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Feasibility of Manual Teach-and-Replay and
Continuous Impedance Shaping for Robotic
Locomotor Training Following Spinal Cord Injury

Jeremy L. Emken*, Susan J. Harkema, Janell A. Beres-Jones, Christie K. Ferreira, and
David J. Reinkensmeyer, Member, IEEE

Abstract—Robotic gait training is an emerging technique for
retraining walking ability following spinal cord injury (SCI).
A Kkey challenge in this training is determining an appropriate
stepping trajectory and level of assistance for each patient, since
patients have a wide range of sizes and impairment levels. Here,
we demonstrate how a lightweight yet powerful robot can record
subject-specific, trainer-induced leg trajectories during manually
assisted stepping, then immediately replay those trajectories. Re-
play of the subject-specific trajectories reduced the effort required
by the trainer during manual assistance, yet still generated similar
patterns of muscle activation for six subjects with a chronic SCI.
We also demonstrate how the impedance of the robot can be
adjusted on a step-by-step basis with an error-based, learning
law. This impedance-shaping algorithm adapted the robot’s
impedance so that the robot assisted only in the regions of the
step trajectory where the subject consistently exhibited errors.
The result was that the subjects stepped with greater variability,
while still maintaining a physiologic gait pattern. These results are
further steps toward tailoring robotic gait training to the needs of
individual patients.

Index Terms—Adaptive control, legged locomotion, motor sys-
tems, robots, spinal cord injury.

I. INTRODUCTION

OCOMOTOR training using body weight support and
La treadmill (BWST) is a well-established technique for
gait recovery following neurological injury. First described
in human clinical application by Barbeau et al. in 1987 [1],
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this technique has shown promise promoting gait restoration
for both stroke [2], [3] and spinal cord injury (SCI) [4], [5]
patients. This technique has also enabled researchers to study
and understand mechanisms of spinally mediated walking [3],
[6], [9]. BWST enables neurologically injured patients to safely
practice repetitive stepping in a controlled clinical setting by
providing body weight support (BWS) from an overhead har-
ness and manual assistance to the pelvis and legs as a subject
walks on a treadmill. The facilitated sensory input associated
with the stepping presumably interacts with spinal interneurons
to generate a locomotor pattern, as has been shown in animals
[10]-[12]. Phasic loading and unloading of the limbs in concert
with hip extension during terminal stance have been suggested
as the major peripheral drives [3], [6], [9]. While extended
practice with BWST is beneficial to patients, the technique is
highly labor-intensive requiring strenuous and nonergonomic
work from up to three trainers.

In order to assist the trainers in delivering manual assistance,
several researchers and companies are developing robotic tech-
nology to automate manual assistance during locomotor training
[13]-[18]. The first two devices to undergo clinical testing, that
have been reported in the literature, are the Mechanized Gait
Trainer (GTII) [15], [17] and the Lokomat [13], [14]. These
devices were developed to reduce the trainer’s workload and
provide repeatable stepping kinematics of the legs. The GTII
is a singly actuated mechanism that drives the subject’s feet
through a step-like trajectory using a doubled crank and rocker
system. Vertical and horizontal movements of the pelvis are
controlled in a phase dependent manner by ropes attached to
the subject’s harness. Gait trajectories are a fixed function of
the crank and rocker geometry. In contrast, the Lokomat is a
“driven gait orthosis” (DGO) (i.e., a robotic exoskeleton) that
assists hip and knee flexion to again create step-like patterns.
It consists of four rotary joints powered through four precision
ball screws driven by dc motors. The orthosis is attached to the
subject with a belt around the waist and cuffs around the thigh
and shank. Movement of the hips is allowed only vertically.
Ankle plantarflexion is constrained during swing phase with
foot straps. Desired trajectories are taken from a database of
healthy subjects who stepped over 3-cm-high obstacles while
secured in a modified version of the DGO [13].

While current forms of robotic BWST during treadmill step-
ping can elicit significant improvements in ambulation ability
and functional test scores with repetitive practice following
stroke [15], [17] and SCI [8], [19], [20], they likely do not do
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so in an optimal fashion [21]-[23]. Both the Lokomat and to
a lesser extent the GTII, constrain the degrees of freedom at
the hip. Thus, these devices hinder pelvic movement, which
is a normal biomechanical gait feature that may facilitate the
neural control of walking. The crank-and-rocker mechanism
of the GTII, while simple, prevents the abrupt transition in
ground contact force between stance and swing that also may be
important in facilitating flexor/extensor transitions in spinal lo-
comotor circuits [3], [6], [9]. Further, the Lokomat has sizeable
endpoint impedance, and the GTII constrains leg movement
to a mechanically fixed trajectory. Thus, for both devices, the
subject must step along a prerecorded or a mechanically fixed
trajectory, rather than a trajectory customized specifically to
their limb anthropometry and ability as is experienced with
BWST. Further, because of the sizeable endpoint impedance,
the individual has little flexibility to modulate their muscle
activity and thus to directly and immediately experience the re-
sults in terms of altered movement kinematics and balance. As
an example of the current systems’ non-optimality, the Lokomat
system produced significantly different [22] electromyography
(EMG) patterns when attached compared to unassisted stepping
for unimpaired subjects. Despite these possible shortcomings,
robotic assistance with these devices eases the workload of
trainers and can produce positive training results [14], [24].
The problem of customizing the level of robotic assistance
to the individual stepping characteristics of a patient is being
addressed with a newer version of the GTII concept. The new
version uses force feedback to control foot platforms that can
move along arbitrary stepping paths [25]. The same problem
is also being addressed for the Lokomat by devising software
algorithms that make the robot’s assistance ‘“‘patient-coopera-
tive” [21], [26]. The first versions of the Lokomat used a step-
ping pattern recorded from a healthy subject, measured with the
actuators of the device removed. Removing actuators for such
“teach-and-replay” was impractical for regular laboratory use,
so algorithms were developed for the Lokomat that allowed clin-
icians to adjust the step shape on a subject-specific basis. Specif-
ically, a force-sensing algorithm is used to reduce the overall
impedance of the robot, allowing more variability in the step-
ping trajectory. A second algorithm adjusts the reference tra-
jectory and impedance of the robot for the patient, again based
on the interaction force between the patient and robot. Finally,
software has been developed for the Lokomat to provide vi-
sual biofeedback to the patient regarding their level of effort as
gauged by the force sensing functions [26]. The approach taken
here is different in that the device allows straightforward mea-
surement and immediate replay of the pattern a trainer deter-
mines as optimal, incorporating the knowledge and expertise of
the clinician into the training session. The most optimal training
strategies for specific patients with different pathologies of gait
are continuously under investigation. This robotic device was
designed with the intention to provide the ability to vary the
control algorithm for each patient and allow variability as the
patient improves, even allowing the ability to vary the assistance
within a session. A future question that requires additional re-
search is whether “healthy stepping” from a generic individual,
or manually assisted “pathological stepping” from the specific
individual to be trained, will produce better clinical results.

We are also attempting to customize the level of robotic assis-
tance to the individual stepping characteristics of a patient by de-
signing robotic gait training systems that allow naturalistic kine-
matic and loading patterns [18], [27]-[29]. This paper reports
the first clinical testing of a novel gait robot, the “Ambulation-
Assisting Robotic Tool for Human Rehabilitation” (ARTHuR),
with spinal cord injured subjects. ARTHuR is a highly back-
drivable yet powerful robot capable of measuring and manip-
ulating human stepping [18]. We tested the feasibility of gen-
erating participant-specific stepping patterns by using this am-
bulation-assisting robot in a “teach-and-replay” mode. Specif-
ically, we used the device to record the stepping kinematics of
the leg, dictated by a human trainer during manually assisted
stepping with the robot passively attached. The recorded kine-
matics were then replayed to allow for reduced effort from the
human trainer. We compared the leg muscle activity patterns
elicited during trainer-assisted and robot-assisted stepping, as
an assessment of how effective the device was in eliciting step
activity.

We also tested an adaptive algorithm for shaping the
impedance of the robot controller as a function of tracking
performance in real time. We show that this algorithm reli-
ably finds workspace-dependent patterns of impedance that
allow greater step-to-step variability without compromising the
overall kinematic pattern of stepping.

II. METHODS

A. Subject Population

Six individuals with a chronic SCI participated in the study.
An experienced assessor evaluated the level and extent of SCI
according to the American Spinal Injury Association (ASIA)
impairment scale. This scale categorizes individuals by their
sensorimotor function below the level of the lesion and desig-
nates a sensory and motor score [30]. All subjects had previ-
ously received some amount of BWST. None of the subjects
were taking antispasticity medication at the time of the exper-
iment. Injury level, years post injury, and ASIA impairment
levels for each subject are summarized in Table I. The Institu-
tional Review Boards of the Universities of California at Irvine
and Los Angeles approved the experimental protocol and each
subject signed an informed consent form prior to participating
in the study. A limited population and only subjects with ASTA
scores in the range of B-D were chosen, as this was a proof of
concept test for the device and not a determination of clinical
efficacy.

B. Experimental Apparatus and Control: Teach-and-Replay

We used a backdrivable two degrees-of-freedom planar robot
(“ARTHuR” [18]) to measure and assist in the stepping of the
right leg. ARTHuR is currently a unilateral device and thus for
the purposes of the present feasibility study, only attachment to
the right leg was studied. This robot uses a two-coil linear motor
and a pair of lightweight linkages to drive the robot’s apex,
which is attached to the subject through a revolute joint and run-
ning shoe modified to include an embedded footplate (Fig. 1).
The real-time controller for the system uses two computers, a
host machine running Windows and a target machine running
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TABLE 1
SUBJECT CHARACTERISTICS

. Years
Subject Sex | Age ]Lees:;(;;l P.ost ASIA ?ZZ)S
Injury
SCI-C8 M 23 C5-6 4 C 62
SCI-B4 M 31 T4-6 11 B 70
SCI-D8 M 32 C5-6 15 D 40
SCI-D9 F 54 C6 10 D 29
SCI-D10 F 51 C5 7 D 21
SCI-D7 M 61 Ce-7 6 D 25

C = Cervical, T = Thoracic, BWS = Percent of Body Weight Support.

ASIA B: Sensory but not motor function is preserved below the neurological
level.

ASIA C: Motor function is preserved below the level of injury, and more than
half of key muscles below the level of injury have a muscle grade less than
three.

Asia D: Motor function is preserved below the neurological level, and at least
half of key muscles below the neurological level have a muscle grade of three
or more.

a Simulink program on a real time kernel called xPC. The
Simulink control program is created and uploaded to the target
machine, which connects to the robot through a D/A board
(Measurement Computing, Norton, MA), an encoder board
(Addi-Data, Ottersweier, Germany), and a custom I/O box
containing the motor drivers, encoders, safety, and watchdog
circuitry. Data is collected on the target computer in real-time
and then transferred to the host machine later so that it can be
processed using custom Matlab scripts. The device allows a full
range of motion in the parasagittal plane during walking and
includes a passive joint that allows approximately 10° of hip
adduction/abduction from the anatomical position. The shoe
attachment constrains medial and lateral rotation of the hip and
shank. To accommodate a shared workspace with the leg trainer,
curved linkages were designed to allow the trainer to move
naturally while assisting the movement of the knee and ankle
(Fig. 1). To help prevent foot drop during swing, the robot’s
apex was positioned approximately one centimeter in front of
the ankle joint center of rotation to impart a small dorsiflexion
torque allowing for toe clearance during early swing phase.
The apex’s Cartesian position was calculated from the position
of each coil measured at 1 kHz by the coil-mounted, linear
encoders each with a resolution of 20 pm. Coil velocities were
calculated using the transfer function = s/0.01s + 1 on the coil
positions and then were translated into the apex’s coordinate
frame for endpoint velocity. This real time differentiation did
not induce significant noise into the velocity signals. A rotary
encoder in the revolute joint measured angular rotation of the
shoe around the apex, a measurement which was used along
with shoe dimension and apex state to calculate toe position
and velocity.

An important capability of this robot is its ability to accu-
rately record the trajectories induced during manually assisted
stepping by a leg trainer and replay a processed, mean trajec-
tory using proportional-derivative (PD) control. We call this
function “feach-and-replay”. To allow for the teach-and-replay
function, we first attached the robot to the subject in a “passive
mode.” During the passive mode, the robot did not assist
stepping, and the effects of gravity and friction were actively

Fig. 1 Experimental setup and custom shoe attachment (inset). The robot de-
sign utilizes a linear motor with two forcer coils and a lightweight V-shaped
linkage to drive the device’s apex. The original V-shaped design of the robot
linkages is shown for reference in dashed lines. New curved linkages allow
robot and trainer to share the same workspace while they manipulated the leg.
The upper curve of the forward linkage allow space for the trainer’s upper arm
during assistance at the knee, while the lower curve created an opening for the
trainer’s lower hand to assist at the ankle. Inset: The subjects wear a custom
shoe with an embedded footplate that is attached to the robot’s apex through a
revolute joint.

cancelled within the software. We have shown previously
that the robot only slightly alters the stepping trajectory of
nondisabled subjects in “passive mode” [18]. The added inertia
contributes to a slightly higher stepping trajectory compared
to when the robot is not attached. The robot then recorded the
position and velocity of the apex at 1 kHz while the subject
was manually stepped for a series of 30 steps. Following data
segmentation into individual steps based on a zero crossing of
the x velocity signal, steps with durations exceeding +/- 8% of
the original mean stepping duration were discarded. The steps
were then normalized via interpolation using a cubic spline to
the mean step duration. The state variables (z,y, 2, y) were
averaged across steps and a mean centroid in position space was
calculated for each step and across steps. Steps whose centroid
fell more than 1.25 o from the overall mean centroid were
then also discarded. The remaining steps were averaged, and
interpolated to initiate the step during mid-stance. The resultant
desired trajectory (24, Ya, Tq, Ya) Was used during active assist
mode to drive the apex through the subject-specific trajectory
with a PD controller running at 1 kHz:

Fo(t) = =k (2(t) — wa(t)) — ba(i(t)
Fy(t) = —ky (y(t) — ya(t)) — by (4(?)

where F), and Fy are the robot forces, k, and &, are the position
gains, b, and b, are the velocity gains, and ¢ is time.

a(t)) (1)
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TABLE 11
EXPERIMENTAL PROTOCOL
Full Manual Combined » Right Leg Trainer ]
Experiment Assistance® Manual‘and Assisting a‘t Hand ?Iacement during
(steps) Robot Assistance combined gssmtance steps i
(steps) Patclla Poplitecal | TA | Achilles
Warm up 100-200 - X X X X
A - Basceline 30 - X X X X
B — Teach / Record 30 - X X X X
C - Full Assistance’ 20 20 X X X X
D - No Ankle’ 20 20 X X
E - Patella Only! 20 20 X
F - Patella Only - Adapt 5 60" X
G - Patella Only -Adapt 5 60" X

! The order of experiments C, D, and E was randomized

* Under full manual assistance, the robot was in passive mode, canceling only gravity and friction
~ Assistance was switched from static mode with full manual assistance to adaptive mode with assistance only at the patella after

10 steps

We also developed two active assist modes for the device:
static and adaptive. In static mode, the PD gains were held con-
stant at: k, = 70 N/cm; k, = 105N/cm; and b, = b, = 3.5
N-s/cm. As a safety precaution, we chose the stiffness to be
higher in the y (vertical) direction to ensure toe clearance during
swing. In adaptive mode, we shaped the gains of the PD con-
troller as a function of stepping error, an approach based on
our adaptive learning research with nondisabled subjects [28],
[31]. Briefly, we have studied previously how healthy nondis-
abled subjects adapt to perpendicular viscous force fields ap-
plied to the leg with ARTHuR. We found that the human motor
system can be modeled by implementing an error based control
law with a forgetting factor f. The presence of the forgetting
factor indicates that the human motor system continuously at-
tempts to accomplish a desired movement with decreased effort,
provided that the error was small on the previous movement at-
tempt. This type of controller can be shown to minimize a cost
function containing error and effort terms [32].

We desired to design a controller for the robotic step trainer
that reduced the amount of assistance provided by the robot if
stepping errors were small. In simulations, we had previously
explored the use of a control law like the one we identified for
the human motor system to shape the feedback gains of an as-
sisting robot [33], [34]. We used a similar approach in our cur-
rent design, shaping the stiffness and damping of the PD con-
troller uniquely for each workspace location, based on subject
position and velocity tracking errors measured in real time

ko(n+1,8) = fika(n,) + gi|(2(t) — za(?))]
ky(n+1,1) = frky(n,t) + gel (y(1) = ya(?))|
ba(n +1,t) = foba(n,t) + gs|((t) — @a(t))]
by(n +1,1) = foby(n, 1) + gol(9(t) — ga(t))] @

where f is a scalar forgetting factor, (fr = f; = 0.90), g is
a learning gain, (g = 18 N/cm, g, = 0.18 N-s/cm), n is step
number, z-z 4, for example, is the position tracking error in the
x direction, and ¢ is time. The values of f and g were chosen
such that the adaptive robot-human system would reach steady
state after 30 step cycles with an approximate mean tracking
error of 2 cm. Shaping of the PD gains occurred as a function of
the temporal index of the stepping profile (¢) and was updated
per step (n) based on the position error at the index (¢) of the

previous step (2). In all actively controlled steps, the desired tra-
jectory was synchronized to the actual trajectory at the middle of
stance to account for alterations in step duration or step length.

Redundant safety features were incorporated into the design
and operation of the robot. These features included software
position and velocity limits, an independent watchdog timer
to monitor the drives and computer communication, an oper-
ator-held, emergency stop button, and motor drive and encoder
checks that generated a robot shutdown if detected [18]. In ad-
dition, the software saturated the desired, open loop forces to
44 and 89 N in the x and y directions, respectively, which are
force levels that the trainer could overcome if necessary. The
shoe rotation sensor at the robot’s apex allowed for the de-
tection of subject toe stub following foot drop at the begin-
ning of stance, as well as excessive plantar flexion of the ankle
(>105°—anatomical position of the ankle is 0°). During replay,
window limits of 5 cm and 25 cm/s were set on the position and
velocity tracking errors, respectively. The control software shut
down the robot if it detected any fault condition. This shutdown
returned the robot to its passive, backdrivable state without fric-
tion and gravity cancellation.

C. Experimental Design

All subjects wore a harness (Robertson Mountaineering) and
were suspended by an overhead, force-controlled, pneumatic
BWS system lift (Robomedica, Inc.). Level of BWS (Table I)
was adjusted for each subject by an experienced physical trainer
based on the quality of stepping and to maintain subject safety.
Once established, the level of BWS for each subject was held
constant throughout the experiments.

During all experiments, experienced trainers provided
manual assistance at the pelvis, knees, and ankles as necessary
to promote good stepping. Hand placement distal to the patella
assisted in knee extension during the stance phase, and at the
popliteal crease for hip and knee flexion during swing. Hand
placement proximal to the ankle assisted proper foot placement
and foot clearance at liftoff. A trainer positioned behind the
subject aided in pelvis stabilization and weight shifting during
stepping. The pelvis and left leg trainers attempted to provide
consistent patterns of assistance across experimental condi-
tions, while the right leg trainer altered the pattern of manual
assistance according to a series of experimental conditions
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described below (Table II). Data were recorded during stepping
at a fixed treadmill speed of 0.89 m/s. SCI-D10, a shorter
subject, stepped at a fixed treadmill speed of 0.80 m/s.

All subjects completed seven experiments in a single 2-h ses-
sion. The experiments were designed to test the effect of the
robot attachment on stepping activity, the effect of alterations in
manual assistance with robot assistance on stepping activity, and
the ability of the impedance shaping algorithm described above
to adapt to the individual subject’s stepping needs (Table II).
All subjects first stepped for 100-200 steps in a warm up period
without the robot attached. Following the warm up period, we
measured EMG patterns associated with manually assisted step-
ping without the robot attached to establish a baseline for further
comparison (Experiment A). Data were recorded for 30 steps.
Experiment B was used as a robot training session that allowed
the trainer to manually teach the robot the desired step trajec-
tory for each subject. This entailed attaching the robot’s apex
to the custom shoe and stepping the subject with manual assis-
tance for 30 steps, with the robot in passive mode. The recorded
steps from experiment B were averaged and filtered to generate
a mean stepping trajectory. Experiments C-G used this mean
stepping trajectory as the desired trajectory for the PD controller
(1) to replay the recorded steps. For each of these experiments,
the trainers manually stepped the subjects for a fixed number
of steps after which the robot switched from passive to active
mode and began actively assisting using the PD controller. The
right leg trainer then altered the placement of their hands in ac-
cordance with the protocol shown in Table II within one to two
steps. In Experiment C, the trainer continued to assist as needed
at both the ankle and knee during stance and swing. In Exper-
iment D, the trainer assisted only at the knee (no ankle assis-
tance) but both in extension and flexion. In Experiment E, the
trainer assisted only knee extension during stance. In all cases,
the trainer assisted only when needed. The order of experiments
C, D, and E was randomized across subjects. The gains of the
PD controller were held constant (static mode) for experiment
C-E.

In the final two experiments (F and G), the feedback gains
of the PD controller were shaped according to (2). Assistance
was provided with the controller gains fixed (static mode)
for ten steps after which the mode was switched to adaptive
and the algorithm shaped the gains for 50 steps. The trainer
also switched from full manual assistance to assisting only at
the patellar tendon (knee extension) after the first ten steps.
So, while the gains were adapting, the trainer only helped
when needed to prevent knee flexion during the stance phase
of the gait cycle. This experiment was replicated to test for
the repeatability of convergence of the PD gains. Five of the
six subjects successfully completed these two experiments,
stepping 60 consecutive steps in each experiment. Subject
SCI-D10 developed excessive hip adduction when the trainer
stopped assisting at the ankle after ten steps, and was not
included in the analysis, as movements out of the parasagittal
plane caused errors that repeatedly triggered safety faults after
20-30 steps in the adaptive field. These experiments were
designed as a proof of concept of the teach-and-replay and
adaptive impedance shaping algorithms and not to test the
therapeutic efficacy of the device.

D. Data Acquisition

For all subjects, we measured EMG activity, level of body
weight support, and the kinematic state (Cartesian position and
velocity) of the apex and toe of the right foot when the robot
was attached. The force applied to the subject by the robot was
estimated from the motor currents, a technique that accurately
estimates these forces since the robot is lightweight and has
low friction [18]. Kinematic and force data from the robot were
collected at 1 kHz using a custom-written Simulink-xPC soft-
ware control and acquisition program (The Mathworks, Inc.,
Natick, MA). EMG, footswitch, and BWS data were collected
on a separate computer at 1 kHz using a custom Labview (Na-
tional Instruments, Austin, TX) software acquisition program.
EMG data were sampled and ac-coupled into a differential am-
plifier (Konisberg Instruments, Pasadena, CA). We measured
EMG activity bilaterally from the soleus (SL), medial gastroc-
nemius (MG), tibialis anterior (TA), medial hamstrings (MH),
vastus lateralis (VL), and rectus femoris (RF) using bipolar sur-
face electrodes. The electrode placements have been described
previously [6]. We verified the efficacy of electrode placement
in order to avoid cross-talk contamination among muscles by
eliciting and recording EMG activity in an individual muscle
while recording inactivity in the other sampled muscles. BWS
was recorded from a load cell in series with the cable attached
to the subject’s harness. Joint angles were not measured.

E. Data Analysis

Data synchronization and reduction were performed with the
use of custom written software in Matlab and Labview. The
EMG data were processed by high pass filtering at 32 Hz and
rectifying. The data were divided into step cycles dependent on
heel strike as measured by the foot contact switches and spa-
tially checked with apex and toe position data from the robot
when available (Experiment C-G).

Waveforms of EMG activity from the last ten steps of each
condition (Experiments A-E) and all the steps of Experiment F
and G, were processed to investigate relationships across con-
ditions. First, data from individual steps were normalized to the
mean cycle duration, as measured from heel strike to heel strike
of the same foot, for each condition and then expressed as per-
cent of total step cycle duration. The individual signals were
then smoothed with a cubic spline. Finally, a mean represen-
tative signal with standard deviations was calculated from the
average of the normalized and smoothed signals for each con-
dition. This allowed for general comparisons across subjects,
muscles, and experimental conditions.

Kinematic data were used to calculate step height, step length,
and tracking error with respect to the desired stepping trajectory
as a function of time for each step. The error and recorded PD
gains were used to calculate the amount of open-loop force (1)
applied to the subject, taking into account the force safety limits
imposed by the software. Resultant forces were calculated from
the z and y force components.

Performed separately from above, EMG data for the right and
left legs were again segmented into step cycles based on heel
strike for each respective leg. For each step cycle, a burst anal-
ysis was performed [6], [35] to quantify activity for each muscle.
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Comparisons across conditions were made examining the mean
burst amplitude, which was defined as the integral of the burst
activity/burst duration.

FE. Statistical Analysis

After the average EMG profile for each muscle was calcu-
lated for all conditions, a 95% confidence interval was calcu-
lated around the mean EMG activity for each muscle and con-
dition across subjects. Analysis of similar EMG activity was
quantified by calculating the percent overlap of the 95% con-
fidence intervals in the step cycle for each muscle across condi-
tions and then taking the mean, standard deviation, and magni-
tude with respect to peak amplitude of each percentage overlap
across subjects.

Five comparisons were made with a one-way analysis of vari-
ance (ANOVA) on the mean burst amplitude. Each comparison
was performed for each muscle of each subject. The first com-
parison analyzed the effect of passive robot attachment under
full manual assistance with respect to full manual assistance as
needed. The second, third, and fourth comparisons analyzed the
effect of different assistance styles with robotic assistance pro-
vided at the shoe with respect to full manual assistance with the
robot attached yet passive. The comparisons were: 2) full as-
sistance as needed from the trainer, with the robot assisting; 3)
assistance as needed only at the knee from the trainer, with the
robot assisting; and 4) assistance as needed only at the patella
from the trainer, with the robot assisting. The final comparison
analyzed the effect of a compliant controller with respect to a
stiff controller under robotic assistance coupled with assistance
as needed only at the patellar tendon. For the nonattached—at-
tached comparison, three comparisons were made, since there
were three sets of steps with the robot attached but passive (be-
ginnings of Experiments C, D, and E); likewise, two compar-
isons were made for the stiff compliant comparisons in Exper-
iments F and G. The individual comparisons were made using
ANOVA and the overall comparison was only considered sig-
nificantly different if all of the individual comparisons were sig-
nificantly different. When significant, the mean percent differ-
ence between the starting condition and the mean of the repeated
analyses was calculated.

III. RESULTS

A. Kinematics and Muscle Activity for Manually Assisted
Stepping

Following a warm-up period during which the trainers man-
ually assisted stepping without the robot attached, the robot’s
apex was attached to the subject’s shoe and the trainers again
manually assisted in stepping with the passive robot recording
the foot trajectories. The trainers’ subjective impression was that
the robot was lightweight and did not interfere with their ability
to manipulate the subject’s leg. As expected, the mean stepping
trajectory and position-velocity state space figures for each sub-
ject were unique, as a result of the interplay of the subject’s own
anthropometry, the subject’s effort, and the trainer’s assistance
(Fig. 2). The EMG pattern differed among individuals with SCI
during stepping with manual assistance (Fig. 3).
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Fig. 2 Mean position and state trajectories recorded by the robot while the
trainer manually stepped the six SCI subjects with the robot attached yet pas-
sive. Left: Position space plots are read clockwise and represent the stepping
trajectory of the ankle as viewed from the right (subject facing to the right).
Middle: X Position—X Velocity Space plots are also read clockwise. Right: V'
Position—Y" Velocity space plots are read counter clockwise. The shaded areas
around each mean trajectory represent the range of normal stepping fluctuations
during manually assisted stepping (+/- three standard deviations). For reference,
the circle marks middle of stance in all plots and the origin of the robot coin-
cides with the position of the rear pivot upon initialization.
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Fig. 3 Raw EMG for six muscles of the right leg for two representative SCI
subjects for three consecutive steps. For each subject, the left panel shows EMG
activity during stepping with manual assistance when the robot was not attached,
and the right panel when the robot was attached and passive. In both cases, the
trainers were providing assistance as needed to maintain the stepping pattern by
the subject. Shaded areas represent stance phase. Abbreviations: soleus (SL),
medial gastrocnemius (MG), tibialis anterior (TA), medial hamstrings (MH),

vastus lateralis (VL), and rectus femoris (RF).

Attachment of the passive robot to the subject’s leg gener-
ally had a small effect on the shape, magnitude, and timing
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<S 100+ Do
== 50 | Comparison 2: Effect of robotic assistance and full manual assistance
Q Muscle
0 Subject SL MG TA MH VL RF
SCI-C8 - - 26%\
SCI-B4 16%\ -
SCI-D8 - - 16%\ - - -
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Comparison 3: Effect of robotic assistance and manual assistance only at the
Fig. 4 Effect of passive robot attachment on patterns of muscle activation for knee Muscle
two representative subjects. Thick solid line is without robot attached; thin solid, Subject SL MG TA MH VL RF
dotted, and dashed lines are with robot attached in passive mode in experiment SCI-C8 - - 25%\
C-E, respectively. Shaded areas correspond to phases of the step cycle in which SCI-B4 15%V -
there was consistently no overlap of the 95% confidence intervals comparing SCID8 | 13%V¥ | 14%V | 13%M - - 18%
nonattached to attached yet passive conditions. Abbreviations: soleus (SL), me- SSCCII_DD190 2% - - g 8“_/ T
dial gastrocnemius (MG), tibialis anterior (TA), medial hamstrings (MH). SClD7 VI - - T -

of the mean EMG activity when examined visually, yet was
numerically significantly different in parts as compared with
the nonattached condition for (Figs. 3 and 4, Table III). The
areas of the step cycle that consistently showed no overlap of
95% confidence intervals across the three repetitions of the at-
tached-yet-passive condition (i.e., the first parts of Exp C, D,
and E) are represented in Fig. 4 by shaded regions for two rep-
resentative subjects. The percentage of the step cycle for which
the 95% confidence intervals did not overlap was 49 + / — 16
%. During these periods, the average absolute change in EMG
amplitude from the nonattached to attached conditions was 23+
/ — 15%, referenced to the peak nonattached EMG magnitude
for the step cycle. On average, 53% of the nonoverlap regions in
EMG pattern occurred during stance phase when the foot was
on the treadmill.

Analysis of the differences in the mean EMG burst ampli-
tudes across the nonattached and attached conditions suggested
that passive robot attachment only significantly affected two
subjects (p < 0.05, Table III, SCI-D8 and SCI-D10, Fig. 4). The
percent difference of the mean burst amplitudes was calculated
with respect to the nonattached condition. As seen in Fig. 4,
there were significant differences in the EMG waveforms but
the general shape and amplitude were ostensibly similar. This
analysis was confounded by the fact that over a quarter of the
comparisons were unable to be calculated due to absence of ac-
tivity or noise preventing measurement of individual bursts. In
such cases, the background noise level was around 25-50 pv.

B. Comparison of Robot-Assisted and Manually Assisted
Stepping

1) Position Tracking Error: For the next series of experi-
ments (Experiments C-E, Table II), the robot actively assisted
in the subject’s stepping, with the right leg trainer varying the

Comparison 4: Effect of robotic assistance and manual assistance only at the

Nar tend

F

Muscle
Subject SL MG TA MH VL RF
SCI-C8 17%\ - 25%\
SCI-B4 21%\ -
SCI-D8 14%\ 13% 14%\ 17%\ 35%\V 16%\
SCI-D9 12%\ 25%\ 17%M
SCI-D10 - - 27%M - 26%\V 15%\
SCI-D7 - - - - -

Shaded Grey — no detectable burst either due to absence of activity or high noise (25-50 microvolts)
-: No significant difference when compared with one-way ANOVA

%: Significant difference (p<0.05 when compared with one-way ANOVA). Comparisons are made with

respect to full manual assistance in the non-attached (comparison 1) and attached yet passive conditions
(comparisons 2-4).

style of their manual assistance. In all cases, the trainers assisted
only as needed altering their assistance to the needs of each in-
dividual. The kinematic pattern of stepping, as measured by the
resultant position tracking error of the robot’s apex, varied along
the entire trajectory by an average across subjects of 0.8140.49
cm, 1.03 £ 0.75 cm, and 1.18 4+ 0.97 cm for experiments C, D,
and E, respectively. This indicates that each of the various com-
binations of trainer and robot assistance allowed the subject’s
leg to successfully move along the desired stepping trajectory.
In all conditions and for all subjects the mean position tracking
errors fell within one standard deviation of the respective de-
sired trajectory. This result includes Experiment E, in which
the trainer was only required to assist in knee extension during
stance. In this case, the robot was solely responsible for assisting
the leg through the swing motion.

2) Muscle Activity: Neither the mode of the robot nor the
style of hand placement in which the right leg trainer assisted
had major effects on the patterns of muscle activation (Fig. 5).
Fig. 5 shows the regions of the step cycle in which the 95% con-
fidence intervals of the EMG for the passive and active condi-
tions did not overlap for two subjects. The mean percent values
of consistently no overlap were 21 & 12% for the condition of
full trainer assistance, 20 + 10% for the condition of no ankle
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Fig. 5 Effect of trainer assistance alteration on muscle activation for two sub-
jects. Thick solid line is the mean EMG with robot attached yet passive and the
trainer assisting as needed for Experiment D. Data from Experiments C and E
are not shown, as the representative data shown in Experiment D (robot pas-
sive) did not change significantly across runs. Thin solid line is exp. C: robot
and trainer both fully active; dotted line is exp. D, robot active and trainer not
assisting at the ankle; and dashed line is exp. E: robot active and trainer assisting
at the patella only during stance. Shaded areas represent regions of consistently
no overlap of 95% confidence intervals. Abbreviations: soleus (SL), medial gas-
trocnemius (MG), tibialis anterior (TA), medial hamstrings (MH).

assistance, and 27 £ 16% for the patella assistance only condi-
tion. When the confidence intervals did not overlap, the mean
absolute percent difference in EMG amplitude across subjects
and muscles was 5.4 £ 5.2%, relative to the peak EMG for each
muscle during the step cycle.

Analysis of the differences in mean burst amplitude across
conditions demonstrated that 20/36 and 16/36 of the compar-
isons were not significantly different in comparisons 2 and 3,
respectively. When the magnitudes were significantly different,
the percent differences both increased and decreased with a ma-
jority of the differences seen in the SL, TA, and MH and pre-
dominantly in subjects SCI-D8 and SCI-D7. The effect of as-
sisting only as needed at the patellar tendon had more measur-
able effects, significantly decreasing the mean burst magnitude
in 15 of the 25 comparisons that could be made. The remaining
11 comparisons could not be made due to noise or absence of
activity, phenomenon which were mostly seen in three of the
subjects: SCI-C8, SCI-B4, and SCI-D9 and affected all muscles
but the soleus (SL).

3) Force as Function of Trainer Assistance Style: The mean
force applied by the robot varied between the three assistance
conditions. The mean magnitude of force supplied by the robot
was calculated for the last ten steps for each of the active assist
portions of experiments C-E during swing and averaged across
subject and step (Fig. 6). The mean force generated by the robot
in order to maintain the stepping pattern was smallest when the
trainer assisted only at the knee and not at the ankle (p < 0.01,
ANOVA, Fig. 6). Thus, the robot guided the subject’s shank
with the least applied force when the trainer assisted only at the
knee, and applied the most force when it was required to drive
the shank without popliteal assistance from the trainer.

40
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20 1

Robot Force (N)

Experiment C
Full Assistance
-as-needed

Experiment D
Full assistance
-as-needed at the

knee only

Experiment E

Full assistance
-as-needed at the
patellar tendon only

Manual Assistance Condition

Fig. 6 Mean resultant force for the last ten steps of active assistance for Exper-
iments C-E during swing. Standard error bars are shown. Asterisk (*) indicate
a significant difference in robotic force, p < 0.01, one way ANOVA.

1) Adaptive Impedance Shaping With an Error Based Up-
date Law: During the adaptive gain experiments, the algorithm
(2) shaped the impedance of the robot controller on a step-by-
step basis. For reference, the starting impedance values are rep-
resented by the large ellipses at the beginning of stance in all
of the subfigures [Fig. 7(A)], and the final values are shown at
selected locations along the trajectory. Both proportional and
derivative gains decreased and reached a steady state after ap-
proximately 30 steps [Fig. 7(B)]. The gains converged to similar
values for each subject on the two consecutive, identical, exper-
imental runs with the gains initialized to the same large values.
Each subject’s stepping trajectory was well maintained as the
gains adapted: the mean resultant position error during swing in
the last ten of the 50 steps in these experiments was 2.0 &= 0.58
cm.

Each subject had a unique final set of proportional and deriva-
tive gains following convergence, which varied with the phase
of the step cycle ([Fig. 7(A)]. For example, subject SCI-C8
in Fig. 7(A) required a stiffer controller in mid-swing through
foot placement at heel strike, as evidenced by the large stiffness
ellipses at these phases of the step cycle. In contrast, subject
SCI-D7 required a stiffer controller at the beginning of swing.
From these data, it is clear that the robot was initially very stiff,
but that the adaptive gain algorithm greatly reduced and shaped
the gains for each subject.

The gains for subject SCI-D7, however, reached a first steady
state, and then diverged to a second steady state, resulting
in increased proportional gains near the beginning of swing
[Fig. 7(B), Px, Py]. The second increase was caused by a
medial shift in the foot placement at heel strike, which the
robot interpreted as a decreased stepping height, since the me-
dial-lateral motion of the robot was not instrumented and this
motion was controlled by the human trainer. Thus, although
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Fig. 7 Adaptive gains for two representative subjects SCI-C8 and SCI-D7. A:
Proportional (thick) and derivative (thin) ellipses plotted on the desired trajec-
tory for Experiment F (top) and Experiment G (bottom). Major and minor di-
ameter values are the mean values of the gains for the last ten steps in the field.
The large, partially displayed ellipses show the size of the starting stiffness (70
N/em by 105 N/cm) and damping (3.5 N-s/cm by 3.5 N-s/cm) values. B-Top:
Steady state P and D gains for the v any y directions. Values are again the mean
of the last ten steps. Solid (-) and dashed (—) lines represent data from experi-
ment F and G, respectively. B-Bottom: Convergence of PD gains over 50 steps
for both directions and experiments overlaid.

this increase in impedance was not due to an actual change in
the subject’s stepping ability, it does illustrate the ability of the
adaptive algorithm (2) to react to perceived stepping errors.
This medial-lateral foot placement change only occurred for
one subject.

The reduction of the robot PD gains caused significant in-
creases in the variability of step length and peak step height,
and in mean position error during swing for the last ten steps
in the adaptive field (Fig. 8, p < 0.05, one-way ANOVA, com-
paring values from the last ten steps of Experiment E with static
assistance to last ten steps of Experiments F and G with adaptive
assistance). Analysis of the differences in mean burst amplitude
comparing a stiff to a compliant controller demonstrated that
11/30 were not significantly different (6/30 were significantly
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Fig. 8 Effect of Adaptive Algorithm on Force, Error during swing, and Step
Variability for Experiments F and G. Condition 1: Last ten steps with patella
only trainer assistance (Exp. E) and full robot assistance (stiff gains). Condition
2: Last ten steps of Experiments. F and G with patella only trainer assistance fol-
lowing 40 steps of shaping of PD gains to subject performance (shaped gains).
Shown are A: mean error measured during swing, as well as the B: standard
deviation of step length, and C: standard deviation of peak step height. D: Rep-
resentative data from subject SCI-D9 showing significantly increased variability
in step length, step height, and positional errors. The solid line is the position
trace during condition 1 and the dashed and solid grey lines are from Condition
2. Asterisk (*) indicates a significant difference, p < 0.05, one way ANOVA.

lower). As was the case for other experiments, 13/30 of the com-
parisons could not be made due to noise or absence of activity.
Subject SCI-D10 did not participate in this experiment.

IV. DISCUSSION

This study demonstrates the feasibility of a manual
teach-and-replay procedure for robotic gait training. A
trainer manually dictated a desired stepping trajectory on
a subject-specific basis by moving the subject’s leg with a
lightweight robot attached to it. The robot then replayed the
trajectory, thereby generating stepping kinematics and muscle
activity that were similar to those observed during manually
assisted stepping. The key technological innovation was that the
robot was back-drivable enough to measure a trainer-assisted
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stepping pattern, and powerful enough to replicate that stepping
pattern with the trainer only assisting in knee extension during
stance. Second, the adaptive impedance-shaping algorithm that
measured tracking errors and included a forgetting process
could systematically adjust the impedance of the robot on a
step-by-step basis. Using this algorithm, the subjects stepped
in a more compliant environment, allowing more step-to-step
variability while still maintaining the overall stepping pattern.
Impedances evolved in a subject-specific fashion for different
phases of the step cycle, in a repeatable way.

In the present study, three different trainers were recruited to
assist the right leg of the subjects through stepping trajectories.
Three trainers were used because of practical issues with sched-
uling. All three of these trainers had worked together for several
years and were highly skilled in providing manual assistance. It
is known, however, that even experienced trainers provide dif-
ferent patterns of assistance for the same individual [23]. The
goal in this paper was to study the feasibility of a robotic tool
and algorithm that could record a given trainer’s induced tra-
jectory and replay it. Future work will include study how the
trajectories induced by specific trainers influence gait training
outcomes.

We compared the gait pattern induced by the human trainers
to the robotic device because the stated potential advantage of
robotic devices has consistently been that they will be more cost
effective and provide longer treatments than manual assistance.
We found EMG activity from skilled trainers providing manual
assistance and the robot-induced gait patterns to be similar. It s,
however, possible that the EMG activity elicited during assisted
walking is not optimal for motor retraining. This of course is
a larger research question, which robotic devices such as the
one described here may help to answer by virtue of providing
a means to apply specific patterns of assistance during training.
For the present study, we note that all of the trainers were highly
experienced in manual gait training, and that training by this
group has produced locomotor patterns in previous studies that
are consistent with nondisabled patterns [36].

We also assumed for this study that naturalistic trajectories,
individualized to the subject, will be better for training than
standardized trajectories. Again, this assumption is unproven.
The robotic device described here can provide a means to test
this assumption. Similarly, we hypothesized that a gait pattern
with more variability is better for training than one with less
variability and developed an adaptive impedance control algo-
rithm that selectively reduces impedance during training, al-
lowing more stepping variability. Here, we test the feasibility of
this algorithm to increase stepping variability and make no claim
regarding the effect on the EMG activity quality after such an in-
crease. Increased variability in a robotic training pattern was re-
cently suggested to improve gait relearning in spinal-transected
mice [37], but again this hypothesis is yet to be verified for hu-
mans with SCIL.

A shortcoming of this experiment is that we did not mea-
sure the kinematics of manual assistance without the robot at-
tached. Such a measurement would have allowed determination
of whether the trainers provided the same manual assistance re-
gardless of robot attachment. We have found previously that at-
tachment of the robot has little effect on the walking patterns of

healthy adult subjects [18]. In addition, the trainers felt that they
could generate the desired stepping pattern with the robot at-
tached. However, this issue should still be addressed more care-
fully in future research.

1) Feasibility of Manual Teach-and-Replay for Robotic
Gait Training: The first versions of robotic gait training de-
vices have relied on prerecorded [13] or mechanically fixed
[15] stepping patterns because the devices have relatively high
mechanical impedance or limited degrees-of-freedom, thus
prohibiting an external source such as a trainer from manu-
ally prescribing their motions. The Lokomat research group
has recently addressed this issue by developing an algorithm
that distorts and time-scales the stepping trajectory based on
measurements of the contact force between the robot and the
patient [21], [26]. This approach assumes that the contact force
reflects the patient’s intentional desire for a different trajectory,
and thus may have limited applicability for more severely
impaired subjects who have greater difficulty producing appro-
priate kinematics or for patients who have excessive clonus or
spasticity [26].

In this paper, trainers provided manual assistance during step-
ping while a highly back-drivable robot measured and recorded
the elicited patterns of stepping. The same robot then replayed
a representative mean of the trajectories. We found only minor
differences when we compared the muscle activity elicited by
the trainer during the “teach” phase, and the muscle activity
elicited by the trainer and robot together during the “replay”
phase. Thus, this study demonstrates that a step training robot
that assists along subject-specific stepping trajectories can elicit
locomotor activity that is comparable to that elicited by skilled
trainers providing manual assistance. This result is most com-
pelling for the robotic replay condition in which the trainer as-
sisted only at the patella tendon, preventing knee flexion when
necessary during stance. In this condition, the robot was solely
responsible for assisting the leg through the swing motion, and
evoked swing activity comparable to that when a trainer alone
assisted swing. The trainer only needed to prevent buckling of
the knee during stance, which did not require large forces from
her.

Ideally, the act of measuring the trainer-elicited stepping
pattern would not alter that pattern. However, we did find some
differences in the muscle activity elicited when the trainer
stepped the patient without the robot, compared to when the
trainer stepped the patient with the robot passively attached
(i.e., in “teach mode”). One possible explanation is that the
trainer stepped the patient along a different kinematic path
when the robot was attached because the trainer had to share
the workspace with the robot (i.e., the movement of ARTHuR’s
links constrained the comfortable arm motions for the trainer).
However, we were not able to verify this possibility because we
did not measure the stepping kinematics when the robot was
not attached. Another possibility is that the differences arose
because the robot constrained the degrees of freedom of the leg,
limiting medial-lateral hip rotation and ankle inversion/eversion
and supination/pronation. A third possibility is that the added
inertia of the robot affected the pattern of stepping and thus
muscle activity. Engineering optimization of the robot design
could reduce each of these factors. Regardless of the reason for
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the moderate differences, the overall pattern of muscle activity
was similar with and without the robot attached (Figs. 3 and 4).
2) Adaptive Impedance Shaping: A concern with robotic
training is that if the robot assists in a rigid fashion along a fixed
trajectory, then the patient’s motivation and ability to actively
participate in training will be reduced [26]. Rigid assistance
may drive the spinal cord into a state of “learned helplessness”
[38]-[40] where the nervous system, not challenged to explore
potential stepping patterns on its own, will defer to the trainer
and cease learning. On the other hand, a robot that allows some
amount of errors or variability in stepping could presumably
encourage participation and motor learning. In this paper, we
used a feedback law with a forgetting factor to adapt a robot’s
impedance as a function of stepping error. As a result, the
impedance decreased from a large initial value with repeated
stepping, but only in the parts of the step trajectory where a firm
level of assistance was not needed. The pattern of impedance
converged repeatedly on separate trials, indicating that the
detailed steady-state pattern of impedance generated by the
algorithm was not random, but causally associated with the sub-
ject’s stepping ability. As a result of the selectively decreased
impedance, trajectory variability significantly increased, and
less force was required from the robot to assist in swing.
Increased variability in robotic assistance has been suggested
to speed the recovery of the injured spinal cord relative to low
variability training in mice [37], [40]. Cai et al. stepped-trained
spinal-transected mice with three training paradigms: a fixed
trajectory with low compliance proportional-integral-derivitive
(PID) controller; a variable trajectory without inter limb coor-
dination; and a variable trajectory with interlimb coordination.
Their results suggest that six weeks of variable training may in-
crease the number of steps completed during a 15-s period as
well as increased the rhythmicity and duration of stepping bouts.
Real-time adjustment of the impedance of the robot during
robotic step training has been demonstrated previously for the
Lokomat [26]. The algorithm proposed here differs in two main
ways. First, it reduces the impedance based on a measurement
of ongoing kinematic error relative to the desired stepping tra-
jectory, using a learning law modeled after human motor adap-
tation. The goal is to reduce the robot’s assistance and thus
allow greater stepping variability if the kinematics of the pa-
tient’s stepping pattern is near the trainer induced trajectory. In
contrast, the Lokomat algorithm decreases the impedance pro-
portionally to the contact force against the robot. The goal in
this case is to allow the patient greater freedom in their move-
ments when they wish to change the desired stepping trajectory,
or when they are exhibiting a large effort. A question with this
approach is how to know when the patient is doing changes that
are meaningful and when this not the case (due to spasticity
or fatigue for example). The impedance control algorithm de-
veloped here is different in that it responds to small errors, not
large contact forces, and thus only allows freedom when step-
ping is consistently along the desired trajectory. In the case of
a sudden, unexpected change in stepping pattern due to spas-
ticity, we implemented a second layer of safety in the form of
maximum state deviation limits, which would return the device
to a passive state if exceeded. Second, the algorithm proposed
here adapts the impedance as a function of position throughout

the step cycle, while the Lokomat algorithm fixes the gains for
the entire step. The result of the algorithm proposed here is that
the assistance is shaped to the needs of the patient at each phase
of the step cycle.

A key goal of future clinical studies will be to rigorously test
the hypothesis that allowing the patient to step along a natural-
istic stepping trajectory produces better clinical outcomes than
stepping along a standardized trajectory. Similarly, future clin-
ical studies should test the hypothesis that a robot that selec-
tively shapes its impedance based on patient stepping ability,
allowing more stepping variability, is more effective than one
that does not. The robotic tools and techniques described in this
paper provide a way to rigorously test these hypotheses.
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