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Abstract— This paper presents a gait-pattern adaptation
algorithm for exoskeletons based on the Zero Moment Point
criterion. The proposed exoskeleton is developed for lower limbs
and based on a commercially available orthosis. The step length
and duration are considered as the adaptation parameters, they
are computed through minimization based on inverse dynamics
and considering the orthosis-patient interaction forces. Also,
a robust controller based on the H∞ method is designed to
attenuate the effects of external disturbances and parametric
uncertainties in the trajectory tracking errors. The dynamic
model of the actual exoskeleton, with interaction forces in-
cluded, is used to generate simulation results.

I. INTRODUCTION

The problem of gait-pattern adaptation for exoskeletons
for lower limbs is considered in this paper. Robotic exoskele-
tons have being used to increase the physical capacity of
soldiers in the military area [5], [14]. However, they also can
be designed for helping physically weak or injured people
during rehabilitation procedures [1].

Due to the importance of exercises for functional reha-
bilitation, the use of the robotics in this area is increasing
[1]. The robotic orthosis Lokomat is being recently used for
rehabilitation of patients with stroke or spinal cord injury
individuals [3]. The device is installed in a treadmill and
the patient walks using a weight compensator. A fixed gait-
pattern is imposed through a joint position control of the
robotic orthosis. To ensure the patient is not only having its
leg moved passively for the locomotion device, gait-pattern
adaptation algorithms are proposed in [4], [7], considering
the human-machine interaction.

The proposed algorithms in [7] can not be applied directly
for exoskeletons since they were developed for a fixed base
robotic system, the Lokomat orthosis. They do not consider
the stability of the gait-pattern. For exoskeleton, which can
be considered as a biped robot, the generation of a stable
walking pattern is an essential issue. In [2], it is presented
a trajectory generator for biped robots taking into account
the ZMP (Zero Moment Point) criteria [10]. Specific points
of the ankle and hip trajectories are defined according to the
desired step length and duration, and the minimization of a
functional related to the ZMP. The cubic splines interpolation
method is used to generate the complete trajectories. This
method presents suitable results with smooth and second-
order differentiable curves. The joint trajectories are obtained
from the inverse kinematics. In [6], the trajectory generator
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proposed in [2] is extended for different ground inclinations
and stairs.

In this paper it is proposed the combination of the stable
trajectory generator described in [2] with the gait-pattern
adaptation algorithms in [7] to generate stable trajectories for
exoskeletons for lower limbs. The step length and duration
are considered as the adaptation parameters, they are com-
puted based on the inverse dynamic methodology proposed
in [7]. The orthosis-patient interaction forces are considered
in the dynamic model and used as input to the minimizing
procedure. Simulation results are presented based on the
dynamic parameters of an actual exoskeleton for lower limbs.

To ensure the orthosis-patient system follows the desired
trajectory even in the presence of external disturbances and
parametric uncertainties, a robust controller based on H∞

performance is implemented. In [8], the authors present
experimental results obtained from the implementation in
robot manipulators of a nonlinear H∞ control via quasi-
linear parameter varying (quasi-LPV) representation . The
quasi-LPV representation of a nonlinear system is a state-
space equation where the system matrices are functions of
state-dependent parameters [13]. In [9], a similar controller
is proposed for disturbance attenuation considering a semi-
passive dynamic walking of biped robots.

The papers is organized as follows: Section II presents the
trajectory generator for biped robots with some issues related
to the optimization procedure and ZMP stability criterion;
Section III presents the dynamic model of the orthosis-
patient system; Section IV deals with a robust controller
design applied in the exoskeleton; Section V introduces the
gait-pattern adaptation algorithm based on direct dynamics
applied to exoskeletons; Section VI presents the results
of the gait-pattern adaptation algorithms in the proposed
exoskeleton model; and Section VII summarizes the main
contributions of the paper.

II. TRAJECTORY GENERATION
WITH ZMP CRITERION

In this section, the trajectory generator for biped robots
presented in [2] is presented, with some considerations
about the ZMP trajectory optimization. It is considered the
exoskeleton as a biped robot with trunk, knees and feet,
as shown in Figure 1. According to [2], the walking cycle
can be divided in two phases, double support and single
support. The double support phase starts when the heel of the
forward foot touches the ground and finishes when the toe
of the backward foot leaves the ground. The second phase
is characterized by the fact only one foot is in contact with



the ground. In this work, the double support represents 20%
of the entire walking cycle.

Fig. 1. Biped robot model.

Consider the inertia coordinate system of Figure 1. The
foot and hip trajectories can be respectively parametrized
as Xa = [xa(t),za(t),θa(t)]T , where (xa(t),za(t)) is the ankle
position and θa(t) is the angle between the foot and the
horizontal plane, and Xh = [xh(t),zh(t),θh(t)]T , where (xh(t),
zh(t)) is the hip position and θh(t) is the angle between the
trunk and the horizontal plane.

A. Foot Trajectory

The step k occurs between the kTc and (k + 1)Tc time
instants, where Tc is the step time interval. Step k is defined
starting when the heel of any foot leaves the ground and
finishing when the same heel touches the ground again,
Figure 2. qb and q f are the angles of the foot with relation
to the horizontal at the initial and final time instants of the
swing phase (single support), respectively.

Fig. 2. Walking cycle, double and single support phases.

Assuming that the left foot is completely in contact with
the ground during the times kTc + Td and (k + 1)Tc, the

following conditions can be stated:

θa =


qgs(k), t = kTc
qb, t = kTc +Td
−q f , t = (k +1)Tc
−qge(k), t = (k +1)Tc +Td

(1)

where Td is the time interval of the double support phase,
qgs(k) and qge(k) are the ground slope for the initial and final
step instants, respectively.

The following specifications can also be defined for the
foot position:

xa =



kDs, t = kTc
kDs + lansin(qb)

+la f (1− cos(qb)), t = kTc +Td
kDs +Lao, t = kTc +Tm
(k +2)Ds− lansin(q f )
−lab(1− cos(q f )), t = (k +1)Tc

(k +2)Ds, t = (k +1)Tc +Td

(2)

and

za =


hgs(k)+ lan, t = kTc
hgs + la f sin(qb)+ lancos(qb), t = kTc +Td
Hao, t = kTc +Tm
hge + labsin(q f )+ lancos(q f ), t = (k +1)Tc
hge(k)+ lan, t = (k +1)Tc +Td

(3)
where (Lao,Hao) is the higher foot position (this position
occurs at kTc + Tm), Ds is the step length, lan is the foot
height and la f is the distance between the heel and the ankle
joint. The heights of the ground when the foot is touching
it are defined as hgs(k) and hge(k), for the initial and final
step instants, respectively. Some constraints on right foot
velocities are also imposed, see [2] details.

A smooth trajectory can be generated through the inter-
polation method based on cubic splines, which generates a
second order differentiable trajectory for all time interval.

B. Hip Trajectory

It is considered that the angle between the trunk and the
horizontal axis θh(t) presents no variation along the walking
cycle. Also, as the position of the ZMP is not affected by the
hip motion in the z direction, it is assumed a little variation
between the highest position Hhmax and the lowest position
Hhmin, where the former occurs at the middle of the single
support phase and the second at the middle of the double
support phase. That is, zh can be defined as:

zh =

 Hhmin, t = kTc +0,5Td
Hhmax, t = kTc +0,5(Tc−Td)
Hhmin, t = (k +1)Tc +0,5Td .

(4)

Considering the sagittal plane, the hip motion along the
x direction is the main contribution for the ZMP be inside
the support polygon. In [2] it is proposed generate a set of
stable trajectories xh(t) and select the trajectory with large
stability margin according to the ZMP criterion.



The following conditions are defined for the hip trajectory
along the x direction:

xh =

 kDs + xed , t = kTc
(k +1)Ds− xsd , t = kTc +Td
(k +1)Ds + xed , t = (k +1)Tc

(5)

where xsd and xed are the distances along the x direction
from the hip to the ankle of the support foot at the initial
and final time instants of the swing phase, respectively. In
this paper, these values are constrained to xsd ∈ (0;0.5Ds)
and xed ∈ (0;0.5Ds).

Considering the interpolation method based on cubic
splines, it is possible to generate different trajectories and
to select the best one according to the ZMP criterion. To
ensure that the ZMP remains most of the time next to the
center to the support polygon, the following functional is
defined:

J(xed ,xsd) =
∑

p
n=1 d2

ZMP

p
, (6)

where dZMP is the distance between the ZMP and the center
of the stability region defined by the convex polygon of the
contact points and p is the number of points throughout the
trajectory in which dZMP is computed.

C. Optimization Issues

The steepest descent algorithm was selected as the op-
timization method. It presents an easy implementation and
high convergence rate after all parameters be adjusted. The
computation of J is highly time consuming if a representative
number of trajectory points p must be considered. The
algorithm is defined as:

Xn+1 = Xn−η∇J(xed ,xsd) (7)

where Xn is the vector containing the values of xed and xsd for
optimization step n, η is the optimization rate and ∇J(xed ,
xsd) is the functional gradient with relation to xed and xsd .

As shown in Section II-B, the minimization of J is
constrained to xsd ∈ (0;0.5Ds) and xed ∈ (0;0.5Ds). Hence, it
is necessary to constrain the algorithm to these values. Also,
there are values of xed and xsd for which there is no solution
for the inverse kinematic used to compute the shin and thigh
absolute angles. The functional J is defined constant and
equal to zero in this region.

If the result from optimization, Xn+1, is outside the
functional domain (where J is imposed to be zero), the
optimization stops, because ∇J(xed ,xsd) = 0. ∇J(xed ,xsd) is
computed numerically by a small variation on the parameters.
According to the selected initial condition, the above problem
occurs frequently if the optimization rate is not properly
selected.

The following strategy was defined to solve this problem:
if the optimization result belongs to the area outside the
functional domain (J = 0 and ∇J = 0 ), it is defined a
convergence direction perpendicular to the last ∇J 6= 0,
until the result belongs to the domain. Figure 3 shows a
minimization results where the proposed strategy is utilized
and the final result is inside the functional domain.

Fig. 3. Optimization results for initial value X0 = [0.3 0.4]T and optimal
value Xopt = [0.5 0.26]T . The proposed strategy for points outside the
functional domain is used at the second optimization step.

Figure 4 shows the surfaces of J for different values of Ds
and Tc. This analysis is important because Ds and Tc define
a essential characteristic of the gait-pattern, the velocity. By
changing these parameters, a wide variation of trajectories
can be created.

It can be noted from Figure 4 that the variation of Tc does
not affect the surface of J. However, for a little variation on
Ds the domain of J is extremely reduced. In this case, there
is no solution for the inverse kinematic for a wide range of
values. That is, there are few trajectories which maintain the
hip height and develop a large step length, Ds = 0.6 m.

Fig. 4. Surfaces of J for different values of Ds and Tc.

From the analysis of the variation of J given a variation of
Ds, it is proposed a relation between the step length, Ds, and
the maximum height, Hhmax. For a given Ds, Hhmax can be
computed as the height of the isosceles triangle defined by
base Ds and sides Lth +Lsh plus the ankle height. This value
is parametrized by parameters defined as function of (Ds−
0.5) an (Tc−0.9), the differences from the initial values of
Ds and Tc, as shown in the following equations:

Hhmax =

√(Lsh +Lth)2−
(

Ds

2

)2

+ lan

 .α1.α2, (8)



{
α1 =

(
Ds−0.5

0.5

)2
−1, Ds−0.5 > 0,

α1 = 1, Ds−0.5 < 0,
(9)

α2 =
(
|Tc−0.9|

0.9

)3.2

−1. (10)

where Lsh and Lth are the lengths of the shin and thigh,
respectively.

Fig. 5. Surfaces for J considering the empiric relation for Hhmax.

Figure 5 shows the surfaces for J computed for different
values of Ds and considering the empirical relation for Hhmax.
Note that the functional domain remains suitable for the
optimization, even with the variation of Ds.

III. QUASI-LPV REPRESENTATION OF THE
ORTHOSIS-PATIENT DYNAMICS

To implement the robust controller and the gait-pattern
adaptation algorithm, the orthosis is modeled according to
the basic robotic equation,

Mort(q)q̈+Cort(q, q̇)+Gort(q) = τa + τpat + τd , (11)

where q ∈ℜn is the generalized coordinates vector, M ∈ℜnxn

is the symmetrical, positive definite inertia matrix, C ∈ℜn

is the centrifugal and Coriolis torques vector, and G ∈ℜn

is the gravitational torques vector. The terms τ ∈ℜn are the
torques acting in orthosis: τa is the torque supplied by the
actuators, τpat is the torque generated for the orthosis-patient
interaction, and τd is the torque generated by any external
disturbances acting in the patient-orthosis system.

The torque of interaction between the orthosis and the pa-
tient, τpat , can be divided in active and passive components.
The passive patient torque, τpat,pas, is the torque necessary to
move the patient if he/she is moving in a passive way. In case
that the patient influences in the orthosis movement, he/she
will produce the active patient torque, τpat,act . Therefore, Eq.
(11) can be rewrite, considering now, the orthosis-patient
dynamics,

Mort+pat (q) q̈+Cort+pat (q, q̇)+Gort+pat (q)
= τa + τpat,act + τd , (12)

where Mort+pat(q), Cort+pat(q, q̇), and Gort+pat(q) correspond
to the combination of the orthosis and patient dynamics.

The state tracking error is defined as:

x̃ =
[

q̇− q̇d

q−qd

]
=
[

˙̃q
q̃

]
(13)

where qd and q̇d ∈ ℜn are the desired reference trajectory
and the corresponding velocity, respectively. The variables
qd , q̇d and q̈d , the desired acceleration, are assumed to be
within the physical and kinematics limits of the exoskeleton.

The dynamic equation for the tracking error is given from
(12) and (13) as

˙̃x = A(q, q̇)x̃+Bu+Bw (14)

with

A(q, q̇) =
[
−M−1

ort+pat(q)Cort+pat(q, q̇) 0
In 0

]
B =

[
In
0

]
w = M−1

ort+pat(q)δ (q, q̇, q̈)

u = M−1
ort+pat(q)(τ−Mort+pat(q)q̈d−Cort+pat(q, q̇)q̇d

−Gort+pat(q)),

where δ (q, q̇, q̈) are the composed disturbances defined as
the sum of the external disturbances, τd , and the para-
metric uncertainties on the dynamic matrices Mort+pat(q),
Cort+pat(q, q̇) and Gort+pat(q). The applied torque is given
by:

τ = Mort+pat(q)(q̈d +u)+Cort+pat(q, q̇)q̇d +Gort+pat(q).

Actually, the robust controller is working to attenuate only
the effects of the external disturbances and the parametric
uncertainties on the trajectory tracking errors. The active
patient torque, τpat,act , is not included into the composed
disturbances, δ (q, q̇, q̈), since it will be attenuated by the
gait-pattern adaptation algorithm.

IV. STATE-FEEDBACK H∞ CONTROL

In this section it is presented the formulation and solution
for the state-feedback H∞ control problem for quasi-LPV
systems, where the variyng parameters are function of the
system states.

The tracking error dynamics shown in Eq. (14) is actually
a quasi-LPV system, since, although the matrix Mort+pat(q)
explicitly depends on the joint positions, we can consider it
as function of the position error [8]:

Mort+pat(q) = Mort+pat(q̃+qd) = Mort+pat(x̃, t).

The same can be observed for C0(q, q̇).
Consider the state-feedback control problem

ẋ = A(ρ(x))x+B1(ρ(x))w+B2(ρ(x))u,

z1 = C1(ρ(x))x,
z2 = C2(ρ(x))x+u

(15)

where x∈ℜn is the state, u∈ℜq2 is the control input, w∈ℜp

is the disturbance input, z1 ∈ ℜq1 and z2 ∈ ℜq2 are system



outputs, A(·), B1(·), B2(·), C1(·) and C2(·) are continuous
matrices of proper dimensions and ρ(x) ∈ Fν

P , defined by

Fν
P =

{
ρ∈C 1(ℜ+,ℜm) :ρ(x)∈P, |ρ̇i| ≤ νi, i = 1, . . . ,m

}
,

where P ⊂ ℜm is a compact set, and ν = [ν1 · · ·νm]T with
νi ≥ 0. The system (15) presents L2 gain≤ γ in the interval
[0,T ] if ∫ T

0
‖z(t)‖2

2 dt ≤ γ
2
∫ T

0
‖w(t)‖2

2 dt, (16)

for all T ≥ 0, all w∈L2(0,T ) with the system starting from
x(0) = 0 and z(t) = [z1(t)T z2(t)T ]T . The objective is to
find a continuous function F(ρ(x)), such that the system in
closed-loop presents L2 gain ≤ γ with state-feedback law
u = F(ρ(x))x. This problem was solved in [13] and the
solution is given in the following.

If there exists a continuous differentiable function
X(ρ(x)) > 0 for all ρ(x) ∈ P that satisfies G(ρ) X(ρ)CT

1 (ρ) B1(ρ)
C1(ρ)X(ρ) −I 0

BT
1 (ρ) 0 −γ2I

< 0, (17)

where

G(ρ)=−
m

∑
i=1
±
(

νi
∂X
∂ρi

)
+Â(ρ)X(ρ)+X(ρ)ÂT(ρ)−B2(ρ)BT

2(ρ)

and Â(ρ) = A(ρ)− B2(ρ)C2(ρ), then, with state-feedback
law

u =−(BT
2 (ρ)X−1(ρ)+C2(ρ))x, (18)

the closed-loop system has L2 gain ≤ γ for all parameter
trajectories ρ(x) ∈ Fν

P .
Note that (17) actually represents 2m inequalities and

∑±(·) indicates that every combination +(·) and −(·) should
be satisfied. A practical scheme ([13], [8]) can be used to
solve the infinite dimensional convex optimization problem
represented by (17). First, choose a set of C 1 functions,
{ fi(ρ(x))}M

i=1, as base for X(ρ), i.e.,

X(ρ(x)) =
M

∑
i=1

fi(ρ(x))Xi,

where Xi ∈ Sn×n is the matrix coefficient for fi(ρ(x)).
Second, the parameters set P is divided in L points,

{ρk}L
k=1, in each dimension. Since (17) consists in 2m entries,

a total of (2m +1)Lm matrix inequalities in term of matrices
{Xi} should be solved.

V. GAIT-PATTERN ADAPTATION ALGORITHM

In this section an adaptation algorithm based on direct
dynamics is used to generated the trajectory parameters Ds
and Tc according to the interaction between the orthosis
and the user. Consider the acceleration of the generalized
coordinates,

q̈ = M−1
ort+pat (q)

{
τa + τd−Cort+pat (q, q̇)−Gort+pat (q)

}
+M−1

ort+pat (q)τpat,act . (19)

Inspecting Eq. (19), it can be observed that the last term
represents the variation in the acceleration of the reference
trajectory imposed for the patient. This hypothesis forms the
base of the adaptation algorithm based on direct dynamics.
The idea is to estimate the term τpat,act via force measure-
ment and calculate the variation in acceleration. Adding the
measured variation to the nominal acceleration, it is defined
the patient desired acceleration,

δ q̈ =−M−1
ort+pat (q)δτpat,act ⇒ q̈des,pat = q̈nom +ωδ q̈, (20)

where w is an adaptation constant. The adaptation of param-
eters Ds and Tc is carried through via minimization of the
following functional,

J (δqr,F) = ∑
∥∥q̈des,pat (τpat,act)− q̈adap (δqr)

∥∥2
2 . (21)

Again the steepest descent method describe in Section II-C
is used to minimize the functional J (δqr,F). An important
advantage of the direct dynamics is the less dependence of
the model; only the knowledge of inertia matrix Mort+pat (q)
is necessary.

VI. SIMULATION RESULTS

The orthosis used for the exoskeleton for lower limbs
corresponds to one Reciprocating Gait Orthosis LSU (Lou-
siana State University). Figure 6 shows the orthosis and the
exoskeleton design, created in the Solid Egde software. It is
considered that all joint in the sagittal plane will be driven by
an Series Elastic Actuator (SEA). SEA can performed force
and impedance controls, which can be used to generate a
variable impedance controller [11].

Fig. 6. RGO orthosis and exoskeleton design (Solid Edge).

The dynamic parameters of the orthosis, shown in Tab. I,
was obtained by the Solid Edge model. It is also presented
the parameters of the patient considered in the simulation,
obtained from [12], considering a 85 kg, 1.74 m individual.

An analytical model of the orthosis, considering the patient
interaction and ground reaction forces, is developed using the
Symbolic Toolbox of the Matlab. Figure 7 shows the motion
animation of the orthosis-patient system for a simulation
of two steps. In the initial step it is considered Ds = 0.45
and Tc = 0.9. For the second step Ds = 0.58 and Tc = 0.8.
Only the orthosis representation is shown since the patient
dynamic is incorporated in the orthosis dynamics.



TABLE I
ORTHOSIS AND PATIENT DYNAMIC PARAMETERS.

Orthosis Patient
Mtotal,ort 4.8 Mtotal,pat 85
Ltotal,ort 1.0 Ltotal,pat 1.74

Limb Mass (kg)
Mtigh,ort 0.95 Mtigh,pat 8.5
Mleg+ f oot,ort 0.72 Mleg+ f oot,pat 5.2

Mtorso,ort 1.49 Mtorso,pat 57.6
Limb Length (m) - z direction

Ltigh,ort 0.39 Ltigh,pat 0.39
Lleg+ f oot,ort 0.49 Lleg+ f oot,pat 0.49

Ltorso,ort 0.12 Ltorso,pat 0.87

Fig. 7. Motion animation of the orthosis-patient system.

In this section, the gait-pattern adaptation algorithm pre-
sented in Section V is implemented in the model of the
orthosis of Fig. 6. The initial desired trajectory, considered
here as the nominal one, is defined by Ds = 0.5 and Tc = 0.9.

Because only simulation is performed in this work, the
interaction torque between orthosis and patient (active pa-
tient torque) must be artificially estimated from a definite
trajectory. In this work, this value is computed through the
comparison between the desired trajectory for the patient,
qd

pat and the actual desired trajectory, qd . It is assumed that
the interaction torque results of a spring type virtual coupling
between the patient desired position and the real position,

τpat,act = K
(

qd
pat −qd

)
. (22)

The spring stiffness is adjusted in order to take realistic
magnitudes of the active patient torque. For sake of sim-
plicity, the desired trajectory of the patient is defined by
Ds = 0.54 and Tc = 0.86. These parameters represent an
increase of approximately 13% in the walking velocity. The
adaptation of the parameters Ds and Tc is conducted at the
end of the step (off-line, this procedure is possible in this
type of adaptation), considering five equally spaced points
throughout the step time.

The values of the parameters are then updated as nominal
trajectory and a new step of the orthosis-patient model
simulation is performed. The value of ω used in the al-
gorithm based on the direct dynamics is 0.5. The final
adapted parameters after two sequences of optimizations of
the parameters, are Ds = 0.5425 and Tc = 0.8572. Figure

8 presents the nominal, patient desired, adapted and actual
trajectories of the left shin, referring three steps, initiating
with the right leg in stance. Note that at the second step,
after t = 1 s, the adapted trajectory comes close to the patient
desired trajectory.
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Fig. 8. Nominal, patient desired, adapted and actual trajectories of the left
shin, absolute angle.

It can be observed that the algorithm obtained satisfactory
results with relation to the adaptation of the parameters
used in the patient desired trajectory. Also, note that the
algorithm has good results just at the beginning of the second
walking cycle. Thus, the necessary time for the adaptation
of the trajectory is small, showing the functionality of the
algorithm.

External disturbances acting in the patient-orthosis joints
can be simulated as additional torques applied to the actua-
tors. In this paper, it is considered in the simulation external
disturbances composed of normal and sine functions, see [9]
for details. From Figure 8 it can be verified that the robust
controller rejected the external disturbances applied at the
initial part of each step.

VII. CONCLUSIONS
This paper presents the first results of the development

of an exoskeleton for lower limbs based on a reciprocat-
ing gait orthosis. It is presented the implementation of a
gait-pattern adaptation algorithm which considers orthosis-
patient interaction forces and the ZMP criterion, allowing
the patient to modify the gait-pattern as his/her degree of
voluntary locomotion still maintaining the walking stability.
A robust controller is proposed to attenuate the deviations
from the desired trajectories due to external disturbances
and parametric uncertainties. The simulation results show the
proposed adaptation algorithms can be applied in the actual
exoskeleton being constructed.
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