
  

  

Abstract—A number of rehabilitation robots were developed 
and used to promote the recovery of motor functions in the 
upper extremities of stroke patients. Current clinical evidence 
suggests that the robotic rehabilitation is much more effective in 
acute than in chronic patients. One important difference 
between the two groups is the amount of the baseline skills with 
which they start the training. The goal of our research was to 
get a further insight into this issue by conducting an experiment 
in healthy subjects. As a model of motor learning, simulating 
the process of robotic rehabilitation, we developed a 
methodology for the transfer of a motor skill from an expert to 
a novice subject by using a haptic interface integrated with the 
virtual environment. A motor skill was implemented in the form 
of a challenging computer game, and the haptic interface 
provided the assistive forces during playing. To assess if and 
how a level of prior skills affects the motor learning assisted by 
the robot, the game was played by both novice and partially 
trained players. The results showed that the assistance was 
effective only in the novice players, while the trained players 
experienced the assistive forces as a disturbance. In the context 
of neurorehabilitation, this finding implies that the existing 
experience of chronic patients, i.e., the established motor 
patterns (e.g., compensatory strategies), has to be considered 
when designing the assistance that would actually promote 
(instead of disturbing) the learning process. 

  Keywords–haptics, robotic rehabilitation, assistive forces, 
motor learning, stroke.  

I. INTRODUCTION 

EMIPLEGIA caused by a stroke is a motor disability 
characterized by the paralysis of the side of the body 

contralateral to the injury. It is a debilitating condition that 
dramatically decreases the quality of life.  

The term neurorehabilitation refers to a set of techniques 
and technologies that are designed to promote the recovery 
of patients with paralysis [1]. The basic instrument of 
modern neurorehabilitation is an intensive training 
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comprised of repetitive, task-oriented, and challenging 
exercises [2,3]. It is believed that such training provides a 
rich substrate for motor relearning and reorganization of 
neural structures [4].  

In this context, robotic devices can be very useful tools for 
rehabilitation. Present-day rehabilitation robots are highly 
sophisticated systems that can monitor ongoing movements 
and generate forces which assist, resist or perturb the subject 
while he/she is doing a motor task [5]. They have the 
capacity to deliver high dosage and high intensity training 
through a massed practice of functional movements under 
the strictly controlled conditions. A number of devices has 
been constructed and tested for the rehabilitation of the 
upper extremities of stroke patients [6]: MIT-Manus, MIME 
robot, Bi-Manu-Track, T-WREX, Pneu-WREX etc.  

In general, the available systems can be classified into two 
broad categories: exoskeletons (e.g., T-WREX and Pneu-
WREX), enclosing a patient limb, and end-effector devices 
(e.g., MIT-Manus), contacting the patient only at the end 
point.  

One particularly interesting class of end-effector devices 
are the so called haptic robots [7,8]. These systems are 
integrated into a virtual environment, where the role of a 
haptic robot is to be an active interface through which the 
user can interact with the virtual scene. Namely, when the 
user comes into contact with a virtual object, the haptic 
device renders interaction forces reflecting the object 
physical properties. In addition to providing haptic and 
visual feedback, these systems can also generate active 
forces assisting the patient in completing a motor task. 
Importantly, the rich multimodal feedback, characteristic for 
haptic interfaces, can be used to create a feeling of 
immersion and to provide strong incentives for the practicing 
patient. 

From the motor learning perspective [9], the goal of 
robotic rehabilitation is to provide the assistance helping the 
patient to re-master a skill lost due to the injury of the central 
nervous system. The assistance is designed to guide the 
patient towards a predefined desired solution, and this 
solution is typically selected so as to clone the performance 
of a healthy human. In this context, a healthy human is 
essentially used as a model of an expert performance, which 
the patient should learn to reproduce.  

The clinical practice suggests that robotic rehabilitation 
[10,11] as well as rehabilitation in general [12] is more 
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effective in acute then in chronic stroke patients. One 
important difference between the two patient populations is 
the amount of previous experience with which these two 
groups enter the training. While acute patients start the 
learning process effectively from zero, the chronic patients 
already had some time to practice various motor tasks, 
usually developing an extensive set of compensatory 
strategies [13,14]. It is with this, well rooted and often 
unconscious bias, that the chronic population starts the 
training process.  

The goal of our research was to get a further insight into 
this issue indirectly, by conducting a pilot study with healthy 
subjects. To simulate the aforementioned conditions, we 
carried out several steps (Fig. 1). First, we designed a game 
implementing a redundant motor task that was challenging 
enough for the healthy population. In order to play the game 
successfully, a novice player had to master a novel and non-
trivial motor skill. Secondly, we developed a method based 
on machine learning to capture the performance of an expert 
player to serve as a model for designing a scheme of 
assistance. In other words, the haptic robot provided the 

assistance that would stimulate and help the novice player to 
adopt and/or achieve the playing style of an expert, i.e., the 
recorded expert kinematics was a target model that should be 
reproduced by a novice player. Finally, to test how a 
different level of previous experience and skills affects the 
motor learning when the assistance is provided, we 
conducted an experiment in which the game was played by 
both novice and partially trained players.  

II.  METHODS 

A. Implementation 

1) Game 
The motor task was to throw a ball into a goal frame (Fig. 

2[right]). The game was developed by using a Phantom 
Omni haptic robot (SensAble, US) and H3DAPI 
development environment (www.h3d.org, SenseGraphics, 
SE). The subject interacts with the game by holding a stylus 
of the device (Fig. 2[left]). The movement of the stylus 
translates into the movement of the virtual stylus that is 
visible on the screen. A virtual ball is connected to the tip of 
the stylus via a spring. Both the mass of the ball and the 
stiffness of the spring are settable parameters. The haptic 
interface simulates the dynamics of the ball-spring system, 
and exerts the interaction forces at the player's hand. At the 
beginning of the game, the player moves the stylus into 
initial position, and then generates a throwing movement. 
The game implements an auto-release function, which means 
that the ball is automatically disconnected from the stylus, 
when the stylus leaves a predefined bounding box. 

2) Capturing expert performance 
A randomly selected subject was playing the game until he 

became an expert. A success rate of 70% was adopted as a 
threshold that defines an expert player. The expert 
performance was captured by recording the position and 
velocity of the stylus during throwing movements at a sample 
rate of 32 Hz. Eighteen different positions of the goal frame 
were selected, sampling evenly the game workspace, and for 
each of these goal positions six throws were recorded. A 
subset of recorded expert trajectories is shown in Fig. 3. 

As can be seen in Fig. 3, the trajectories are roughly 
straight and, for the same goal position, tend to cluster close 

 
 
Fig. 1. Transfer of a motor skill from an expert by using a haptic 
system. First, an expert user plays a game while the system records the 
data to capture the expert knowledge. A model of the expert 
performance is then used to guide the assistance. The game is played 
by both novice and partially trained players to assess the effects of 
assistance on motor learning in subjects with and without baseline 
skills. 

 

 
 
Fig. 2. "Throw the ball" game. Haptic robot (left) that is used to interact with the virtual world (right). A virtual ball is connected to the stylus via a 
spring. The goal of the game is to throw the ball into a goal frame. 



  

to each other. Therefore, we assumed that the recorded 
trajectories could be approximated as straight lines 
connecting the initial position with the point of release. 
Consequently, the expert performance was modeled as a 
simple mapping from Gi to (Pi, Vi), i = 1, 2, … 18, where Gi 
represents the ith position of the goal frame, while Pi and Vi 
are the average point and velocity of release for the goal 
position Gi, respectively. The Pi and Vi were obtained by 
averaging the release points and velocities of the trajectories 
recorded for the position Gi.  

To establish this mapping we have used feedforward back-
propagation artificial neural networks (ANNs). A separate 
network was trained to estimate each of the release point 
coordinates, and the magnitude of the release velocity (see 
Fig. 4). The data were divided into training (70%), validation 
(15%) and testing data sets (15 %). The ANNs were trained 
so that they smoothly interpolate between the points 
comprising the training data set, covering the whole 
workspace of interest. 

3) Assistance 
By using the captured expert knowledge, we implemented 

a simple scheme of assistance. We used a form of the so 
called haptic guidance, in which the robotic device guides 
the subject towards a predefined desired trajectory. The 
current position of the goal frame in the game was presented 
at the inputs of the ANNs to estimate the coordinates of the 
release point and magnitude of the release velocity. An 
attractive force was then generated towards this release 
point, while the desired release velocity was used to adjust 
the assistive force during successive trials at the same goal 
position. Namely, the force in the next trial (Fn+1) was 
increased if the achieved velocity in the previous trial (Vn) 
was smaller then the desired one (VEXPERT), or otherwise 
decreased:  

EXPERT
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nn V

VV
KFF

−⋅+=+1  (1) 

where Fn is the force in the previous trial and K is the gain. 
The initial value F1 for the assistive force in the first trial and 
the value for the gain K were preset heuristically for each 
subject during a set of initial trials in which the subject 
familiarized himself/herself with the system.  

B. Experiment 

Six subjects participated in the pilot experiment. They 
were split into two groups of three subjects each. The 
subjects from the first group ("group with baseline skill", 
GBS) received a short training before the experiment. They 
were instructed on how to play the game and then let to 
practice for half an hour. The assistance was off during 
practicing. The subjects from the second group ("group with 
no baseline skill", GNoBS) were only instructed on how to 
play the game.  

The experiment itself consisted of the three phases: 
baseline assessment (five throws at each of five randomly 
selected target positions), training session (15 throws at each 
of the five target positions) and final assessment (five throws 
at each of the five target positions). During the training 
session the subjects were assisted by the haptic robot. The 
performance was assessed by recording the trajectories of the 
stylus, counting the number of successful throws, and by 
calculating, for each trial, the closest distance between the 
trajectory of the ball and the center of the goal frame. 

III.  RESULTS 

When comparing the performances between the baseline 
and final assessments, we discovered that all the subjects 
from GNoBS and only one subject from GBS improved the 
performance. The average improvement was around 30% for 
the subjects from GNoBS and only 10% for the one subject 
from GBS, respectively. The performance of the other two 

 
 
Fig. 3. Expert trajectories recorded during successful throws at the 
three representative goal positions. Note that for the same goal 
position the trajectories cluster tightly. Black lines approximate the 
trajectories and represent straight lines connecting the initial position 
of the stylus with the average point of release for the respective goal 
position. 

 

 
 
Fig. 4. A set of four artificial neural networks (3 input, 4 hidden and 
1 output neuron) was used to estimate the important features of the 
expert performance (i.e., release point and velocity) given a goal 
position. The inputs are the coordinates of a goal position and the 
outputs are the coordinates of a release point and the magnitude of a 
release velocity. 



  

subjects from GBS actually deteriorated.  
To reveal the possible reasons for the apparent detrimental 

effect of the assistance in the subjects that entered the 
experiment with a basic level of skill already acquired, we 
analyzed the recorded trajectories of both groups. A typical 
result for a subject (GNoBS group) that improved the 
performance with the training is shown in Fig. 5. Note that 
the baseline trajectories are variable, relatively spread and 
quite off the straight line depicting the estimated expert 
performance. At the final assessment however, the 
trajectories became straight and tightly clustered around the 
expert path. Moreover, during the training, we noticed that 
the assistance immediately improved the subject movements, 
making them closer to the desired one.  

Fig. 6 shows the recorded data for the subject (GBS 
group) that became worse after the training. We can see 
exactly the opposite trend to the one that was observed in 
Fig. 5. The subject started by generating the trajectories that 
were already quite close to the one that would be generated 
by the expert. However, after the training, the trajectories 
became more curved, scattered and in fact drifted off the 
desired direction. In fact, we noticed that when the subject 
started the training, the assistance had an immediate negative 
influence on the subject movements. 

IV.  DISCUSSION 

The experiment demonstrated that the assistance was 
effective only in the subjects that had no previous experience 
(novice players). On the contrary, in the subjects that already 
partially acquired the motor skill, even at the very basic 
level, the implemented assistance operated effectively as a 
disturbance. This is also what the subjects reported when 
asked about how they experienced the assistive force. The 
assistance suddenly changed the dynamics of the motor task, 
interfering with the already adopted strategies and confusing 
the subject. This effectively invalidated what was previously 
learnt and also interfered with further learning. 

Several studies [15,16] that employed haptic guidance to 
assist motor learning investigated the influence of initial skill 
level on the effectiveness of the training. They also found 
that training with haptic guidance was more useful for the 
subjects with less initial skill. One reason for this could be 
the fact that guidance makes the task easier. According to a 
challenge point theory [17], in order to have optimal 
learning, the difficulty of the task should be adapted (scaled 
up/down) so that it is appropriate for the individual subject's 
level of expertise. In more skilled subjects, other training 
modalities (e.g., error-amplification approach) showed to be 
more effective, likely due to the similar reasons (i.e., 
reaching a proper level of challenge).   

 
 
Fig. 5. Trajectories recorded while throwing the ball at the same goal position during the baseline (red) and final (blue) assessments from a subject (GNoBS 
group) that improved the performance after the training. The estimated expert trajectory is depicted by a black straight line. Note that the subject generated 
trajectories converged towards the expert one.  
 

 
 
Fig. 6. Trajectories recorded while throwing the ball at the same goal position during the baseline (red) and final (blue) assessments from a subject that 
became worse after the training (GBS group). The estimated expert trajectory is depicted by a black straight line. Note that the subject generated 
trajectories were initially close to the expert path but that at the end they eventually diverged from it. 
 



  

The results in this preliminary study (see Fig. 6) suggests 
that for the subjects entering the training already with a level 
of baseline skill, not only the "assistance" might be less 
effective (due to, for example, a lack of challenge), but it can 
actually have a more potent, directly disruptive effect. 
Namely, the "assistive" force can interfere actively with the 
already established motor strategy, acting essentially as a 
disturbance, and being experienced as such by the subject. 
The subjects reported that they felt as they were playing a 
different game when the assistance was activated.  

This is an important observation, with the potential 
implications in neurorehabilitation, pointing to one possible 
reason for the decreased effectiveness of robotic driven 
rehabilitation in chronic patients. Namely, the similar 
conflict might be taking place: the assistance actually forcing 
the patient to go against the already well established and 
deeply rooted motor strategies. This implies that the 
compensatory patterns of chronic patients should be taken 
into account when designing an effective robotic 
rehabilitation program. In other words, it might not be 
enough to simply guide the patient towards a global optimum 
(healthy-like patterns); he/she should be carefully but 
actively stimulated to "break out" from the "comfortable" 
local optima, as suggested in [9], "giving away" previously 
adopted suboptimal (compensatory) movement strategies, 
and then slowly guided along a carefully planned path 
towards a new and better solution. 

The previous conclusion fits very well within the more 
general idea of designing truly individualized haptic training 
algorithms, as suggested recently [15]. For the most effective 
learning, the assistance modality as well as the other training 
parameters should be designed by taking into account initial 
motor skills, the level of impairment [18], as well as existing, 
suboptimal motor strategies of a specific trainee.  

The current study also addresses one more general 
question in robotic rehabilitation: given a motor task, how to 
determine a desired solution that will be used to guide the 
assistance? In this study, the desired solution was determined 
by capturing the performance of an expert human. This in 
itself is not a novel idea. Pre-recorded trajectories from 
healthy subjects are used routinely in many robotic 
rehabilitation devices (see [5,9] for a review). However, this 
study describes a general method that can be used to develop 
a model of normative behavior (i.e., a desired solution) for a 
motor task that is more complex then the training of 
relatively simple (e.g., point-to-point reaching) and/or 
stereotyped (e.g., walking) movements. The performance is 
acquired by observing an expert under a number of 
conditions (i.e., goal positions), and the collected knowledge 
is represented compactly as a set of trained artificial neural 
networks. This is a general approach that can be applied to a 
number of different redundant motor tasks (e.g., bowling, 
dart throwing etc.) to establish the mapping from the current 
task parameters (inputs) to the estimated expert 
performances (outputs). In this study, the expert performance 

was captured from only one subject. However, several 
"experts", possibly at different levels of expertise, could be 
used in order to obtain a more versatile model that can be 
customized for a specific trainee and/or adapted as the 
trainee improves his skills during the training. The next step 
in this research is to recruit more subjects to verify if these 
preliminary results also hold in a larger experimental group.  
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