positioned in the testbed such that the axis of rotation of the

elbow is aligned with the pivot point of the aluminum bar. Therefore, the elbow

45
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�
Force 

Sensor

A B

Figure 4.1: A: QARM (1-DOF Queen’s University Arm) B: Subject positioned in the
QARM

angle is equivalent to 1/8 of the motor angular position and can be measured using

a resolver with a resolution of 0.0027◦. Elbow angular velocity can be calculated by

taking the derivative of the angle measurements within the data collection software.

The subject is positioned such that the shoulder is stabilized at approximately 90◦

abduction, 15◦ horizontal adduction and full supination.

The computer used for data collection is equipped with a Quanser Wincon/ Ven-

turcom RTX real-time control system. All programming is performed in MATLAB

(v. R2006a) and system models are developed using Simulink. Data are collected at a

sampling rate of 1kHz and saved individually as MATLAB files for offline processing

and analysis.

4.1.2 EMG Collection and Processing

Surface EMG data from the biceps brachii, brachioradialis and triceps brachii muscles

were collected from the right arm of 10 subjects (4 male, 6 female) with a mean age of

25. Subjects had no known neuromuscular deficits of the right arm. The experimental

protocol has been approved by the Health Sciences Research Ethics Board, Queen’s
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University and subjects gave informed consent prior to participating in the study. Two

Invenium Technologies active bipolar sEMG electrode units were placed adjacent to

each other and secured over the belly of each of the three muscles. Electrode locations

were measured with respect to anatomical landmarks such as the cubital fossa (on the

anterior of the elbow joint of the arm) and the olecranon (bony structure located at the

proximal end of the ulna) and recorded for each subject. These measurements were

used to locate the EMG electrode placement over multiple sessions for 4 subjects (M2,

M3, F1 and F2) in an attempt to minimize placement variability between sessions.

An alternate method was used for the remaining 6 subjects (M1, M4, F3, F4, F5 and

F6). In the alternate procedure, data were collected in either 2 or 3 sessions over a

short time period (maximum 3 consecutive days) and the location of the electrode

units were marked on the subject’s skin with a pen after each session so that the

electrode position was easily visible at the start of the next data collection session

and placement was consistent across sessions. Average electrode positions across

all 10 subjects were found to be 8cm proximal to the cubital fossa for the biceps

brachii electrodes, 10cm proximal to the olecranon for the triceps brachii electrodes

and 3.2cm distal to the cubital fossa and shifted 3cm in a lateral direction for the

brachioradialis electrodes.

Recorded sEMG data were processed to obtain the linear envelope ei(t), for each

muscle [70]. Specifically, the DC bias was measured and subtracted from the raw

EMG data, and the resulting EMG data were rectified and smoothed using a moving

average window with a window size of 400. This process is illustrated in Figure 4.2.
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Figure 4.2: Stages of processing of EMG signal. Top: Raw EMG signal collected for
the triceps brachii. Middle: Rectified raw EMG signal for the triceps
brachii. Bottom: Filtered EMG for the triceps brachii

4.1.3 EMG Normalization

Many factors can influence the magnitude of a recorded EMG signal between sub-

jects and data collection sessions. The purpose of normalizing the EMG is so that

comparisons across data collection sessions and subjects can be made. Typically, nor-

malization is performed using a maximum voluntary contraction (MVC), where the

subject is asked to contract the relevant muscle isometrically as strongly as possible.

The resulting recorded EMG signal level normalized to the MCV will lie between

values of 0 and 1, where 1 represents MVC. This method has however been subject

to scrutiny as it is difficult for individuals to actually achieve a maximum contrac-

tion level [18, 62, 89]. Thus, an alternate method was used in this study [21, 70].
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With the subject positioned in the QARM experimental testbed, the motor gener-

ated a specific torque pattern at the elbow. The subject was instructed to resist

the torque to maintain a constant position (isometric) contraction. This was done

for both flexion and extension at the beginning of each experimental session. The

torque applied by the motor was approximately 5Nm, depending on the length of the

subject’s forearm, and the subject was positioned at 75◦ of elbow flexion. An exam-

ple of the force pattern recorded during the normalization experiment is provided in

Figure 4.3, where negative force measurement indicates extension and positive force

indicates flexion. The normalization procedure included a step input from the motor

with an elbow-applied torque of 2.5Nm, followed by two ramped elbow-applied torque

patterns with sustained torque of 2.5Nm and 5Nm. The plateau region of the third

ramp pattern (5Nm) was the segment of data that was ultimately used to normalize

all corresponding EMG data, as the higher torque value was sufficient to recruit all

muscles of interest, and the ramp pattern enabled the subject to steadily resist the

torque with minimal reactive arm motion. An average of this EMG amplitude was

calculated for each muscle and all subsequent processed EMG recordings collected in

that session were divided by the average amplitude for each muscle.

The resulting normalized EMG signals for the two electrode units over the biceps

brachii and triceps brachii were each averaged to obtain the mean normalized EMG

signal for each muscle, and were used as the muscle activation term ai(t) in the FCE

function equations (equation 2.5) for the biceps brachii and triceps brachii, respec-

tively. The normalized EMG signal from only the medial of the two sensors placed

over the brachioradialis was used as muscle activation ai(t) for the brachioradialis,

because it was observed that the lateral brachioradialis sensor was recording EMG
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Figure 4.3: Wrist force pattern (solid) resulting from motor-applied torque signal
(dashed) used to collect normalization data for the EMG signals

signals from an adjacent wrist extensor muscle (extensor carpi radialis). Further

discussion of these observations is provided in Section 5.2.4.

4.1.4 Experiment Procedure

Ten subjects (4 males, 6 females) performed a series of twelve isometric contractions

(six in flexion and six in extension) at six joint angles ranging from 30◦ to 105◦

of flexion in 15◦ intervals, taking full arm extension as an angle of 0◦. This series

of contractions was classified as one trial. During each contraction, the end of the

rotating aluminum bar on the QARM was held in position by the experimenter, and

the subject flexed or extended his/her arm against the wrist brace on the apparatus.

Each session was comprised of 8 trials, with a target wrist force level of 10N in the

first four trials and a target wrist force level of 20N for the remaining four trials.
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Figure 4.4: Typical isometric data collected during a 20N target force trial, with
shoulder at 90◦ abduction and 15◦ horizontal adduction and the forearm
in maximum supination

Visual wrist force feedback was provided to the subjects so they could generate the

desired target wrist force. Two minutes of rest was enforced between trials to prevent

muscle fatigue. Data were collected in two or three separate sessions on different

days. An example of typical data collected from one subject (M3) with mean EMG

signal amplitudes for each muscle at a target force level of 20N is shown in Figure

4.4.

Data were separated into two or three groups, depending on the number of sessions

in which data were collected. A FOS model was generated for each of the 8 data sets

in the session using the pool of candidate functions (N = 132) previously described.

Models were evaluated using percent relative mean square error (%RMSE):
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%RMSE =

∑n
i=1(Fwi − F̂wi)

2

∑n
i=1 F 2

wi

× 100 (4.1)

where Fwi is the measured force at the wrist and F̂wi is the FOS model estimate of

wrist force. Each model was then evaluated using the remaining 7 data sets collected

in the same session. The estimation error associated with each of the 7 data sets

as they were evaluated with a model was calculated using the equation above for

%RMSE, and a mean evaluation %RMSE was found. This mean evaluation %RMSE

value was used as an indication of the success of the model in its ability to predict Fw.

For the 8 models generated from the 8 datasets collected in one session, an average

of the mean evaluation %RMSE values (RMSEAV E) for each of the 8 models in the

session grouping was calculated and used as the primary value from which to evaluate

the success of the models from that session. This procedure was repeated for each

subject over 2 or 3 data collection sessions, resulting in up to 24 FOS models. An

example of the models generated for data from one subject is provided in Appendix

D.

4.1.5 Modifications to Experimental Procedure through Test-

ing and Evaluation

The experimental procedure presented above was the result of changes and modifi-

cations made to testing conditions and analysis procedures throughout the course of

this project. For justification of the main decisions that were made with respect to

testing and analysis procedures see Appendix E.
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Table 4.1: Evaluation %RMSE (Average) for models developed using one session of
data for each subject, and with varying model sizes ranging from M = 4
to M = 10. A PMA was used in the candidate function equations.

Evaluation %RMSE for Varying Model Size
Subject Session M

4 5 6 7 8 9 10
M1 4 11.26 10.72 9.63 8.88 8.66 8.53 8.31
M2 2 13.83 11.38 11.38 11.05 11.14 11.21 11.19
M3 2 8.72 8.45 7.00 6.40 6.09 5.62 5.46
M4 1 12.87 12.25 10.86 10.51 10.61 11.06 11.73
F1 1 11.50 10.72 11.09 11.34 11.28 10.99 10.65
F2 2 13.14 11.44 11.02 10.62 10.17 9.69 9.57
F3 1 8.35 8.04 7.45 7.33 7.30 7.08 7.15
F4 3 8.64 8.54 8.53 8.62 8.52 8.60 8.65
F5 2 4.48 4.53 4.43 4.40 4.55 4.67 4.73
F6 3 8.01 8.73 8.73 8.77 8.55 8.73 8.85

Average 10.08 9.48 9.12 8.79 8.69 8.62 8.63

4.1.6 Optimal Model Size

For this study, the number of functions to include in each FOS model was chosen to

be 7. A preliminary analysis was performed on the evaluation %RMSE for models

generated with varying models sizes from M = 4 to M = 10 to justify this decision.

One session of data was selected for this analysis for each subject which demonstrated

the low evaluation %RMSE. Results are summarized in Table 4.1, with the lowest

%RMSE for each subject presented in bold. It appears that the optimal model size

does change from subject to subject. Previous work by Mobasser et al. [70] stated

that an optimal model size should be selected at either 7 or 10 functions, however

on average, the difference in evaluation error observed in Table 4.1 between model

sizes of 7 and 10 functions is small (∼ 6%). However, there is a possibility that larger

model sizes may cause the models to overfit the data.

Figure 4.5 provides an illustration of the evaluation %RMSE for all 10 subjects,

with varying model size ranging from M = 4 to M = 10. Average %RMSE values
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Figure 4.5: Evaluation %RMSE associated with varying model sizes for data from
each subject

across all subjects for each model size are clearly higher for low model sizes, however

average %RMSE values are quite consistent for models with size ranging from 7-10.

Therefore, all models used for the following work were developed using 7 candidate

functions to maintain consistency with [70].

4.2 Repeatability of Surface EMG

In order to evaluate the repeatability of EMG data collected for each subject across

data collection sessions, statistical analysis of the variance in EMG amplitude was

performed using a 2-way ANOVA. Mean normalized EMG amplitudes were calculated

for each subject, during isometric contractions at each of the six joint angles measured

in each trial. Mean normalized EMG amplitudes were grouped by the joint angle at

which they were recorded. A 2-way ANOVA was performed on the normalized mean
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EMG data at each angle for each muscle, with data collection session and subject as

the two independent factors. A significance level of 0.05 was used. A summary of the

results are provided in Table 4.2.

Table 4.2: Results of 2-way ANOVA examining the effect of subject and session on
normalized EMG amplitudes recorded at specific joint angles

P-value
Muscle Joint Angle (deg) Force Level (N) Subject Session Interaction

10 < 0.05 0.947 < 0.05
30 20 < 0.05 < 0.05 < 0.05

10 < 0.05 < 0.05 < 0.05
45 20 < 0.05 < 0.05 < 0.05

10 < 0.05 0.226 < 0.05
Biceps 60 20 < 0.05 < 0.05 < 0.05

10 < 0.05 0.871 < 0.05
75 20 < 0.05 0.422 < 0.05

10 < 0.05 < 0.05 < 0.05
90 20 < 0.05 0.134 < 0.05

10 < 0.05 < 0.05 < 0.05
105 20 < 0.05 < 0.05 < 0.05

10 < 0.05 < 0.05 < 0.05
30 20 < 0.05 0.156 0.096

10 < 0.05 < 0.05 < 0.05
45 20 < 0.05 0.097 < 0.05

10 < 0.05 < 0.05 < 0.05
Brachioradialis 60 20 0.345 0.482 < 0.05

10 < 0.05 < 0.05 < 0.05
75 20 < 0.05 0.172 < 0.05

10 < 0.05 < 0.05 < 0.05
90 20 < 0.05 0.656 0.064

10 < 0.05 < 0.05 < 0.05
105 20 < 0.05 < 0.05 < 0.05

10 < 0.05 < 0.05 < 0.05
30 20 < 0.05 < 0.05 < 0.05

10 < 0.05 < 0.05 < 0.05
45 20 < 0.05 < 0.05 < 0.05

10 < 0.05 < 0.05 < 0.05
Triceps 60 20 < 0.05 < 0.05 < 0.05

10 < 0.05 < 0.05 < 0.05
75 20 < 0.05 < 0.05 < 0.05

10 < 0.05 < 0.05 < 0.05
90 20 < 0.05 < 0.05 < 0.05

10 < 0.05 < 0.05 < 0.05
105 20 < 0.05 < 0.05 < 0.05

It appears as though there is a consistent effect due to subject, and often an effect

due to session in variability in the EMG amplitudes. This does not conclusively state

that the EMG data is repeatable across sessions, and further analysis is required.
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4.3 Force Estimation

As described in Section 3.2, FOS estimation models were developed using the Hill-

based FOS candidate functions for each trial of each data collection session. These

models were evaluated using average evaluation %RMSE (RMSEAV E). A summary

of the RMSEAV E calculated for all models developed with data from each session is

provided in Tables 4.3 and 4.4. Also provided for each subject are the minimum mean

evaluation %RMSE (RMSEMIN), the standard deviation (SDAV E) of the %RMSE

across all 8 models in one session and a normalized version of the standard deviation

(SDNORM), which is calculated as:

SDNORM =
SDAV E

RMSEAV E

× 100 (4.2)

The normalized standard deviation term is intended to provide context for the

SDAV E term. Results are organized based on whether a PMA relationship or a CMA

(MAi = 1) were used in the FOS candidate functions.
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Table 4.3: Evaluation %RMSE (Average and Minimum) and SD for models developed
using candidate functions with a PMA

Evaluation %RMSE and SD
Subject Session Polynomial Moment Arm

RMSEAV E RMSEMIN SDAV E SDNORM

1 8.88 5.71 4.85 54.6%
M1 2 9.49 7.66 4.21 44.4%

3 11.0 7.62 7.19 65.4%
M2 1 11.07 8.60 6.85 61.9%

2 11.05 9.36 6.05 54.8%
1 8.91 7.56 5.00 56.1%

M3 2 6.40 5.57 2.41 37.7%
3 8.08 6.54 4.06 50.2%

M4 1 10.51 9.35 4.34 41.3%
2 20.58 18.22 11.30 54.9%

F1 1 11.34 8.54 5.20 45.9%
2 11.35 8.88 6.87 60.5%

F2 1 14.88 12.00 9.15 61.5%
2 10.62 8.56 6.47 60.9%
1 7.33 6.18 2.91 39.7%

F3 2 9.20 8.29 4.28 46.5%
3 14.86 13.93 6.24 42.0%
1 12.15 9.00 7.65 63.0%

F4 2 11.79 8.47 7.85 66.6%
3 8.62 7.16 4.69 54.4%
1 10.33 7.53 8.11 78.5%

F5 2 4.40 3.74 1.55 35.2%
3 5.56 4.86 2.15 38.7%
1 9.87 7.27 6.64 67.3%

F6 2 9.33 7.32 6.20 66.5%
3 8.77 6.69 4.45 50.7%

Average 10.25 8.25 5.64 53.8%
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Table 4.4: Evaluation %RMSE (Average and Minimum) and SD for models developed
using candidate functions with a CMA

Evaluation %RMSE and SD
Subject Session Constant Moment Arm

RMSEAV E RMSEMIN SDAV E SDNORM

1 9.48 5.77 5.32 56.1%
M1 2 9.04 8.38 3.91 43.3%

3 10.54 7.55 6.66 63.2%
M2 1 10.89 8.50 6.99 64.2%

2 12.18 9.63 7.04 57.8%
1 8.05 6.99 4.51 56.0%

M3 2 6.13 5.27 2.40 39.2%
3 8.91 7.11 4.36 48.9%

M4 1 9.91 8.79 4.20 42.4%
2 19.62 17.14 11.48 58.5%

F1 1 11.29 8.15 5.47 48.4%
2 10.68 8.80 6.10 57.1%

F2 1 16.21 13.04 9.69 59.8%
2 9.76 8.08 5.99 61.4%
1 6.78 6.22 2.29 33.8%

F3 2 8.47 7.67 3.99 47.1%
3 14.13 12.38 6.45 45.6%
1 12.22 8.96 7.69 62.9%

F4 2 11.85 8.17 7.86 66.3%
3 8.60 7.81 4.57 53.1%
1 10.35 7.53 8.15 78.7%

F5 2 4.61 3.79 1.69 36.7%
3 5.71 4.78 2.23 39.1%
1 9.99 6.91 6.90 69.1%

F6 2 9.54 7.20 6.51 68.2%
3 9.21 7.14 5.31 57.7%

Average 10.16 8.14 5.68 54.4%

The ability of the Hill-based FOS models to predict wrist force was consistent

across subjects and sessions, with average %RMSE ranging between 4-21%. It appears

that the PMA and CMA methods are equivalent, with slightly lower evaluation error

found for models using a CMA. The standard deviations are quite high with respect

to the mean values, as the normalized standard deviations ranged from 35-79% of the

mean for the PMA method and from 34-79% of the mean for the CMA method.
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4.3.1 Comparison of Muscle-Model-Based Candidate Func-

tions using PMA and CMA

A number of factors may significantly affect the %RMSE results. In order to deter-

mine if the type of moment arm calculation is significant, a series of paired t-tests

were run on individual subject data. Specifically, the evaluation %RMSE calculated

for each model (one model for each data set) were compared when models were gener-

ated with a PMA and a CMA in the candidate functions. That means, for 1 subject

who participated in 3 sessions of data collection, 24 models will be generated using

each moment arm calculation method, and 24 paired comparisons will be performed

between the evaluaion %RMSE values. The only stipulation with this method is that

the data used must resemble a normal distribution and the variance of the two sam-

ples must be the same. Only one case revealed that the constant moment arm method

generated significantly lower error (p<0.05). Results are summarized in Table 4.5.

Table 4.5: Results for paired t-test performed on %RMSE for each moment arm cal-
culation method

Subject Normal Distribution Equal Variance p
M1 no – –
M2 yes yes 0.185
M3 yes yes 0.662
M4 yes yes 0.162
F1 yes yes 0.251
F2 yes yes 0.679
F3 yes yes <0.05
F4 yes yes 0.793
F5 no – –
F6 yes yes 0.094

The %RMSE calculated for each subject using the PMA and CMA candidate

functions was not significantly lower for one method over the other. Both methods
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Table 4.6: Evaluation %RMSE (Average and Minimum) and SD for models developed
using candidate functions presented in Mobasser et al. (2007) [70] with
isometric data

Evaluation %RMSE and SD
Subject Session Mobasser et al. Functions

RMSEAV E RMSEMIN SDAV E SDNORM

1 13.64 6.12 10.30 75.5%
M1 2 11.80 8.25 7.63 64.7%

3 11.30 5.48 7.83 69.3%
M2 1 17.78 8.03 23.82 134.0%

2 13.90 6.03 10.72 77.1%
1 8.27 7.03 4.74 57.3%

M3 2 5.64 4.12 2.28 40.4%
3 7.99 6.11 3.69 46.2%

M4 1 8.74 7.76 2.92 33.4%
2 16.23 14.44 8.02 49.4%

F1 1 11.98 8.28 6.72 56.1%
2 14.93 7.26 12.38 82.9%

F2 1 15.78 14.32 10.86 68.8%
2 14.86 5.46 11.24 75.6%
1 5.81 4.85 1.75 30.1%

F3 2 7.41 4.90 3.27 44.1%
3 12.50 11.20 6.75 54.0%
1 12.69 4.72 9.05 71.3%

F4 2 23.60 4.07 22.25 94.3%
3 6.34 4.37 3.44 54.3%
1 12.19 8.61 10.53 86.4%

F5 2 5.17 3.52 1.94 37.5%
3 5.96 4.99 2.21 37.1%
1 10.02 4.53 6.87 68.6%

F6 2 7.09 5.41 4.14 58.4%
3 7.25 4.91 3.63 50.1%

Average 11.11 6.72 7.65 62.19%

were able to estimate wrist force with similar accuracy, even though the low standard

deviations observed for the CMA method suggested that using a constant moment

arm resulted in less variance in the results.

4.3.2 Comparison to Model Development using Non-Muscle-

Model-Based Candidate Functions

FOS models with a size of M = 7 were developed using the non-muscle-model-based

candidate functions of Mobasser et al. [70] for the isometric data collected in this
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study from 10 subjects. The average and minimum %RMSE and standard deviation

are presented in Table 4.6.

The evaluation %RMSE found for FOS models generated using the non-muscle-

model-based candidate functions for isometric data ranged from 5-24%. The average

standard deviation ranged from 2-22 and the normalized standard deviation ranged

from 30-134%. To compare these results with evaluation results using the Hill-model-

based functions, the difference in error between the methods was calculated for each

dataset and each subject. Figure 4.6 presents the change in error between each Hill-

based-method (PMA and CMA) and the non-model based method. Negative values

indicate that the Hill-based method produced lower evaluation error than the non-

muscle-based-model, while positive values indicate that the candidate functions from

Mobasser et al. generate lower evaluation error. The percentage difference in error

(%D) is calculated with respect to the non-model-based error according to:

%DPMA−Mobasser =
%RMSEAV EPMA

−%RMSEAV Emobasser

%RMSEAV Emobasser

(4.3)

%DCMA−Mobasser =
%RMSEAV ECMA

−%RMSEAV Emobasser

%RMSEAV Emobasser

(4.4)

Details of the calculated values for %D are provided in Table F.1 in Appendix F.

The average values for %D in error indicate that both Hill-based-muscle-models track

the force more accurately than the non-muscle-based-models. Overall %RMSE was

marginally lower for the Hill-based models over the non-muscle-based FOS models.

This was true for both the PMA and CMA methods as shown in Figure 4.6.
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Figure 4.6: Percentage difference in model error between PMA and Mobasser et al.
functions (Top) and between CMA and Mobasser et al. functions (Bot-
tom). Results for each subject are given as averages across sessions.
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4.4 Estimating Subject-Specific Hill Model Param-

eters

4.4.1 Frequency Analysis to Determine Optimal Joint Angle

It was observed in early model analysis that often the same candidate functions

were repeatedly chosen in FOS models for the same subject. The decision to limit

the optimal joint angles within the pool of candidate functions (pm) to a range of

±10◦ from the θ0i represented in the first candidate function selected for a muscle,

where i represents the biceps brachii, brachioradialis and triceps brachii, aimed to

tailor models to better represent the natural optimal joint angle for the individual

subject. Using the θ0i represented in the candidate functions selected for all models

developed for a particular subject, a frequency analysis was performed to assess the

number of times a θ0i was selected for each subject. A summary of the frequency

of θ0i selected for each muscle and each subject are provided in terms of percentage

of the total number of functions chosen. This analysis was performed using models

developed using the PMA and CMA methods and are provided in Figures 4.7 and

4.8, respectively.

A clear trend was observed in the functions selected for the triceps brachii. Using

PMA, the majority of FOS models included FCE functions with θ0 ranging from

100◦ to 120◦ while this trend shifting to a range between 80◦ and 100◦ with CMA.

Results for the biceps brachii were slightly more variable between subjects using

PMA, but were quite consistent in the range of 60◦ to 90◦ with CMA. Similarly with

the brachioradialis, there was greater variability between subjects in terms of θ0 for

functions selected with PMA compared to CMA.
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Figure 4.7: Frequency analysis of optimal joint angles selected in FOS models for all
subjects via using a PMA in the candidate function calculations, given as
a percentage of total functions chosen. note: scale is not consistent

Out of the 96-144 candidate functions that composed the 16-24 models for each

subject (6 functions for each model), a weighted average (θ0wi) of the optimal joint

angles identified in the functions was calculated, where i represents the biceps brachii,

brachioradialis and triceps brachii, to take into account the number of times particular

θ0i were included in the FOS models. The (θ0w) was calculated for each muscle for each

subject to determine a value that will likely be more representative of the subject’s

true optimal joint angle. Statistical values including θ0w and the standard deviation

(SD) of θ0w are included in Tables 4.7 and 4.8 for models incorporating a PMA and

a CMA respectively.
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Figure 4.8: Frequency analysis of optimal joint angles selected in FOS models for all
subjects via using a CMA in the candidate function calculations, given
as a percentage of total functions chosen. note: scale is not consistent

4.4.2 Comparison of PMA and CMA Weighted Optimal Joint

Angle

The weighted optimal joint angles provided in Tables 4.7 and 4.8 suggest a wide

disparity between the joint angle functions selected in the PMA and CMA methods.

The Mann-Whitney test was selected as an appropriate comparison of means rather

than a paired t-test, because the distributions of joint angles for each subject was

not normal, especially for the PMA method [42]. Table 4.9 illustrates the results

of a Mann-Whitney test for independent samples, comparing the weighted optimal

joint angle calculated using PMA and CMA. Looking at the results in Table 4.9, it is

clear that there exists a significant difference in the θ0w identified using the PMA and



CHAPTER 4. EMG DATA COLLECTION AND MODEL IDENTIFICATION 66

Table 4.7: Weighted optimal joint angle θ0w of biceps brachii, brachioradialis and
triceps brachii from candidate functions using a PMA

Optimal Joint Angle (deg) (±SD)
Subject PMA

Biceps Brachioradialis Triceps
M1 66.6◦(±15.4) 55.1◦(±31.9) 110.0◦(±8.7)
M2 59.4◦(±9.7) 60.0◦(±25.6) 106.5◦(±10.7)
M3 41.3◦(±25.4) 24.3◦(±5.0) 106.7◦(±15.4)
M4 27.6◦(±11.0) 46.5◦(±25.4) 111.1◦(±9.5)
F1 34.7◦(±11.9) 44.0◦(±22.1) 105.9◦(±11.0)
F2 54.9◦(±15.3) 27.6◦(±8.8) 100.4◦(±14.5)
F3 53.6◦(±24.5) 27.1◦(±9.6) 102.0◦(±14.4)
F4 61.2◦(±23.5) 30.9◦(±14.1) 109.3◦(±7.9)
F5 26.2◦(±7.8) 50.2◦(±16.9) 111.8◦(±9.0)
F6 45.0◦(±20.3) 28.3◦(±10.8) 94.5◦(±11.3)

Average 47.1◦(±16.5) 39.4◦(±17.0) 105.8◦(±11.2)

CMA methods for each muscle. Most comparisons between optimal joint angles for

each subject and each muscle calculated using the PMA and CMA were significantly

different, with only 4 cases out of 30 resulting in a p-value greater than 0.05.
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Table 4.8: Weighted optimal joint angle θ0w of biceps brachii, brachioradialis and
triceps brachii from candidate functions using a CMA

Optimal Joint Angle (deg) (±SD)
Subject CMA

Biceps Brachioradialis Triceps
M1 83.1◦(±11.0) 61.3◦(±21.9) 103.6◦(±10.4)
M2 82.5◦(±12.2) 68.1◦(±16.4) 95.7◦(±8.7)
M3 61.9◦(±23.1) 60.2◦(±11.7) 86.1◦(±10.2)
M4 54.5◦(±21.0) 64.8◦(±14.2) 96.1◦(±17.2)
F1 65.2◦(±11.5) 53.5◦(±7.9) 87.5◦(±16.7)
F2 70.5◦(±9.9) 62.8◦(±11.4) 86.7◦(±11.1)
F3 75.4◦(±15.0) 66.8◦(±7.3) 83.4◦(±13.7)
F4 78.2◦(±18.3) 71.4◦(±8.1) 96.6◦(±14.1)
F5 64.9◦(±6.5) 71.1◦(±13.0) 92.9◦(±8.9)
F6 74.2◦(±12.7) 70.0◦(±8.4) 84.8◦(±11.7)

Average 71.4◦(±14.1) 65.0◦(±12.0) 91.3◦(±12.3)

Table 4.9: Results for Mann-Whitney test for independent samples between weighted
optimal joint angles calculated for each subject using PMA and CMA

p-value
Subject Biceps Brachioradialis Triceps

M1 <0.05 0.4085 <0.05
M2 <0.05 0.1585 <0.05
M3 <0.05 <0.05 <0.05
M4 <0.05 <0.05 0.0864
F1 <0.05 <0.05 <0.05
F2 <0.05 <0.05 <0.05
F3 0.1750 <0.05 <0.05
F4 <0.05 <0.05 <0.05
F5 <0.05 <0.05 <0.05
F6 <0.05 <0.05 <0.05
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4.4.3 New FOS Model Development using PMA and CMA

Weighted Optimal Joint Angle

Following the calculation of θ0w for each muscle for each subject, a new pool of

candidate functions for FCE and F PE using the new weighted value for optimal joint

angle were generated using the methods outlined previously. Since the choice of

optimal joint angle for each muscle was restricted to θ0w, additional options for the

FCE functions were added to represent more variety in the shape of the force-length

curve. Rather than using three values of the Gaussian fit parameter ϕv as in previous

function generation, two additional values of ϕv = 0.15, 0.25 were added to generate

a total of 5 FCE functions for each muscle. The resulting five force-length curves for

subject M3 are shown in Figure 4.9. Values of ϕvT , the fit parameter for force-angle

curves, were calculated for for each weighted optimal joint angle and each subject,

corresponding to values of ϕv = 0.1, 0.15, 0.2, 0.25 and 0.3 are provided in Table 4.10.
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Figure 4.9: Example of varying shapes of force-length curves for each muscle using
values of ϕv = 0.1, 0.15, 0.2, 0.25 and 0.3

Therefore, by using the 5 new FCE and 1 new F PE functions corresponding to θ0w

for each muscle, the total number of candidate functions (N ) available in the candidate
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Table 4.10: Values for ϕvT for each subject calculated to estimate force-length curves
as a function of weighted optimal joint angle to correspond with values
of ϕv = 0.1, 0.15, 0.2, 0.25 and 0.3 for the biceps brachii, brachioradialis
and triceps brachii

ϕvT

Muscle ϕv Subject
M1 M2 M3 M4 F1 F2 F3 F4 F5 F6

0.1 0.34 0.43 0.74 1.14 0.89 0.50 0.52 0.40 1.21 0.67
0.15 0.53 0.63 0.96 1.52 1.17 0.70 0.72 0.61 1.62 0.88

Biceps 0.2 0.70 0.81 1.19 1.92 1.46 0.88 0.90 0.78 2.05 1.09
0.25 0.87 0.98 1.44 2.34 1.78 1.06 1.08 0.95 2.50 1.31
0.3 1.04 1.15 1.71 2.79 2.11 1.24 1.27 1.12 2.94 1.55
0.1 0.45 0.38 1.26 0.60 0.64 1.10 1.11 0.96 0.53 1.06
0.15 0.64 0.56 1.66 0.78 0.84 1.43 1.46 1.25 0.72 1.39

Brachioradialis 0.2 0.77 0.70 2.05 0.94 1.00 1.75 1.79 1.53 0.86 1.70
0.25 0.91 0.83 2.44 1.10 1.17 2.09 2.13 1.80 1.00 2.01
0.3 1.04 0.96 2.81 1.27 1.35 2.41 2.47 2.10 1.16 2.34
0.1 0.28 0.28 0.28 0.28 0.28 0.29 0.29 0.28 0.28 0.30
0.15 0.40 0.40 0.40 0.39 0.40 0.42 0.41 0.40 0.39 0.43

Triceps 0.2 0.51 0.52 0.52 0.51 0.52 0.53 0.53 0.51 0.51 0.55
0.25 0.63 0.64 0.64 0.62 0.64 0.65 0.65 0.63 0.62 0.68
0.3 0.74 0.76 0.76 0.74 0.76 0.78 0.77 0.75 0.74 0.80

pool to be used for FOS model selection was equal to N = 18 for each subject. A

summary of all candidate functions included in this pool of N = 18 functions is

provided in Table C.2 in Appendix C. A summary of the average evaluation %RMSE

(RMSEAV E) over all models developed with data from each session and using a PMA

and CMA is provided in Tables 4.11 and 4.12, respectively. Also provided are the

minimum evaluation %RMSE (RMSEMIN) and the standard deviation (SDAV E) of

the %RMSE across all 8 models from one session, for each subject. No appreciable

improvement was observed in the evaluation %RMSE for FOS models developed using

the θ0w-based candidate functions compared to the initial FOS model generation with

the pool of candidate functions representing a range of θ0.

Using the functions selected in the FOS models when 5 choices of ϕv were provided,
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Table 4.11: Evaluation %RMSE (Average and Minimum) and SD for models devel-
oped using θ0w for each muscle and each subject and using a PMA

Evaluation %RMSE and SD
Subject Session PMA

RMSEAV E RMSEMIN SDAV E

1 11.42 8.10 5.93
M1 2 11.01 9.05 4.83

3 10.28 7.51 6.55
M2 1 10.92 8.70 6.42

2 11.52 9.20 6.26
1 8.80 7.06 5.31

M3 2 6.25 5.26 2.75
3 7.83 6.93 3.04

M4 1 10.44 9.26 3.13
2 19.74 17.26 9.31

F1 1 10.59 8.99 4.81
2 10.63 9.59 6.07

F2 1 15.44 12.55 9.29
2 12.66 9.50 8.40
1 7.67 6.50 2.51

F3 2 8.71 7.47 3.73
3 15.54 13.33 6.68
1 12.52 9.18 8.08

F4 2 11.53 8.84 7.57
3 7.89 6.98 3.66
1 10.28 7.61 8.14

F5 2 4.33 3.85 1.58
3 5.65 4.71 2.26
1 10.40 9.06 7.01

F6 2 9.56 8.58 6.06
3 8.77 6.54 4.24

Average 10.40 8.52 5.52

a weighted average value of ϕv was calculated using a similar method described to

calculate RMSEMIN and the standard deviation (SDAV E) of the %RMSE across

all 8 models in one session, for each subject. Using the functions selected in the

FOS models when 5 choices of ϕv were provided, a weighted average value of ϕv was

calculated using a similar method described to calculate θ0w. Table 4.13 provides

these subject-specific Hill-model parameter values for each subject and each muscle.

The average evaluation error across all subjects for models developed using θ0w

in the N = 18 candidate functions increases slightly compared to the results for the

N = 132 candidate functions, however, the average standard deviation is marginally
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Table 4.12: Evaluation %RMSE (Average and Minimum) and SD for models devel-
oped using θ0w for each muscle and each subject and using a CMA

Evaluation %RMSE and SD
Subject Session CMA

RMSEAV E RMSEMIN SDAV E

1 13.30 10.35 6.72
M1 2 13.26 10.56 5.38

3 13.74 9.63 9.27
M2 1 15.75 12.80 9.27

2 13.77 11.59 7.04
1 8.25 7.02 4.87

M3 2 5.82 4.77 2.52
3 7.80 6.85 3.49

M4 1 9.86 8.92 3.78
2 17.96 17.13 9.60

F1 1 11.91 8.84 5.97
2 10.69 9.40 6.18

F2 1 16.16 13.62 9.43
2 15.80 12.53 10.35
1 7.38 6.63 2.51

F3 2 8.31 7.71 3.52
3 14.31 12.23 6.32
1 13.07 9.37 8.54

F4 2 12.83 9.24 8.83
3 10.36 8.12 5.69
1 10.78 8.49 8.30

F5 2 4.78 4.09 1.62
3 5.68 4.90 2.07
1 12.32 10.97 9.03

F6 2 11.89 10.37 8.68
3 9.12 6.82 5.04

Average 11.34 9.34 6.31

smaller. The fact that the FOS method can still develop models that can estimate

wrist force with a similar accuracy when the pool of candidate functions is reduced to

optimal values is promising. Perhaps the FOS method still requires some flexibility

in terms of candidate function selection, in order to generate more accurate force

estimation models.
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Table 4.13: Weighted average values for ϕvT calculated from the expanded force-
length FOS models generated using PMA

ϕvT

Subject Biceps Brachioradialis Triceps
M1 0.72 0.78 0.50
M2 0.92 0.82 0.64
M3 1.17 2.45 0.60
M4 2.06 1.06 0.49
F1 1.78 1.08 0.60
F2 0.85 1.95 0.59
F3 0.91 1.89 0.57
F4 0.76 1.76 0.50
F5 2.35 0.91 0.59
F6 1.24 1.87 0.60

4.5 Model and Parameter Evaluation

4.5.1 Inter-Session Reliability

Inter-session validation was performed by taking FOS models generated with data

collected in Session 1 and evaluating the model with data collected in Session 2 (and

Session 3 if applicable), and vice-versa. Visual inspection of the model accuracy

suggests that using models and data from different sessions provides good wrist force

estimation. An example illustrating the model generated from data collected from

subject M3 in Session 2-Trial 4 evaluated with data collected in Session 3-Trial 5 is

presented in Figure 4.10. It is clear that the model successfully tracks the sustained

force during the isometric contractions as well as the low force intervals between

isometric contractions. Similar results were observed for Session 3 models evaluated

using data collected in Session 2. Table 4.14 provides a summary of the evaluation

%RMSE and SD for models developed with data from subject M3 in Session 2 and

evaluated with data from Session 3, and also %RMSE and SD for models trained with
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Figure 4.10: Example of inter-session validation for subject M3 using a FOS model
generated and evaluated using data from different sessions

data from Session 3 and evaluated with data from Session 2. The evaluation %RMSE

is consistent with the error observed when models were trained and evaluated with

data collected in the same session (Table 4.7)

Table 4.14: Evaluation %RMSE (Average) and SD for PMA models developed using
data collected from subject M3 in session 2 and evaluated with data
collected in session 3, and vice versa

Model Training and Evaluation Condition
Trained with S2, Evaluation with S3 Trained with S3, Evaluation with S2
Training Trial %RMSE (SD) Training Trial %RMSE (SD)

1 11.00 (5.09) 1 9.51 (2.80)
2 10.09 (4.23) 2 12.44 (5.10)
3 8.39 (3.49) 3 9.02 (2.69)
4 10.28 (3.67) 4 7.33 (1.78)
5 12.12 (5.46) 5 5.95 (1.72)
6 9.66 (5.11) 6 5.79 (2.23)
7 9.42 (5.85) 7 10.74 (4.50)
8 8.82 (5.15) 8 7.24 (2.66)

Average 9.97 (4.76) Average 8.50(2.93)
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4.5.2 Evaluation of Triceps Optimal Joint Angle

In order to assess the weighted optimal joint angle identified for each subject, if

the force or torque generated by an individual muscle at varying joint angles can

be isolated, then a force-angle or torque-angle relationship for that muscle can be

obtained. From such a relationship, a peak force or torque at a specific angle would

suggest an optimal joint angle. It is difficult to isolate the activity of elbow flexors,

because multiple muscles are involved in generating the net elbow flexion torque,

however it is reasonable to assume that the triceps brachii is the major elbow extensor

and activity in this muscle generates elbow extension torque.

In a separate data collection session, two subjects (M2 and M3) were asked to con-

tract their triceps brachii to a target EMG level at each of the six angles used during

the isometric testing (45◦, 60◦, 75◦, 90◦ and 105◦). The EMG level was identified dur-

ing the normalization procedure, as the approximate magnitude observed in the 10N

ramp force. The subject was provided with visual feedback of EMG magnitude to help

him/her achieve a constant EMG level. The end of the QARM bar was restrained by

the experimenter as the subject contracted his/her triceps brachii, and the resulting

wrist force was measured. This procedure was repeated three times. The force mea-

sured during the experimental validation procedure for the triceps brachii as well as

the normalized EMG level for the triceps brachii, biceps brachii and brachioradialis

across the five joint angles for both subjects is provided in Figure 4.11.

The magnitude of the force measured at each joint angle increased slightly as the

arm was placed in more flexed positions. This may suggest that the muscles are able

to generate higher forces at higher joint angles because they are near the optimal

joint angle on the force-angle curve, or this may be due to the effect of stretch in the
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Figure 4.11: Triceps optimal joint angle validation results for subjects M2 and M3.
Left: Force measured at varying joint angles for constant EMG signal.
Right: Measured EMG signals for triceps brachii, biceps brachii and
brachioradialis

parallel elastic components of the triceps brachii. A traditional force-length curve was

not observed over this joint angle range, and it is difficult to validate the optimal joint

angles predicted by the FOS models for these two subjects, which was approximately

106◦ for both subjects.

The subjects were instructed to contract only the triceps brachii, and keep the

biceps brachii and brachioradialis relaxed during each trial. EMG activity from all

three muscles were recorded to ensure that triceps activity remained constant through

the various joint angles, and to assess how well the subjects were able to keep their

elbow flexors relaxed. While the EMG level for the triceps brachii remained constant

at each of the 5 joint angles, it is clear that co-contraction of the biceps brachii was

present. It does not appear that this method is able to validate the weighted optimal

joint angles identified for each subject.



Chapter 5

Discussion

5.1 Success of Hill-based Muscle Model in Predict-

ing Wrist Force

Using the Hill-based candidate functions, FOS models were able to generate estimates

of force at the wrist due to activity in the upper arm muscles with good accuracy.

Average %RMSE ranged between 4-20% using the weighted optimal joint angles

determined for each subject and demonstrated consistency across subjects and data

collection sessions. This was a slight improvement over the non-muscle-model-based

candidate functions proposed by Mobasser et al. in [70], which resulted in average

%RMSE ranging from 5-24% for the same data sets across all 10 subjects.

The force estimation results obtained using the FOS models compare well to re-

sults presented in the literature. Koo and Mak [47] in their EMG driven musculoskele-

tal model reported root mean square (RMS) error between predicted and measured

joint trajectories ranging from 10◦ to 35◦ which, for a joint range of 140◦ represents

76
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error of 7-25%. Cavallaro et al. [8] reported average RMS errors in elbow torque

estimation of 4.2Nm and 3.4Nm in elbow flexion and extension respectively. Assum-

ing that the range of torque generated in their experiments was 20Nm (estimated

from Figure 8a in [8]) this represents a range of 17-21% error. Liu et al. [63] using

their neural network model to predict muscle force reported RMS errors ranging from

10-21% which they considered excellent.

The resulting FOS models were able to predict force at the wrist and demonstrated

equivalent estimation error to models generated with EMG driven musculoskeletal

models as well as multi-layer perceptron neural networks.

5.2 Simplifying Assumptions in Hill Muscle Model

Many assumptions were made in order to simplify the Hill-based muscle model can-

didate functions used in this study. These assumptions involve the types of equations

used, physiological parameter values, the muscle length/joint angle relationships, and

the range of parameter values (resolution) between the candidate functions. The can-

didate functions used in the FOS models were chosen from a finite pool of functions

that included a wide range of optimal joint angles to represent variability in subject

physiology. This is in contrast to other models that use optimization methods or other

algorithms to fine tune parameter values to minimize model error [8, 48]. Some stud-

ies have shown that Hill-based models are sensitive to certain parameter values used

in the models [78, 86]. In this work, while the range of choices of optimal joint angles

and force-length curve shapes in the pool of FOS candidate functions is quite large,

other parameters such as the maximal musculotendon length, tendon slack length

and optimal muscle length used in the derivation of the muscle length/joint angle
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relationship were estimated from literature values. As well, the joint angle/muscle

moment arm relationship was based on one source, and may not directly take into

account differences in subject size. Therefore, some error will be introduced by the

simplifications and assumptions made in the development of Hill-based muscle model

candidate functions, and will be discussed below.

5.2.1 Neglecting the Series Elastic Component

The force generated by the series elastic component (F SE) was neglected in this

study. As with the other components of Hill muscle models, the SE is not intended

to directly represent physiological structures of muscle, however many researchers

still refer to the SE as a representation of the elasticity of the muscle tissue and

tendon. Zajac [100] suggests that the SE can be separated into elastic contribution of

muscle (SEm) and tendon (SEt). The SEm is primarily attributed to the cross-bridge

linkages in muscle, and is highly dependant on contraction dynamics of muscle, while

the SEt can be considered to behave as an undamped spring [22]. Zajac suggests that

energy stored in muscle cross-bridges is small compared to the energy that is stored

in tendon, therefore, it is possible to neglect the contribution of the SEm [100]. It has

been shown that for the muscles of the upper arm (biceps brachii, triceps brachii and

brachialis) the stretch in the tendon is small, in the physiological operating range of

these muscles, ranging between 4-10% of the optimal muscle length [28]. Therefore

the tendon can be assumed to be infinitely stiff [80] and the SE unit can be neglected.
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5.2.2 Effect of using a Symmetric Force-Length Curve

Traditional illustrations of the force-length relationship for individual muscle fibres

rather than whole muscles, present a shape that is not symmetrical about the maximal

isometric force. As shown in Figure 2.6, the slope of the ascending part of the curve

is steeper than the descending part of the curve. A reduction in force at shorter sar-

comere lengths is caused by a reduced overlap surface for actin and myosin filaments,

however additional factors such as deformation of the myosin filaments and increased

fluid and osmotic pressures may also hinder sarcomere force generation [84]. In the

present work, the force-length curve was approximated using a Gaussian function,

which is symmetrical about the optimal muscle length. Once the function was ex-

pressed as a function of joint angle rather than muscle length, the shape of the curve

was no longer symmetric due to the non-linear relationship between muscle length

and joint angle [57]. However, the original model that was approximated was based

on a symmetric Gaussian function [8]. Many other researchers have used symmetric

force-length relationships of Gaussian [36, 77] or parabolic [86, 98] shapes and it is

assumed that the approximated shape of the force-length relationship is adequate for

the purposes of this research.

5.2.3 Number of Muscles Included in FOS Candidate Func-

tions

The decision to use only the biceps brachii and brachioradialis to describe elbow flex-

ion in the FOS models, and not include muscle activation signals from the brachialis

was necessary due to limitations in the data collection. Data collection was performed

using surface EMG electrodes, and due to the position of the brachialis in the arm
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it is difficult to isolate brachialis EMG signals without contaminating the signal with

cross-talk from the biceps brachii. Typically, the brachialis is measured using needle

electrodes rather than surface electrodes [25]. However, the goal of this research ini-

tially was to develop a model describing elbow motion, that could be implemented

in a prosthetic limb, where surface EMG is the only realistic method for obtaining

muscle activation.

5.2.4 Number of EMG Signals Used for Each Muscle

Two EMG sensors were positioned side-by-side over the belly of each muscle of in-

terest in this study. The average of the processed EMG signals were used as input

signals to the FOS model for the biceps brachii and the triceps brachii, however it

was determined that the two EMG signals collected for the brachioradialis were not

consistent. The brachioradialis functions as an elbow flexor, therefore it is expected

that there should be higher activation in this muscle during elbow flexion. However

observation of the brachioradialis signal from the lateral EMG sensor revealed a high

level of signal recorded during elbow extension. Figure 5.1 illustrates this observation

for subject M1.

It is apparent that there is not a large enough area on the skin surface on which two

EMG sensors can be placed and obtain clean recordings from the brachioradialis. The

forearm has many narrow muscles confined in a small space, and it is possible that the

lateral EMG sensor that was meant to measure EMG signals from the brachioradialis,

was accidentally picking up cross-talk from the extensor carpi radialis longus. Figure

5.2 shows the proximity of these two muscles.
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5.2.5 Effect of Removing Force-Velocity Equation from the

Isometric Model

The force-velocity component of FCE was set equal to 1 in the FOS model generation

using isometric data. This was meant to simplify the calculations, however may not

be entirely accurate as each subject was required to move their arm through intervals

of approximately 15◦ to the correct position for each isometric contraction. A slight

spike in arm angular velocity is visible in data sets such as in Figure 4.4 in between

each isometric contraction. It was assumed that any contribution to force by the

force-velocity component would be small and could be reasonably neglected in this

work.
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Figure 5.1: Example data for subject M1 illustrating discrepancies in the normalized
EMG signal for both sensors measuring the brachioradialis activity. Re-
call positive force indicates a contraction in flexion while negative force
indicates an extension contraction.
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Figure 5.2: Illustration of the proximity of the brachioradialis to the extensor carpi
radialis in the forearm [82]



CHAPTER 5. DISCUSSION 84

5.3 Suggestions for Improvement to FOS Model

Development

5.3.1 Optimal Model Size

The optimal model size of 7 candidate functions was chosen based on findings re-

ported in [70] as well as preliminary studies suggesting that 7 functions was a good

compromise between error reduction and over training of the model. Analysis of the

isometric data collected in this study indicates that for some subjects, optimal FOS

model size is shifted towards 9 or 10 candidate functions. In the future, it would

be beneficial to determine the optimal FOS model size for each individual subject to

further reduce %RMSE. Averaging the minimum %RMSE values in Table 4.1 results

in an average value of 8.36%. Compared to the average error for a model size of

7 functions (8.79) selecting the optimal model size for each subject could offer an

improvement in %RMSE of 5%. However, maintaining a constant model size for all

subjects simplifies model generation and allows for comparison between subjects and

data sets.

5.3.2 Modifications to QARM Equipment Set-up

Two important observations with respect to the QARM testbed were made during the

data collection sessions. During isometric contractions, subjects aligned the aluminum

forearm bar with marked angles and the experimenter held the end of the bar while

the subject contracted in either flexion or extension. The subjects were given visual

feedback of their force levels, therefore they adjusted their contractions to achieve

the target force (10N or 20N ). During these adjustments, the experimenter had to
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accommodate for any slight changes in force by the subject and keep the end of the

aluminum bar at a constant angle. This was very difficult, and some variability can

be observed in the angle data for the isometric contractions. This situation may

also have encouraged muscle co-activation of the subject’s arm muscles, to increase

stability of the arm during the isometric contractions. Therefore, it is suggested that

a modification be made to the QARM testbed such that the forearm bar can be locked

in position by a passive barrier during isometric contractions at various angles. One

suggestion would be to drill holes in the platform so that pins could be inserted into

the platform to hold the aluminum bar in place at a number of joint angles.

The second observation is that there was a relatively high level of noise in the

sEMG data. The commercial sEMG sensors that were used in this study were part of

the Myosens (Invenium Technologies) portable sEMG collection system. However, in

this study, the sEMG sensors were integrated into the existing QARM data aquisition

and processing system, so that collection of EMG signals and joint kinematic data was

simultaneous. Therefore, two small test boxes were constructed. The sEMG sensors

were plugged into the box which routed the EMG signals to a data acquisition board

in the computer used for data collection. However, because the EMG cables were

short in length, the test boxes were located in close proximity to a power supply, and

some noise was introduced into the signal. If an additional shelf or platform were

constructed to house the test boxes, sufficiently far away from the power supply, this

would likely improve signal quality.
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5.3.3 Datasets Used for FOS Model Training

In this study, datasets collected in each individual trial were used to train separate

FOS models for each subject. This means that variability in candidate function

selection between models is likely a direct result of small changes from one dataset to

the next. This is especially true for models developed for the target force level of 10N

compared to the target force level of 20N. It is therefore suggested that alternate

methods be used to generate FOS models that represent a wider selection of data

collected from one subject. Two proposed methods are briefly outlined.

Data Segmentation

Data segmentation is a proposed method of combining small segments from each

dataset collected in each trial, and arranging them together to form new training

sets. As shown in Figure 5.3, data collected in each trial (Data 1, Data 2... Data

8) can be cropped into equal blocks and used to form new multi-trial training sets

for the FOS method. Segments can be combined in order as in the figure, or the

segments could be randomized, as long as only one segment is used from each data

collection trial.

Data Concatenation

Data summation is a proposed method of combining entire datasets collected during

each trial into one large training set. In this case, it will be necessary to down-sample

the data due to the large number of data points collected in each trial. Currently, an

average data set contains 140,000 to 180,000 data points. Prior to model development,

the data is downsampled by 20, resulting in approximately 7000-9000 data points. By
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Figure 5.3: Proposed segmentation of data to create new FOS training sets
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Figure 5.4: Proposed summation of data to create new FOS training sets

incorporating either segments of data from different trials, or entire datasets collected

from different trials, in the FOS training dataset, the models which are generated may

provide a more accurate and robust mapping between joint kinematic data, muscle

activity, and resulting wrist force.

5.3.4 Incorporating Dynamic Motion

Previous work by Mobasser et al. [70] had good success using dynamic datasets to

train FOS models to predict wrist force during dynamic flexion and extension of the
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elbow. In the current work, only isometric data was used to develop FOS models. It

is therefore suggested that Hill-based candidate functions be used in FOS models to

predict dynamic motion.

5.3.5 Investigating the Movement of Muscle Bulk under Skin

Surface over Range of Joint Angles

It was suggested that some of the change in EMG magnitude that was observed in

isometric contractions at different joint angles, results from the muscle bulk shifting

under the skin (and hence beneath the sEMG electrodes) rather than being a function

solely of the force-length properties of the muscle. One method which can be adopted

in the future to assess the effect of muscle movement under the skin during elbow

flexion would be to utilize a linear array of sensors rather than individual sEMG

sensors [69]. As the muscle bulk moves beneath the skin surface, the sEMG signal

can be measured from various electrodes to ensure that an optimal signal is obtained.

It may also be helpful to normalize the data at each joint angle using EMG

data collected during a normalization contraction (either motor-applied torque or a

maximum voluntary contraction) for each joint angle. This may help to reduce the

effects of the muscle bulk moving beneath the skin, and the location of the EMG

sensors with respect to the innervation zone as the muscle moves.

5.3.6 Submaximal Activation of Muscle During Experiments

It has been reported that the traditional force-length relationship for muscle is ap-

plicable for maximal isometric contractions only, and that submaximal contractions

demonstrate a force-length curve that is shifted towards longer muscle lengths. In
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other words, a traditional force-length curve created using maximum voluntary con-

tractions may demonstrate a peak force at 90◦, while a force-length curve generated

using submaximal contractions may suggest a peak force generation ranging from

45-75◦ [35, 84]. The isometric studies performed in this work were at 10N and 20N

of wrist force, therefore it may be true that optimal joint angles identified for data

collected at the different force levels may be different and it would be beneficial to

identify optimal joint angles for each subject at a variety of activation levels. Further

investigation may be warranted to assess if there is a difference in optimal joint angles

identified using data with isometric contractions in excess of 20N.

5.4 Validation of Optimal Joint Angle

5.4.1 Preliminary Validation for the Triceps Brachii

Experimental methods were used to try and validate the optimal joint angle identi-

fied for the triceps brachii muscle for 2 subjects. As described previously, subjects

contracted their triceps muscles to a target EMG level and the resulting force at the

wrist was measured and plotted (see Figure 4.11). It is expected that since the tri-

ceps brachii is the primary elbow extensor, the contribution of this muscle to the net

extension torque about the elbow should be close to 100%. Therefore, recalling the

traditional force-length curve it is expected that the plot of extension force vs. joint

angle should peak near to the estimated optimal joint angle for each subject (∼ 106◦

for PMA models and ∼ 90◦ for CMA models for both subject M2 and M3). The plots

in Figure 4.11 do reveal an increasing force measurement with joint angle, however

due to the limitations in the range of motion of the device (subjects find it difficult
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to flex their arms much beyond 110◦) it is unknown whether the curve would begin

to fall at higher joint angles, or the extent that F PE of the triceps brachii may be

contributing to wrist force.

It is important to note that the measured wrist force may not directly represent

the full extension torque about the elbow in this experiment, as there is some activity

observed in the biceps brachii, particularly for subject M2 at angles greater than 75◦.

This activity suggests that co-contraction of the muscles about the elbow may be

occurring to increase stability of the arm. Any flexion torque about the elbow due

to contraction of the biceps brachii will reduce the net extension torque, and thus

reduce the force measured at the wrist.

5.4.2 Literature Data

The weighted optimal joint angles found for each subject can be compared to values

from the literature summarized in Table 2.1. Figure 5.5 illustrates the range of

optimal joint angles for the biceps brachii, brachioradialis and triceps brachii from

the literature as well as the calculated weighted optimal joint angles using both the

PMA and CMA methods.

For the biceps brachii and brachioradialis, the calculated weighted optimal joint

angle values lie within the range of the literature values, as the published optimal

joint angles for the elbow flexors have a wide range. The calculated weighted optimal

joint angles for the triceps brachii are slightly higher than literature values, however

the average value from the CMA method is more similar to the average literature

value.
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Figure 5.5: Summary of optimal joint angles for the biceps brachii, brachioradialis
and triceps brachii provided in literature and calculated using the PMA
and CMA FOS models. The horizontal black line is the mean value,
the grey bar represents one standard deviation from the mean, and the
vertical black lines show the minimum and maximum values

5.4.3 Imaging Methods

Optimal joint angle values could be validated for each subject using imaging methods.

Using an equation from [26], Li et al. [58] estimated the optimal muscle fascicle

length of the biceps brachii and brachioradialis using two ultrasound images (one

on the anterior part of the upper arm, 2cm proximal to the elbow joint, and the

second on the lateral part of the forearm, 1cm distal to the elbow), respectively,

taken at multiple joint angle positions. The following equation was used to estimate

the optimal muscle fibre length L̂0i:

L̂0i = Lf +
MT1

sinα
+

MT2

sinα
(5.1)

where Lf is the visible part of the muscle fascicle in the ultrasound image, MT1
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L. Li et al. / Clinical Biomechanics 22 (2007) 874–883

Figure 5.6: A) Original ultrasound image of the biceps and brachialis from [58]. B)
Image with appropriate labels for equation 5.1. The upper shaded area
(BIC) is the biceps while the lower area (BRA) is the brachialis; these two
muscles are separated by an aponeurosis (APO); Lf is the visible part of
the muscle fascicle that can be measured; MT1 is the distance of the fibre
distal end point to the superficial aponerurosis; MT2 is the distance of
the fibre proximal end to the bone; α is the pennation angle

is the distance from fibre distal end point to the superficial aponeurosis, MT2 is

distance from the fibre proximal end to the bone and α is the pennation angle of

the muscle [26]. Figure 5.6 provides an example ultrasound image from the anterior

upper arm, and shows the measurements which can be incorporated into equation

5.1 [58]. The resulting L̂0i can then be converted back into joint angle. Li et al.

used the ultrasound method to estimate the optimal muscle length for arm flexors,

using optimal joint angles published in [48]. They then used these estimated muscle

length values in the biomechanical model in [48] to solve for musculotendon length

and muscle moment arm. It is interesting to note that Li et al. commented that the

trigonometric approximation provided in Equation 5.1 might not be accurate for the

elbow flexors at joint angles > 80◦ because the muscle fascicles become curved when

the muscle is contracted to this degree.
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5.5 Benefits of Using a Physiologically Relevant

Model

While many methods exist for the estimation of muscle forces or joint torques using

EMG data (a brief summary was provided in Section 2.6), few provide an opportunity

to tailor the model to take into account subject size or physiology.

5.5.1 Subject Specific Muscle Parameters

It has been shown that muscle physiological parameters measured from cadaver spec-

imens may not reflect true physiological parameters of the individual’s live tissue,

due to the effects of rigor mortis and chemicals used to preserve specimens [66]. As

well, while imaging methods are a proposed option for estimating muscle physiolog-

ical parameters of a living person, access to such equipment may be hindered by

high expense, or by availability of the equipment and individuals trained to operate

the equipment and interpret results. Finally, while EMG-driven models can iden-

tify subject-specific parameters using an optimization procedure, the proposed FOS

method offers a more computationally efficient method of estimating these parame-

ters. The ability of the FOS method to identify subject-specific Hill-muscle param-

eters has a wide range of applications in neuromuscular modelling. Modifications to

the candidate functions used in the FOS method or further analysis of the coefficient

values may provide information about additional physiological parameters. While the

values estimated in this study (optimal joint angle and ϕvT ) need to be validated,

the results of this preliminary work suggest that this method could be useful for

elucidating in vivo muscle characteristics.
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5.5.2 Use of a Constant Muscle Moment Arm vs. Polynomial

Relationship

Force generation in upper arm muscles and their contribution to joint torque about

the elbow is dependant on the length of the muscle moment arm, and the length of

the moment arm changes as a function of joint angle. The use of the PMA relation-

ship from Lemay and Crago [57] in the Hill-based FOS candidate functions attempted

to reflect this fact. It was assumed that the coefficient generation within the FOS

method would adjust for any deviation from this polynomial relationship for individ-

ual subjects. When a constant value is substituted for this polynomial moment arm

relationship, the ability of the FOS method to accurately predict force at the wrist

does not change significantly. Therefore, it was assumed that the coefficient values

in the FOS method can adequately account for an average moment arm value, and

the error associated with neglecting the change in moment arm with joint angle is

overcome by the ability to tailor the average moment arm to each subject.

The two different moment arm methods did have an impact on the candidate

functions which were chosen in the FOS models, and in turn the values calculated

for the weighted optimal joint angle for each subject. Weighted optimal joint angles

calculated for the biceps brachii and brachioradialis are on average, 25◦ lower when the

PMA method is used in the FOS candidate functions. For the triceps brachii, use of

the PMA results in weighted optimal joint angles that are higher by approximately 15◦

compared to model development using the CMA. Figure 5.7 shows the force-length

curves for the three muscles for a single subject over a range of joint angles. The

curves have been multiplied by the polynomial moment arm relationship or simply
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Figure 5.7: Effect of multiplying the force-length curves for the biceps brachii, bra-
chioradialis and triceps brachiias by polynomial moment arm and constant
moment arm. Curves are shown for subject F5 for ϕv = [0.1− 0.3]

multiplied by a factor of ±1 (representing the CMA). It is especially evident for force-

length curves with a wider shape (ϕv = 0.2, 0.3) that the peak of the curve is shifted

towards higher angles for the biceps brachii and brachioradialis, and lower angles for

the triceps brachii when multiplied by the PMA. In addition, the part of the curve

that represents longer muscle lengths (smaller angles for the elbow flexors and higher

angles for the extensor) is lower in magnitude.

It is difficult to determine with certainty which method should be used, as both

methods resulted in models with equivalent accuracy in terms of force estimation.

Observations of the frequency distribution of the selected candidate functions using
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both moment arm methods (Figures 4.7 and 4.8) suggest that the function selection

using the CMA method is more consistent, especially for the biceps brachii and bra-

chioradialis. As shown in Tables 4.7 and 4.8, average standard deviations for the

optimal joint angle across all 10 subjects for the biceps brachii and brachioradialis

were 14.1 and 12.0 respectively using the CMA method. This value increased to 16.5

and 17.0 for the two muscles using the PMA method. The observed reduction in

variability in optimal joint angles found using the CMA method compared to the

PMA method is also apparent in Figure 5.5.

More analysis on the FOS coefficient values will need to be performed to assess

their ability to account for the muscle moment arm, and warrant the negation of a

well known physiological relationship between muscle moment arm and joint angle.
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Conclusions and Future Work

6.1 Summary and Conclusions

The aim of this project was to develop a novel method of identifying in vivo subject-

specific physiological parameters (such as θ0 and ϕvT ) of the upper arm using Fast

Orthogonal Search. This was accomplished within a framework of a force estimation

model for elbow flexion and extension. The results presented here provide evidence

that the FOS method used with physiologically-based basis functions can provide a

good estimate of force at the wrist due to flexion and extension torque about the

elbow.

Focusing on the contribution of the biceps brachii, brachioradialis and triceps

brachii to elbow torque, a Hill-based muscle model was used to develop a wide range

of candidate functions for the FOS method. FOS models were generated to predict the

force at the wrist from flexion and extension torque at the elbow. Two methods were

used to incorporate the muscle moment arm into the Hill-based candidate functions

(PMA and CMA). The evaluation %RMSE of both the PMA and CMA Hill-based

97
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FOS models were compared to results of FOS models constructed using non-muscle-

model-based candidate functions as suggested by [70]. Average evaluation error was

lower than non-muscle-model-based results by 1.7% and 2.6% when the PMA and

CMA methods were used in the Hill-based FOS models respectively.

A frequency analysis of the Hill-based candidate functions selected by the FOS

models revealed trends in the FCE and F PE functions chosen for the triceps brachii,

and to a lesser extent the biceps brachii and brachioradialis. Weighted optimal joint

angles (θ0w) were calculated for each subject based on FOS model development using a

large pool of candidate functions (N = 132). These θ0w were incorporated into a new

pool of candidate functions (N = 18) to identify subject-specific force-length curve

shape parameters (ϕvT ). Use of the θ0w values in FOS candidate functions yielded

RMSEAV E ranging from 4.3-19.7%, suggesting that the θ0w is a good approximation

of the subject’s true physiology.

Comparing the results of the two Hill-based methods, some reduction in %RMSE

was observed for the CMA models, however this was not statistically significant.

Perhaps a more interesting observation was that estimates for optimal joint angles

suggested by CMA models were less variable than those found using the PMA models.

Multiplying a Gaussian function by a polynomial expression as in the PMA method

appears to shift the peak of the force curve quite dramatically toward higher joint

angles for elbow flexors and lower joint angles for elbow extensors (as shown in Figure

5.7). This may explain the variability in optimal joint angle selection in the PMA

method. Perhaps modelling the force-angle curve as a Gaussian function implicitly

accounts for the effect of a muscle moment arm that changes with respect to joint

angle, therefore maintaining a constant factor for the moment arm contributes to a
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more accurate estimation of muscle force.

Therefore, in addition to generating a more accurate estimation of force at the

wrist resulting from elbow flexion and extension torque, the Hill-based candidate

functions can implicitly provide information about physiological parameters of the

upper arm.

6.2 Future Work

Expanding on the utility of this method will require a larger subject pool with data

recorded during isometric contractions as well as dynamic motion. The force-velocity

component of the FCE functions is not excited with the isometric data; performing

isotonic (constant force) and isokinetic (constant velocity) contractions will introduce

the effects of muscle contraction velocity into the FCE functions. Introducing force-

varying isometric contractions may also activate the muscles over a wider range than

the two force levels of 10N and 20N used in this study.

Data collection trials and sessions may also be re-structured. The length and

number of trials that can be performed in one session is limited by the onset of muscle

fatigue, especially for contractions at or above 20N of target wrist force. Obtaining

more repetitions of isometric contractions at specific angles may limit the number

of joint angles that can be included in one trial. Increasing the number of data

collection sessions will also increase the quality and quantity of data. In addition,

for the purpose of assessing subject position and the ability to maintain a constant

shoulder and wrist position, it would be beneficial to monitor sEMG activity from

muscles in the shoulder such as the deltoid, and muscles in the forearm that are

associated with wrist flexion and extension. Often, subjects needed to be reminded
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not to clench their fist or move their hand during the isometric contractions, and

it is unknown whether these extra movements may have artificially inflated sEMG

signals from the brachioradialis (i.e. cross-talk), or contributed to any inconsistencies

in measured force between trials.

Expanding the size of the pool of candidate functions which are available to the

model such as including more variation in force-length curves or narrower resolution of

optimal joint angles (i.e. 5◦ rather than every 10◦) may reduce the variance observed

in the weighted optimal joint angle calculations. In terms of candidate functions,

perhaps it would be possible to include FOS candidate functions for the brachialis

muscle, that take into account the physiology of this muscle and its contribution to

elbow torque. The sEMG signals from this muscle can be recorded, however the

signal will be heavily affected by cross-talk from the biceps brachii. Investigation into

methods of removing the cross-talk signal will need to be performed.

Re-arranging the way in which datasets are used as training sets for FOS model

development is another promising avenue for future work. Combining components

of data collected from different subjects using the data segmentation or data con-

catenation procedures may result in more generalized models and more consistent

physiological parameter selection.

In the current work, tendon behaviour is assumed to be infinitely stiff, therefore the

entire SE unit is neglected. Some error will be introduced in the model by neglecting

the tendon elasticity in the FOS model candidate functions, therefore future work

may include modifying the Hill-based candidate functions to include an external SEt

unit as in [48].

Finally, future work may also utilize imaging techniques such as ultrasound or
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MRI to validate the optimal joint angles determined through the FOS method, as

well as muscle moment arm relationships used in FOS model development.
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Appendix A

Muscle Parameters from Literature

A.1 Maximal Musculotendon Length

The maximum length of a musculotendon unit LMTmax is the sum of the length of

the muscle and its tendon when the joint is in a position of full extension, i.e. the

muscle and tendon cannot be stretched any farther by means of manipulating the

joints associated with that muscle within the functional operating range [31]. Values

for this parameter are not widely reported in the literature. Table A.1 provides an

average calculation from two sources.

A.2 Tendon Slack Length

Tendon slack length (LTs) is defined as the length of the tendon at which any further

elongation will result in tension developing in the tendon [100]. The following values

for LTs were presented in the literature. The values were generally were obtained

through measurement of cadaveric specimens.
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Table A.1: Maximum musculotendon length (cm) of short and long heads of the
biceps brachii (BSH and BLH), the brachioradialis (BRD) and lateral,
long and medial heads of the triceps brachii (TLtH, TLgH and TMH) as
reported in literature

Muscle
Study Study Size (N) BSH BLH BRD TLtH TLgH TMH
Lemay and Crago (1996) 6* 37.80 37.20 27.60 31.50 17.70 13.50

Cavallaro et al. (2006) 1† 40.46 41.94 35.35 40.29 28.22 18.95
Average ± SD 39.35 ± 2.6 31.48 ± 5.5 29.43 ± 6.8

*Lemay and Crago cited maximal musculotendon lengths from An et al.[2] which had a study size of 6 cadavers
†Cavallaro et al. did not state how many subjects were used in their study, therefore it is assumed to be 1 subject

Table A.2: Tendon slack length length of biceps brachii, brachioradialis and triceps
brachii as reported in literature

Muscle
Study Biceps Biceps Triceps Triceps Triceps

Study size (n) Short Long Brachioradialis Long Lateral Medial
Head Head Head Head Head

Gonzalez et al.
(1996) [32]

7 20 20 12 - - -

Murray et al.
(2000) [74]

10 18.3 (2.5) 22.9 (1.6) 16.9 (1.7) 21.7 (2.9) 18.7 (1.8)

Koo et al.
(2002) [48]

5 21.7 25.9 9.0 - - -

Garner and
Pandy (2003)
[31]

3 22.98 6.04 19.05

Langenderfer et
al. (2004) [53]

2 15.8 (0.9) 18.3 (1.4) 10.5 (0.5) 20.0 (0.6) 16.7 (0.7) 1.8 (1.1)

Holzbaur et al.
(2005) [40]

1 19.2 27.2 13.3 14.3 9.8 9.8

Weighted Average ± SD 21.11 ± 2.2 12.50 ± 3.8 18.50 ± 3.1
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A.3 Optimal Muscle Length

Optimal muscle length (L0) is defined as the length of the muscle fibres in between

the tendons at which the muscle is able to generate its maximum isometric force F0.

Optimal muscle length drives the force-length relationship and is attributed to the

amount of overlap between actin-myosin filaments within the sarcomeres. A summary

of values provided in the literature is provided in Table A.3. The weighted averages

have been calculated for the biceps brachii, brachioradialis and triceps brachii.

Table A.3: Optimal muscle length of biceps brachii, brachioradialis and triceps brachii
as reported in literature

Muscle
Study Biceps Biceps Triceps Triceps Triceps

Study size (n) Short Long Brachioradialis Long Lateral Medial
Head Head Head Head Head

Amis et al.
(1979) [1]

4 15.7 15 14.2 7.4 6.8 5.9

An et al. (1981)
[2]

4 15 (3.4) 13.6 (2.4) 16.4 (2.9) 10.2 (1.9) 8.4 (1.0) 6.3 (1.4)

Kawakami et al.
(1994) [46]

4 20 12 8

Gonzalez et al.
(1996) [32]

7 14 14.4 10

Murray et al.
(2000) [74]

10 14.5 (3.2) 12.8 (3.2) 17.7 (3.0) 12.7 (2.1) 9.3 (2.8)

Koo et al.
(2002) [48]

5 14.5 11.3 23.8 - - -

Garner and
Pandy (2003)
[31]

3 14.22 27.03 8.77

Langenderfer et
al. (2004) [53]

2 18.1 (0.4) 15.6 (0.3) 17.5 (1.8) 17.6 (1.1) 10.3 (2.4) 14.5 (0.9)

Holzbaur et al.
(2005) [40]

1 13.2 11.6 17.3 13.4 11.4 11.4

Weighted Average ± SD 14.66 ± 2.17 17.52 ± 4.26 9.67 ± 2.09
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A.4 Physiological Cross-Sectional Area (PCSA)

Maximum isometric force (F0) can be assumed to be proportional to the physiological

cross-sectional area (PCSA) of a muscle. PCSA is defined as the total area normal to

the longitudinal axis of the muscle fibres and can be calculated as the ratio between

muscle volume (V ol) and L0:

PCSA =
V ol

L0

=
mass/density

L0

(A.1)

Therefore a weighted average PCSA value was calculated from values reported in

the literature as summarized in Table A.4.

Table A.4: Physiological Cross-sectional Area (PCSA) (cm2) and (SD) for the biceps
brachii, brachioradialis and triceps brachii as reported in literature

Muscle
Study Biceps Biceps Triceps Triceps Triceps

Study size (n) Short Long Brachioradialis Long Lateral Medial
Head Head Head Head Head

Amis et al.
(1979) [1]

4 3.96 4.13 3.22 20.44 15.42 14.46

An et al. (1981)
[2]

4 2.1 (0.5) 2.5 (0.5) 1.5 (0.5) 6.7 (2.0) 6.0 (1.2) 6.1 (2.3)

Edgerton et al.
(1990) [19]

4 1.6 2.2 1.8 23.8

Murray et al.
(2000) [74]

10 2.1 (0.6) 2.5 (1.1) 1.2 (0.6) 4.3 (1.8) 10.5 (5.2)

Garner and
Pandy (2003)
[31]†

3 25.90 3.08 76.30

Langenderfer et
al. (2004) [53]

2 1.75 (0.79) 1.57 (0.13) 1.15 (0.37) 3.6 (1.35) 4.13 (1.22) 3.21 (0.71)

Holzbaur et al.
(2005) [40]

1 3.1 4.5 1.9 5.7 4.5 4.5

Holzbaur et al.
(2007) [41]

10 8.2 (3.4) 3.9 (1.8) 40.0 (15.4)

Weighted Average 4.14 2.38 19.54
†The values presented by Garner and Pandy for the biceps brachii and triceps brachii were neglected in calculating
the average PCSA
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A.5 Maximum Muscle Stress/Specific Tension (N/cm2)

The maximum muscle stress is commonly referred to as specific muscle tension in the

literature and is defined as the maximum force developed per unit of cross-sectional

area [6]. Units for specific tension are often given as N/cm2 which is equivalent to

units of pressure Pa. Buchanan [6] computed specific tension (σ) for elbow flexors

and extensors using the following equations for joint moment (M ):

Melbow =
∑

MAi · F0i (A.2)

Melbow = σ
∑

MAi · PCSAi (A.3)

A summary of values for σ provided in the literature is provided in Table A.5.

Table A.5: Specific tension σ (kPa) for muscles about the elbow as presented in the
literature

Specific Tension σ (kPa)
Study All Elbow Flexors Elbow Extensors

An et al., 1981 [2] 1000 - -
Winters and Stark 1988 [97] 500 - -

Zajac 1989 [100] 350 - -
Buchanan 1995 [6] - 990-1480 430-910

Koo et al., 2002 [48] 1293.7 - -
Garner and Pandy 2003 [31] 330 - -

Koo and Mak 2005 [47] 1000 - -
Holzbaur et al., 2005 [40] 1400 - -
Pennestri et al., 2007 [79] 1400 - -

A.6 Maximum Isometric Force F0 (N )

There are few papers that specify the peak isometric force generated by the muscles

of the upper limb. However, F0i is often calculated by multiplying the specific tension
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and PCSA of a muscle:

F0i = σi·PCSAi (A.4)

where σi is the specific tension of muscle i converted to units of Pa, and PCSAi

is the physiological cross-sectional area of muscle i converted to m2. Therefore, the

values in Table A.6 are compiled from: values published in the literature [31, 40]; and

values calculated as the product of PCSAi and σi published in the literature [2, 32];

and an average value calculated as the product of the average values of σi and PCSAi

found in Tables A.4 and A.5 respectively.

Table A.6: Peak isometric force F0 (N ) for muscles about the elbow provided in
literature or calculated using literature values

Muscle
Biceps Biceps Triceps Triceps Triceps

Study Short Long Brachioradialis Long Lateral Medial
Head Head Head Head Head

An et al. (1981) [2] 210 250 150 670 600 610
Gonzalez et al. (1996)
[32]

670 430 1750

Garner and Pandy
(2003) [31]

849.29 101.56 2332.92

Holzbaur et al. (2005)
[40]

435.6 624.3 261.3 798.5 624.3 624.3

Calculated from aver-
age values in Tables
A.4 and A.5

616.9 195.3 2363.0

Average 731.2 227.6 2074.6



Appendix B

Fast Orthogonal Search (FOS)

The Fast Orthogonal Search (FOS) method [50, 51] is a nonlinear identification

method that forms a sum of M linear or nonlinear basis functions pm(n) and co-

efficient terms am and aims to minimize the mean square error between the estimate

and the system output. The FOS model takes the form:

y(n) =
M∑

m=1

ampm(n) + e(n) (B.1)

The FOS method is based on the principals of Gram-Schmidt orthogonal iden-

tification, whereby orthogonal basis functions wm(n) would be generated from the

candidate basis functions pm(n) and coefficients found to minimize the MSE of the

estimate, therefore taking the form

y(n) =
M∑

m=1

gmwm(n) + e(n) (B.2)

where the gm terms are the coefficients of the orthogonal basis functions wm(n), which

are orthogonal over the entire data record such that:

wi(n)wj(n) = 0, i, jε[1,M ], i 6= j (B.3)
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Here the overline represents the average over the entire data record. The orthogo-

nal functions are found by subtracting from each pm(n) the components which are

“parallel” to the previously found orthogonal function wj(n), where j < m.

w1(n) = p1(n) = 1

w2(n) = p2(n)− α21w1(n)

...

wm(n) = pm(n)−
m−1∑
r=1

αmrwr(n) (B.4)

where αmr represents the projection of wr on pm as:

αmr =
wr(n)pm(n)

w2
r(n)

,
m = 2, . . . , M

r = 1, . . . , m− 1
(B.5)

Since the error can be represented as mean square error (MSE):

e2(n) = [y(n)− ŷ(n)]2 (B.6)

then,

e2(n) =

[
y(n)−

(
M∑
i=1

giwi(n)

)]2

= y2(n)− 2y(n)
M∑
i=1

giwi(n) +
M∑
i=1

g2
i w

2
i (n)

Since the basis functions wi(n) are orthogonal, the error can be written as:

e2(n) = y2(n)−
M∑
i=1

g2
i w

2
i (n) (B.7)

The coefficients gi that minimize the MSE of the model estimate can be found as:

gi =
y(n)wi(n)

w2
i (n)

(B.8)
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From equation B.7, the iterative reduction in error of the model estimate can be

measured as a term Q(m) as:

Q(m) = g2
i w

2
i (n) (B.9)

Therefore, the method can select the best candidate functions to include in the

model, selecting iteratively, the one that maximizes the value of Q(m). However, in

order to calculate Q(m), both the coefficient values gi and orthogonal basis functions

wi(n) need to be found. Calculating the orthogonal functions can be time-consuming

and computationally expensive.

The benefit of the Fast Orthogonal Search method is that there is a way in which

to circumvent the calculation of the actual orthogonalized basis functions wi(n) using

only a few variables, and simply find the coefficients of the orthogonalized basis

functions gi. To do this, a number of orthogonal expansion coefficients are given.

gm =
C(m)

D(m,m)
, for m = 0, . . . ,M (B.10)

where

D(0, 0) = 1 (B.11)

D(m, 0) = pm(n), for m = 1, . . . , M (B.12)

D(m, r) = pm(n)pr(n)−
r−1∑
i=0

αriD(m, i), for m = 1, . . . , M and r = 0, . . . , m− 1

(B.13)

αmr =
D(m, r)

D(r, r)
, for m = 1, . . . ,M and r = 0, . . . , m− 1 (B.14)
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C(0) = y(n) (B.15)

C(m) = y(n)pm(n)−
m−1∑
r=0

αmrC(r), for m = 1, . . . , M (B.16)

The algorithm implemented in MATLAB to develop the FOS models was based on

the following pseudocode [50, 51]. For more details on the MATLAB codes used to

calculated the FOS models, refer to [72].

D(0,0)=1

for m = 1, . . . , M

Calculate D(m,0) using equation B.12

for m = 1, . . . , M

for r = 0, . . . , M − 1

Calculate αmr using equation B.14

Calculate D(m,r+1) using equation B.13

Recall that the term Q(m) in equation B.9 represents the iterative reduction in

model error. This error reduction for the addition of the m-th candidate function

pm(n) can be written as

Q(m) = g2
mD(m,m) =

C2(m)

D(m,m)
(B.17)

As the FOS model moves through its iterative process, selecting candidate func-

tions pm(n) which produce a maximum Q(m), the selected pm is removed from the

pool of candidates so that it will not be selected again. The FOS method continues
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to select pm terms until m = M . The model coefficient terms am from equation B.1

can then be calculated using

am =
M∑

i=M

givi (B.18)

where

vm = 1 (B.19)

vi = −
i=1∑
r=m

αirvr for i = m, . . . , M (B.20)



Appendix C

List of Hill-Based Candidate

Functions

C.1 Initial Model Development

Table C.1 provides a list of all Hill-based candidate functions (pm) used in the FOS

method to generate wrist force estimation models. Candidate functions represent the

contribution to the elbow moment of particular muscles in the arm and are provided

in groups based on which muscle they represent (i=Bi, Brd and Tri) and which

angle is used as θ0 (θ0 = 20◦, 30◦, . . . , 110◦, 120◦). Therefore, candidate functions are

incorporated into the FOS algorithm in the form:

pm =





FCE(θ0i, ϕvi) · MAi

MAforearm
= fli(θ0i, ϕvT i) · fvi(θ0i) · ui(t) ·MAi

F PE(θ0i) · MAi

MAforearm
= F PE(θ0i) ·MAi

(C.1)

where the moment arm of the muscle (MAi) is given as a polynomial relationship
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or set to 1 depending on the required analysis, the length of the subject’s forearm

(MAforearm) is set equal to 1 and ui(t) is assumed to equal the processed EMG (ei(t)).

For candidate functions used with isometric data, fvi is set equal to 1.

The functions are labelled in the following tables using the format FCE
iθ0(ϕv) and F PE

iθ0

where i refers to the muscle, θ0 is the optimal joint angle used in calculations of the

force-length curve, the force-velocity relationship and the parallel elastic curve, and

ϕv is the Gaussian shape parameter (ϕv = 0.1, 0.2, 0.3) of the modeled force-length

curve. Recall that the actual Gaussian shape parameters used (ϕvT ) are provided in

Table 3.2 in Section 3.

C.2 Expanded Model Development

Once the weighted optimal joint angles were calculated for each muscle for each sub-

ject, a new set of candidate functions was developed for each subject, incorporating

the weighted optimal joint angle and also expanding the choices of Gaussian shape

parameters from three values to five (ϕv = 0.1, 0.15, 0.2, 0.25, 0.3). The pool of can-

didate functions incorporated into the FOS method was thus given as the following

18 functions in Table C.2:
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Table C.1: Pool of Muscle-Model-Based Candidate Functions for the Biceps Brachii
(Bi), Brachioradialis (Brd) and Triceps Brachii (Tri) used for main model
development (N = 132) for each subject

Group FCE
iθ0(ϕv) FPE

iθ0

BI-1 FCE
Bi20◦(0.1) ·MABi FCE

Bi20◦(0.2) ·MABi FCE
Bi20◦(0.3) ·MABi FPE

Bi20◦ ·MABi

BI-2 FCE
Bi30◦(0.1) ·MABi FCE

Bi30◦(0.2) ·MABi FCE
Bi30◦(0.3) ·MABi FPE

Bi30◦ ·MABi

BI-3 FCE
Bi40◦(0.1) ·MABi FCE

Bi40◦(0.2) ·MABi FCE
Bi40◦(0.3) ·MABi FPE

Bi40◦ ·MABi

BI-4 FCE
Bi50◦(0.1) ·MABi FCE

Bi50◦(0.2) ·MABi FCE
Bi50◦(0.3) ·MABi FPE

Bi50◦ ·MABi

BI-5 FCE
Bi60◦(0.1) ·MABi FCE

Bi60◦(0.2) ·MABi FCE
Bi60◦(0.3) ·MABi FPE

Bi60◦ ·MABi

BI-6 FCE
Bi70◦(0.1) ·MABi FCE

Bi70◦(0.2) ·MABi FCE
Bi70◦(0.3) ·MABi FPE

Bi70◦ ·MABi

BI-7 FCE
Bi80◦(0.1) ·MABi FCE

Bi80◦(0.2) ·MABi FCE
Bi80◦(0.3) ·MABi FPE

Bi80◦ ·MABi

BI-8 FCE
Bi90◦(0.1) ·MABi FCE

Bi90◦(0.2) ·MABi FCE
Bi90◦(0.3) ·MABi FPE

Bi90◦ ·MABi

BI-9 FCE
Bi100◦(0.1) ·MABi FCE

Bi100◦(0.2) ·MABi FCE
Bi100◦(0.3) ·MABi FPE

Bi100◦ ·MABi

BI-10 FCE
Bi110◦(0.1) ·MABi FCE

Bi110◦(0.2) ·MABi FCE
Bi110◦(0.3) ·MABi FPE

Bi110◦ ·MABi

BI-11 FCE
Bi120◦(0.1) ·MABi FCE

Bi120◦(0.2) ·MABi FCE
Bi120◦(0.3) ·MABi FPE

Bi120◦ ·MABi

BRD-1 FCE
Brd20◦(0.1) ·MABrd FCE

Brd20◦(0.2) ·MABrd FCE
Brd20◦(0.3) ·MABrd FPE

Brd20◦ ·MABrd

BRD-2 FCE
Brd30◦(0.1) ·MABrd FCE

Brd30◦(0.2) ·MABrd FCE
Brd30◦(0.3) ·MABrd FPE

Brd30◦ ·MABrd

BRD-3 FCE
Brd40◦(0.1) ·MABrd FCE

Brd40◦(0.2) ·MABrd FCE
Brd40◦(0.3) ·MABrd FPE

Brd40◦ ·MABrd

BRD-4 FCE
Brd50◦(0.1) ·MABrd FCE

Brd50◦(0.2) ·MABrd FCE
Brd50◦(0.3) ·MABrd FPE

Brd50◦ ·MABrd

BRD-5 FCE
Brd60◦(0.1) ·MABrd FCE

Brd60◦(0.2) ·MABrd FCE
Brd60◦(0.3) ·MABrd FPE

Brd60◦ ·MABrd

BRD-6 FCE
Brd70◦(0.1) ·MABrd FCE

Brd70◦(0.2) ·MABrd FCE
Brd70◦(0.3) ·MABrd FPE

Brd70◦ ·MABrd

BRD-7 FCE
Brd80◦(0.1) ·MABrd FCE

Brd80◦(0.2) ·MABrd FCE
Brd80◦(0.3) ·MABrd FPE

Brd80◦ ·MABrd

BRD-8 FCE
Brd90◦(0.1) ·MABrd FCE

Brd90◦(0.2) ·MABrd FCE
Brd90◦(0.3) ·MABrd FPE

Brd90◦ ·MABrd

BRD-9 FCE
Brd100◦(0.1) ·MABrd FCE

Brd100◦(0.2) ·MABrd FCE
Brd100◦(0.3) ·MABrd FPE

Brd100◦ ·MABrd

BRD-10 FCE
Brd110◦(0.1) ·MABrd FCE

Brd110◦(0.2) ·MABrd FCE
Brd110◦(0.3) ·MABrd FPE

Brd110◦ ·MABrd

BRD-11 FCE
Brd120◦(0.1) ·MABrd FCE

Brd120◦(0.2) ·MABrd FCE
Brd120◦(0.3) ·MABrd FPE

Brd120◦ ·MABrd

TRI-1 FCE
Tri20◦(0.1) ·MATri FCE

Tri20◦(0.2) ·MATri FCE
Tri20◦(0.3) ·MATri FPE

Tri20◦ ·MATri

TRI-2 FCE
Tri30◦(0.1) ·MATri FCE

Tri30◦(0.2) ·MATri FCE
Tri30◦(0.3) ·MATri FPE

Tri30◦ ·MATri

TRI-3 FCE
Tri40◦(0.1) ·MATri FCE

Tri40◦(0.2) ·MATri FCE
Tri40◦(0.3) ·MATri FPE

Tri40◦ ·MATri

TRI-4 FCE
Tri50◦(0.1) ·MATri FCE

Tri50◦(0.2) ·MATri FCE
Tri50◦(0.3) ·MATri FPE

Tri50◦ ·MATri

TRI-5 FCE
Tri60◦(0.1) ·MATri FCE

Tri60◦(0.2) ·MATri FCE
Tri60◦(0.3) ·MATri FPE

Tri60◦ ·MATri

TRI-6 FCE
Tri70◦(0.1) ·MATri FCE

Tri70◦(0.2) ·MATri FCE
Tri70◦(0.3) ·MATri FPE

Tri70◦ ·MATri

TRI-7 FCE
Tri80◦(0.1) ·MATri FCE

Tri80◦(0.2) ·MATri FCE
Tri80◦(0.3) ·MATri FPE

Tri80◦ ·MATri

TRI-8 FCE
Tri90◦(0.1) ·MATri FCE

Tri90◦(0.2) ·MATri FCE
Tri90◦(0.3) ·MATri FPE

Tri90◦ ·MATri

TRI-9 FCE
Tri100◦(0.1) ·MATri FCE

Tri100◦(0.2) ·MATri FCE
Tri100◦(0.3) ·MATri FPE

Tri100◦ ·MATri

TRI-10 FCE
Tri110◦(0.1) ·MATri FCE

Tri110◦(0.2) ·MATri FCE
Tri110◦(0.3) ·MATri FPE

Tri110◦ ·MATri

TRI-11 FCE
Tri120◦(0.1) ·MATri FCE

Tri120◦(0.2) ·MATri FCE
Tri120◦(0.3) ·MATri FPE

Tri120◦ ·MATri



APPENDIX C. LIST OF HILL-BASED CANDIDATE FUNCTIONS 130

Table C.2: Pool of Muscle-Model-Based Candidate Functions for the Biceps Brachii
(Bi), Brachioradialis (Brd) and Triceps Brachii (Tri) used for expanded
model development (N = 18) for each subject

Group Function

FCE
Biθw(0.1) ·MABi FCE

Biθw(0.15) ·MABi FCE
Biθw(0.2) ·MABi

BI-Subject FCE
Biθw(0.25) ·MABi FCE

Biθw(0.3) ·MABi

FPE
Biθw

·MABi

FCE
Brdθw(0.1) ·MABrd FCE

Brdθw(0.15) ·MABrd FCE
Brdθw(0.2) ·MABrd

Brd-Subject FCE
Brdθw(0.25) ·MABrd FCE

Brdθw(0.3) ·MABrd

FPE
Brdθw

·MABrd

FCE
Triθw(0.1) ·MATri FCE

Triθw(0.15) ·MATri FCE
Triθw(0.2) ·MATri

TRI-Subject FCE
Triθw(0.25) ·MATri FCE

Triθw(0.3) ·MATri

FPE
Triθw

·MATri



Appendix D

Example FOS Model

The following Tables provide details about FOS models generated for data collected

from Subject M3 during session 2. Table D.1 presents the FOS candidate functions

and corresponding coefficients for models developed using the PMA method, while

Table D.2 presents the equivalent for models developed using the CMA method.
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Table D.1: FOS Candidate functions and coefficient values selected for models gener-
ated using data collected from subject M3 during session 2 with the PMA
method

Trial Coefficient Function Evaluation %RMSE Evaluation SD
8.49 1

1075.63 F CE
T ri120◦(0.3) ·MAT ri

-1551.75 F CE
Brd20◦(0.2) ·MABrd

1 894.55 F CE
Bi20◦(0.2) ·MABi 5.57 1.99

2201.52 F CE
T ri110◦(0.2) ·MAT ri

1839.97 F CE
Brd20◦(0.3) ·MABrd

-495.90 F CE
Bi20◦(0.3) ·MABi

8.62 1

989.75 F CE
T ri120◦(0.3) ·MAT ri

-1790.30 F CE
Brd20◦(0.2) ·MABrd

2 -578.92 F CE
Bi20◦(0.3) ·MABi 5.59 2.13

2358.13 F CE
T ri110◦(0.2) ·MAT ri

2064.39 F CE
Brd20◦(0.3) ·MABrd

961.35 F CE
Bi20◦(0.2) ·MABi

10.00 1

2734.50 F CE
T ri120◦(0.3) ·MAT ri

2637.80 F CE
Brd20◦(0.3) ·MABrd

3 164.50 F P E
Bi60◦ ·MABi 7.17 2.38

-2403.75 F CE
Brd30◦(0.2) ·MABrd

352.26 F CE
Bi50◦(0.1) ·MABi

1749.01 F CE
T ri120◦(0.1) ·MAT ri

8.81 1

3265.21 F CE
T ri120◦(0.3) ·MAT ri

3455.74 F CE
Brd20◦(0.3) ·MABrd

4 -2397.53 F CE
Brd30◦(0.3) ·MABrd 7.27 1.36

6627.19 F CE
Bi20◦(0.3) ·MABi

-6290.75 F CE
Bi30◦(0.3) ·MABi

-140.43 F CE
Brd30◦(0.1) ·MABrd

7.81 1

3073.89 F CE
T ri90◦(0.2) ·MAT ri

2312.60 F CE
Brd20◦(0.3) ·MABrd

5 -411.89 F CE
Bi20◦(0.2) ·MABi 7.54 3.42

-2058.08 F CE
Brd30◦(0.2) ·MABrd

969.49 F CE
Bi30◦(0.1) ·MABi

-482.22 F CE
T ri80◦(0.1) ·MAT ri

9.27 1

3274.97 F CE
T ri90◦(0.2) ·MAT ri

2190.19 F CE
Brd20◦(0.3) ·MABrd

6 1610.64 F CE
Bi20◦(0.2) ·MABi 5.82 2.21

-1987.96 F CE
Brd30◦(0.2) ·MABrd

-1000.60 F CE
Bi20◦(0.3) ·MABi

-271.12 F CE
T ri80◦(0.1) ·MAT ri

9.51 1

253.60 F CE
T ri90◦(0.2) ·MAT ri

1142.86 F CE
Brd20◦(0.3) ·MABrd

7 460.86 F CE
Bi30◦(0.2) ·MABi 5.84 2.91

3277.76 F CE
T ri100◦(0.2) ·MAT ri

-922.21 F CE
Brd20◦(0.2) ·MABrd

228.29 F P E
T ri90◦ ·MAT ri

8.56 1

-958.46 F CE
Brd20◦(0.2) ·MABrd

987.88 F CE
T ri90◦(0.2) ·MAT ri

8 3308.30 F CE
Bi60◦(0.3) ·MABi 6.42 2.92

2401.06 F CE
T ri100◦(0.2) ·MAT ri

1156.66 F CE
Brd20◦(0.3) ·MABrd

-2933.81 F CE
Bi70◦(0.3) ·MABi

Average 6.40 2.41
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Table D.2: FOS Candidate functions and coefficient values selected for models gener-
ated using data collected from subject M3 during session 2 with the CMA
method

Trial Coefficient Function Evaluation %RMSE Evaluation SD
7.58 1

54.55 F CE
T ri90◦(0.3) ·MAT ri

171.23 F CE
Brd60◦(0.3) ·MABrd

1 7.35 F CE
Bi20◦(0.3) ·MABi 5.88 1.89

32.37 F CE
Brd60◦(0.1) ·MABrd

59.61 F P E
T ri80◦ ·MAT ri

-171.84 F CE
Brd60◦(0.2) ·MABrd

7.28 1

53.91 F CE
T ri90◦(0.3) ·MAT ri

97.92 F CE
Brd60◦(0.3) ·MABrd

2 -24.21 F CE
Bi20◦(0.3) ·MABi 6.05 2.39

-0.72 F CE
Brd60◦(0.1) ·MABrd

33.66 F CE
Bi30◦(0.2) ·MABi

-69.85 F CE
Brd50◦(0.2) ·MABrd

9.21 1

54.99 F CE
T ri90◦(0.3) ·MAT ri

14.77 F CE
Brd80◦(0.3) ·MABrd

3 76.90 F CE
Bi20◦(0.2) ·MABi 8.40 3.78

-66.26 F CE
Bi30◦(0.2) ·MABi

31.09 F CE
Brd90◦(0.2) ·MABrd

12.12 F CE
T ri100◦(0.1) ·MAT ri

8.97 1

110.39 F CE
T ri80◦(0.3) ·MAT ri

120.38 F CE
Brd60◦(0.3) ·MABrd

4 -1.78 F CE
Bi20◦(0.3) ·MABi 5.66 1.26

-91.95 F CE
Brd60◦(0.2) ·MABrd

-53.69 F CE
T ri70◦(0.2) ·MAT ri

8.65 F CE
Bi30◦(0.2) ·MABi

7.12 1

52.93 F CE
T ri90◦(0.3) ·MAT ri

178.19 F CE
Brd70◦(0.3) ·MABrd

5 -170.01 F CE
Brd70◦(0.2) ·MABrd 6.27 2.66

16.88 F CE
Bi60◦(0.1) ·MABi

12.19 F CE
Brd80◦(0.1) ·MABrd

-4.64 F CE
Bi70◦(0.2) ·MABi

9.10 1

78.49 F CE
T ri80◦(0.2) ·MAT ri

44.59 F CE
Brd70◦(0.3) ·MABrd

6 2.63 F CE
Bi60◦(0.3) ·MABi 5.41 2.22

-20.92 F CE
T ri70◦(0.1) ·MAT ri

-26.23 F CE
Brd70◦(0.1) ·MABrd

7.77 F CE
Bi70◦(0.1) ·MABi

9.28 1

58.25 F CE
T ri90◦(0.3) ·MAT ri

79.33 F CE
Brd70◦(0.3) ·MABrd

7 8.40 F CE
Bi40◦(0.3) ·MABi 5.27 2.10

-15.92 F CE
Brd70◦(0.1) ·MABrd

8.49 F P E
T ri90◦ ·MAT ri

-42.77 F CE
Brd60◦(0.3) ·MABrd

8.62 1

-108.64 F CE
Brd50◦(0.3) ·MABrd

32.68 F CE
T ri90◦(0.3) ·MAT ri

8 -76.47 F CE
Bi80◦(0.3) ·MABi 6.11 2.88

30.97 F CE
T ri90◦(0.2) ·MAT ri

123.86 F CE
Brd60◦(0.3) ·MABrd

88.69 F CE
Bi70◦(0.3) ·MABi

Average 6.13 2.40
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Table E.1: List of modifications made to experimental and analysis procedures

Decision Details

Measurement of EMG
from the biceps brachii
and brachioradialis,
but not the brachialis
muscle

Previous work with the experimental setup [70, 72] have stated
the difficulties of measuring true signal from the brachialis mus-
cle using surface EMG sensors. Due to the deep location of the
brachialis muscle in the arm, surface EMG will be contaminated
with cross-talk from the biceps brachii muscle. Therefore, it was
decided to omit signals from this muscle for this study.

Isometric contractions
at varying angles

Previous studies using the QARM system and FOS models [70]
utilized dynamic data, however since the FOS candidate func-
tions were developed based on Hill-model principals that are
true under isometric conditions, the majority of data used in
this project was isometric.

Experimental
Procedure

Isometric contractions
at 6 joint angles

Originally, joint angles of 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ were
chosen to cover a wide range of the functional range of motion
of the subject while positioned in the QARM. However testing
revealed that isometric contractions at 15◦ were very difficult
for subjects, especially at higher target force levels, therefore
the range was shifted to 30◦, 45◦, 60◦, 75◦, 90◦ and 105◦. The
maximum time for data collection in one trial (due to compu-
tational limitations) was 200 seconds, and 12 isometric contrac-
tions with a duration of 5 seconds each could comfortably be
performed by subjects.

Completing isometric
contractions in a non-
randomized pattern

Early data collection procedures required that subjects perform
isometric contractions at joint angles that were randomized for
each trial. However, the act of the subject moving their arm
back and forth from angle to angle introduced more dynamic
behaviour in the data set than desired, therefore contractions
were performed in order from 30◦ through to 105◦ to minimize
the amount of motion required by the subject to move from one
angle to the next.

Data collection ses-
sions completed on
same day or consecu-
tive days and sensor
location marked on
subject’s skin

It was decided that error due to sensor placement between ses-
sions could be reduced by ensuring that the sensors were placed
in the same location for each session. Therefore, sessions were
performed on the same day or on consecutive days and the sen-
sor location was marked on the subject’s skin so it could easily
be replicated in the next session.

Using mean EMG sig-
nals for biceps brachii
and triceps brachii, but
medial signal for bra-
chioradialis

Much variability was observed between the two adjacent EMG
sensors located over the brachioradialis. It was assumed that
the size of the brachioradialis is too narrow to accommodate two
adjacent sensors, therefore only data collected from the medial
of the two sensors was used in candidate functions.

Data Analysis
Including neighbouring
angles in candidate
function selection

Initial FOS model generation used the first θ0 that was selected
in a candidate function for each muscle as the angle for all
further selection of candidate functions. It was decided to widen
this span to ±10◦ to allow some flexibility and room for FOS
to compensate for error in model functions.

Range of optimal joint
angles used in candi-
date functions

Initial FOS candidate functions were developed for θ0 = 40◦ −
100◦. This range was expanded to θ0 = 20◦ − 120◦ because it
better represented the range of motion over which the data was
collected.



Appendix F

Model Comparisons

To compare these results with evaluation results using the Hill-model-based functions,

the difference in error between the methods was calculated for each dataset and

each subject. Negative values indicate that the Hill-based method produced lower

evaluation error than the non-muscle-based-model, while positive values indicate that

the candidate functions from Mobasser et al. generate lower evaluation error. The

percentage difference in error (%D) is calculated with respect to the non-model-based

error according to

%DPMA−Mobasser =
%RMSEAV EPMA

−%RMSEAV Emobasser

%RMSEAV Emobasser

(F.1)

%DCMA−Mobasser =
%RMSEAV ECMA

−%RMSEAV Emobasser

%RMSEAV Emobasser

(F.2)

Table F.1 presents the calculated values for %D between the PMA and Mobasser

models, and between the CMA and Mobasser models.
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Table F.1: Evaluation %RMSE (Average), difference in error magnitude and percent-
age difference in error for models developed using Hill-model-based candi-
date functions (with PMA and CMA) and using non-muscle-model-based
(Mobasser et al. [70]) candidate functions

Evaluation %RMSE %Difference Calculation
Subject Session Polynomial Constant Mobasser et Polynomial - Mobasser Constant - Mobasser

MA MA al. (2007) Magnitude %Difference Magnitude %Difference
1 8.88 9.48 13.64 -4.76 -34.9% -4.16 -30.5%

M1 2 9.49 9.04 11.80 -2.31 -19.6% -2.76 -23.4%
3 11.0 10.54 11.30 -0.30 -2.7% -0.76 -6.7%

M2 1 11.07 10.89 17.78 -6.71 -37.7% -6.89 -38.8%
2 11.05 12.18 13.90 -2.85 -20.5% -1.72 -12.4%
1 8.91 8.05 8.27 +0.64 +7.7% -0.22 -2.7%

M3 2 6.40 6.13 5.64 +0.76 +13.5% +0.49 +8.7%
3 8.08 8.91 7.99 +0.09 +1.1% +0.92 +11.5%

M4 1 10.51 9.91 8.74 +1.77 +20.3% +1.17 +13.4%
2 20.58 19.62 16.23 +4.35 +26.8% +3.39 +20.9%

F1 1 11.34 11.29 11.98 -0.64 -5.3% -0.69 -5.8%
2 11.35 10.68 14.93 -3.58 -24.0% -4.25 -28.5%

F2 1 14.88 16.21 15.78 -0.90 -5.7% +0.43 +2.7%
2 10.62 9.76 14.86 -4.24 -28.5% -5.10 -34.3%
1 7.33 6.78 5.81 +1.52 +26.16% +0.97 +16.7%

F3 2 9.20 8.47 7.41 +1.79 +24.2% +1.06 +14.3%
3 14.86 14.13 12.50 +2.36 +18.9% +1.63 +13.0%
1 12.15 12.22 12.69 -0.54 -4.3% -0.47 -3.7%

F4 2 11.79 11.85 23.60 -11.81 -50.0% -11.75 -49.8%
3 8.62 8.60 6.34 +2.28 +36.0% +2.26 +35.7%
1 10.33 10.35 12.19 -1.86 -15.3% -1.84 -15.1%

F5 2 4.40 4.61 5.17 -0.77 -14.9% -0.56 -10.8%
3 5.56 5.71 5.96 -0.40 -6.7% -0.25 -4.2%
1 9.87 9.99 10.02 -0.15 -1.5% -0.03 -0.3%

F6 2 9.33 9.54 7.09 +2.24 +31.6% +2.45 +34.6%
3 8.77 9.21 7.25 +1.52 +21.0% +1.96 +27.0%

Average -0.87 -1.7% -0.95 -2.6%
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Identification of Normal Human Subject Arm Dynamics and Its Use in 

Human Muscle Recruitment Analysis and Control of Robots and Telerobots  

 

CONSENT FORM 

 

Principal Investigator: Dr. Keyvan Hashtrudi-Zaad 

Phone Number (613) 533-2991 

 

 
You are being invited to participate in a research study directed by Dr. Keyvan Hashtrudi-Zaad to 

identify the mechanical dynamics of a human arm and to employ the dynamic mapping for the analysis of 

muscle recruitment and/or for the control of robots and telerobots. At this initial visit, Dr. Hashtrudi-Zaad 

or his graduate student working on this project will read through this consent form with you and describe 

procedures in detail and answer any questions you may have. This study is being sponsored by Natural 

Science and Engineering Research Council (NSERC) and Ontario Centres of Excellence (OCE). 

 

Details of the Study: 
 

The purpose of this study is i) to identify human arm’s mechanical dynamics (e.g. linear mapping 

such as mass, damping, and stiffness, or a nonlinear mapping) involving elbow joint motion in horizontal 

plane, and ii) to use the dynamic mapping to analyze muscle recruitment in humans and/or to control a 

simple robot or a telerobotic system. You will be considered for this study only if you have no neural or 

musculoskeletal disorders that may affect your ability to generate movements of your arm.  
 

The experiments will be conducted at the same place (WLH-506) two days after this initial visit. 

You will be seated comfortably on a chair in front of a table.  You will be asked to put your arm on an 

adjustable robotic linkage with a handle at its end-point. Your arm will then be secured to the linkage 

using covered arm braces. The robotic device allows you to move your limb in the horizontal plane.   The 

motor attached to the linkage allows us to apply small mechanical loads to your arm.  We will monitor i) 

the activity of elbow muscles during the tasks by attaching small surface Electromyogram (EMG) 

electrodes to the skin overlying each muscle, ii) the elbow joint angle by an optical encoder installed on 

the motor, and iii) the contact force between your arm wrist and the linkage handle which is measured by 

a force sensor installed on the device. The EMG electrodes do not obstruct normal movements and are not 

invasive.  The signals from the electrodes will be amplified using electronic equipment rated for use with 

humans.   
 

The experiments will be conducted to either identify the mechanical dynamics of your arm, or to 

study muscle recruitment in humans, or to assess the controllers designed for a robotic or a telerobotic 

experimental setup, part of which is the above-mentioned robotic linkage. To this end, small-moderate 

loads will be applied by the robotic linkage to your arm. The response of your arm, e.g. your elbow angle, 

muscle EMG signals, and wrist contact forces will be collected. You will be instructed to perform a 

number of motor tasks requiring you to maintain your hand at a spatial target with specific force, or to 

move your hand between spatial targets. These small-moderate loads are harmless, but you will have to 

learn to compensate for these loads in order to perform the task.  The total duration of the experiment 

sessions is expected to be less than 2 hours. Should the experiments continue beyond 1 hour, light 

refreshments will be served.  
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Identification of Normal Human Subject Arm Dynamics and Its Use in Human Muscle 

Recruitment Analysis and Control of Robots and Telerobots, Consent Form  (cont.)  

 

Risks: 
 

 There are minor risks involved in participating in this study. The robotic linkage that will be 

handled by you is capable of applying a safe maximum continuous force of 40 Newton at the wrist area. 

This maps to the weight of a 4 kg object. To protect subjects against peak forces, which may exceed 40 

Newtons, the following precautions have been taken in to account:  

• Metal barriers covered with soft spongy material have been installed to prevent the linkage from 

rotating further, should your elbow angle pass certain angle. 

• A panic button will be provided for you to stop the operation immediately at any time you wish. 

• An Immediate shutdown procedure will be executed at the software level when the measured wrist 

forces and or the linkage velocity pass certain limit. 

 

Note: Your participation in this study is voluntary. You may withdraw from these experiments at any 

time.   

 

Benefits: 
 

Although you may not benefit directly from this study, your participation will contribute to our 

basic knowledge of human mechanical dynamics, human muscle recruitment, and how to incorporate this 

knowledge into the design of prosthetic and telerobotic systems controllers. 

 

Confidentiality: 
 

All information obtained during the course of this study is strictly confidential and will be stored 

in password-protected files. The data will be available only to Dr. Hashtrudi-Zaad and his research 

partner Dr. Evelyn Morin (Department of Electrical and Computer Engineering of Queen’s University), 

and their joint students working in the robotics lab WLH-506 on this project. Your anonymity will be 

protected at all times by using alphanumeric codes when analyzing or presenting your experimental data.  

 

Payment: 
 

You will receive an hourly stipend of $5.00 up to a maximum of $20.00 per experiment. Also, 

should the experiment continue beyond 1 hour, light refreshments will be served. 

 

Voluntary participation and Subject Statement: 
 

I have read and understand the above information describing this study.  I have had the purposes, 

procedures and technical language of this study explained to me.  I have been given sufficient time to 

consider the above information and to seek advice if I chose to do so.  I have had the opportunity to ask 

questions which have been answered to my satisfaction.  I am voluntarily signing this form. I will receive 

a copy of this consent form for my information. 

 

If at any time I have further questions, problems or adverse events, I can contact Dr. Keyvan 

Hashtrudi-Zaad, the principal investigator of the project, at (613) 533-2991, or Dr. Steven Blostein, the 

Head of the Department of Electrical and Computer Engineering, Queen’s University at (613) 533-2947. 

If I have questions regarding my rights as a research subject, I can contact Dr. Albert Clark, Chair of 

Research Ethics Board at (613) 533-6081.  
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 Identification of Normal Human Subject Arm Dynamics and Its Use in Human Muscle 

Recruitment Analysis and Control of Robots and Telerobots, Consent Form  (cont.)  
 

By signing this consent form, I am indicating that I agree to participate in this study. 

 

 

______________________________________________________ 

Name of subject, please print 

 

 

______________________________________________________ 

Signature of subject    date 
 

****************************************************************************** 

**** Please do not answer any of the following questions, if you are not comfortable with. **** 

 

Birth year:  _________ 
 

 

Dominant hand: R L 
 

 

Sex:  M F 

 
 

Weight: ___________ lbs or kgs 
 

 

Contact Information: ___________________________________  (email address or telephone#) 

******************************************************************************************************** 

To be entered by experimenter: 
 

Upper arm length: ______________________mm 
 

Forearm length: ______________________mm 
 

Subject code:  _______________ 

 

Statement of Investigator: 

 I, or one of my graduate research assistants, have carefully explained to the subject the 

nature of the above research study.  I certify that, to the best of my knowledge, the subject 

understands the nature of the study, and demands, benefits, and risks involved to participants in 

this study. 

 

_____________________________________________ 

Signature of investigator  date 

 

_____________________________________________________________ 

Name and signature of witness    date 
Form latest update: April 11, 2008 




