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Abstract—A number of rehabilitation robots were developed
and used to promote the recovery of motor functionsn the
upper extremities of stroke patients. Current clincal evidence
suggests that the robotic rehabilitation is much me effective in
acute than in chronic patients. One important diffeence
between the two groups is the amount of the baseéirskills with
which they start the training. The goal of our resarch was to
get a further insight into this issue by conductingan experiment
in healthy subjects. As a model of motor learningsimulating
the process of robotic rehabilitation, we developeda
methodology for the transfer of a motor skill froman expert to
a novice subject by using a haptic interface integited with the
virtual environment. A motor skill was implementedin the form
of a challenging computer game, and the haptic int&ace
provided the assistive forces during playing. To a&ess if and
how a level of prior skills affects the motor learing assisted by
the robot, the game was played by both novice andapially
trained players. The results showed that the assetce was
effective only in the novice players, while the triamed players
experienced the assistive forces as a disturbanda.the context
of neurorehabilitation, this finding implies that the existing
experience of chronic patients, i.e., the establisH motor
patterns (e.g., compensatory strategies), has to w®nsidered
when designing the assistance that would actually rgmote
(instead of disturbing) the learning process.

Keywords-haptics, robotic rehabilitation, assistive forces,
motor learning, stroke.

|l. INTRODUCTION

EMIPLEGIA caused by a stroke is a motor disabilit
characterized by the paralysis of the side of thdyb
contralateral to the injury. It is a debilitatingraition that
dramatically decreases the quality of life.
The term neurorehabilitation refers to a set ohbégues
and technologies that are designed to promotedbevery
of patients with paralysis [1]. The basic instruteof

modern neurorehabilitation is an intensive traininém
pa
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comprised of repetitive, task-oriented, and chajileg
exercises [2,3]. It is believed that such trainprgvides a
rich substrate for motor relearning and reorgaiopabf
neural structures [4].

In this context, robotic devices can be very ustfals for
rehabilitation. Present-day rehabilitation robote dighly
sophisticated systems that can monitor ongoing mews
and generate forces which assist, resist or petherisubject
while he/she is doing a motor task [5]. They hahe t
capacity to deliver high dosage and high intensigjning
through a massed practice of functional movementieu
the strictly controlled conditions. A number of idms has
been constructed and tested for the rehabilitabbrthe
upper extremities of stroke patients [6]: MIT-MandMiME
robot, Bi-Manu-Track, T-WREX, Pneu-WREX etc.

In general, the available systems can be clasdiftedwo
broad categories: exoskeletons (e.g., T-WREX anduPn
WREX), enclosing a patient limb, and end-effectevides
(e.g., MIT-Manus), contacting the patient only hé tend
point.

One particularly interesting class of end-effeadevices
are the so called haptic robots [7,8]. These systane
integrated into a virtual environment, where thée rof a
haptic robot is to be an active interface throudhictv the
user can interact with the virtual scene. Namelgemvthe
user comes into contact with a virtual object, traptic
Ydevice renders interaction forces reflecting thejeab
physical properties. In addition to providing haptnd
visual feedback, these systems can also generdiee ac
forces assisting the patient in completing a mask.
Importantly, the rich multimodal feedback, charaiste for
haptic interfaces, can be used to create a feetifig
mersion and to provide strong incentives for phacticing
tient.

From the motor learning perspective [9], the goél o
robotic rehabilitation is to provide the assistahedping the
patient to re-master a skill lost due to the injofghe central
nervous system. The assistance is designed to dghile
patient towards a predefined desired solution, &md
solution is typically selected so as to clone teefgrmance
of a healthy human. In this context, a healthy hunsm
essentially used as a model of an expert perforeamiich
the patient should learn to reproduce.

The clinical practice suggests that robotic relitaibn
[10,11] as well as rehabilitation in general [12] rinore
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Fig. 1. Transfer of a motor skill from an expert bging a haptic

system. First, an expert user plays a game whéleystem records the
data to capture the expert knowledge. A model o« #xpert

performance is then used to guide the assistarfeega@me is played
by both novice and partially trained players toeassthe effects of
assistance on motor learning in subjects with aittiowt baseline

skills.

effective in acute then in chronic stroke patien@ne
important difference between the two patient pojts is
the amount of previous experience with which these
groups enter the training. While acute patientst stiae
learning process effectively from zero, the chropatients

assistance that would stimulate and help the ngsliger to
adopt and/or achieve the playing style of an expert, the
recorded expert kinematics was a target modelstinaald be
reproduced by a novice player. Finally, to test haw
different level of previous experience and skilfieeis the
motor learning when the assistance is provided, we
conducted an experiment in which the game was gléye
both novice and partially trained players.

Il. METHODS

A. Implementation
1) Game

The motor task was to throw a ball into a goal fea(fig.
2[right]). The game was developed by using a Phlmanto
Omni haptic robot (SensAble, US) and H3DAPI
development environmentw{vw.h3d.org SenseGraphics,
SE). The subject interacts with the game by holdirgylus
of the device (Fig. 2[left]). The movement of thiylgs
translates into the movement of the virtual stylbat is
visible on the screen. A virtual ball is connectedhe tip of
the stylus via a spring. Both the mass of the batl the
stiffness of the spring are settable parameterg HAdptic
interface simulates the dynamics of the ball-spisygtem,
and exerts the interaction forces at the playarglhAt the
beginning of the game, the player moves the styhis

already had some time to practice various motokstas initial position, and then generates a throwing eroent.
usually developing an extensive set of compensatofhe game implements an auto-release function, whighns

strategies [13,14]. It is with this, well rooted damften
unconscious bias, that the chronic population staine
training process.

The goal of our research was to get a further imsigto
this issue indirectly, by conducting a pilot stugigh healthy
subjects. To simulate the aforementioned conditiome
carried out several steps (Fig. 1). First, we desiiga game
implementing a redundant motor task that was chgiley
enough for the healthy population. In order to gl game
successfully, a novice player had to master a nandlnon-
trivial motor skill. Secondly, we developed a meathmased
on machine learning to capture the performancenaxgert
player to serve as a model for designing a schefme
assistance. In other words, the haptic robot pexvithe

Phantom Omni

ball-spring
system

that the ball is automatically disconnected frora #tylus,
when the stylus leaves a predefined bounding box.
2) Capturing expert performance

A randomly selected subject was playing the gantik hum
became an expert. A success rate of 70% was adapted
threshold that defines an expert player. The expert
performance was captured by recording the positiod
velocity of the stylus during throwing movementaaample
rate of 32 Hz. Eighteen different positions of geal frame
were selected, sampling evenly the game workszaakfor
each of these goal positions six throws were resmhrdd
subset of recorded expert trajectories is shoviign3.
0 As can be seen in Fig. 3, the trajectories are higug
straight and, for the same goal position, tendldster close

virtual
. stylus

Coordinate

Fig. 2. "Throw the ball" game. Haptic robot (lefitat is used to interact with the virtual worldgfit). A virtual ball is connected to the stylus aia

spring. The goal of the game is to throw the b ia goal frame.
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Fig. 3. Expert trajectories recorded during sudcéshrows at the

three representative goal positions. Note that tf same goal
position the trajectories cluster tightly. Blackds approximate the
trajectories and represent straight lines connedtie initial position

of the stylus with the average point of releasetlier respective goal
position.
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Fig. 4. A set of four artificial neural networks §8ut, 4 hidden and
1 output neuron) was used to estimate the impofeattires of the
expert performance (i.e., release point and velpaiiven a goal
position. The inputs are the coordinates of a gualition and the
outputs are the coordinates of a release pointlaanagnitude of a
release velocity.
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to each other. Therefore, we assumed that the dedor yhereF, is the force in the previous trial aidis the gain.
trajectories could be approximated as straight slinerpe injtial valuer, for the assistive force in the first trial and

connecting the initial position with the point oflease.

the value for the gain K were preset heuristicédlly each

Consequently, the expert performance was modeled asypject during a set of initial trials in which trseibject

simple mapping fron;to (P, V), 1 =1, 2, ... 18, wher&;
represents thigh position of the goal frame, whilg andV,
are the average point and velocity of release lier doal
position G;, respectively. Theé®, and V, were obtained by
averaging the release points and velocities otrdijectories
recorded for the positio;.

To establish this mapping we have used feedforwaoi-
propagation artificial neural networks (ANNSs). Apseate
network was trained to estimate each of the relgeset
coordinates, and the magnitude of the release itgl(see
Fig. 4). The data were divided into training (70%glidation
(15%) and testing data sets (15 %). The ANNs wetiedd

familiarized himself/herself with the system.

B. Experiment

Six subjects participated in the pilot experimehhey
were split into two groups of three subjects eathe
subjects from the first group ("group with baselisidll",
GBS) received a short training before the expertméhey
were instructed on how to play the game and theériole
practice for half an hour. The assistance was offing
practicing. The subjects from the second groupo{igrwith
no baseline skill', GNoBS) were only instructed lmow to
play the game.

so that they smoothly interpolate between the point The experiment itself consisted of the three phases
comprising the training data set, covering the wholbaseline assessment (five throws at each of finelawmly

workspace of interest.

3) Assistance

By using the captured expert knowledge, we impldegn
a simple scheme of assistance. We used a formeofah
called haptic guidance, in which the robotic devigedes
the subject towards a predefined desired trajectdihe
current position of the goal frame in the game pa&sented
at the inputs of the ANNSs to estimate the coordigaif the
release point and magnitude of the release veloéity
attractive force was then generated towards thisase
point, while the desired release velocity was useddjust
the assistive force during successive trials atstimae goal
position. Namely, the force in the next tridk.(;) was
increased if the achieved velocity in the previtrial (V,)
was smaller then the desired oré-err), Or otherwise
decreased:

selected target positions), training session (téwk at each
of the five target positions) and final assessn{iéve throws

at each of the five target positions). During thaining

session the subjects were assisted by the hapgim.rdhe
performance was assessed by recording the trajesimithe
stylus, counting the number of successful throws] ay

calculating, for each trial, the closest distanedwieen the
trajectory of the ball and the center of the goahfe.

When comparing the performances between the baselin
and final assessments, we discovered that all thgests
from GNoBS and only one subject from GBS improvied t
performance. The average improvement was aroundf80%
the subjects from GNoBS and only 10% for the orgext
from GBS, respectively. The performance of the otin®

RESULTS
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Fig. 5. Trajectories recorded while throwing thd bBathe same goal position during the baselied)(and final (blue) assessments from a subjecoBSN
group) that improved the performance after theningi. The estimated expert trajectory is depictgé Iblack straight line. Note that the subject gateel

trajectories converged towards the expert one.
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Fig. 6. Trajectories recorded while throwing thél bathe same goal position during the baseliee)@and final (blue) assessments from a subjett tha
became worse after the training (GBS group). Thamesed expert trajectory is depicted by a bladlight line. Note that the subject generated
trajectories were initially close to the expertiphut that at the end they eventually diverged fiom

subjects from GBS actually deteriorated.

To reveal the possible reasons for the appareritzttal
effect of the assistance in the subjects that edteghe
experiment with a basic level of skill already aicgd, we
analyzed the recorded trajectories of both groépspical

IV. DISCUSSION

The experiment demonstrated that the assistance was

effective only in the subjects that had no previexgerience
(novice players). On the contrary, in the subjéités already

result for a subject (GNoBS group) that improve@ thpartially acquired the motor skill, even at the wérasic

performance with the training is shown in Fig. oté&l that

level, the implemented assistance operated effdgtias a

the baseline trajectories are variable, relatiagyead and gisturbance. This is also what the subjects redowiaen

quite off the straight line depicting the estimatexpert

asked about how they experienced the assistivee farbe

performance. At the final assessment however, thgsistance suddenly changed the dynamics of ther ek,

trajectories became straight and tightly clusteaszlind the
expert path. Moreover, during the training, we cadi that
the assistance immediately improved the subjectements,
making them closer to the desired one.

interfering with the already adopted strategies emuafusing
the subject. This effectively invalidated what vpasviously
learnt and also interfered with further learning.

Several studies [15,16] that employed haptic guidatio

Fig. 6 shows the recorded data for the subject (GBsksist motor learning investigated the influencinitial skill

group) that became worse after the training. We se@
exactly the opposite trend to the one that was robdein
Fig. 5. The subject started by generating the ¢tajees that
were already quite close to the one that would dxeetated
by the expert. However, after the training, thgettories
became more curved, scattered and in fact driffédhe
desired direction. In fact, we noticed that whee #ubject
started the training, the assistance had an imieedegative
influence on the subject movements.

level on the effectiveness of the training. Thegoatound
that training with haptic guidance was more usédul the
subjects with less initial skill. One reason foistkould be
the fact that guidance makes the task easier. Aowpto a
challenge point theory [17], in order to have opiim
learning, the difficulty of the task should be atab(scaled
up/down) so that it is appropriate for the indivatlsubject's
level of expertise. In more skilled subjects, otleining
modalities (e.g., error-amplification approach)whd to be
more effective, likely due to the similar reasorie.{
reaching a proper level of challenge).



The results in this preliminary study (see Figs@ygests
that for the subjects entering the training alreadti a level
of baseline skill, not only the "assistance" midig less
effective (due to, for example, a lack of challendpit it can
actually have a more potent, directly disruptivdeet
Namely, the "assistive" force can interfere activwelth the
already established motor strategy, acting esdgnta a

was captured from only one subject. However, sévera
"experts", possibly at different levels of expertisould be
used in order to obtain a more versatile model taat be
customized for a specific trainee and/or adaptedthas
trainee improves his skills during the training.eTimext step

in this research is to recruit more subjects tafyéf these
preliminary results also hold in a larger experitaégroup.

disturbance, and being experienced as such byuibjed.
The subjects reported that they felt as they wéaging a
different game when the assistance was activated. [1]

This is an important observation, with the potdntia
implications in neurorehabilitation, pointing toepossible 2]
reason for the decreased effectiveness of robatien
rehabilitation in chronic patients. Namely, the i&m
conflict might be taking place: the assistance atdorcing
the patient to go against the already well establisand
deeply rooted motor strategies. This implies thhe t
compensatory patterns of chronic patients shouldaken
into account when designing an effective roboti
rehabilitation program. In other words, it mighttnbe
enough to simply guide the patient towards a gloipgéiimum
(healthy-like patterns); he/she should be carefuliyt
actively stimulated to "break out" from the "contédsle"
local optima, as suggested in [9], "giving away&pously
adopted suboptimal (compensatory) movement stegegi
and then slowly guided along a carefully plannedhpaig,
towards a new and better solution.

The previous conclusion fits very well within theora
general idea of designing truly individualized hajtaining

(3]

(4]

(6]

[7]

algorithms, as suggested recently [15]. For thet mffsctive )
learning, the assistance modality as well as therdtaining
parameters should be designed by taking into a¢daitial [10]
motor skills, the level of impairment [18], as wa$l existing,
suboptimal motor strategies of a specific trainee. [11]

The current study also addresses one more general
guestion in robaotic rehabilitation; given a motask, how to
determine a desired solution that will be used uag the
assistance? In this study, the desired solutiondetermined
by capturing the performance of an expert humarns irh
itself is not a novel idea. Pre-recorded trajeewrirom
healthy subjects are used routinely in many robotic
rehabilitation devices (see [5,9] for a review).wéwer, this [14]
study describes a general method that can be aselelop
a model of normative behavior (i.e., a desiredtami) for a  [15]
motor task that is more complex then the traininfg o
relatively simple (e.g., point-to-point reaching)hdéor
stereotyped (e.g., walking) movements. The perfooeas [16]
acquired by observing an expert under a number of
conditions (i.e., goal positions), and the collddteowledge
is represented compactly as a set of trained @stifheural
networks. This is a general approach that can péeabto a
number of different redundant motor tasks (e.gwliny,
dart throwing etc.) to establish the mapping frdw ¢urrent [18]
task parameters (inputs) to the estimated expert
performances (outputs). In this study, the expertqpmance

[12]

[13]

[17]
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