Maintaining position and display perspective in a walking simulator while self-pacing on a treadmill

L. Lichtenstein¹, J. Barabas^{1,2}, R. L. Woods¹, E. Peli¹ ¹The Schepens Eye Research Institute, Dept. of Ophthalmology, Harvard Medical School, Boston, MA ²The Media Lab, Massachusetts Institute of Technology, Cambridge, MA

Abstract

We have developed a feedback controller for a treadmill, in a virtual environment, using a rear projection screen, that keeps the visual extents consistent across subjects and allows them to set their own walking pace naturally.

- (A) Please consider this paper for poster presentation
- (B) This paper is intended for Applications Sessions.
- (C) The first author is not a student.

Authors: Lee Lichtenstein Schepens Eye Research Institute 20 Staniford Street Boston, MA 02114 Tel: (617) 912-2525 Fax: (617) 912-0111 Email: <u>ltl@vision.eri.harvard.edu</u>

James Barabas MIT Media Lab Building E15 77 Massachusetts Avenue Cambridge, MA 02139 Tel: (617) 252-7240 Fax: (617) 253-1631 Email: <u>barabas@mit.edu</u>

Russell L. Woods Schepens Eye Research Institute 20 Staniford Street Boston, MA 02114 Tel: (617) 912-2589 Fax: (617) 912-0111 Email: <u>rwoods@vision.eri.harvard.edu</u>

Eli Peli Schepens Eye Research Institute 20 Staniford Street Boston, MA 02114 Tel: (617) 912-2597 Fax: (617) 912-0111 Email: eli@vision.eri.harvard.edu

Maintaining position and display perspective in a walking simulator while self-pacing on a treadmill

L. Lichtenstein¹, J. Barabas^{1,2}, R. L. Woods¹, E. Peli¹ ¹The Schepens Eye Research Institute, Dept. of Ophthalmology, Harvard Medical School, Boston, MA ²The Media Lab, Massachusetts Institute of Technology, Cambridge, MA

Abstract

We have developed a feedback controller for a walking simulator composed of a treadmill and a rear projection screen, that keeps the subject centered and visual extent consistent across subjects and time while allowing them to set their own walking pace.

1. Objective and Background

People with visual impairment (low-vision) are frequently old and frail, which makes testing low-vision aids for mobility in the real world difficult and potentially dangerous. Virtual environments (VEs) may be used for comprehensively testing low-vision aids while removing the danger of adverse events and providing a controlled environment that is repeatable and thus facilitates comparisons across conditions and between observers. VEs also serve as excellent platforms to test spatial navigation (way finding) and collision detection and avoidance.

Head mounted displays are often used in VEs [7, 10], but these may interfere with head mounted low-vision aids. As an alternative, a large rear-projection screen may be used in walking simulators in front of a treadmill. One limitation of rear projection screens is the variability of their visual extents as the subject moves away from or closer to the screen. This is important for experiments that may want to maintain fixed level of peripheral stimulation in across subjects (e.g. in optic flow experiments). A locomotion interface that keeps the user in a constant position will keep the visual extent of the screen constant.

Many VE studies visually simulate mobility without any physical action by the subject, who is standing or sitting [3, 14]. Physical movement by the subject has been shown to alter results for the perception of speed [6]. A number of walking simulators have been developed [4, 9, 15]. These systems are often costly because they include features that we do not need, such as support for running or the ability to simulate uneven terrain.

Several simulated locomotion devices are built around treadmills. Minetti et al. [11] reported a feedback-controlled locomotion interface (Treadmill-On-Demand) that was used for measuring walking and running speeds, but could be used in a VE. The user's position on the treadmill varied with the speed, and thus the controller would not keep a consistent distance between the user and the rear projection screen if the user changed walking speed. Hollerbach et al. [8] reported a treadmill-based locomotion interface (Sarcos Treadport) that used a mechanical tether to center users as they walked or ran on a larger treadmill (305 length by 183 cm wide), which would keep screen extents consistent. In addition to centering the user, the mechanical tether applied inertial forces to provide the subject with a more natural experience during acceleration and deceleration. To avoid the high cost of the Sarcos Treadport system, others have used cheaper, smaller, conventional treadmills, moving at fixed speeds [2, 6]. Apfelbaum et al. [1] placed a bar in front of the subject to keep their position constant. This approach does keep the visual extents of the screen constant, but it does not allow the user to set and vary their walking speed naturally and a poorly chosen treadmill speed may cause fatigue.

The self-propelled treadmill mode does keep the visual extent constant and allow the subject to adjust their walking speed. In this configuration, the treadmill motor is disengaged and the subjects moved the treads while pushing front handrails or were tied to ropes behind them [1, 5, 13, 16]. While this may be acceptable for younger, physically fit subjects, older or less-fit subjects may have difficulty with the level of exertion required to push the tread for the duration of a study session. Thus, data quality may degrade due to subject fatigue or the amount of data that can be acquired may be restricted. Maintaining a stable location across subjects in the self-propelled treadmill mode requires careful manual measurements and physical restraint of the subject (e.g., tethers). In addition the contact with handrail or ropes limits the natural body gait and may affect head position and movement.

We have built a feedback-controlled locomotion interface that alters the speed of the treadmill motor in response to the subject change of walking speed to maintain a position sensor worn by the subject within a narrow region of our 164 by 55 cm treadmill. This interface allowed subjects on the treadmill to vary their walking speed in a natural way, to walk with no more exertion than natural walking, and to be repositioned automatically by the interface in order to maintain constant visual extent of the display. We compare the self-propelled and feedback-controlled modes.

2. Methods

2.1 Apparatus

Subjects walked on a Woodway Desmo S treadmill, similar to those found in a gymnasium (http://www.woodway.com). The treadmill was modified (in a reversible manner, see below), to allow computer control of the treadmill speed, rather than the supplied control panel.

Our VE was generated on an Evans and Sutherland simFUSION 4000q workstation (http://www.es.com) and was displayed onto a Stewart Filmscreen Corporation (http://www.stewartfilm.com) rear-projection screen using an Epson Power lite 9100i (http://www.epson.com) projector (Figure 1). The screen measured 172 by 127 cm, which provided 94 horizontal by 77 vertical degrees field when the subject was 80 cm from the screen.

A Flock of Birds Magnetic Tracker (http://www.ascensiontech.com) with two position sensors was used to monitor the subject's body position. One sensor was placed on the subject's head using a headband. Measurements from this sensor were used by the graphics workstation to compute virtual camera position (viewpoint) for generating views of the visual environment. The second position sensor is placed on the subject's hip, and was used

Corresponding author: Lee Lichtenstein, Schepens Eye Research Institute, 20 Staniford Street, Boston, MA 02114, (617) 912-2525, ltl@vision.eri.harvard.edu

by the feedback-controlled treadmill interface. We use hip position, and not head position measurements for the feedbackcontrol system because hip position better reflects the user's center of mass: Controlling the treadmill with readings from the hip sensor makes the readings less prone to body movements that are independent of walking, e.g., turning or bobbing the head.

Self-propelled locomotion was implemented by having the motor disengaged while the subject walked on the treadmill that was set at a preferred incline. Using gravity, the incline reduces the amount of force necessary to push the treadmill tread backward. A rope anchored the subjects to the wall behind them to provide the additional force for treadmill movement

Various safety measures were implemented. Subjects were attached with a second rope to a PVC front rail, so that they would not slide off the back of the treadmill if they stopped walking while the treadmill belt continued to advance due to the incline and momentum. The operator running the experiment from a console was able to trigger an emergency brake during the feedbackcontrolled portion of the experiment (this was never necessary at any point in the experiment). The emergency brake disengages the motor, so that the treadmill belt will not move unless pushed manually. During all phases subjects also wore a safety harness, connected to the ceiling, for protection in case of a fall.

To implement the feedback-controlled treadmill interface hardware and software, the following changes were made:

2.1.1 Hardware

A controller board inside the Woodway treadmill, processes commands from the treadmill control panel. A motor driver board turns the control board's speed commands into an analog voltage that drives the motor.

To control treadmill speed from the VE workstation, we implemented the Treadmill Interface Controller (TIC) as a twoway interface between the treadmill and the VE workstation by directly sending speed commands to the motor driver board using a serial port. The TIC counts pulses on the treadmill's internal tachometer and relays them to the workstation while sending speed commands that it receives from the workstation to the treadmill.

The treadmill native speeds (15 mph in reverse to 15 mph forward) are large. Since our anticipated subject population consists of walking elderly (and to increase safety) the TIC was limited to outputs of 0.7 mph in reverse and 6.8 mph forward. The software also imposes a maximum speed and did not allow the treadmill to go in reverse.

2.1.2 Software

The feedback-controller itself is a proportional-integral-derivative (PID) controller [12] implemented in software and run by the VE application. The VE application reads the hip-tracker and calculates the distance (x_{error}) between position sensor and intended position (x_0) along the treadmill (Figure 1). By keeping the subject close to x_0 , we effectively keep the visual extent of the screen nearly constant. The feedback-controller uses x_{error} to calculate the desired speed for the treadmill. The speed is a function of the current x_{error} , of the time integral of x_{error} , and of the time derivative of x_{error} .

The integral term is the actual mechanism that eventually brings the subject close to x_0 . The integral term grows the longer the subject is away from x_0 , which will gradually increase the treadmill speed in order to return the subject to x_0 . This will reduce discomfort caused by abrupt treadmill movements, but allows overshoot, i.e. the feedback-controller initially allows users to go beyond x_0 during an increase in speed and does not attempt to correct this as quickly as it could. If users change speed frequently, they will spend more time away from x_0 .

Figure 1 – Feedback-controlled treadmill setup. The speed of the treadmill is adjusted to keep the hip tracker at x_0 . The distance from x_0 , called x_{error} , is used by the feedbackcontroller to change the speed of the treadmill. In addition to automated safety controls of the treadmill, subjects wear a safety harness and have side handrails to protect themselves from a fall. Back and front ropes are used to provide anchoring in the self-propelled condition.

Although the hardware supports putting the treadmill in reverse, the software prevented driving in reverse since pilot subjects said that it felt disconcerting. Therefore, sudden halts by the subject would result in them coming to rest where x_{error} is less than zero. Care is needed in dealing with overshoot during decelerations. There must be a sufficient safety margin behind the subject to decelerate the treadmill belt to a stop without risking the subject falling off the back of the treadmill.

Before sending a speed command to the treadmill, the feedbackcontrol software makes several safety checks. The software checks that the subject stays within a specified three-dimensional safety zone (indication of a fall, stumble, or walking off the treadmill), does not move too quickly (indication of a fall), and sets the maximum speed to four miles per hour, since we do not support running on the feedback-controlled treadmill. If any of these conditions are not met, the software automatically triggers an emergency brake (disengages the motor).

2.2 Experimental design

Six naïve subjects with normal visual acuity participated in the study. Two were male and four were female. Their ages ranged from 21 to 60 years old (37 ± 14.2) .

For each subject, we recorded a pulse rate before and after a fiveminute walk on level terrain in the real world, on the self-propelled treadmill, and on the feedback-controlled treadmill. Each walk was done at the subject's preferred walking speed, which varied depending on the mode.

Additionally, subjects performed two speed-matching tasks for each of the two modes of treadmill locomotion, self-propelled and feedback-controlled. The feedback-controlled tasks were done on a different day than the self-propelled tasks, with the exception of one subject who took an hour break between the two series of tasks. The tasks were done in a random order with a different ordering in each of the two modes.

On the screen, the subjects were presented with a virtual mall corridor (the infinite corridor), which was composed of two 150meter segments of a shopping mall hallway. The corridor seemed infinite since the segment behind the subject would be placed in front of the current one after the previous segment was passed. Sidewalls had photographs of storefronts and both the ceiling and floor were textured. This scene was used for the preferred walking and speed-matching tasks.

Table 1:	Medians	across	all sub	jects	of the	deviation	from
average position (cm)							

	<u>99 Perc</u>	entile	
	Constant	Continuous Speed	Abrupt Speed
	Speed*	Changes	Changes
Feedback-controlled	8 (6%)	19 (15%)	25 (19%)
Self-propelled	4 (3%)	10 (8%)	28 (24%)

ooth p

90th Percentile

		Continuous	Abrupt
	Constant	Speed	Speed
	Speed*	Changes**	Changes
Feedback-controlled	5 (4%)	13 (10%)	12 (9%)
Self-propelled	2 (2%)	3 (2%)	5 (4%)

Table 1- For each subject, the distance from his or her average position was calculated for each frame, and two percentile values (99th and 90th) were found. The medians, across all subjects, of the deviation at these two levels were then taken. The corresponding changes in horizontal visual extent are in parentheses. The Constant Speed column is from the preferred walk with the initial acceleration and final deceleration removed. Time at rest was removed from the Abrupt Speed Changes data, since subjects come to rest behind x_0 and the feedback-controller will not correct this automatically. The '*' denotes the difference between the feedback-controlled and self-propelled modes was statistically significant at (Wilcoxon Signed Rank Test) p < 0.1 and '**' denotes the difference was statistically significant at p < 0.05.

Before beginning the speed-matching tasks for each mode of locomotion, subjects were given a brief tutorial on how to walk on the treadmill for a given mode of locomotion. Individual preferred inclines ranged from 4.5 to 11 degrees, with a median of 8 degrees.

In the speed-matching tasks the subject had to match the speed of a lead object (a trashcan on wheels) that moved parallel to the subjects' direction of locomotion. In one task, the trashcan would change speeds abruptly (between constant speeds that ranged from 0.5 mph to 3.5 mph) and, in the other, its speed was continuously changing pseudorandomly (the speed was composed of a summation of three sinusoids that ranged from 0.7 mph to 3.2 mph, but the trashcan never accelerated or decelerated greater than 0.224 m/s² (0.5 mph/sec)) (Figure 2). The same sinusoid sum was used for all subjects in all of their continuous speed change tasks. Subjects were told to keep the trashcan at a fixed distance in front of them for the length of the task and a distance of about five to seven of the infinite corridor's floor tiles was suggested. The two different speed categories allowed the analysis of large, sudden changes as well as gradual changes in speed.

Figure 2 – The pseudorandom speed of the lead object and the feedback-controlled treadmill speed during a portion of a continuously changing speed-matching task.

After a subject completed all of the tasks for each of the two locomotion modes, the subject was asked to rank (-3 through 3) the level of physical exertion compared to walking normally among other questions regarding feelings of comfort and control. A rating of zero indicated that the mode of locomotion was comparable to walking. The subjects answered the questionnaire without being able to compare their responses for the other mode of locomotion.

3. Results

3.1 Positioning of the subject on the treadmill

In the feedback-controlled mode, each subject was kept within 1 cm of x_0 (on average), regardless of the task involved. For the selfpropelled mode, accurate specification of average subject position on the treadmill across subjects was not possible. Due to the tethers and treadmill incline used in the self-propelled mode, the average position error was +15 cm from x_0 and ranged from +5 to +26 cm. That average position error could be reduced by careful adjustment of the tethers.

In order to keep the visual extent consistent, the deviation of subject position from a set location (x_0 for feedback-controlled and the average subject position for self-propelled) should be minimized. For each subject, the 99th and 90th percentiles of this deviation, across all frames, were found. Table 1 shows the medians across all subjects of these deviation values. The self-

propelled mode kept subjects in a smaller area on the treadmill than the feedback-controlled mode due to the back rope holding the subjects in a fixed position whenever they moved forward and the front rope preventing them from sliding back too far due to the incline. The large differences between the 90th and 99th percentile ranges suggest that much of the apparently large ranges for the speed-changing conditions were a consequence of the lags or leads that occurred during acceleration or deceleration.

3.2 Physical exertion

The questionnaires and differences in pulse rates between measurements, taken before and after the preferred walking speed tasks (Table 2), were used as measures of physical exertion. Compared to real world walking, the difference in pulse rates was not significantly different with feedback-controlled mode (Wilcoxon Signed Rank Test $W_5 = 8$, p = 0.690), but was greater with self-propelled mode ($W_5 = 0$, p = 0.031). The difference in pulse rates was greater with self-propelled than feedbackcontrolled mode ($W_5 = 0$, p = 0.031). In the questionnaires, all subjects answered that there was more physical exertion necessary with the self-propelled mode (average score: 1.92; $W_5 = 57$, p =0.002) and with the feedback-controlled (average score: 0.42; $W_5 =$ 0, p = 0.063) than while walking normally (corresponds to a score of zero). In the comments section of the questionnaire, the high level of physical exertion was a common complaint among subjects about the self-propelled mode of locomotion.

Table 2: Average pulse rates (in beats/min) of preferred walking tasks

	Before	After	Difference
Real World	77 ±12	93 ±13	16
Self-propelled **	74 ± 14	115 ± 20	41
Feedback-controlled	79 ± 15	90 ± 12	10

Table 2 – Self-propelled resulted in the largest difference in pulse rates for all subjects. The '**' is to denote that the self-propelled mode had a statistically significant difference in mean from the other two modes.

4. Discussion

Our PID feedback-controlled treadmill locomotion interface was found to be safe (even on sudden halts from 3.5 mph to 0 mph), built from easily purchased parts, required minimal training for use, allowed the user to walk in a natural manner with easy, voluntary changes in walking speed, required no more physical exertion than walking normally, and maintained the user at a fairly consistent distance from the display screen even with considerable changes in walking speed.

Although visual extent varied less for individual subjects when using the self-propelled mode than the feedback-controlled mode, the visual extent across subjects was easier to keep consistent with the feedback-controlled mode.

5. Impact

The feedback-controlled treadmill allows subjects to walk with less effort and to control their own walking speed for a heightened sense of immersion, while keeping the visual extents of the screen constant. With less physical exertion experimenters will be able to collect more data before the subject fatigues.

6. References

- H. Apfelbaum, A. Pelah and E. Peli, "Collision avoidance by "tunnel vision" patients with actual walking in a virtual reality environment," ACM Transactions on Applied Perception, (Submitted) (2005).
- [2] T. Banton, J. Stefanucci, F.H. Durgin, A.M. Fass and D. Profitt, "The perception of walking speed in virtual environments," Presence, 14/4, 394-406 (2005).
- [3] J.E. Cutting, P.M. Vishton and P.A. Braren, "How we avoid collisions with stationary and moving obstacles," Psychological Review, 102/4, 627-651 (1995).
- [4] R.P. Darken, W.R. Cockayne and D. Carmein. "The Omni-Directional Treadmill: a locomotion device for virtual worlds," User Interface Software and Technology '97 Banff, Canada, 213-221 (1997).
- [5] H.K. Distler, A. Pelah and A.G. Bell, "The perception of absolute speed during self-motion (abstract)," Perception./ECVP '98 (1998).
- [6] F.H. Durgin, K. Gigone and R. Scott, "Perception of visual speed while moving," J Exp Psychol Hum Percept Perform, 31, 339-353 (2005a).
- [7] B.R. Fajen and W.H. Warren, "Behavioral dynamics of steering, obstacle avoidance, and route selection," J Exp Psychol Hum Percept Perform, 29/2, 343-362 (2003).
- [8] J.M. Hollerbach, Y. Xu, R. Christensen and S.C. Jacobsen. "Design specifications for the second generation Sarcos Treadport locomotion interface," Haptics Symposium, Proc ASME Dynamic Systems and Control Division Orlando DSC-Vol. 69-72, 1293-1298 (2000).
- H. Iwata. "Walking about virtual environments on an infinite floor," Proceedings IEEE Virtual Reality '99 Houston, TX, 286-293 (1999b).
- [10] J.M. Loomis. "Presence and distal attribution: Phenomenology, determinants, and assessment," Human Vision, Visual Processing, and Digital Display III/Human Perception, Performance, and Presence in Virtual Environments San Jose, CALIFORNIA: The International Society for Optical Engineering 1666, 590-595 (1992).
- [11] A.E. Minetti, L. Boldrini, L. Brusamolin, P. Zamparo and T. McKee, "A feedback-controlled treadmill (treadmill-ondemand) and the spontaneous speed of walking and running in humans," Journal of Applied Physiology, 95/2, 838-43 (2003).
- [12] N.S. Nise, Control Systems Engineering. 4th ed. 1008 (John Wiley and Sons, Inc., New York, 2004)
- [13] A.E.I. Thurrell, A. Pelah and H. Distler, "The influence of non-visual signals of walking on the perceived speed of optic flow (abstract)," Perception, 27s, 147 (1998).
- [14] J.P. Wann, D. Swapp and S.K. Rushton, "Heading perception and the allocation of attention," Vision Research, 40, 2533-2543 (2000).
- [15] M. Wells, B. Peterson and J. Aten. "The virtual motion controller: a sufficient-motion walking simulator," Virtual Reality Annual International Symposium (IEEE '97) Albuquerque, NM, 1-8 (1996).
- [16] R. Woods, J. Shieh, L. Bobrow, A. Vora, J. Barabas, R. Goldstein and E. Peli, Perceived collision with an obstacle in a virtual environment (abstract), in 2003 Annual Meeting Abstract and Program Planner. 2003, Association for Research in Vision and Ophthalmology (ARVO CD). Item 4321.