
Observer Based Method for Joint Torque
Estimation in Active Orthoses ?

Markus Grün ∗ Ulrich Konigorski ∗∗

∗ Department of Control Engineering and Mechatronics, Technische
Universität Darmstadt, Darmstadt, Germany (e-mail:

mgruen@iat.tu-darmstadt.de).
∗∗ Department of Control Engineering and Mechatronics, Technische

Universität Darmstadt, Darmstadt, Germany (e-mail:
ukonigorski@iat.tu-darmstadt.de).

Abstract: This contribution presents a new approach of estimating the joint torques for an
active orthosis. The new approach combines inverse dynamics and measured ground reaction
forces. The joint torques can easily be computed from the ground reaction forces, but the
measurement is usually flawed. An obsererver is employed to estimate the disturbance of the
measurements and restore the original joint torques.
A model of the human lower extremity is presented and additional seat forces are introduced
to model the seat. Simulation results on the Sit-to-Stand movement illustrate the effectivity of
the new approach.
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1. INTRODUCTION

Active orthoses and motorized exoskeletons are subject
to numerous research projects. The objectives of these
projects are manifold and reach from tremor suppression,
rehabilitation for several limbs after stroke or injury, to
strength enhancing of the lower extremities or the hole
body.

The active orthosis currently under development at our
research group is an exoskeleton for the lower limbs with a
motorized knee joint. The orthosis is designed to support
elderly people or people with disabilities with an additional
torque at the knee joint during challenging tasks like
the Sit-To-Stand movement (STS) or climbing stairs, for
example.

For orthoses that enhance the user’s strength or reduce
the user’s effort for a given task, several controllers have
been proposed in the literature, see Pratt et al. (2004),
Kong and Tomizuka (2009), Fleischer and Hommel (2006),
for example. The reference input to these controllers is
the joint torque that the user applies to his body. By
amplifying the joint torque, the user’s strength can be
enhanced or the effort can be reduced.

A reliable measurement or estimate of the user’s joint
torques is therefore essential and plays a major role in
the control system. Three methods have proven their
effectiveness:

Electromyography (EMG) Using several electrodes ap-
plied to the skin, the activity of the underlying muscle
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can be measured. Deriving a feasible value for the force
this muscle generates, however, is difficult and subject to
many disturbances. This method also requires extensive
preparation during putting on and taking off of the or-
thosis. It is used by the exoskeleton HAL (Hayashi et al.
(2005)), or Fleischer and Hommel (2006), for example.

Inverse Dynamics The joint torques can be calculated
using an inverse model of the human lower extremity.
High resolution and low noise angular sensors are required
since the angular value needs to be differentiated twice.
Furthermore, the computed joint torques strongly depend
on the accuracy of the model. A little error in the model
causes large deviations in the joint torques. During gait,
the inverse dynamics need to be switched between differ-
ent models. The Berkeley Lower Extremity Exoskeleton
(BLEEX, Kazerooni et al. (2005)) or Kong and Tomizuka
(2009), for example, use inverse dynamics to compute the
joint torques.

Ground Reaction Forces (GRF) The contact force be-
tween the foot and the ground, and the center of pressure
(CoP) can be measured using force sensors in the shoe
sole. The ankle joint torque can be directly calculated from
these values, and with an angular sensor at the ankle joint,
the knee torque can be calculated as well. However, the
computed joint torques strongly depend on the correct
measurement of the CoP. Also, the shear force must be
measured for an exact calculation of the joint torques.
The RoboKnee (Pratt et al. (2004)) uses this method for
example, though the ankle angle is not measured.

In this paper, an alternative approach is proposed which
combines inverse dynamics and the calculation of the
joint torques using ground reaction forces. An observer
estimates the error in the joint torque calculation and



adjusts the result. A model of the human lower extremity
will be introduced and simulation results will be shown
for the Sit-to-Stand transfer. The performance of the new
approach will be compared to the results of using only
inverse dynamics and using only ground reaction forces,
respectively.

2. MODELLING

This section describes the modelling of the human lower
extremity. This model will be used for calculating the
simulations results presented in section 5.

2.1 Model of Human Lower Extremity

It is assumed that movement is only in the saggital plane
of the human body and that the movement of the right
and left leg are symmetric. To further simplify the model,
the upper body is modeled as a single mass. This allows
modelling the lower extremities as a two link chain or
double inverted pendulum, which is fixed at the ground.
The seat is modeled as external forces FSeat,h and FSeat,v

that act on the inverted pendulum as seen in Fig. 1. These
forces prevent the pendulum from collapsing in the sitting
position.
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Fig. 1. Model of human lower extremity in sitting position

The seat forces are only active within a limited position
of the pendulum and cease after the Seat-Off. The spec-
ifications of the seat forces will be given in section 2.3.
But first, the equations of motion of the double inverted
pendulum are derived by Lagrangian mechanics.

The kinematic equations describe the movement of the
centers of mass of the two rigid beams and the body
mass m3:

s1 =

[
s1,x
s1,z

]
=

[
l1
2 cos(ϕ1)

l1
2 sin(ϕ1)

]

s2 =

[
s2,x
s2,z

]
=

[
l1 cos(ϕ1) + l2

2 cos(ϕ2)

l1 sin(ϕ1) + l2
2 sin(ϕ2)

]

s3 =

[
s3,x
s3,z

]
=

[
l1 cos(ϕ1) + l2 cos(ϕ2)

l1 sin(ϕ1) + l2 sin(ϕ2)

]
.

(1)

The time dependencies of the coordinate functions are
omitted for simplicity. The velocities follow by time dif-
ferentiation of (1):

v1 =
d

dt
s1, v2 =

d

dt
s2, v3 =

d

dt
s3. (2)

With the angular velocities ω1 and ω2 at the two joints
and (2) the kinetic energies can be calculated:

Ekin,1 = 1
2Θ1ω

2
1

Ekin,2 = 1
2Θ2ω

2
2 + 1

2m2v2
2

Ekin,3 = 1
2m3v3

2.

(3)

The potential energies are calculated with the z-components
of (1)

Epot,1 = m1 g s1,z

Epot,2 = m2 g s2,z

Epot,3 = m3 g s3,z

(4)

and with (3) and (4) the Lagrangian function becomes

L =

3∑
i=1

(Ekin,i − Epot,i) . (5)

The work of the seat forces and the friction is defined as
follows:

Wd = d1ω1ϕ1 + d2(ω2 − ω1)(ϕ2 − ϕ1)

WSeat = FSeat,v s3,z + FSeat,h sin
(
ϕ1 − π

2

)
l1.

(6)

With the work of the knee and ankle torque

Wu = MAϕ1 +MK (ϕ2 − ϕ1) (7)

the overall work can be expressed

Q = Wu +WSeat −Wd (8)

and the equations of motion can now be computed using
the well known Lagrange’s equation

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= Q. (9)

The left side of the above equation corresponds to the left
side of the nonlinear function of equations of motion

M(q)q̈ + K(q, q̇) = Fu(q, q̇)u + Ff(q, q̇)fSeat (10)

except for the terms containing the friction d. q is [ϕ1 ϕ2]
T

,

u is [MA MK]
T

, and fSeat is [FSeat,v FSeat,h]
T

.

The matrix M can be obtained by differentiating the left
side of (9) with respect to q̈:

M =
∂

∂q̈

[
d

dt

(
∂L

∂q̇

)
− ∂L

∂q

]
. (11)

The input matrices Fu and Ff can be obtained in a similar
way:

Fu =
∂Q

∂u
, Ff =

∂Q

∂fSeat
(12)

and K results from:

K =
d

dt

(
∂L

∂q̇

)
− ∂L

∂q
−Mq̈ +

∂

∂q
Wd. (13)

The nonlinear state space description

ẋ = f(x) + gu(x)u + gf(x)fSeat
y = h(x)

(14)

finally follows with (11) – (13)[
q̇
q̈

]
=

[
q̇

−M−1 K

]
+

[
0

−M−1 Fu

]
u +

[
0

−M−1 Ff

]
fSeat

(15)



2.2 Superior Controller

For the system (15) presented above, a decoupling con-
troller can be derived using exact linearization as described
in Isidori (1995), for example. This controller represents
the “human brain” and provides an appropriate input u to
move the model from the sitting position to the standing
position. The derivation of the controller is straight for-
ward as the sum of the relative degrees δi equals the order
of the system n; hence, no zero dynamics are present.

Simulation results shown in this paper are calculated
using this controller; however, a detailed description is
omitted as it is not relevant for the proposed approach
of computing the joint torques.

2.3 Seat Forces

All joint torques should be zero in the sitting position.
The additional seat forces introduced in section 2.1 are
dimensioned such that this demand is met and that they
fade after a certain height hSO. This moment is called
“Seat-Off” and describes the point where the body leaves
the seat and all muscles have to carry the full body weight.

To fulfill these requirements, the seat forces are defined
as follows. The corresponding parameters are depicted in
Fig. 2.

FSeat,v =

{
cv (s3,z − hSO)

2
, for s3,z < hSO

0, for s3,z ≥ hSO
(16)

FSeat,h =

{
ch (s3,z − hSO)

2
, for s3,z < hSO

0, for s3,z ≥ hSO
(17)

with

cv =

(
1
2m2 +m3

)
g

(z3,0 − hSO)
2 (18)

ch =

(
1
2m1 + 1

2m2

)
g

(z3,0 − hSO)
2 arctan (ϕ1,0). (19)

ϕ1,0

ch
cv

z3,0 hSO

Fig. 2. Left : Model in sitting position; Right : Model in
Seat-Off position (gray) and standing position (black)

3. JOINT TORQUE ESTIMATION

This sections describes the joint torque estimation based
on inverse dynamics and measuring of the ground reaction
forces. These are the classic approaches to estimate the

joint torque for an active knee orthosis and will be used
as a reference for the new approach described in the next
section.

3.1 Inverse Dynamics

The formula to compute the input u from the measured
joint angles can easily be derived from (10):

u = Fu
−1
[
M(q)q̈ + K(q, q̇)− Ff (q, q̇)fSeat

]
. (20)

Obviously, the first and second derivatives of the joint
angles q are required to compute the joint torques u.
Typically, only the joint angles can be measured directly;
therefore, the derivatives have to be computed numerically.
With the joint angle signal usually being noisy, it is a
challenging task to derive a feasible signal for the joint
torques. Moreover, the seat forces fSeat or at least the
joint angles ϕi,0 in sitting position are required, too. These
could be estimated with a situation recognition algorithm,
for example.

3.2 Ground Reaction Forces

The ground reaction forces and the center of pressure can
be determined if two or more force sensors are attached
to the shoe sole. If the ankle angle is measured, too, it
is possible to compute the joint torques with a straight
forward approach. For a proper estimation of the joint
forces and torques, it is necessary to measure the shear
forces Fi,x in longitudinal direction of the foot in addition
to the normal forces Fi,z. The two (or more) measured
ground reaction forces can be summarized in the center of
pressure as seen in Fig. 3:

mFoot

FT,z

FT,x

FH,z

FH,x

sT sH

hA

FGRF,z

FGRF,x

sCoP

sCoM

Fig. 3. Ground Reaction Forces and Center of Pressure

FGRF,x = FT,x + FH,x (21)

FGRF,z = FT,z + FH,z (22)

sCoP = (FT,z sT − FH,z sH) / (FT,z + FH,z) . (23)

With the simplifications of section 2.1 and the free body
diagram depicted in Fig. 4, the ankle joint forces and
torques can be computed

FA,x = FCoP,x (24)

FA,z = FCoP,z −mFoot g (25)

MA = FCoP,x hA − FCoP,z sCoP +mFoot g sCoM. (26)

With these values, the ankle angle ϕ1, the mass m1,
and the length l1 of the shank, the knee torque can be
determined
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Fig. 4. Free Body Diagram of the human lower extremity
Left: Foot, Right: Shank

MK = MA + FA,x l1 sin(ϕ1)− FA,z l1 cos(ϕ1) + . . .

. . .+m1g
l1
2 cos(ϕ1)−Θ

(K)
1 ϕ̈A,

(27)

with Θ
(K)
1 being the moment of inertia of the shank with

respect to the knee joint. Note that the seat forces are not
required in order to determine the knee torque though the
ankle angular acceleration ϕ̈1 is. However, this term can
be neglected since the torque of inertia is small compared
to the other forces (see Fig. 7.) Therefore, no derivation of
the angular signal needs to be computed.

4. OBSERVER BASED JOINT TORQUE
ESTIMATION

As seen in the previous section, the correct estimation of
the joint torques strongly depends on the accurate mea-
surement of the ground reaction forces. A mismeasurement
not only affects the forces themselves, but also the center of
pressure as seen in (23). Both signals have a considerable
influence on the estimated joint torques. However, some
problems arise when using force sensors in the shoe sole:
While the distance between the two (or more) force sensors
is known, the exact distances between the sensors and
the ankle joint, sT and sH, might be uncertain. The same
applies for the vertical distance hA between the ankle joint
and the shoe sole. Moreover, the foot might move within
the shoe and therefore change these values, too.

That means the computed joint torques are flawed or
disturbed:

ũ = u + z. (28)

An observer can estimate these disturbances z and the
original signal can be restored if the estimated distur-
bances are substracted from the computed joint torques.

û = ũ− ẑ = u + z− ẑ. (29)

GRF ⇒ u

Observer

-

FGRF
sCoP
ϕA

ũ ũ = u + z

ẑ

û

q

Disturbances z

Fig. 5. Observer based joint torque estimation

The disturbances z can be considered as an additional
input to the model specified in section 2.1. The extended
state space description is as follows:

ẋ = f(x) + gu(x)u + gf(x)fSeat + e(x)z, (30)

and since the disturbances act on the control input,

e(x) = gu(x). (31)

It is assumed, that the disturbances are piecewise constant,
therefore:

ẋz = 0

z = xz.
(32)

4.1 Extended Kalman Filter

An extended state space description can be derived by
combining (30), (31) and (32):[

ẋ
ẋz

]
︸︷︷︸
ẋg

=

[
f(x) + gu(x)xz

0

]
︸ ︷︷ ︸

fg(xg)

+

[
gu(x)
0

]
︸ ︷︷ ︸
gg,u(xg)

u +

[
gf(x)
0

]
︸ ︷︷ ︸
gg,f (xg)

fSeat

q =

[
h(x)

0

]
︸ ︷︷ ︸
hg,q(xg)

z =

[
0

I xz

]
︸ ︷︷ ︸
hg,z(xg)

(33)

An extended kalman filter (EKF) is used for estimating
the states xg. The estimation equation is as follows:

˙̂xg = f(x̂g) + gg,uũ + gf,ufSeat + L(t)
(
q− hg,q(x̂g)

)
(34)

The observer matrix L is timevariant and derived by the
well known Riccati equation:

L(t) = P(t)CT(t)S−1

−Q = AT(t)P(t) + P(t)A(t)−P(t)C(t)S−1CT(t)P(t).
(35)

The matrices A(t) and C(t) are linearizations of the plant
and input vector fields:

A(t) =
∂ (fg + gg,f fSeat)

∂xg

∣∣∣∣
x̂(t)

C(t) =
∂gg,u

∂xg

∣∣∣∣
x̂(t)

(36)

and have to be computed online as well as the observer
matrix L(t). Note that again, the seat forces are required
for the computation of the joint torques.

5. SIMULATION RESULTS

5.1 Simulation Environment

The setup depicted in Fig. 6 is used for the evaluation
of the three different approaches. In addition to the joint
angles q, the ground reaction forces and the center of
pressure are also provided by the model as these signals
will be measured in the real orthosis as well. These three
signals are superimposed with white noise of different
intensities to emulate noisy sensor signals. Additional
signals can be imposed to simulate a movement of the
foot in the shoe, for example. Furthermore, the shear



force component of the ground reaction forces can be
suppressed.

To simplify matters, the three approaches will be named
GRF-estimator, for the computation of the knee torque
using ground reaction forces, ID-estimator for the com-
putation of the knee torque using inverse dynamics and
OBS-estimator for the new approach, respectively.

Due to noisy signals, it is necessary to filter the angles q be-
fore differentiating. Therefore, a third order state-variable
filter with a cut-off frequency of 40 Hz was inserted before
the ID-estimator.

Superior
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Lower Extremity
Model

GRF-Estimator

Observer

SV
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ID-Est.
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Fig. 6. Simulation Setup

As our orthosis enhances the strenght of the knee joint,
only the knee torques will be discussed in the following
section. However, all results apply for the ankle joint as
well.

The parameters for the simulation are chosen according
to the factors presented in Nigg and Herzog (1995), based
on a 100 kg subject. These values are referenced as “Ref.”
in table 1. Furthermore, the parameters were randomly
modified by up to ± 20 % and referenced as “Mod.”.
These modified parameters are used for the computation
of the joint torques and simulate a difference between the
model (20), (27), or (34) and the system (15) with the
reference parameters, which is always present in reality.

Table 1. Parameters

Ref. Mod. Unit Ref. Mod. Unit

m1 4.0 4.36 kg d1 0 0 Nms
rad

m2 10.3 11.35 kg d2 0 0 Nms
rad

m3 35.7 32.5 kg l1 0.5 0.55 m

J1 0.367 0.393 kg m2 l2 0.5 0.59 m

J2 0.551 0.585 kg m2 ϕ1,0 100 97.5 ◦

g 9.81 9.81 m/s2 ϕ2,0 5 4.76 ◦

The observer parameters are chosen as follows:

Q = diag
[
10 10 10 10 113 113

]
, S = diag

[
12 12

]
.

5.2 Simulation Results

For the first plot it is assumed that no parameter deviation
between the system and the models in the joint torque
estimators is present. That means the paramters “Ref.”
are used for the system as well as for the models.
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Fig. 7. Estimated knee torques; noisy signals

As expected, all three knee torque estimators produce
excellent results if the parameters of the models match
those of the reference. However, due to the filtering of the
angular signals, a significant phase lag occurs with the ID-
estimator. This signal is also noisier than the signals from
the other two estimators. The noise could be reduced by
decreasing the cut-off frequency of the state-variable filter,
though this would further increase the phase lag.

The signal from the ID-estimator would not be adequately
usable as an input for an active orthosis. Especially the
phase lag is a major disadvantage since it would cause the
additional torque at the knee joint to be asynchronous to
the user’s demand.

It can also be seen that the neglected torque of inertia in
the GRF-estimator does not have any significant impact
on the computed knee torque, as no deviation of the GRF-
signal from the reference signal is visible.

So far, the results were based on the presumption that the
measurement of all signals is only disturbed by zero mean
noise and that the shear force component of the ground
reaction forces could be measured. Now the modified
parameters (“Mod.”) will be used for the models, except
for the initial angles ϕi,0, which are held at the reference
values. Also, the shear force component will be removed
from the ground reaction forces. For better illustration,
no noise is implemented; however, the state-variable filter
is still present, since it would be necessary with a noisy
signal.

As expected, the signal from the GRF-estimator does now
not match the reference signal as well as before. This is
mainly due to the missing shear force component. The
deviation of the signal during the Sit-to-Stand movement
from the reference is not a problem for an active orthosis
as this would only produce a slightly higher or lower
support torque that the user could easily compensate. The
bigger problem, however, is the non-zero estimate prior to
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Fig. 8. Estimated knee torques; deviating parameters

the STS movement which would cause an uncomfortable
and undesired additional torque at the knee joint during
sitting.

The corrected signal from the OBS-estimator, though, has
a higher deviation from the reference signal at the max-
imum but converges better to the reference signal there-
after, while the signal from the GRF-estimator deviates
considerably. Moreover, the OBS-estimator produces zero
torque during sitting since the missing shear force compo-
nent is estimated as a disturbance and compensated.

To simulate a movement of the foot inside the shoe, a step
signal of 20 mm is added to the center of pressure sCoP

after 1 s of simulation time.
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Fig. 9. Estimated knee torques; step of 20 mm in sCoP at
a simulation time of 1 s

The impact of the mismeasurement of the ground reaction
forces can be seen at the end of the Sit-to-Stand movement.
Here, the GRF-estimator produces a non-zero estimation
of the knee torque, which is undesirable and might be
uncomfortable or even painful for the user if used as
an input for an active orthosis. The OBS-estimator, on

the other hand, can compensate the mismeasurement and
produces a zero torque estimate of the knee torque.

Finally, also the initial angles ϕi,0 are modified. It can be
seen that all estimators produce a non-zero estimate prior
to the STS transfer. However, the OBS estimator still has
a zero torque estimate in the standing position.
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Fig. 10. Estimated knee torques; modified initial an-
gles ϕi,0 and step of 20 mm in sCoP

The simulation shows that an exact measurement of the
initial angles in the sitting position is necessary if the OBS-
estimator is chosen. However, a zero torque support in the
standing position can be achieved even if the measurement
of the ground reaction forces is disturbed.
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