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Abstract— The seven degree of freedom arm model is widely used
in robotics, computer graphics, and much more. For wearable robotic
systems, which are subject to joint limits, it is desirable to relate the
joint limits to the redundantly of the system. A brief review of the
arm model, redundant space and kinematics is presented. Following
this review a closed form method is developed calculate the interval of
the swivel angle (which characterizes the redundancy) that produces
arm configurations that stay within joint limits.

I. INTRODUCTION

Integrating capabilities of humans and robotic-machines into a
unified system offers numerous opportunities for developing a new
generation of assistive technology. The human machine interface
(HMI) is a critical part of these system and for upper limb
exoskeletons such as [1] proper modeling of the arm is a critical
step. The seven degree of freedom (DoF) model is widely used for
this purpose. Korein [2] was one of the first to study this model for
the human arm and since then, many other researches have used it
to study computer graphics [3] [4], redundant robots [5], upper limb
exoskeletons [6] [7] [1] [8], biomechanics [9] [10] [11], and much
more. The seven DoF model neglects translational and rotational
motion of the scapula and clavicle but it gives a good combination
of motion accuracy while reducing the model complexity. This
model is redundant. Because exoskeletons have joint limits it is
useful to relate the redundancy in the system to the joint limits of
the device. This paper present a method to determine the range of
the redundant degree of freedom that insures valid joint angles for
the device.

II. HUMAN ARM MODEL

The upper limb is a complex structure made up of rigid bone and
soft tissue. Although much of the complexity is difficult to model,
the overall arm movement can be represented by a simpler model
composed of rigid links connected by joints. Three rigid segments,
consisting of the upper arm, lower arm and hand connected by
frictionless joints make up the simplified model. Figure 1(a) shows
the rotation definitions of the model. The origin is located at
the center of the shoulder joint. This joint has three intersection
rotation and is responsible for shoulder abduction-adduction (abd-
add), shoulder flexion-extension (flx-ext) and shoulder internal-
external (int-ext) rotation. The upper and lower arm segments are
attached by a single rotational joint at the elbow, creating elbow flx-
ext. Finally, the lower arm and hand are connected by a three axis
spherical joint resulting in pronation-supination (pron-sup), wrist
flx-ext, and wrist radial-ulnar (rad-uln) deviation.
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Fig. 1. (a) Joint rotation definition for upper limb model. (b) The extra
degree of freedom of the arm is defined by a rotation axis that goes from the
shoulder to the wrist. (c) The shoulder, elbow and wrist form the triangle
PsPePw . (d) A coordinate system allows the parameterizations of the elbow

III. THE EXTRA DEGREE OF FREEDOM

The seven DoF model is redundant, knowing the position and
orientation of the hand does not fully specify the arm configuration.
For an exoskeleton device where the entire arm is supported by the
mechanism, knowing the full configuration of the arm is important.
By additionally specifying the position of the elbow, the arm
configuration is fully defined. With the position/orientation of the
hand specified, it is possible to parameterize the elbow position as
a function of a single variable. The arm creates a triangle with one
point at the shoulder (Ps) one point a that the elbow (Pe) and the
last point at the wrist (Pw). Both the shoulder and wrist joints are
spherical, and allow rotation of Pe around the vector (Pw − Ps)
without changing the orientation or position of the hand [Fig. 1(b)].

Creating a local coordinate system at the center of the elbow
circle (Pc), gives a reference to measure the swivel angle (φ) of the
elbow. First create a normal vector that points in the same direction
as (Pw − Ps).

~n =
Pw − Ps
||Pw − Ps||

(1)

Next project a vector onto the plane perpendicular to ~n and
normalize. ~u = ~a−(~a·~n)~n

||~a−(~a·~n)~n|| where ~a can be selected as any vector.
Badler and Torlani [12] suggest the selection of ~a to be the −~z
vector. To create the last vector of the coordinate system, take the
cross product of ~n and ~u, (~v = ~n × ~u). Vectors ~n, ~u and ~v form
an orthonormal coordinate system. Where ~u and ~v are in the plane
of the elbow circle [Fig. 1(d)]. The the radius (R) and center (Pc)
of the circle are easily found through geometry.

R = U sin(α) (2)

Pc = Ps + U cos(α)~n (3)

cos(α) =
L2 − U2 − ||Pw − Ps||2

−2U ||Pw − Ps||
(4)

Where U and L are the length of the upper and lower arm segments
[Fig. 1(c)]. Now the position of the elbow can now be expresses as
a parametrization of φ [13].

Pe(φ) = R [cos(φ)~u+ sin(φ)~v] + Pc (5)



It is also possible to solve for φ given Pe. First project Pe −Ps
onto the plane of the elbow circle ~pe = [(Pe −Ps)− (~n~nT )(Pe −
Ps)]. Then:

φ = atan2
[
~nT (~u× ~pe) , ~uT ~pe

]
(6)

IV. FORWARD KINEMATICS

Using the product of exponentials convention [14], [15] the
forward kinematics are:

T1T2T3T4T5T6T7gst = gd (7)

with Ti =

[
Ri Pi
0 1

]
,where Ri is the 3 × 3 rotation matrix

about the axis ~ωi and Pi equals (Pqi − RiPqi ), when Pq is a
point that the axis of rotation passes through. For the arm model:
~ω1 = [1, 0, 0]T , ~ω2 = [0, 1, 0]T , ~ω3 = [0, 0, 1]T , ~ω4 = [1, 0, 0]T ,
~ω5 = [0, 0, 1]T , ~ω6 = [0, 1, 0]T , ~ω7 = [1, 0, 0]T and Pq1,2,3 =
[0, 0, 0]T , Pq4 = Pe0 , Pq5,6,7 = Pw0 with Pe0 = [0, 0,−U ]T ,
Pw0 = [0, 0,−U − L]T

V. INVERSE KINEMATICS

Equation (7) has seven unknowns and only six independent
equations. To solve for the inverse kinematics with a closed form
function an additional constraint must be imposed. The following
function adds one additional independent equation when paired with
eqn. (7)

T1T2Pe0 = Pe(φ) (8)

The two systems together are fully constrained. We will decompose
(7) and (8) into one of two subproblems whose solutions are readily
available.

A. Subproblem 1

Given the transformation matrix T (θ) Find θ such that:

T (θ)P0 = Pd (9)

this corresponds to rotating an initial point P0 about a given axis
until it is coincident with Pd the desired final position. The soultion
to this problem is:

θ = atan2[~ωT (~u× ~v), ~uT~v] (10)

~u = (P0 − Pr)− ~ω~ωT (P0 − Pr) (11)

~v = (Pd − Pr)− ~ω~ωT (Pd − Pr) (12)

Where ~ω points in the direction of the rotation axis and Pr is a
point the axis passes through. For the derivation refer to [14], [15]

B. Subproblem 2

Given the transformation matrix Ti(θi)Tj(θj) where the rotation
axis of Ti and Tj intersect, find θi and θj such that:

Ti(θi)Tj(θj)P0 = Pd (13)

this corresponds to rotating an initial point P0 about the rotation
axis of Tj by θj then about the rotation axis of Ti by θi, so that the
final location of the point is coincident with Pd the desired final
position. The solution to this problem is found by first finding Pg .

Pg = α~ωi + β~ωj ±
√
γ(~ωi × ~ωj) + Pr (14)

α =
(~ωTi ~ωj)~ω

T
j (P0 − Pr)− ~ωTi (Pd − Pr)

(~ωTi ~ωj)
2 − 1

(15)

β =
(~ωTi ~ωj)~ω

T
i (Pd − Pr)− ~ωTj (P0 − Pr)

(~ωTi ~ωj)
2 − 1

(16)

γ =
||(P0 − Pr)||2 − α2 − β2 − 2αβ~ωTi ~ωj

||~ωi × ~ωj ||2
(17)

where ~ωi and ~ωj point in the direction of the rotation axes of Ti
and Tj and Pr is the point where the axes intersect. There may be
zero, one or two real solution for Pg depending on γ. If solutions
exist, then θi and θj can be found with subproblem one

Ti(−θi)Pd = Pg (18)

Tj(θj)P0 = Pg (19)

For the derivation of this solution refer to [14], [15].

C. Decomposition of the Forward Kinematics

First θ4 and can easily be solved by application of the law of
cosine.

θ4 = π − L2 + U2 − ||w − s||2

2LU
(20)

Equation (8) is already in the form of (13) with P0 = Pe0 and
Pd = Pe(φ), and an immediate solution for θ1 and θ2 is available.
Note that (13) has two solutions. For a natural arm configuration
the negative sign in (14) should be chosen. Next solve for θ3.
First premultiply equation (7) by (T1T2)−1 and post multiply by
g−1
st Pw0 . Since Pw0 is an eigne vector of T5, T6 and T7 with eigne

value one, T5T6T7Pw0 = Pw0

T3(T4Pwo) = (T1T2)−1gdg
−1
st Pw0 (21)

This is in the form of (9) when P0 = (T4Pw0) and Pd =
(T1T2)−1gdg

−1
st Pw0 . Solving for θ5 and θ6, being by premultiply-

ing equation (7) by (T1T2T3T4)−1 and post multiply by g−1
st P7.

where P7 = [1, 0,−U − L]T which is an eigne vector of T7 with
an eigne value of one, so T7P7 = P7

T5T6P7 = (T1T2T3T4)−1gdg
−1
st P7 (22)

This is now in the form of (13) when P0 = P7 and Pd =
(T1T2T3T4)−1gdg

−1
st P7. Equation (13) has multiple solution. The

negative sign in (14) should be chosen. Finally solve for θ7. Begin
by premultiplying by (T1T2T3T4T5T6)−1Ps and post multiplying
g−1
st Ps

T7Ps = (T1T2T3T4T5T6)−1gdg
−1
st Ps (23)

this is in the form of (9) where P0 = Ps and Pd =
(T1T2T3T4T5T6)−1gdg

−1
st Ps

VI. JOINT LIMITS

Wearable robotic system are subject to joint limitation and it is
desirable to relate the swivel angle to the joint limits. This can be
accomplished by calculating the values of φ where the joints are at
their limits to determine boundaries for the intervals of valid swivel
angles. Due to the symmetry of the model, joints five, six and seven
are found in a similar manner as joints one, two and three. Therefore
only a treatment of the first three joints is presented.

Step 1: Calculate β

Depending on the desired location of Pw there are three different
types of solution sets. To determine which set the problem is in,
calculate β, the angle between the the vectors ~n and ~ω1:

β = acos(~ωT1 ~n) (24)

The three case, shown in fig. 2, correspond to when β > α, β = α,
and β < α. The first case (β > α) is the most common and occurs
when the first rotation axis (~ω1) is outside the elbow circle. The
next case (β = α) is the least common and occurs when ~ω1 pierces
the perimeter of the elbow circle. In this configuration there is a
value of φ that puts the device into a singular position. The last
case (β < α) occurs when ~ω1 is inside the elbow circle.
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Fig. 2. Planes A and B are normal to the vectors ω2 and ω1 respectively
and both pass through the point Ps. (a) When β > α the range of θ1 is
the angle between the lines that pass through Ps and are tangent to the
elliptical projection of the elbow circle. The range of θ2 is equal to 2α.
(b) When β = α the point Ps is on the projection of the elbow circle and
the angle of the tangent lines is π, note that the device will be singular for
some value of φ in this configuration. The range of θ2 is 2α. (c) When
β < α the point Ps is inside the projection of the elbow circle and the lines
passing through this point will never be tangent to the ellipse. The range of
θ1 is 2π. The range of θ2 will be α+ 2β − α = 2β.

Step 2: Calculate Joint Minimum and Maximum

For a particular Pw the range of each joint as φ rotates in the
interval [0, 2π] will be equal to 2π or less then or equal to π. The
exact minimum and maximum can be computed by establishing a
reference angle within the joints range of motion and calculating
the deviation from that reference.

Reference Angle: A convenient reference angle for θ1 and θ2 is
the angle formed by them when the elbow is located at Per =
(U ~n). This corresponds to when the elbow is on the line that
is colinear with the one going from Ps to Pw. The references
(θ1r ,θ2r ), can be found by solving the following equation:

T1T2Pe0 = Per (25)

This equation is in the form of (13) and can be immediately solved.
This has multiple solutions, chose the negative sign in (14) to be
consistent with the earlier selections. The reference angle θ3r will
be π

2
when Pwx < 0 and −π

2
when Pwx ≥ 0.

Joint Range: The range of each joint depends on the value of β.
The value of the range can be determined through geometry (fig. 2).
∆θ1 is the angle of the line that passes through Ps and is tangent to
the elliptical projection of the elbow circle onto the plane normal
to ~ω1. ∆θ2 is the angle of between the line Per , and ∆θ3 (not
pictured) is the angle between the projection of an ellipse onto the
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Fig. 3. Intersection of joint limit L with θ, the dashed black and solid red
lines represent the multiple possible solution for the inverse problem. (a)
If the joint range is equal to 2π both the valid and invalid solution set for
θ will interest the joint limit L exactly once each. In this case you must
chose the valid solution. (b) If the joint range is less then 2π there are three
possible intersection cases. 1)The joint limit L1 intersects the valid solution
for θ in two places (possibly a double root). This makes 2 real and valid
solution. 2)The joint limit L2 dose not intersect either solution. This makes
two imaginary solutions. 3)The joint limit L3 intersects the invalid solution
for θ in two places. This makes two real but invalid solutions.

plane normal to ~ω3 in a similar manner to ∆θ1. when β > α

∆θ1 = ±atan

√ R2
1maj

H2
1 −R2

1min

 (26)

∆θ2 = ±α ∆θ3 = ±π (27)

Where H1 = ||Pc − ~ωT1 ~ω1Pc|| which is the magnitude of the
projection of Pc onto a plane normal to ~ω1, R1maj = R and
R1min = Rcos(β) are the major and minor axes of the ellipse(fig.
2(a)). For ∆θ3 Ps is inside the projection of the ellipse and no line
is tangent. When β = α (fig. 2(b))

∆θ1 = ±π
2

∆θ2 = ±α ∆θ3 = ±π
2

(28)

In this case the point of reference for both ellipses are on the ellipse
and the tangent line is π

2
. When β < α (fig. 2(c))

∆θ1 = ±π ∆θ2 = ±α∓ (2β − α) (29)

∆θ3 = atan

(√
R2

3min

H2
3 −R2

3maj

)
(30)

Where H3 = Wsin(α) +
[
Wsin(β)
2cos(α+β)

− Wsin(β)
2cos(α−β)

]
. R3maj =[

Wsin(β)
2cos(α−β) + Wsin(β)

2cos(α+β)

]
and R3min = R3maj

√
1−

(
sin(α)
cos(β)

)2
.

the top sign in ∆θ2 will used when Pwx > 0 otherwise the bottom
sign is selected.

Step 3: Joint Limit Intersection

Determining the value(s) of φ that result in the joint being equal
to the joint limits (Li), will establish the boundaries for the interval
of φ that will result in valid joint configurations. There will be four
solutions for each joint (two for the maximum and two for the
minimum limit), but not all solutions will be valid.

Valid Solution: There are four possible case. The first case is
when the range of θ is 2π. In this case there will always be
one real, valid solution, and one real, invalid solution for each
limit. The invalid solution represents the intersection with θ from
the unselected IK solutions from eqn. (7) and (8). This case is
represented in fig. 3(a). The other three cases are when the range
of θ is less then or equal to π. Then, there may be 2 real
(possibly double root) valid solutions, 2 real invalid solutions, or
2 imaginary invalid solutions. The two real invalid solutions are
from the intersections of θ with the unselected IK solutions, and the



imaginary solution represent when neither the selected or unselected
IK solution intersect with Li. Figure 3(b) shows the last three cases.
If the joint limit is within the range of the joint:

(θir −∆θi) ≥ Li ≥ (θir + ∆θi) (31)

then the solutions are valid. Once it is determined how many of the
solutions are valid the values need to be calculated.

Calculate Intersection Values: To calculate φ such that θi is
equal to Li set θi equal to Li and solve eqn. (7). This equation
is not redundant with one joint angle selected. For the first three
joints, we will begin by decomposing (7) by postmultiplying by
g−1
st Pw0 . Since Pw0 is an eigen vector of the last three joints with

an associated eigen value of one, (7) becomes:

T1T2T3T4Pw0 = gdg
−1
st Pw0 = Pw (32)

This equation can further be decomposed to the form of (13) once
θi is set to Li, which will allow for the immediate solution of θ1Li

and θ2Li which are the angles of joints one and two at joint limit
Li. Then φLi can be solved using eqn. (8) and (6).
L1 - Given the joint limit L1, the matrix T1 is constant. By

premultiply (32) by T−1
1 we get:

T2T3(T4Pw0) = (T−1
1 Pw) (33)

Which is in the form of (13). Where P0 = (T4Pw0), Pd =
(T−1

1 Pw), The rotation intersection is Ps and the rotation axes
are ~ω2 and ~ω3. If β ≥ α then both solution to (33) will be valid if
eqn (31) is satisfied for i = 1. If β < α, then the positive sign in
(14) represents the valid solution.
L2 - Given the joint limit L2, the matrix T2 is constant. By

preforming a change of coordinates on T2, eqn. (32) can put in the
form of (13)

T1T23(T2T4Pw0) = (Pw) (34)

T23 = T2T3T
−1
2 (35)

Where P0 = (T2T4Pw0), Pd = Pw, the intersection location is Ps
and the rotation axis are ~ω1 and R2~ω3. If eqn. (31) is satisfied for
i = 2, then both solutions to (34) will be valid.
L3 - Given L3 the matrix T3 is constant and eqn, (32) is already

in the form of (13).

T1T2(T3T4Pw0) = (Pw) (36)

Where P0 = (T3T4Pw), Pd = (Pw), The rotation intersection is
Ps and the rotation axes are ~ω1 and ~ω2. If β ≤ α then both solution
to (33) will be valid if eqn (31) is satisfied for i = 3. If β > α,
then the negative sign in (14) represents the valid solution.

After the intersection are found that define intervals of φ, we
must determine which intervals are invalid, and which of the valid
intervals we would like to work in.

Step 4: Intervals

For each joint there is up to four valid solutions for φLi. These
solutions mark the boundary between the intervals of φ that result in
valid joint configurations and those that result in joint configurations
that are out side joint limits. Because φ wraps around at 2π the
number of intervals will be equal to the number of valid solutions
for φLi. The intervals will alternate between valid and invalid, so
testing one value of φ is enough to determine which of the intervals
are valid. Taking the intersection of every valid set for each of the
six joints, results in a single valid set of intervals of φ where all
joints limits are mutually satisfied (fig. 4). Because the functions
are continuous, it is not possible to jump from one interval to

0 2pi
Swivel

J1

J2

J3

Fig. 4. Value of φ that produce valid joint limits (solid blue) and invalid
joint limits (dashed red). The valid interval of the swivel angle is the
intersection of the valid intervals of φ for each joint.

another unless you are in a singular position. After selecting an
initial position the robot is restricted to live in a particular interval
within the set.

VII. DISCUSSION

This paper presented a review of a commonly used seven
DoF arm model. This was followed by a brief treatment of the
redundant space and kinematics. A four step process consisting of
1) calculating β 2) calculating joint minimum and maximums 3)
Finding joint limit intersections and 4) choosing valid intervals is
developed as a closed form method to find the range of the swivel
angle that results in all joint limits being satisfied.
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