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ABSTRACT
It was previously shown that beta oscillations of local field
potentials in the arm area of the primary motor cortex (MI)
of nonhuman primates propagate as travelling waves across
MI of monkeys during movement preparation and execution
and are believed to subserve cortical information transfer.
To investigate the information transfer and its change over
time at the single-cell level, we analyzed simultaneously
recorded multiple MI neural spike trains of a monkey
using a Granger causality measure for point process models
before and after visual cues instructing the onset of reaching
movements. In this analysis, we found that more pairs of
neurons showed information transfer between them after
appearances of upcoming movement targets than before, and
the directions of the information transfer across neurons in
MI were coincident with the directions of the propagating
waves. These results suggest that the neuron pairs identified
in the current study are the candidates of neurons that travel
with spatiotemporal dynamics of beta oscillations in the MI.

I. INTRODUCTION

BETA oscillations in local field potential (LFP) observed
across the arm area of the primary motor cortex (MI)

of nonhuman primates propagate as plane waves along
the rostrocaudal axis of the motor cortex during motor
preparation and execution, and are believed to subserve
cortical information transfer [1]. They represent the summed
activity of multiple postsynaptic potentials near the recording
electrode site; however, little is known about the relationship
between the wave propagation of cortical oscillations and
the information flow among individual neurons across the
motor cortex. Recently, directed information between pairs
of neurons was studied using multiple spike trains in the MI
of a monkey [2], but they considered only pairwise directed
information and did not analyze how the network might
change in relationship to the stimulus.
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In this paper, by simultaneously recording the ensemble
neural spiking activity across the arm area of the MI cortex,
we investigate information transfer between neurons and
the network change before and after visual cues instructing
the reaching movement. Recently methods that attempt to
identify associations between neurons were developed [3],
[4], but they provided little insight into the directional
information transfer between them. The statistical measure of
causality that has primarily been used to assess information
transfer in the neuroscience community [5], [6] comes from
Granger’s notion of causality in the economics literature
[7]: if past values of y contain information that helps
predict x above and beyond the information contained in
past values ofx alone, theny is said to Granger-causex.
Its mathematical formulation is based on the multivariate
autoregressive (MVAR) modeling of processes. However, it
is difficult to apply this method directly to spike train data
due to its binary nature.

To address this issue, in the current study we used a point
process framework for assessing directional interactionsbe-
tween neurons in [8] to test how a network of neurons ex-
hibiting causal interactions changes around the onset times of
visual stimuli instructing the upcoming reaching movement.
Previous studies [1], [9] have shown that, regardless of slight
changes in behavioral tasks, beta oscillation waves often
emerge after presentation of visual cues. Thus by looking
at state changes of neurons around the time of the visual
stimuli we could get more insight as to what class of neurons
were participating in beta oscillation wave propagation and
how those neurons were connected.

The rest of this paper is organized as follows. Section II
describes behavioral tasks and data collection and explains a
point process framework for assessing the causal interactions
between multiple neurons. Section III describes the analysis
of neural data recorded in the motor cortex of a monkey,
and Section IV discusses the analysis results.

II. METHOD

II-A. Behavior task and data collection

One monkey was trained to perform a visuomotor task us-
ing a two-link exoskeleton manipulandum [10]. The monkey



was required to move a cursor on a horizontal screen that
was aligned to the monkey’s hand to the position of a target.
When the monkey successfully reached the current target,
a new target was displayed at a random location within a
workspace while the current target disappeared. The monkey
received a juice reward after successfully acquiring five or
seven consecutive targets.

We recorded multiple single unit spiking activities from
MI in a monkey using an Utah microelectrode array (Black-
rock Microsystems;1 mm in length and400µm inter-
electrode spacing) implanted contralateral to the moving
arm. Neural spikes from up to 96 channels were recorded
at 30 kHz. Spike waveforms were sorted offline using a
semiautomated method incorporating a previously published
algorithm [11]. Signal to noise ratio (SNR) for each unit
were defined as the difference in mean peak to trough voltage
divided by twice the mean standard deviation computed from
all the spikes at each sample points. All the units with
SNR< 3 were discarded for the current study. The data for
each neuron was converted to a binary time series with 1 ms
time resolution. Among115 neurons available for analysis,
we used only 25 neurons that were recorded from electrodes
located on even numbered rows and columns on 10 x 10
grid on the multielectrode array due to the computational
load. Three data sets, each with 1,000 consecutive successful
trials, were constructed. Each data set consisted of three
sub data sets collected from the following time windows
in relation to visual cue onset,[−100, 50], [50, 200], and
[200, 350] ms.

II-B. Analysis

The discrete, all-or-nothing nature of a sequence of neural
spike train together with their stochastic structure suggests
that neural spike trains may be regarded as point processes
[12], [13]. A neural point process model is completely
characterized by its conditional intensity function (CIF),
λ(t|H(t)), whereH(t) denotes the spiking history of all
neurons in the ensemble up to timet. In this work,H(t) is
defined in the interval[t−MW, t), which is divided intoM
non-overlapping rectangular windows of durationW ; We
denote the spike count of neuronn in a time window of
lengthW covering the time interval[t−mW, t−(m−1)W )
as Rn,m(t) for n = 1, ..., N and m = 1, ...,M . In this
analysis we intuitively setM to 5 andW to 3 ms to obtain
a relatively small number of parameters while maintaining
the temporal resolution. The CIF,λ(t|H(t)), represents the
firing rate of a neuron at timet, thus the probability that a
neuron will fire a single spike in a small interval[t, t+∆) can
be approximated asλ(t|H(t))∆. In the generalized linear
model (GLM) framework, we modeled the log CIF as a
linear combination of the covariates,H(t), which describe
the neural activity dependencies [14]. Thus the logarithm of
the CIF for neuroni is expressed by

logλi(t|θi, Hi(t)) = θi,0 +

N∑

n=1

M∑

m=1

θi,n,mRn,m(t) (1)

where θi,0 relates to a background level of activity, and
θi,n,m represents the effect of ensemble spiking history
Rn,m(t) of neuronn on the firing probability of neuroni at
time t for n = 1, ..., N neurons.

Recently a point process framework for assessing causal
relationship between neurons was proposed in [8]. Based on
Granger’s definition on the causality [7], a potential causal
relationship from neuronj to i can be assessed based on the
log-likelihood ratio given by

log
Pr(future of i|past ofi)

Pr(future of i|past ofi, past ofj)
. (2)

If past values of neuronj contain information that
helps predict future value of neuroni beyond the
information contained in past values of neuroni
alone, Pr(future of i|past ofi, past ofj) is greater than
Pr(future of i|past ofi), thus the log likelihood ratio of (2)
is always less than or equal to zero. The equality holds
when neuronj has no causal influence oni. This statistical
framework for assessing Gragner causality can be applied
to any modality as well as binary neural spike train data
[15]. We can also extend this pairwise Granger causality
concept to a general framework for identifying the causal
relationships betweenN neurons whereN > 2. First, the
point process likelihood function of neuroni, denoted by
Li(θi|H(t)), is calculated using the parametric CIF of (1);
It relates theith neuron’s spiking probability to possible
covariates such as its own spiking history as well as the
concurrent activity of other simultaneously recorded neurons
[14]. Next, we assess the causal relationship from neuronj

to i by calculating the relative reduction in the likelihood
of neuroni obtained by excluding the covariates effect of
neuron j (spiking history of neuronj) compared to the
likelihood obtained using all the covariates (spiking history
of all neurons). The log-likelihood ratio,Γij , is given by

Γij = log
Li(θ

j
i )

Li(θi)
(3)

where the parameter vectorθj
i is obtained by re-optimizing

the parametric likelihood model after excluding the effect
of neuronj. Since the likelihoodLi(θi) is always greater
than or equal to the likelihoodLi(θ

j
i ), the log-likelihood

ratio Γij is always less than or equal to 0. If the spiking
activity of neuronj has a causal influence on that of neuron
i in the Granger sense, the likelihoodLi(θi) is greater than
Li(θ

j
i ). The equality holds when neuronj has no influence

on i. The Granger causality measure given by (3) provides
an indication of the extent to which the spiking history of



neuronj affects the spike train data of neuroni. Thus we
can construct anN × N Granger causality matrix, whose
(i, j)th element represents the extent to which neuronj has a
causal influence on neuroni for i, j = 1, ..., N neurons. This
N ×N matrix enables us to draw the causality neural net-
work graph withN nodes (neurons) connected by directed
edges representing the relative strength of causal effects.
This causality network represented the relative strength of
estimated causal interactions between neurons; however, it
provided little insight into which of these interactions are
statistically significant. To address this issue, a multiple
hypothesis testing was performed based on the likelihood
ratio test statistic since we can show that -2 times log-
likelihood ratio given by (3) asymptotically followsχ2

M

where M is equal to the difference in dimensionality of
the two models [16], [17]. Thus, anotherN × N causal
connectivity matrix was constructed, whose(i, j)th element
corresponds to either statistically significant or insignificant
interaction.

Once the causality matrix was obtained for each sub data
set, degrees for each neuron that showed any statistically
significant interactions were computed across all three sub
data sets for all three data sets. The degree for neuroni is
defined as the number of neurons that are coupled toi by
at least one interaction [18]. Then degrees of all neurons
per sub data set was obtained for all nine sub data sets to
show consistency of causality networks across three data
sets at same time windows. Another measure of network
consistency across data sets was obtained simply by counting
the number of pairs exhibiting causal interactions.

III. RESULTS

The causality networks between the recorded neural spike
trains were identified using the method in [8], and the results
were illustrated in Fig. 1. Fig. 1 (a), (b), and (c) show
the statistically significant causal interactions at different
timings in relation to the visual cue onset: Time Window
1 for [−100, 50] ms, 2 for[50, 200] ms, and 3 for[200, 350]
ms, respectively. The relative positions of neurons in the
diagrams correspond to the relative positions of the electrode
on the array where the neurons were detected. Adjacent
neurons (nodes) were recorded from a same electrode. The
location of the array is such that the lower right corner is
oriented caudal and the upper left rostral.

As shown in Fig. 1, most causal interactions were detected
for Time Window 2 than other two intervals. These causality
networks were obtained from the data set1, and we obtained
similar results using data sets 2 and 3 as well. In order to
look into the causality network consistency over data sets,
we plotted the degrees of all neurons for 3 data sets in
Fig. 2. All data sets had similar distributions of degrees and
same ‘hub’ neurons 9 and 15 - neurons with unusually high
degree. Interestingly neurons recorded from a same electrode
were not interacting with one another, but they were causally

(a)                               (b)                                (c)

Fig. 1. A diagram of causality networks estimated at different
timings in relation to the visual cue onset: Time Window 1
for [−100, 50] ms, 2 for [50, 200] ms, and 3 for[200, 350]
ms, respectively. (a) Causality network estimated for Time
Window 1 is illustrated. (b) Causality network estimated for
Time Window 2 is illustrated. More neurons were causally
influencing each other. (c) Causality network estimated for
Time Window 3 is illustrated. Less significant causal inter-
actions were detected than Time Window 2.

influencing on neurons from different electrodes.
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Fig. 2. The degrees of all neurons obtained for Time Window
2 are illustrated over 3 data sets. Similar distributions of
degrees and same hub neurons 9 and 15 were observed for
all 3 data sets.

Fig. 3 shows that across three different data sets, the
numbers of pairs exhibiting statistically significant causal
relationships are highest over a time window 2 of[50, 200]
ms after the visual cues instructing the locations of the
upcoming movements.

IV. DISCUSSION

Beta oscillations in the MI during motor preparation prop-
agate as waves across the surface of the motor cortex along
dominant spatial axes characteristic of the local circuitry of
the motor cortex [1]. In order to investigate whether we
can observe the same information transfer between neurons,
the Granger causality measure for point process models [8]
was applied to multiple spike train data recorded in the MI.
As shown in Fig. 1, more causal interactions were detected
around visual cues, and the direction of causal interactions
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Fig. 3. Number of statistically significant causal interactions
at different timings in relation to the visual cue onset. Each
data set showed the maximum number of causal relations
right after visual cue presentations, Time Window 2.

was roughly aligned with simultaneously recorded beta os-
cillations propagating wave direction [1] and a group of neu-
rons that exhibited significant power in frequency range of
beta oscillations in their spike rates around cue appearances
[9]. We verified that these results were consistently observed
over 3 data sets. Also, as Fig. 3 illustrates, the maximum
numbers of neuron pairs show statistically significant causal
relationships over[50, 200] ms after appearance of visual
cues around which phase of beta oscillations is locked and
evoked beta traveling waves emerge [9].

Thus it is plausible that the neuron pairs identified in the
current study are the candidates of neurons that travel with
planar waves of beta oscillations in MI.
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