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Executive Summary 
This document represents the final report of the study “Non invasive brain-machine interfaces” performed by 
the Interdepartmental Research Center “E. Piaggio” of the University of Pisa within the ARIADNA 
framework of activities promoted by the European Space Agency (ESA). Contents of the report are 
organized as follows. The first part presents a literature survey on the state of the art of brain-machine 
interfaces (BMI), with a particular emphasis on the non-invasive types. In order to discuss potential benefits 
deriving from the use even of additional interfaces, conceived as complementary and auxiliary for BMI, the 
second part reviews different types of non-invasive man-machine interfaces. Their working principles, 
implementations, possible applications and typical features are discussed. Such additional interfaces are 
considered as a useful help, especially for multi-task activities. The report then presents a selection of the 
most promising and feasible non-invasive BMI concept for space applications, as well as the most interesting 
man-machine interface concepts capable of working as auxiliary and complementary tools. In particular, 
selected concepts consist of EEG-based BMI, to be eventually used in combination with interfaces based on 
speech recognition, EMG activation and motion capture and gesture recognition. The final part reports 
potential fields of space applications for such types of interfaces. 
 
Keywords: brain-machine interface, brain-computer interface, non-invasive interface, man-machine 

interface, EEG, fMRI, MEG, EMG, tele-operation. 
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1. Introduction 
Brain-Machine Interfaces (BMI) or Brain-Computer Interfaces (BCI), also 
referred to as Neuro-Prostheses, are conceived as technological interfaces 
between a machine (usually a computer) and the brain of a user. They should 
permit the use to perform a certain task, usually without implementing any 
motor action. This implies that neural impulses generated by the user’s brain 
are detected, elaborated and utilised by the machine, approximately in real-
time, to perform definite tasks. As an example, information can be processed 
and employed to control mechanical systems (e.g. actuators) or electrical 
devices (e.g. electronic equipment).  
Brains are characterised by every property that engineers and computer 
scientists detest and avoid. They are chaotic, unstable, non-linear, non-
stationary, non-Gaussian, asynchronous, noisy, and unpredictable in fine 
grain, yet undeniably they are among the most successful ‘devices’ that 
evolution produced.  
A great demand for brain-machine interfaces is arising nowadays, pushed by 
several promising scientific and technological recent results, which are 
encouraging the concentration of efforts in such a direction. The possibility 
of measuring, processing and decoding brain activity, so that to interpret 
neuronal signals, is regarded as the challenging possibility of bypassing 
damaged neural and/or motor structures in patients affected by motor 
disorders and paralyses. 
Accordingly, BMI might represent advantageous systems of assistance for 
such patients, permitting them either to perform rehabilitation, or to 
communicate, or to receive a continuous assistance during their daily 
activities. The brain control of devices and systems of different type, such as 
computer virtual keyboards, home electronic equipment or aid system (e.g. 
wheel chairs), certainly represents one of the main goals of this discipline. 
Moreover, neuronal signals captured from the brain activity can be used for a 
different purpose: instead for controlling devices or systems deputed to 
perform external actions, they can be employed to trigger functional 
electrical stimulations (FES) of muscles or nerves. This is aimed at 
bypassing degenerated or interrupted biological electrical routes in patients 
being affected by neural disorders or degenerations, or having suffered from 
fatal accidents (e.g. spinal injuries). In such a case, the intention is to allow 
the brain to use a healthy portion of its own body as the effector of desired 
motor tasks. 
In addition to biomedical applications, the availability of reliable, efficient 
and non-invasive brain-machine interfaces may provide advantages to 
different disciplines. The space field is one of them. In fact, as identified by 
ESA, as an example extra-vehicular activities may be performed by robotic 
systems teleoperated by astronauts by means of non-invasive brain-machine 
interfaces. Such interfaces may be used also to perform multi-task 
operations. However, in this case, it can be expected that an even higher 
level of reliability and efficiency can be obtained, by using not only brain-
machine interfaces, but also by completing them with auxiliary systems, 
such as muscle-brain interfaces, as it is discussed further on in this study. 
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The concept of ‘reading’ the brain to detect intended actions and to use 
extrapolated signals to perform tasks has been developed so far in several 
ways by adopting different technical and methodological approaches and 
achieving different results. The main purposes of this work consist in 
providing a literature review on BMI, in the identification of the most 
promising state-of-the-art concept for non-invasive interfaces, and in the 
proposal of a suitable future time scale for the development of such an 
interface. Moreover, this study includes an additional part, which is only 
indirectly related to BMI. In fact, it is opinion of these investigators that a 
considerable benefit for a non-invasive BMI employed in certain types of 
tasks may derive from the concomitant use of an auxiliary interface, such as 
an EMG-based interface. This is particularly evident for certain types of 
multi-task activities, as it is going to be discussed in the following. 
Accordingly, this study reports additional information and discussions 
related to the development even of other types of non-invasive man-machine 
interfaces as auxiliary systems for BMI. 
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2. Brain-Machine Interfaces (BMI): a brief 
overview on the state of the art 
A great deal of efforts in neuroscience, robotics, and computer science are 
today spent by many research groups to develop BMI. In order to provide a 
glance at this vast field, it can be useful to mention here at least some 
relevant examples [1-24], briefly reported below.  

2.1 Non-Invasive Brain-Machine Interfaces 
Experiments in humans utilizing modern invasive and non-invasive brain 
imaging technologies as interfaces have been conduced. The most 
commonly studied potential interface for humans has been 
electroencepalography (EEG), mainly due to its fine temporal resolution, 
ease of use, portability, and cost of set-up. However practical use of EEG as 
a BCI requires a great deal of user training and is highly susceptible to noise. 
In 2004 scientists of the Fraunhofer Society utilized neural networks to shift 
the learning phase from the user to the computer and thus recorded 
noticeable results within 30 minutes of training. Magnetoencephalography 
(MEG) and even functional magnetic resonance imaging (fMRI) have both 
been used successfully as rudimentary BCIs, in the latter case allowing two 
users being scanned in real-time to play Pong against one another by altering 
their haemodynamic response through various biofeedback techniques. 
Recent studies have shown that imagining the execution of a particular 
sensori-motor task gives rise to almost the same pattern of neuronal activity 
in central nervous system as actual performance of the sensori-motor task. 
The state of the art is that correct decoding of EEG signal is possible to a 
very large extent. It is still not good enough for applications since the 
erroneous responses in a remaining 10% can lead to completely wrong 
actions. The main challenge in BCIs EEG-based is to identify the particular 
EEG signal components (features) that can be successfully used as control 
commands (Fig. 2.1). 
 

 
FIG 2.1: General BCI architecture (from [12]). 
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The main, but not unique, problem in these approaches is that single trial 
EEG data is very noisy, with data stemming from many sources. The 
characteristic responses to specific events are usually obtained by averaging 
signals from many trials, like in evoked signals. To successfully match 
single trial data, the relevant source of the signal needs to be separated out 
before it can be matched to average templates. 
In matching, a similarity measure is applied to compare the signal trial with 
each template. This measure is still easily distorted by signals from non-
relevant parts of frequency spectrum. After matching, a vector of similarity 
measurements for the different channels and the different templates needs to 
be classified into a category judgment. Optimal methods need to be found 
that do not over-fit data. 
A rating of confidence of the judgment is much needed as outputting a 
wrong symbol may have a high cost in some situations. This aspect is 
lacking in all procedures proposed in literature so far. The system should 
work only in regions of high confidence. 
EEG electrodes may bring many practical problems, like sensitivity to 
electromagnetic radiation, difficulty to place and position, varying 
conductance, usually a limited number of channels, and discomfort when 
used for a longer time. 
There are few new concepts in the design of EEG measurement systems like 
miniaturized, battery-powered front-end close to patient, with fiber optic 
data transfer to the signal processing PC (see [7],[14]), or use of active 
electrodes, which have the property that the first amplifier stage is integrated 
within the electrode. 
A group of the most important authors in the field of non-invasive BCIs gave 
the list of goals important for future progresses of these systems [15]. Future 
progress will depend on:  

1) identification of those signals, whether evoked potentials, 
spontaneous rhythms, or neuronal firing rates, that users are best 
able to control; 

2) development of training methods for helping users to gain and 
maintain that control; 

3) delineation of the best algorithms for translating these signals into 
device commands; 

4) attention to elimination of artefacts as electro-myographic and 
electro-oculographic activity; 

5) adoption of precise and objective procedures for evaluating BCI 
performance. 

At Graz University, the group of Pfurtscheller is one of the leading groups in 
Europe. They have extensive experience in recording and analyzing EEG 
signals with the aim to use them to restore functionality in patients who lost 
the ability to move their limbs (tetraplegia). They are also doing basic 
research, focusing on beta and gamma synchronization of cortical EEG 
activity. These oscillations in the frequency range between 15 and 70 Hz 
provide information about attention for perception and action. But the signal-
to-noise ration in this frequency range is not high enough to use these signals 
for reliable on-line control. Their ultimate work [1] is aimed at assessing the 
feasibility of walking through a virtual city by using motor imagery. 
Therefore they combined EEG based BCI with Virtual Reality (VR) 
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technology. A BCI transforms bioelectrical brain signals, modulated by 
mental activity (e.g. imagination of hand movement) into a control signal. 
This signal is used to walk forward/backward or to remain stationary inside a 
virtual city (Fig. 2.2). They demonstrated that the combination of a BCI with 
VR as a feedback means forms a feasible system for navigation in very 
simple virtual environments. 
 

 
FIG 2.2: Schematic model of a combined framework, where the BCI system  consists 
of the EEG as input, extracts and classifies EEG-parameters and calculates a 
control signal, which is sent to the VR system and influences there the visual 
feedback (from [1]). 
 
Ultimate work in the field of EEG BCIs is made by the group from Taipei, 
Taiwan [2]. They used motor imagery electroencepalography, which 
embodies cortical potentials during mental simulation of left or right finger 
lifting tasks, to provide neural input signals to activate a BCI. The 
effectiveness of such an EEG based BCI system relies on two indispensable 
components: distinguishable patterns of brain signals and accurate classifiers 
(Fig. 2.3). 
 

 
FIG 2.3:Timing of two consecutive 10-s trials of the motor imagery task. Each trial 
began with 1 s presentation of random noise during which subjects were allowed to 
blimk eyes(A).The subject was then instructed to stare at the fixation cross in the 
center of the monitor at 2 s and started to image right of left index finger lifting right 
after he\she heard an acoustic cue “beep”(with frequency 1kHz and 10 ms duration) 
at 5 s (B).Signals from 3 s to 10 s (C) in each trial (excluding bad epochs) were 
extracted to construct paired contralateral and ipsilateral rebound maps (from [2]). 

 
They extracted two neural features termed contralateral and ipsilateral 
rebound maps, by removing artefacts from motor imagery EEG based on 
Independent Component Analysis (ICA). Results showed that, with the use 
of ICA, recognition rates for four classifiers (fisher linear discriminant 
(FLD), back propagation neural network (BP-NN), radial-basis functional 
neural network (RBF-NN) and support vector machine (SVM)) significantly 
improved (all classifiers gave rates higher than 70%). 
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Fundamental to effective BMI and neuroprostheses design is an 
understanding of how sensory and motor information are encoded, integrated 
and adapted by the nervous system. There are two current theories of 
sensorimotor integration which posit that neural information may be encoded 
centrally as an “internal model” of the environment or as a stochastic state-
space model that modulates the activity of spiking neurons. Underlying both 
theories is a possible role for Bayes’ rule, as suggested by recent findings. In 
fact, it has been reported [3] that the brain may employ Bayesian internal 
models during certain types of sensorimotor learning, in order to optimize 
task-specific performance. Moreover, it has been recognised that the 
emergent activity of certain neural ensembles may be modelled as joint 
Bayesian point processes. These emerging concepts of neural signal 
processing have far reaching implications, from rehabilitation engineering to 
artificial intelligence. Because of the random variability of neuronal firing, 
sensory and motor signals are intrinsically stochastic in nature even when the 
environment is static. Bayesian learning and estimation may represent a 
kernel of human intelligence. 
Steady-state visual evoked potentials (SSVEPs) are recorded from scalp over 
visual cortex reflecting visual information processing in the brain when the 
stimulation repetition frequency is higher than 6 Hz. A SSVEP-based BCI 
[4], applied by the group from Bejing University (China), has, as a potential 
advantage, a high information transfer rate. However, individual difference 
greatly affects its practical applications. This group presented the method of 
lead selection to improve the applicability of a SSVEP-based BCI system. 
ICA is employed to decompose EEGs over visual cortex into SSVEP signals 
and background noise. Optimal bipolar lead is selected by comparing signal 
correlation and noise correlation between different channels. The system 
with one optimal bipolar lead reached an average transfer rate about 42 
bits/min. It has also been successfully applied to an environmental controller 
for motion-disabled.  
A very important event in the field of EEG-based BCIs occurred in 2003, 
when it has been organized the BCI Competiton 2003 [5], with the aim to 
evaluate the current state of art. Signal processing and classification methods 
are essential tools in development of improved BCI technology. Four 
laboratories well versed in EEG-based BCI research provided six data sets in 
a documented format. Those data sets and their descriptions where available 
on the Internet. Researchers worldwide tested their algorithms and competed 
for the best classification result (Fig. 2.4). The data-sets covered slow 
cortical potentials, mu-rhythm, P300, motor imagery and finger tapping. 
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FIG 2.4: Table of winning teams of the BCI Competition 2003 for all competition 
data set (from [5]) 

 
The neuroinformatics group from Bielefeld University (Germany) proposed 
an algorithm [6] based on Support Vector Machines (SVM) to analyze EEG 
data from the P300 speller BCI paradigm. The oddball paradigm teaches that 
rare attended stimuli are accompanied by a positive deflection in the EEG 
after about 300 ms. This so-called P300 component is exposed by nearly 
every human being and is therefore independent of training of participants. 
They evaluated the performance of this technique and achieved high transfer 
rates up to 97.57 bits/min (47.26 bits/min). It is the highest bit rate for EEG-
based BCIs that we found in literature. They also investigated generalization 
ability of classifier, obtaining transfer rates up to 61.04 bits/min. 
SVM are also the kernel of work made by the German group [10]. For 
classifying EEG signals, they propose the use of the state-of-the-art feature 
selection algorithms Recursive Feature Elimination and Zero Norm 
Optimization, which are based on training of support vector machines 
(SVM). They adapt the methods for the purpose of selecting EEG channels, 
showing that for a motor imagery paradigm number of used channels can be 
reduced significantly without increasing classification error. 
Another SVM-based approach is made by a Swiss group [12]. They 
presented a method for classifying EEG signals based on the information 
content of their correlative time-frequency-space representation (CTFSR). A 
SVM kernel is proposed that can be calculated in the time domain while it 
computes a similarity measure in the CTFSR space (Fig. 2.5). 
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FIG 2.5: BCI scheduling (from [12]). 

 
The group from LA University (USA) implemented a neural interface upon 
TinyOS-based sensing and communication platform [7]. The system 
amplifies, digitally encodes and transmits (by telemetry) two EEG channels 
of neural signals from an un-tethered subject to a remote gateway which 
routes signals to a PC (Fig. 2.6). This can be the foundation for chronic 
remote biological monitoring applications. The system is capable of 
amplifying, sampling, transmitting and reconstructing input signals at a rate 
of 480 8-bit samples per second. 
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FIG. 2.6: Top level diagram of the neural interface system (from [7]). 

 
Another remote BCI system is an ambulatory BCI (ABCI) [14]. It consists of  
a microcontroller-based circuit that acquires, digitizes and processes up to 
two amplified EEG signals and transmits the bandpass-limited power to a 
PDA for classification, translation and training ”game” control. The “game” 
allows user to train by providing a visual feedback signal that is to be 
cognitively controlled. The accuracy and response time are equivalent to a 
desktop BCI system (Fig. 2.7). 
 

 
FIG. 2.7: Block diagram of a BCI system (from [14]. 

 
The Berlin Brain-Computer Interface (BBCI) [8] project is guided by the 
idea to train a computer by advanced machine learning techniques both to 
improve classification performance and to reduce the need for individual 
training. They presented two directions in which BCI can be enhanced by 
exploiting the lateralized readiness potential with the following aims: (1) for 
establishing a rapid response BCI system that can predict the laterality of 
upcoming finger movements before electromyographic onset even in time 
critical contexts and (2) to improve information transfer rates in the common 
BCI approach relying on imagined limb movements. 
A very important result has been presented by a group from New York [9]. 
They showed that a non-invasive BCI that uses scalp-recorded EEG activity 
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and an adaptive algorithm can provide humans, including people with spinal 
cord injuries, with multidimensional point-to-point movement control that 
falls within the range of that reported with invasive methods in monkeys. In 
movement time, precision and accuracy, the results are comparable with 
those with invasive BCIs. The adaptive algorithm used in their non-invasive 
BCI identifies and focuses on EEG features that the person is best able to 
control and encourages further improvement in that control (Fig. 2.8). The 
results suggest that people with severe motor disabilities could use brain 
signals to operate a robotic arm without needing to have electrodes 
implanted in their brains. 
 

 
FIG. 2.8: (A) Protocol. The screen at left shows the eight possible target locations. 
The other screens show the sequence of events in one trial. 1, a target appears; 2, 1 
s later the cursor appears and moves in two dimensions controlled by the user’s 
EEG activity; 3, the cursor reaches the target; 4, the target flashes for  1 s; 5, the 
screen is blank for 1 s and than the next trial begins(Step 2 lasts up to 10 s. If the 
cursor does not reach the target in time, the trial jumps to step 5) (B) Topographical 
and spectral properties of user’s EEG control (from [9]). 
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Another group showed [11] that two human subjects successfully moved a 
robot between several rooms by mental control only, using an EEG-based 
BMI that recognized three mental states. Mental control was comparable to 
manual control on the same task with a performance ratio of 0.74. 
The novel idea introduced by this work is to control robots by mapping 
asynchronously high-level mental commands into a finite state automaton. 
 

 
FIG. 2.9: The mobile robot in its environment, which consists of several rooms 
along a corridor. The robot is a two-wheeled vehicle. It has three lights on the top to 
provide feedback to the user and 8 infrared sensors around its diameter to detect 
obstacles (from [11]). 

 
As an observation, it is here stressed that the fractal dimension of EEG has 
been proposed [13] as a significant component (new feature) for BCI 
classifiers. The fractal dimension is known as a good measure of the chaotic 
behaviour of EEG signals. 
One of the classic experiments of cursor’s control [16] was successfully 
performed by voluntary EEG modulation. Moving the cursor in one 
dimension, subjects were able to hit 100% randomly selected targets, while 
in two dimensions accuracies of 63% were achieved. 
There are much less works in BCIs field where the voluntary signals are 
“read out” from magnetic resonance (fMRI and MEG). Reasons of that are 
several. The need for complicate, bulky, heavy and expensive driving and 
reading equipment is limiting attempts to use these types of BCIs. Another 
very limiting factor in applications of these BCI is the necessity that the 
subject does not move at all. 

A group from Utah used fMRI to study brain activity [17] in subjects with 
spinal cord injuries while they are executing, or attempting to execute, 
movements of different limbs. They showed that their motor-cortical 
activation closely follows normal somatotopic organization in the primary 
and non-primary sensorimotor areas. They showed that it should be possible 
to access voluntary control signals by using a cortical neuroprosthesis. 

2.2 Invasive Brain-Machine Interfaces 
 
In this type of BMIs the signals originated by brain are recorded by 
implanted electrodes. Because of it’s invasivity, the applicability of this 
approach is limited to animal experiments. Development of this systems 
have two basic directions: improvement of both implantable electrodes and 
signal processing methods. 
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The most important works in this field are those made by the Nicolelis’s 
group. He works at Duke University, which started BCI experiments few 
years ago with rats, in which they recorded the simultaneous activity of large 
populations of neurons [18], distributed in the premotor, primary motor and 
posterior parietal cortical areas, while non-human primates performed two 
distinct motor tasks. Accurate real-time predictions of one- and three-
dimensional arm movement trajectories were obtained by applying both 
linear and nonlinear algorithms to cortical neuronal ensemble activity 
recorded from each animal. In addition, cortically derived signals were 
successfully used for real-time control of robotic devices, both locally and 
through the Internet (Fig. 2.10). These results suggest that long-term control 
of complex prosthetic robot arm movements can be achieved by simple real-
time transformations of neuronal population signals derived from multiple 
cortical areas in primates. 
 

 
FIG. 2.10: Experimental set-up of one experiment of Nicolelis (from [18]). 

 
In a famous experiment with a monkey [19], they demonstrated that primates 
can learn to reach and grasp virtual objects by controlling a robot arm 
through a closed-loop brain–machine interface (BMIc) that uses multiple 
mathematical models to extract several motor parameters (i.e., hand position, 
velocity, gripping force, and the electromyograms of multiple arm muscles) 
from the electrical activity of frontoparietal neuronal ensembles. As single 
neurons typically contribute to the encoding of several motor parameters, 
they observed that high BMIc accuracy required recording from large 
neuronal ensembles (Fig. 2.11). 

 
FIG 2.11: (A) Behavioural setup and control loops, consisting of the data 
acquisition system, the computer running multiple linear models in real time, the 
robot arm equipped with a gripper, and the visual display. Robot position was 
translated into cursor position on the screen, and feedback of the gripping force was 
provided by changing the cursor size. (B) Schematics of three behavioural tasks. In 
task 1, the monkey’s goal was to move the cursor to a visual target (green) that 
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appeared at random locations on the screen. In task 2, the pole was stationary, and 
the monkey had to grasp a virtual object by developing a particular gripping force 
instructed by two red circles displayed on the screen. Task 3 was a combination of 
tasks 1 and 2. The monkey had to move the cursor to the target and then develop a 
gripping force necessary to grasp a virtual object (from [19]).  
 
A German group (Mehring et al., 2003) recently reported that measuring 
local-field potentials in monkey motor cortex can be used to correctly predict 
the direction and velocity of arm movements to various targets in 90% of the 
cases. 
One of the ultimate brain signal processing works [20] proposes the use of 
optimized brain–machine interface (BMI) models for interpreting the spatial 
and temporal neural activity generated in motor tasks. In this study, a 
nonlinear dynamical neural network is trained to predict the hand position of 
primates from neural recordings in a reaching task paradigm. They first 
developed a method to reveal the role attributed by the model to the sampled 
motor, premotor, and parietal cortices in generating hand movements. Next, 
using the trained model weights, they derived a temporal sensitivity measure 
to asses how the model utilized the sampled cortices and neurons in real-
time during BMI testing. 
A Statistical Encoding Model [21] for movement-related motor neurons 
using multi-electrode array recordings during a two-dimensional (2-D) 
continuous pursuit-tracking task avoids massive averaging of responses by 
utilizing 2-D normalized occupancy plots, cascaded linear-nonlinear (LN) 
system models and a method for describing variability in discrete random 
systems. It has been found that the expected firing rate of most movement-
related motor neurons is related to the cinematic values by a linear 
transformation, with a significant nonlinear distortion in about one third of 
the neurons. 
An American group demonstrated for the first time [22] that 
electrocorticographic (ECoG) activity recorded from the surface of the brain 
can enable users to control a one-dimensional computer cursor rapidly and 
accurately (Fig. 2.12). They first identified ECoG signals that were 
associated with different types of motor and speech imagery. Their results 
suggest that an ECoG-based BCI could provide people having severe motor 
disabilities with a non-muscular communication and control option that is 
more powerful than EEG-based BCIs and is potentially more stable and less 
traumatic than BCIs that use electrodes penetrating the brain. 
 

 
FIG. 2.12: Examples of electrode placement and ECoG signals. (a) Intra-operative 
placement of a 64-electrode subdural array. Inter-electrode spacing was 1 cm and 
electrode diameter was 2 mm; Ant: anterior. (b) Post-operative lateral skull 
radiograph showing grid placement (from [22]). 
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A rat car system and various flexible neural probes have been developed by 
a Japanese group [23]. The probe, which they have done is sufficiently 
flexible to enable minimally invasive recording. The rat car system uses 
signals recorded from a rat motor cortex to control the car carrying the rat. It 
is being developed as an application of BMI system. 
 

 
FIG. 2.13: Photo of the Rat Car System. The signals recorded from the rat motor 
cortex are utilized to control the car on which the rat is riding (from [23]). 
 
A wireless data communication between brain implants and computer has 
been realized by the Pittsburgh University group [24]. This communication 
investigates this link and presents a new design using the mechanism of 
volume conduction of biological tissues. A theoretical model of volume 
conduction of the head is utilized to compute signal strength in data 
communication and the result is evaluated by a physical model (Fig. 2.14). 
The two-way data communication sensitivity of the volume conduction 
channel is found to be symmetric, as suggested by the reciprocity theorem. 
An x-shaped volume conduction antenna has been designed which not only 
enhances transmission/reception, but also minimizes the space for brain 
implantation. This investigation provides a new enabling technology to 
integrate brain function and the external computing environment with broad 
applications. 
 

.  
FIG. 2.14: Wireless data communication establishes a closed-loop information link 
bypassing the damaged spine, marked by “XXX” (from [24]). 
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3. Non invasive man-machine interfaces 
besides BMI 
Integrating human and robotic machines into one system offers multiple 
opportunities for creating assistive technologies that can be used in 
aerospace, biomedical and industrial applications. In this context, the 
development and use of non invasive man-machine interfaces is 
progressively gaining a considerable importance. The following sub-
sections describe the most relevant types of such interfaces, different from a 
typical BMI. 

3.1 EMG based interfaces 
The electromyogram is an electrical signal generated by neuromuscular 
activity. It can be recorded non-invasively by using surface electrodes. 
Methods for effective recording and computer-aided analysis of EMG 
signals have been the object of study in the field of biomedical engineering 
for the last three decades. Typical applications based on EMG employ 
signals from the forearm [1]. EMG based interfaces generally involve signal 
acquisition from a number of several electrodes, signal processing (feature 
extraction) and real-time pattern classification [2,3]. Classification methods 
based on both statistical and neural network approaches have been made 
with satisfactory results. However, given the complexity of the task and the 
variability of the EMG signals these systems usually require calibration for 
each user or training of the pattern recognition algorithms. In a different 
fashion EMG signals have been used in conjunction with other 
physiological signals (skin conductivity, blood pressure and respiration) to 
detect the affective state of the user. Experimental results from a 
preliminary study show that even with simple processing techniques it is 
possible to detect brief muscle contractions in data acquired from moving 
subjects. The results encourage further development of this kind of interface 
[1]. The signal processing and pattern recognition strategies should be 
improved to achieve higher accuracy. At the same time, the efficiency of the 
interface can be increased introducing feedback. The use of dry electrodes is 
being considered to promote user acceptance. The EMG signals can be 
classified in realtime with an extremely high degree of accuracy for 
controlling a robotic arm-and-gripper. The human hand is a complex 
system, with a large number of degrees of freedom (DoF), sensors 
embedded in its structure, actuators and tendons, and a complex hierarchical 
control. Despite this complexity, the efforts required to the user to carry out 
the different movements are quite small [2]. On the contrary, prosthetic 
hands are just a pale replication of the natural hand, with significantly 
reduced grasping capabilities and no sensory information delivered back to 
the user. Several attempts have been carried out to develop multifunctional 
prosthetic devices controlled by electromyographic signals (myoelectric 
hands), harness (kinematic hands), dimensional changes in residual muscles, 
and so forth, but none of these methods permits the “natural” control of 
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more than two DoF. Electromyographic signals, collected at the skin 
surface, have been used for the control of upper limb prosthetic devices 
since 1948 because they provide easy and non-invasive access to 
physiological processes that cause the contraction of the muscles. At 
present, the process of EMG signals is the most common approach used for 
the control of active prosthetic hands. In any case, the myoelectric signal 
permits the control of no more than one or two active DoF (generally, one 
DoF for the gripper and one for the wrist). Limitations in the mechanics of 
the prosthetic device and in the processing of EMG data make it difficult to 
control more. In past decades, and especially during the last years, many 
efforts have been carried out in order to implement effective control 
algorithms based on the processing of EMG signals.  Starting from the first 
attempts in the late 1940s, several EMG-based algorithms have been 
developed and used to enhance the functionality and usability of prosthetic 
hands. As shown in figure 3.1.1, the formal scheme for the acquisition and 
analysis of the EMG signal for the control of prosthetic devices is composed 
of several modules: 
• signal conditioning and pre-processing 
• feature extraction 
• dimensionality reduction 
• pattern recognition 
• offline and online learning 
 
 

 
FIG. 3.1.1: Scheme for acquisition and analysis of an EMG signal (from [2]) 

 
The first module preprocesses the EMG signal in order to reduce noise 
artifacts and/or enhance spectral components that contain important 
information for data analysis. Moreover, it detects the onset of the 
movement and activates all the following modules. Many EMG-based 
control systems are able to control a single DoF in a prosthetic limb (hand 
open/close, wrist or elbow flexion/extension). These systems generally 
extract the EMG amplitude or rate of change by using two electrodes placed 
on two antagonist muscles (e.g., biceps and triceps brachii or flexor and 
extensor of the forearm, depending on the level of the amputation). This 
information is used to define the state of the hand and to control its speed or 
strength in a constant or even proportional way. Most commercial 
myoprocessors used in prosthetic control are now based only on one 
dimension of the EMG signal—the variance or mean absolute value. Several 
authors successfully contributed in refining variance estimation from the 
myoelectric signal, for example by applying a whitening filter or changing 
the smoothing window length in order to increase the number of states 
available from surface EMG signal. These techniques require a different 
muscle contraction for each controlled function, making the control of two 
or more joints very difficult. Other researchers have attempted to increase 
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the information from one or two channels by using a time-series model. An 
example of processing of EMG signal is shown as figure 3.1.2. 
 

 
FIG. 3.1.2: Processing of an EMG signal recorded from a biceps brachii muscle 

(from[2]). 
 
Despite some promising results, this method turned out to be sensitive to 
changes in signal amplitude. All these systems have been successfully 
implemented, but they cannot provide sufficient information to effectively 
control more than one DoF. Generally, all commercial myoelectric control 
systems are based on the common assumption that the instantaneous value 
of the myoelectric signal contains no information. Users are trained to 
produce a constant level of activation of muscles, and the prostheses are 
tuned according to these values. A steady-state EMG signal, however, has 
very little temporal structure because of the active modification of 
recruitment and firing patterns needed to sustain a contraction. The 
parameters that could be extracted to quantify its amplitude (e.g., variance, 
mean absolute value) or its frequency characteristics (e.g., Fourier spectrum, 
median frequency) are often not sufficient to distinguish between more than 
two classes of movement. Starting from the 1990s, researchers found that 
there is useful information in the transient burst of myoelectric signal. 
Hudgins and colleagues showed that there is a considerable structure in the 
myoelectric signal during the onset of a contraction. Furthermore, this 
structure seemed to be different for different kinds of contraction, and 
further works demonstrated that transient EMG signals have a greater 
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classification capacity than do steady-state signals. For this reason several 
features are extracted. EMG signal patterns differ among individuals. 
Moreover, electrical impedance of the skin, electrode locations, time 
variations caused by fatigue, sweat, and so on differ from user to user and 
from time to time. It is clear that the EMG processing unit should adapt 
itself to these changes in order to minimize ill-discriminations, the device 
should “learn” how the user behaves and adjust its internal parameters 
relative to the operator’s variation in real time.  Most current prostheses, 
however, are tuned only in the offline phase. The user learns to reproduce 
one or two different signals, and the prosthesis is tuned to these signals. 
When the user cannot control the prosthesis properly, she/he should come 
back to the assistance center and retune the controller. With such a 
controller it is not possible to successfully control more than one active 
DoF, because the differences between tuned signals and actual ones tend to 
increase gradually with time. Nishikawa and his group proposed a real-time 
learning method that makes it possible to control up to ten different motions 
of the forearm from two channels of EMG with a success rate of up to 
91.5%. The controller is composed of three modules: the analysis unit, 
which generates a feature vector containing useful information for 
discriminating motions from measured EMG signal; the adaptation unit, 
which makes a mapping function from the feature vector; and the trainer 
unit, which generates training data from the teacher signal sent by the 
operator and the feature vector at the moment. 
 
APPLICATIONS 
One of the most important aerospace fields of applications is devoted to 
interfacing a human arm with a powered exoskeleton (orthotic device). As 
an example, such a type of system was implemented in an elbow joint, 
naturally controlled by the wearer [4]. The Human–Machine interface was 
set at the neuromuscular level, by using a neuromuscular signal (EMG) as 
the primary command signal for the exoskeleton. The EMG signal along 
with the joint kinematics were fed into a myoprocessor, which in turn 
predicted the muscle moments on the elbow joint. An exoskeleton is an 
external structural mechanism whose joints correspond to those of the 
human body. It is worn by the human and the physical contact between the 
operator and the exoskeleton allows direct transfer of mechanical power and 
information signals. The exoskeleton structure under study was a two-link, 
two-joint mechanism, corresponding to the arm limbs and joints, which was 
mechanically linked (worn) by the human operator. The operator 
manipulated an external weight, located at the exoskeleton tip, while feeling 
a scaled-down version of the load. The remaining external load on the joint 
was carried by the exoskeleton actuator. The mechanical power of the 
machine integrated with the inherent human control system could perform 
tasks that need high forces in a very efficient manner. This is the underlying 
principle in the design of exoskeleton systems. Experimental tests have 
shown that synthesizing the processed EMG signals as command signals 
with the external-load/human-arm moment feedback, significantly improved 
the mechanical gain of the system, while maintaining natural human control 
of the system, relative to other control algorithms that used only position or 
contact forces. The results indicated the feasibility of an EMG-based power 
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exoskeleton system as an integrated human–machine system using high-
level neurological signals. One of the human limits in performing physical 
tasks is the muscles’ strength, as opposed to strength limitation, humans 
possess naturally developed algorithms with complex and highly specialized 
control methods, using higher and lower neural centers, that enable them to 
perform very complicated tasks such as locomotion while avoiding object 
collision. In contrast, robotic manipulators can perform tasks requiring large 
forces or moments, depending on the nature of their structure and on the 
power of their actuators. However, their artificial control algorithms which 
govern their dynamics miss the flexibility to perform in a wide rage of fuzzy 
conditions preserving the same quality of performance as humans. It seems 
therefore that combining these two entities, the human and the robot into one 
integrated system under the control of the human, may lead to a solution 
which will benefit from the advantages offered by each subsystem. The 
exoskeleton system can be used for three conceptually different applications: 
1) power amplifier; 
2) master device of a master/slave teleoperator system; 
3) haptic device. 
In utilizing the exoskeleton as a human power amplifier, the human 
provides control signals for the exoskeleton, while the exoskeleton 
actuators provide most of the power necessary for performing the task. 
The human becomes a part of the system and applies a scaled-down force 
compared with the load carried by the exoskeleton. Using the exoskeleton 
as a master device in a master/slave teleoperation system enables the 
operator attached to the exoskeleton (master) to control a robotic arm 
(slave). In a bilateral mode, the forces applied on the robotic arm by the 
environment are reflected back to the master and applied by the 
exoskeleton structure and actuators on the operator’s arm. In this setup 
the operator feels the interaction between the robotic arm tool-tip and the 
environment. Employing the exoskeleton as a haptic device is a relatively 
new technology aimed to simulate human interaction with virtual object 
simulated in virtual reality. The operator is immersed in a virtual-realty 
environment wearing an exoskeleton. In that case a computer simulation 
is replacing the slave component and the realistic environment of the 
master/slave teleoperation with a virtual one. As a result, a virtual object 
in that virtual environment can be touched by the operator, whereas the 
exoskeleton structure and its actuators provide a force feedback, 
emulating the real object including its mechanical and texture properties. 
The exoskeleton, in that sense, simulates an external environment and 
adds the sense of touch (haptics) to the graphical virtual environment. 
Several mechanisms including arms, hands, and other haptic devices were 
developed for a wide range of applications. Throughout the last three 
decades, several designs of exoskeleton, as a human powered amplifier, 
have been developed and evaluated. In studying the evolution of these 
systems two basic types with a different human machine interface (HMI) 
seem to emerge, which may be defined as generations. During a time 
interval, the system will gather information regarding the muscle’s neural 
activation level based on a processed neuromuscular (EMG) signals and 
the joint position and angular velocity. This information will be fed into a 
myoprocessor (muscle model), which will in turn predict the moment that 
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is going to be developed by the physiological muscle relative to the joint. 
The main advantage of establishing the interface at the neuromuscular 
level is the ability to estimate the forces that will be generated by the 
muscles before the mechanical contractions actually occur. This 
information will be fed in to the exoskeleton system such that by the time 
the physiological muscles contract, the exoskeleton amplifies the joint 
moment by a preselected gain factor. As a result, the reaction time of the 
human/machine system should decrease, resulting in a more natural 
control of the task. In line with this concept, a third generation of 
exoskeletons is proposed setting the HMI at the human neuromuscular 
junction. Studies have shown that the surface EMG recorded from bipolar 
electrodes during constant-force, constant-angle , nonfatiguing conditions 
can be modeled as a zero-mean correlation-ergodic, random process 
which is Gaussian distributed. Under those conditions the EMG signal 
can be correlated to the torque developed by the muscles with respect to a 
joint. Processed EMG signals along with system identification models 
which noninvasively estimated muscle forces and joint torques have been 
used as the control input to myoelectrically controlled prostheses. In 
operating a myoelectrically controlled powered prostheses, the human 
neural control system and the prostheses control system are separate 
entities. The human operator provides command signals in a feed-forward 
open-loop fashion utilizing only visual feedback as the primary source of 
information while maintaining a direct line of sight when attempting to 
grasp or place an object. Feedback information based on visual and 
auditory cues is slower, less automated, and less programmed than the 
normal feedback. As opposed to controlling a myoelectrically powered 
prostheses, in operating a myoelectrically powered exoskeleton (orthotic 
device) the human and the exoskeleton are mechanically linked, and 
therefore the human neural control system and exoskeleton control 
system coexist and have to cooperate by sharing the same kinematics and 
dynamics constraints. Moreover, when an exoskeleton is used, the 
nonisometric and nonisotonic conditions, which are valid assumptions for 
controlling a prosthetic device using EMG signals alone, do not hold, and 
therefore the muscle’s force cannot be estimated on the EMG signals. 
This is because the angle of the human limb joint, coupled with the 
exoskeleton joint, is constantly changing during the exoskeleton 
operation, and as a result the muscles attached to that joint are changing 
their length and end points velocities. Therefore, the muscle model 
(myoprocessor) has to take into account the muscle’s length and velocity 
in addition to the EMG signal, that defines the muscle activation level, 
for predicting the force that will be developed by the physiological 
muscle. In order to establish an interface at the neuromuscular junction, 
two basic conditions have to be fulfilled. The first condition is the 
capability to measure the biosignals. The myosignals of the muscles 
involved in the elbow flexion/extension movement are measured by 
surface electrodes, using noninvasive techniques. The second condition is 
the ability to simulate and to predict the functions of the human body 
subsystems and organs from the interface level (myosignals) down to the 
lower levels of the physiological hierarchy (skeletal muscle forces and 
moments) The term myoprocessor was used to define the component of 
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the system that simulates the human skeletal muscle behaviour and 
provides an estimation of the muscle forces. The main purpose of the 
powered exoskeleton system is to amplify the load carrying capacity of a 
healthy operator; however, it can also be used as an upper limb orthosis 
for physically impaired humans. For a patient to employ any powered 
exoskeleton, he must have some minimal motor control abilities in order 
to generate neural signals. The powered exoskeleton improves the 
patient’s limb performance while utilizing what remains from the natural 
motor control functions of the operator. Thus, instead of promoting 
muscle atrophy, this powered exoskeleton system could be therapeutic by 
enhancing further muscle development, due to resurgence of limb use. 
The human elbow joint complex can be considered as a 2 DOF joint 
including flexion–extension and pronation–supination joint movements. 
The exoskeleton, in its current mode, supported only the flexion–
extension movement of the elbow joint.  
 

 
 
FIG. 3.1.3: Block diagram of an EMG signal processing algorithm for detecting 

muscle activation level (from [4]). 
 
The algorithm for estimating the normalized muscle activation level (NAL), 
based on raw EMG signals, follows a signal processing procedure (Fig 
3.1.3) which includes: 
1) a high-pass filter; 
2) full signal rectification (absolute value); 
3) a lowpass; 
4) a signal normalization with respect to the EMG mean signal during 
maximal voluntary isometric contraction. 
The key element of the myosignal based exoskeleton as a powered assistive 
device, enabling the HMI at the neural level was the myoprocessor. This 
module predicted the elbow moments that would be developed by the 
physiological muscles. This prediction was then used as a primary command 
signal to the exoskeleton control system, which in turn operated the 
actuator, mounted on the exoskeleton elbow joint, to add its part of the 
moment developed at the elbow joint. From the system perspective (Fig 
3.1.4), the control algorithm used three sets of feedback information: 
1) dynamic feedback—the moments generated at the interfaces between the 
human arm, the external load, and the exoskeleton structure; 
2) kinematic feedback—the elbow joint angle measured by an encoder (the 
angular velocity and the angular acceleration were calculated by finite 
differences and filtered by a Butterworth fourth-order digital filter with a 
cutoff frequency of 10 Hz at 3 dB ). These signals were used by the 
myoprocessor; 
3) physiological feedback—the operator used his inherent biosensors and 
receptors (high level feedback— visualization, low level feedback—muscle 
spindle, tendon organ, joint receptors). 
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This physiological feedback was not implemented directly in the 
exoskeleton control scheme. However, it was taken into consideration by 
matching the exoskeleton controller frequency bandwidth to the human 
operator frequency bandwidth. 
 

 
FIG. 3.1.4: Block diagram of a control system of an exoskeleton (from [4]) 

 
The EMG signals most probably increased the significance of the command 
signal leading to improved signal-to-noise ratio (SNR). Improving this ratio 
allowed to further increase the overall mechanical gain of the exoskeleton 
system. In addition, from the theoretical point of view, gain and time delays 
are linked together. Inherent time delays in a system reduce the phase 
margin and hence the stability will be reduced. By using the EMG signals in 
conjunction with the myoprocessor the system used parallel processing of 
the command signal as opposed to the second generation in which the 
physiological and the mechanical system were processing the command 
signal in a cascade fashion. Therefore, increasing the system gain is one of 
the leading advantages of the present concept. Recent studies [5] are 
developing electromyographic and electroencephalographic methods, which 
draw control signals for human-computer interfaces from the human 
nervous system. They have made progress in four areas: a) real-time pattern 
recognition algorithms for decoding sequences of forearm muscle activity 
associated with control gestures, b) signal processing strategies for 
computer interfaces using EEG signals, c) a flexible computation 
framework for neuroelectric interface research, d) non-contact sensors, 
which measure EMG or EEG signals without resistive contact to the body. 
It’s defined a system that couples the human nervous system electrically to a 
computer as a neuroelectric interface: a sensing and processing system that 
can use signals from the brain or from other parts of the nervous system, 
such as peripheral nerves, to achieve device control. The focus is on using 
features from electroencephalograms (EEG) and electromyograms (EMG) 
as control signals for various tasks, such as aircraft or vehicle simulations 
and other graphic displays. In order to map EMG signal features to gestures, 
the model proposes mixtures of Gaussians within a Hidden Markov Model 
context. This system was tested with many trials over a two-year period in 
three subjects, who flew and landed high-fidelity simulations of a Boeing F-
15 Eagle or a Boeing 757-200 freighter aircraft. Control of both aircrafts 
was adequate for normal maneuvers. For the 757, a real-time landing 
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sequence under neuroelectric control was filmed at NASA Ames Research 
Center. 
 
OTHER APPLICATIONS 
Most of the studies in the field of EMG based interfaces are particularly 
devoted to the realization of cybernetic hands. Some of them aim at the 
development of systems for space applications and other at the terrestrial 
use of ultra lightweight arms and multi-finger hands on mobile platforms. 
For many operations, e. g. handing drawers, doors and bayonet closures in 
an internal lab environment, two finger grippers seem adequate and 
sufficient; the appropriate mechanical counterparts in the lab equipment are 
easily designed and realised even in a very late design stage. For more 
complex tasks however, future space robots need articulated multi-finger 
hands [6]. Replicating the performance of the human hand is beyond current 
technical capabilities. In fact, the human hand is extremely complex: it has 
22 DoF, controlled by about 38 muscles in the hand (almost twice the 
number of DoF), and it incorporates about 17,000 tactile units of 4 different 
types with different receptive fields and different sensitivity to static and 
dynamic events. Commercial hand prostheses have a limited number of DoF 
(one or two for finger movements and thumb opposition), and thus they 
have low grasping functionality. In fact, they do not allow adequate 
encirclement of objects, compared to the adaptability of the human hand. 
Moreover, their low compliance leads to instability of the object in the 
presence of external perturbations, the main advantage of current prosthetic 
hand devices is that they can generate large grasping forces (>100 N)and are 
simple to implement and control, in particular by using EMG signal. During 
the last two decades several robotic and anthropomorphic hands have been 
developed. All these hands have a high number of DoF (up to 16), and a 
dexterity comparable to that of the human hand. Some examples of robotic 
hands are the Utah/MIT hand, the Stanford/JPL hand, the DLR hand, and 
the Robonaut Hand. Unfortunately, none of these hands can be used as 
prostheses, because their actuation and control systems are quite heavy and 
bulky, and thus they cannot be embedded within the hand. Fig 3.1.5 presents 
a comparison among the human hand, some hand prostheses, and some 
robotic hands. A design solution that could improve the dexterity of a 
prosthesis while maintaining intrinsic actuation (i.e., all the actuators 
embedded within the hand structure) is based on underactuated mechanisms 
(i.e., a mechanism that has fewer actuators than degrees of freedom). Under-
actuated mechanisms allow grasping objects in a way that is closer to 
human grasping than independent actuation, but their main limitation is the 
control of this functionality. 
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FIG. 3.1.5: Comparison of robotic and prosthetic hands (from [2]) 

 
Electromyographic signal is a simple and easily obtained source of 
information on what the users of a prosthesis would like to do with their 
artificial hands. Surface electrodes are easy to use and manage, and they do 
not require surgery. Moreover, there are no harnesses that could limit the 
movement of the forearm. It is possible to control an active device with just 
one differential electrode placed on the residual limb, even in infants, the 
technology of EMG signal processing is making steady progress, evolution 
of the use of the EMG signal to actively control a prosthetic hand is showed 
in Fıgure 3.1.6. 

 

 
FIG. 3.1.6: Evolution of use of an EMG signal for prosthetic hands (from [2]) 

 
Reiter, in 1948, was the first to use the EMG signal to control a simple 
prosthetic device. Nowadays, all prosthetic devices used in clinical practice 
have one or two active DoF, directly controlled by a couple of electrodes 
placed on two antagonist muscles, either in proportional or on/off mode. The 
use of a larger number of electrodes to control more active DoF has several 
drawbacks because the coding of movements and the number of electrodes 
would greatly increment the problems in fabricating and using the socket. In 
recent years, EMG signals have been largely investigated both for the 
realization of multifunctional myoelectric prostheses and for the 
improvement of teleoperation of robotic devices; but as yet all these systems 
are not capable of successfully controlling a multifunctional hand. The major 
problem is the time-variant characteristics of the EMG signal, due to 
physiological changes in the muscles and to the changes in the coupling 
between skin and the electrodes. An equally important problem is the 
stochastic nature of the EMG, resulting in parameter estimation errors that, 
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in turn, cause classification and/or control difficulties. Moreover, some 
control errors are generally introduced by the inability of the patient to 
reliably generate and reproduce the target contraction signals (operator 
errors). Some attempts to control multifunctional devices by using more than 
two electrodes have been made and the use of nerve–muscle graft has been 
proposed. However, increasing the number of electrodes is not useful in 
clinical practice, because it introduces additional discomfort in using the 
prosthesis. With these considerations in mind, two solutions for controlling 
hand prostheses could be envisaged. On the one hand, EMG-controlled 
prostheses could represent a “cheap” solution (i.e., low cost and 
noninvasive) for the restoration (even if partial) of some hand functions. On 
the other hand, a multifunctional “cybernetic” hand prosthesis with EMG-
based control would be a more sophisticated solution. The user can control 
the grasping task adopting, the processing of the EMG signals, a 
consolidated technique as shown in new studies [8]. 
Myographic prostheses can be applied from the disarticulation of wrist up to 
the level of shoulder disarticulation. The advantages of this type of aid are: 
high grasping force, high degree of functionality. The factors that instead 
can advice against of the application are: the independent electromyografic 
signals are insufficient or not controllable, impossibility to control more 
functions at the same time, high weight. In some cases, the skeletal structure 
of the patient can support the weight of the prosthesis, especially in the 
cases where an electromechanical elbow is also used. Another important 
frontier in the field of prostheses limb regards the problem of the 
sensorization and the bio-feedback. In fact the prehensile function is not the 
only function carried out; with our natural hand we can not only seize an 
object but also detect the weight, the consistency, the roughness, the 
temperature. Different types of sensors and transducers are today available 
and several efforts are devoted to their integration inside prosthetic hands. 
Bio-feedback is a relevant issue. As an example, with the healthy limb it is 
possible to seize an object without continuously observing it, thanks to the 
tactile sensibility. Similarly, with the prosthetic hands of new generation it 
is possible to seize an object automatically, by simply supplying an 
opportune command. One of the major difficulties faced by users of 
prosthetic devices is the great mental effort needed during the first stages of 
training. In this respect, a mechanism to help patients during the learning 
stages, without actually having to wear the prosthesis all the time has been 
developed. The system is based on a real hardware and software for 
detecting and processing electromyografic (EMG) signal. The association of 
autoregressive (AR) models and a neural network is used for EMG pattern 
discrimination. The outputs of the neural network are used to control the 
movements of a virtual prosthesis, which mimics what the real prosthesis 
would be doing. This strategy resulted in rates of success of 100% when 
discriminating EMG signals collected from the upper arm muscle groups. 
The results show a very easy-to-use system which can greatly reduce the 
duration of the training stages. Since then a great effort has been applied on 
the control of artificial limbs for patients with congenital defects or who 
have lost their limbs in accidents or surgery. Control of such devices 
necessitates real-time classification of biosignals, e.g., electromyographic 
signals recorded from intact muscles. Results [9] have shown that a 4-
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degrees-of-freedom robotic arm can be controlled in real-time using non-
invasive surface EMG signals recorded from the forearm. The innovative 
features of this system include a physiologically-informed selection of 
forearm muscles for recording EMG signals, intelligent choice of hand 
gestures for easy classification, and fast, simple feature extraction from 
EMG signals. Most commercially available prosthetic devices have limited 
control (e.g., one degree-of-freedom in the case of a prosthetic gripper).  
As a final remark, we stress that other studies in the domain of 
bioengineering have concentrated on the use of electromyographic signals 
for control of prosthesis, rehabilitation and computer interfaces for users 
with motor disabilities. Beyond medical applications, EMG has been 
proposed for control of computer interfaces. Examples include interfaces 
for musical expression, controls for consumer electronics [10] and 
videogames [7]. 
 
ADVANTAGES 
The electromyogram can be recorded non-invasively using surface 
electrodes. Electromyographic (EMG) signals provide an extremely useful 
non-invasive measure of ongoing muscle activity. They could thus be 
potentially used for controlling robotic devices. Electromyographic signals 
have significant harmonics in the interval 25-3k Hz and can have amplitudes 
between approximately 100µV and 90mV, according to the type of signal 
and of electrodes used. Artefacts due to motion contain very low frequencies 
that can be effectively filtered without altering the useful EMG information. 
 
DRAWBACKS 
One of the major difficulties with EMG-based interfaces can be the great 
mental effort needed during the first stages of training. When working with 
myographic prosthesis, that effort increases dramatically [11]. For practical 
usage the number of EMG channels is limited to two, but the implementation 
of pattern recognition approaches can potentially lead to a much higher 
number of control commands [12]. One of the disadvantages of using 
surface electrodes is that such electrodes can be used only with superficial 
muscles and are sensitive to the electrical activity of a great area. In the last 
thirty years, many research efforts have been carried out in the myoelectric 
control field. Several techniques have been developed to control 
multifunctional prosthetic devices, and many of them showed promising 
results. Moreover, these techniques could be also applied in other fields, not 
only in the control of myoelectric prostheses. For example, algorithms for 
detecting the activation of muscles are quite useful in gait analysis However, 
despite all these efforts, EMG signal analysis seems to be quite limited in the 
number of possible functions that can be restored by using a few electrodes. 
Moreover, the EMG signal cannot provide any feedback to the user. A 
possible solution to overcome the limits of the EMG-based approach could 
be the realization of an interface between the peripheral nervous system 
(PNS) and the artificial device (i.e., a “natural” neural interface [NI]) to 
record and stimulate the PNS in a selective way. Recent developments in the 
technology of electronic implants and in the understanding of nerve 
functions have made it possible to fabricate selective neural interfaces that 
work by interchanging information between the nervous system and 
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computerized artificial instruments. A biocompatible neural interface can 
restore some sensory feedback to the user by stimulating in an appropriate 
way the afferent nerves and can allow motor control of the prosthesis based 
on a “natural” EMG-based control. This will be possible by focusing 
appropriate research efforts on the technological development of the neural 
interface and on the characterization of the PNS afferent signals in response 
to mechanical and proprioceptive stimuli. When the user receives sensory 
feedback from the stimulation of the afferent nerves, and the prosthetic 
device is controlled directly through the efferent nerves, the user will be able 
to “feel” the device as a sort of part of the body [2]. 
 

3.2 Gaze-tracking based interfaces  
Non-verbal communication is often used in social interactions. However, 
this additional information channel is rarely used in Human-Computer 
Interaction (HCI) as it requires complex gesture recognition and context 
relational models. Gaze tracking may propose an interesting compromise as 
it covers both aspects while being technologically affordable [13]. Gaze 
reflects our attention, intention and desire. Thus, detection of the gaze 
direction makes possible to extract such information that is valuable in 
Human-Computer Interaction. Computers integrated with gaze tracking 
function must potentially provide an intuitive and effective interactive 
system. Eye tracking consists in following the eyes movements and 
computing the gaze direction in order to integrate this information into a 
computerized system. Research in this field really started at the beginning of 
the 90s. Since then, the technology became more accurate, less cumbersome, 
and is today available as commercial products [13]. In parallel, the 
understanding and the modelling of the gaze behaviour improved, together 
with an extension of wide application domains: psychiatry, cognitive 
science, behavioural analysis, medicine, and Human-Computer Interaction. 
Among various possible applications of gaze tracking system, Human-
Computer Interaction is one of the most promising fields [14]. Gaze 
information plays an important role in identifying a person's focus of 
attention. The information can provide useful communication cues to a 
multimodal interface. For example, it can be used to identify where a person 
is looking and what he is paying attention to. A person's gaze direction is 
determined by two factors: the orientation of the head, and the orientation of 
the eyes. While the orientation of the head determines the overall direction 
of the gaze, the orientation of the eyes determines the exact gaze direction 
and is limited by the head orientation. The clear vision of an object is 
possible only when its image falls on the center zone of an ocular portion, 
called fovea. Figure 3.2.1 shows the structure of the eye. In order to explore 
a scene it is necessary that the eyes complete the movements that concur to 
carry and to maintain stable on the fovea the image of interest objects. The 
ocular movements of a subject, therefore, can tell us exactly where he is 
watching, what is observing and for how much time. The saccades are the 
faster ocular movements that the oculomotor apparatus can complete and 
they have the task to move the visual axis during the exploration of the 
scene. The fixation is constituted from the pause between two successive 
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saccades and represents the time interval during which the visual 
information is acquired. The visual exploration therefore is composed of a 
succession of saccades and fixations. The bidimensional tracing that the eyes 
complete during the exploration of a scene normally is defined whit the term 
of “scanpath” [15]. 
 

 
FIG. 3.2.1: Structure of the eye (from [18]) 

Gaze determines the user’s current line of sight or point of fixation. The 
fixation point is defined as the intersection of the line of sight with the 
surface of the object (such as the screen) being viewed. Gaze may be used to 
interpret the user’s intention for non-command interactions and to enable 
(fixation dependent) accommodation and dynamic depth of focus. Numerous 
techniques have been developed including some commercial eyes trackers. 
Video-based gaze estimation approaches can be partitioned into head-based 
approach, ocular-based approach, and the combined head and eye approach. 
The head based approach determines eye gaze based on the head orientation, 
in a feature vector to train a neural network to predict the two neck angles, 
pan and tilt, providing the desired information about head orientation. Gaze 
estimation by head orientation, however, only provides a global gaze since 
one’s gaze can still vary considerably given the head orientation. Ocular-
based approach estimates gaze by establishing the relationship between gaze 
and the geometric properties of the iris or pupil within the eyes. Specifically, 
the iris-based gaze estimation approach computes gaze by determining the 
iris location or shape distortions from its image while pupil-based approach 
determines gaze based on the relative spatial positions between pupil and the 
glint (corneal reflection). The most common approach for ocular-based gaze 
estimation is based on the relative position between pupil and the glint on the 
cornea of the eye. Assuming a static head, methods based on this idea use 
the glint as a reference point, thus the vector from the glint to the center of 
the pupil will describe the gaze direction. While contact-free and non-
intrusive, these methods work well only for a static head, which is a rather 
restrictive constraint on the part of the user [16]. 
 
APPLICABILITY OF GAZE-TRACKING TECHNIQUES 
Many interactive systems integrated with a gaze tracking system have been 
proposed. One features task selection by eye. Without using a mouse or 
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keyboard, one can select an icon or a menu item by looking at it for a while. 
Selection does not necessarily require long dwell time. For example, 
separating the selection area from the menu enables very fast selection by 
eye. Integration of a gaze tracking system with other input devices also 
accelerates selection. Another way of using the eye is to extract the user’s 
attention. Starker et al. proposed a method to detect the user’s attention from 
the user’s eye movement pattern while the user is looking at objects on the 
screen [14]. The potential benefits for incorporating eye movements into the 
interaction between humans and computers are numerous. For example, 
knowing the location of a user’s gaze may help a computer to interpret a 
user’s request and possibly enable a computer to ascertain some cognitive 
states of the user, such as confusion or fatigue. In addition, real time 
monitoring of gaze position permits the introduction of display changes that 
are contingent on the spatial or temporal characteristics of eye movements. 
Such methodology is referred to as gaze contingent display paradigm. For 
example, gaze may be used to determine one’s fixation on the screen, which 
can then used to infer what information the user is interested in. Appropriate 
actions can then be taken such as increasing the resolution or increasing the 
size of the region where the user fixates. Another example is to economize 
on bandwidth by putting high-resolution information only where the user is 
currently looking. Gaze tracking is therefore important for HCI and 
intelligent graphics [16]. For several decades now, techniques have existed 
for tracking the gaze of a person. Until recently, most applications of eye 
tracking have been in psychological research for probing into subjects' 
perceptual or cognitive processes, for example when driving in traffic or 
reading, or for examining the process by which the eye-movements are 
determined. Especially, research into human visual search strategies has 
based itself on tracking subjects' gaze during "target object" search tasks, but 
also evaluation of computer displays has been based upon recordings of 
fixation patterns. Initially, the techniques were only usable for laboratory 
experiments: the eye tracking equipment was large and expensive, and 
required the user's head to be fixed, either in a frame or by using a bite-bar. 
Some eye tracking techniques using contact lenses are so obtrusive that they 
cannot be used for extensive periods, and are thus useless outside the 
laboratory. In these laboratory experiments, data would typically be 
collected and analysed off-line, i.e., after the subject had finished the 
experimental task.  This state of affairs has changed, though; military 
research first developed head-up displays (displays integrated in the 
windscreens of aircraft, so that instrumental data is displayed "on top of" the 
surrounding flight scene) combined with eye tracking for guiding the missile 
system, thus freeing the pilot's hands for other tasks. This naturally required 
on-line processing of the tracking data, and this processing was not aimed at 
probing the pilot's perceptual or cognitive processes, but rather letting the 
pilot use the eyes as an extra manipulation channel. Later, the on-line 
processing of eye-gaze tracking data was extended to user-interfaces for 
non-military purposes.  The techniques are still expensive, but less so now, 
and the equipment has been reduced in size. Some techniques have been 
made totally unobtrusive and now allow for (small) head movements, 
making them usable for enhancing the user-interfaces for disabled people-
especially quadriplegics. The use of eye controlled word processors to aid 
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disabled people in their daily life is an important development of eye-gaze 
tracking technology, our main interest lies in applications for the general 
community. If this is to have an effect, it must naturally also be based on on-
line processing of the tracking data, to provide a real-time interface response 
to the user's eye movements [17]. The analysis of the ocular movements can 
be profitably used in study regarding the interaction whit the computer’s 
screen can be one of a specific situation which is developed a visual 
exploration [15].  
T 
Today, several ways of tracking the direction of eye-gaze exist. None of 
these techniques are perfect in the sense that no single technique fully 
satisfies all the usability [17]. The ideal tracking device must: 

a. Offer an unobstructed field of view with good access to the face and 
head  

b. Make no contact with the subject  
c. Meet the practical challenge of being capable of artificially 

stabilising the retinal image if necessary  
d. Possess an accuracy of at least one percent or a few minutes of arc; 

e.g. not give a 10° reading when truly 9°. Accuracy is limited by the 
cumulative effects of nonlinearity, distortion, noise, lag and other 
sources of error  

e. Offer a resolution of 1 minute of arc sec-¹, and thus be capable of 
detecting the smallest changes in eye position; resolution is limited 
only by instrumental noise  

f. Offer a wide dynamic range of one minute to 45° (= 3000-fold) for 
eye position and one minute arc sec-1 to 800· sec-1 (= 50,000-fold) 
for eye velocity  

g. Offer good temporal dynamics and speed of response (e.g. good gain 
and small phase shift to 100Hz, or a good step response).  

h. Possess a real-time response (to allow physiological manoeuvers).  
i. Measure all three degrees of angular rotation and be insensitive to 

ocular translation  
j. Be easily extended to binocular recording  
k. Be compatible with head and body recordings  
l. Be easy to use on a variety of subjects  

While most people would agree that all these requirements are desirable, we 
must note that they are not all prerequisites for acceptable eye-gaze tracking 
interfaces. The intention and attention of a person can be detected with the 
study of head motion (for the gesture) and gaze direction (for the attention) 
[17]. If we want to classify the current techniques of today by the way they 
make contact with the subject, there are basically three types of tracking 
techniques:  
1) Corneal Reflection:  
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it consists of a measurement of the reflection of a light beam that is shone 
onto the eye. Typically, infrared light is used to distract the user as little as 
possible, and to avoid interference from other light sources like lamps. Head 
should not move, or head pose is measured by magnetic sensor, etc. Eye 
rotation is detected using IR reflection on the cornea. It’s accurate in suitable 
conditions, but head mounted devices (figure 3.2.2) prohibits natural 
behaviour. 
 

 
FIG. 3.2.2: Head mounted device for corneal reflection (from [17]) 

 
2) EOG (electro-oculography): 
it consists of a measurement of electric potentials from the skin around the 
eyes. It measures eye movements relative to head position. It uses electrodes 
placed around the eye, as shown in figure 3.2.3. 

 
FIG. 3.2.3: Example of EOG electrodes placed around the eyes (from [17]) 

 
3) Scleral Contact Lenses/Search Coil: 
it exploits a search coil embedded into contact lenses (figure 3.2.4) that 
permits tracking of its position through electromagnetic fields. This method 
is the most intrusive; the use of a lens requires particular care and causes 
discomfort. However, it is highly accurate, but has a limited measurement 
range (almost 5°). It is used to measures eye movements relative to head 
position.  
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FIG. 3.2.4: Positioning of Scleral Contact Lens containing an induction coil 

(from [17]) 
 
In particular, the principle of the scleral search coil technique is based upon 
the magnetic induction of a small coil. The induction coil is embedded in a 
flexible ring of silicone rubber which adheres to the limbus of the human eye 
concentric with the cornea. Around the head of the subject an alternating 
horizontal and vertical magnetic field is generated and consequently an 
alternating voltage will be induced in the coil. After amplification and phase-
locked detection two analog voltages are obtained which are proportional to 
the sine of the horizontal and vertical eye position. In addition to this coil, 
which is wound in the frontal plane, a second coil is wound in the sagittal 
plane. This combination coil simultaneously measures horizontal, vertical 
and torsional eye position. This technique is used for physiological research 
of the oculomotor system. Its high accuracy and bandwidth guarantees 
effortless recording of not only saccades, smooth pursuit, vergence, 
vestibular and optokinetic eye movements but also of miniature eye 
movements: tremor, drift and microsaccades.  
This technique is not realistically applicable for space applications. On the 
contrary, corneal reflection and EOG are more feasible. These two are 
separately analyzed below. 

3.2.1 Corneal reflection 
With this technique a source of infrared light hits the cornea generating the 
corneal glare that renders the pupil luminous. A video camera resumes the 
position of the pupil and an opportune software reconstructs the movement 
completed from the look of the subject during the ocular movements. The 
systems for this videooculography can be of two types. In some systems the 
video camera is solidary with the head of the subject, being mounted on a 
helmet that the subject must wear. In other systems the video camera is 
solidary with the scene to explore - as an example the screen of the computer 
- and leaves the subject completely free. As an example, the system for 
EyeGaze (LC Technologies Inc. , Fairfax, Virginia) consists of a television 
CCD camera mounted under the screen of the computer and from a monitor 
that allows the visualization in real time of the eye of the subject and the 
corneal glare [18]. 
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FIG. 3.2.5: Two examples of equipment for corneal reflection techniques 

(from [17]). 
 
ADVANTAGES 
Techniques based on corneal reflection are highly suitable gaze tracking 
[15]. They are accurate in best condition [17]. Although electro-oculography 
(EOG) can potentially provide the gaze direction, computer vision systems, 
especially with infrared illumination, have much better results. Recent 
improvements have made the setup more accessible, so that to be adaptable 
for desktops, large projection screens or head mounted displays. However, 
large head movements are still impossible, and many systems place the 
camera on the head [13]. 
 
DRAWBACKS 
One of the problems with this gaze tracking system is that only local 
information, i.e. the images of the eyes, is used for estimating the user's 
gaze. Consequently the system relies on a relatively stable position of the 
users head with respect to the camera and the user should not rotate his head. 
Even minor head movement can fail these techniques [13]. This poses a 
significant hurdle to natural human computer interaction (HCI). Another 
serious problem with these gaze tracking systems is the need to perform a 
rather cumbersome calibration process for each individual. In fact, most of 
existing systems need some kind of personal calibration at the beginning of 
the measurement. The reasons for this are: 
• Individual differences of eyeball size. Among adult persons, there is about 
10 % individual difference in the radius of eyeball. 
• Difficulty in measuring the position of the fovea. The fovea is the highest 
resolution area on retina, and the human visual axis can be defined as a 
vector from fovea to the center of the crystalline lens. On the other hand, 
existing gaze tracking techniques measure the estimated gaze direction from 
the center of cornea curvature and the center of the pupil, instead of the real 
visual axis. The estimated direction is then corrected by the personal 
calibration.  
The latest research efforts are aimed at overcoming this limitation. 
Researchers from NTT in Japan proposed a new gaze tracking technique 
based on modelling the eyeball. Their technique significantly simplifies the 
gaze calibration procedure, requiring only 2 points to perform the necessary 
calibration. The method, however, still requires relatively stationary head, 
and there exists difficulty in acquiring accurate geometric eyeball model for 
each subject. IBM is also studying the feasibility of completely eliminating 
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the need of gaze calibration procedure by using two cameras and by 
exploiting the geometry of eyes and their images. Other recent efforts also 
focus on improving the eye tracking robustness under various lighting 
conditions. To make the gaze tracking system more robust to user 
movement, it would be helpful to also use additional information such as the 
3D position of the head relative to the camera to estimate the users gaze.  
Indeed, there are many drawbacks that have to be avoided when using gaze 
for interaction [13]: 
• The “Midas touch”: what the user is looking at is not necessarily what he 

wants to interact with. Although some studies try to integrate statistical 
analysis to better recognize the user's focus of attention [8], using 
exclusively eyes is not natural. 

• Fatigue: voluntary and precise control of the gaze is tiring.  
• Perpetual motion: while voluntary eye saccades (1 to 40° of the visual 

angle) corresponds to the visual search, micro-saccades (< 1° ) still occur 
when the eye is focussing on a target. Although we know that the vision 
is suspended during saccades or eye blink, only few systems are able to 
really distinguish the fixation phases. 

Gaze input is more appropriate for multimodal interaction. The combination 
with speech is very convenient as both can be well synchronized.  

3.2.2 Electro-Oculogram (EOG) 
The cornea of the eye is electrically positive relative to the back of the eye, 
as observed from Emil du Bois-Reymond (1848). Since this potential was 
not affected by the presence or absence of light, it was thought of as a resting 
potential. Actually it is not constant but slowly varying and is the basis for 
the electro-oculogram (EOG). This source behaves as if it were a single 
dipole oriented from the retina to the cornea. Such corneoretinal potentials 
are well established and are in the range of 0.4 - 1.0 mV. Eye movements 
thus produce a moving (rotating) dipole source and, accordingly, signals that 
are a measure of the movement may be obtained. The chief application of 
the EOG is in the measurement of eye movement [18]. Figure 3.2.6 
illustrates the measurement of horizontal eye movements by the placement 
of a pair of electrodes at the outside of the left and right eye. With the eye at 
rest the electrodes are effectively at the same potential and no voltage is 
recorded. The rotation of the eye to the right results in a difference of 
potential, with the electrode in the direction of movement (i.e., the right 
canthus) becoming positive relative to the second electrode. Ideally, the 
difference in potential should be proportional to the sine of the angle. The 
opposite effect results from a rotation to the left, as illustrated. The 
calibration of the signal may be achieved by having the subject looking 
consecutively at two different fixation points located a known angle apart 
and recording the concomitant EOGs. Typical achievable accuracy is ±2° 
and maximum rotation is ±70° however, linearity becomes progressively 
worse for angles beyond 30°. Typical signal magnitudes range from 5-20 
µV/°. Recording as of both horizontal and vertical ocular movements are 
possible but not those of torsion on the antero-posterior axis. In fact, these do 
not modify the direction of the dipole and they do not determine therefore 
potential differences on the derivation electrodes. The electrodes are located 
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around to the eye: one superior and one inferior, in order to record the 
vertical movements; one external and one internal, in order to record the 
horizontal movements. Figure 3.2.6 shows the measurement of horizontal 
eye movement by means of a pair of electrodes. 

 
 

FIG. 3.2.6: Illustration of EOG signals generated by horizontal movements of the 
eyes (from [18]). 

 
Is it possible to distinguish two subdivisions of the electrooculography: 
saccadic response and nystagmography. They are described below: 
 
Saccadic Response: Saccadic movements describe quick jumps of the eye 
from one fixation point to another. The speed may be 20 – 700 °/s. Smooth 
movements are slow, broad rotations of the eye that enable it to maintain 
fixation on an object moving with respect to the head. The angular motion is 
in the range of 1 - 30°/s. The adjective pursuit is added if only the eye is 
moving, and compensatory if the eye motion is elicited by body and/or head 
movement. The aforementioned eye movements are normally conjugate, that 
is they involve parallel motion of the right and left eye. A normal saccadic 
response to a rapidly moving target is described in Figure 3.2.7. The 
stimulus movement is described here as a step, and eye movement speeds of 
700°/s are not uncommon. The object of the oculomotor system in a saccade 
is to rapidly move the sight to a new visual object in a way that minimizes 
the transfer time. The parameters commonly employed in the analysis of 
saccadic performance are the maximum angular velocity, amplitude, 
duration, and latency. The trajectory and velocity of saccades cannot 
voluntarily be altered. Typical values of these parameters are 400°/s for the 
maximum velocity, 20° for the amplitude, 80 ms for the duration. When 
following a target moving in stepwise jumps, the eyes normally accelerate 
rapidly, reaching the maximum velocity about midway to the target. When 
making large saccades (>25°), the eyes reach the maximum velocity earlier, 
and then have a prolonged deceleration. The movement of the eyes usually 
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undershoots the target and requires another small saccade to reach it. 
Overshooting of the target is uncommon in normal subjects. Normally the 
duration and amplitude are approximately linearly correlated to each other. 
Several factors such as fatigue, diseases, drugs, and alcohol influence 
saccades as well as other eye movements’ latency. Figure 3.2.7 illustrates 
eye movement in response to a step stimulus. Following a latency, the eye 
rapidly moves towards the new position, undershoots and moves a second 
time.  
 

 
FIG. 3.2.7: Illustration of the eye movement response to a step light, whose 

horizontal position istantaneously shifts (from [18]). 
 

Nystagmography: Nystagmography refers to the behavior of the visual 
control system when both vestibular (balance) and visual stimuli exist. 
Nystagmoid movement is applied to a general class of unstable eye 
movements, and includes both smooth and saccadic contributions. Based on 
the origin of the nystagmoid movement, it is possible to separate it into 
vestibular and optokinetic nystagmus. Despite their different physiological 
origin, these signals do not differ largely from each other.  
Vestibular Nystagmus: Nystagmography is a useful tool in the clinical 
investigation of the vestibular system (Stockwell, 1988). The vestibular 
system senses head motion from the signals generated by receptors located 
in the labyrinths of the inner ear. Under normal conditions the oculomotor 
system uses vestibular input to move the eyes to compensate for head and 
body motion. This can occur with saccadic and/or pursuit motion. If the 
vestibular system is damaged then the signals sent to the oculomotor system 
will be in error and the confusion experienced by the patient results in 
dizziness. Conversely, for a patient who complains of dizziness, an 
examination of the eye movements arising from vestibular stimuli can help 
identify whether, in fact, the dizziness is due to vestibular damage. 
Inappropriate compensatory eye movements can easily be recognized by a 
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trained clinician. Such an examination must be made in the absence of visual 
fixation (since the latter suppresses vestibular eye movements) and is usually 
carried out in darkness or with the patient's eye closed. Consequently, 
monitoring eye movement by EOG is the method of choice.  
Optokinetic Nystagmus: Another example of nystagmoid movement is where 
the subject is stationary but the target is in rapid motion. The oculomotor 
system endeavors to keep the image of the target focused at the retinal fovea. 
When the target can no longer be tracked, a saccadic reflex returns the eye to 
a new target. The movements of the eye describe a sawtooth pattern. This is 
described as optokinetic nystagmus. This may also be provoked in laboratory 
by rotating a cylinder with dark stripes on a light background in front of a 
person's eyes. 
APPLICATIONS 
Eye tracking systems for uses with personal computers are under 
development [19]. The system is intended to provide a pointing device that 
could be useful for people with physical disabilities. The basis for this 
system is the use of Bio-Electrical signals from the user's body. In particular 
the use of the Electrooculogram and Visual Evoked Potentials has been 
investigated. Experiments have compared two algorithms for processing the 
signals and generate an effective output control. In theory, the EOG potential 
varies linearly with the rotation of the eye in its socket. In practice, the signal 
is corrupted by various sources, resulting in a baseline "drift" that obscures 
the eye movement signal. In the mentioned work [19] the authors have 
developed and tested two techniques for detecting and removing this drift 
from the EOG. The first uses an adaptive fuzzy-logic system to detect the 
difference between drift and eye movement. The second adds a detection 
scheme based upon detecting a visual evoked response (VEP) in the 
electroencephalogram (EEG) of the subject. Bioelectrical data collection and 
pattern recognition are performed by a real-time digital signal processor 
(DSP) system linked to a host computer (PC). The DSP system is configured 
with four channels used to measure EOG (vertical and horizontal for each 
eye) and one channel used to measure VEPs from over the occipital area, 
with the reference taken from the forehead for all channels. 
ADVANTAGES 
The advantages of the EOG include recording with minimal interference 
with subject activities and minimal discomfort. Furthermore, it is a method 
where recordings may be made in total darkness and/or with the eyes closed. 
Today the recording of the EOG is a routinely applied as a diagnostic 
method for investigating the human oculomotor system. The application of 
digital computers has considerably increased the diagnostic power of this 
method. 
DRAWBACKS 
Although both horizontal and vertical ocular movements can be recorded, no 
movements of torsion on the antero-posterior axis can be detected. In fact, 
these do not modify the dipole and they do not determine therefore potential 
differences them on the derivation electrodes [19]. The most important 
disadvantages relate to the fact that the corneoretinal potential is not fixed 
but has been found to vary diurnally, and to be affected by light, fatigue, and 

40 



___________________________________________________________________________________________  

other qualities. Consequently, there is a need for frequent calibration and 
recalibration. Additional difficulties arise owing to muscle artifacts and the 
basic nonlinearity of the technique [18]. 

 

3.3 Motion-capture and gesture-recognition 
based interfaces 

Man-machine interfaces based on motion capture and gesture recognition 
deserve a considerable attention. Four types of gesture and motion tracking 
techniques are separately described below: 

3.3.1 Ultrasound trackers:  
Ultrasound trackers have three components: a transmitter, a receiver and an 
electronic unit. The transmitter is a set of three ultrasonic speakers mounted 
on a fixed triangle frame. The receiver is a set of three microphones, 
mounted on a smaller triangular frame. The receiver is attached to the body 
part (head or hand) which needs to be tracked. For a given temperature the 
speed of sound is known and can be used to measure distances between the 
speakers and the microphones. A total of nine distances are measured in 
order to determine the position and orientation of the plane. The limitations 
to ultrasonic are low resolution, long lag times and interference from echoes 
and other noises in the environment. Two companies that provide ultrasonic 
tracking systems are Logitech and Transition State. 

3.3.2 Magnetic trackers: 
Magnetic trackers employ alternating low-frequency fields to determine the 
moving object’s position and orientation. The low-frequency field is 
generated by a transmitter, which is an assembly of three stationary 
orthogonal antennas. A second set of orthogonal antennas is placed inside a 
receiver. The signal received is processed to determine the position and 
orientation of the receiver in relation to the transmitter. Limitations of these 
trackers are a high latency for the measurement and processing, range 
limitations, and interference from ferrous materials within the fields. The 
two primary companies selling magnetic trackers are Polhemus and 
Ascension.  

3.3.3 Optical trackers 
Several optical position tracking systems have been developed. One method 
uses a ceiling grid LEDs (light emitting diodes) and one or more cameras. 
The LEDs are pulsed in sequence and the cameras image is processed to 
detect the flashes. Two problems with this method are limited space (grid 
size) and lack of full motion (rotations). Another optical method uses a 
number of video cameras to capture simultaneous images that are correlated 
by high-speed computers to track objects. Processing time (and cost of fast 
computers) is a major limiting factor.  
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EXAMPLES:  
Image-based tracking of the human hand is considered as a specific and very 
demanding problem. The relatively great amount of degrees of freedom and 
the complex kinematic structure make this task challenging. Approaches for 
human hand tracking are based on silhouette projections, information about 
movement or colored markers. Some applications aim at entire 3D 
reconstruction with complex hand models, but a real-time solution to this 
problem is hard to achieve. In most cases, no information about finger 
postures is used. Computation rather relies on optical flow, correlation of 
stereo color images or skin color segmentation. Frequently, camera images 
are used in order to recognize and classify static hand gestures. After 
preprocessing the images, tensors of gesture patterns are compared with the 
transformed actual images similar to an eigenspace method. A lot of 
interactive robot systems make use of both speech input and gesture and/or 
object recognition, e.g. as in to give instructions to the robot more naturally, 
or to clarify ambiguities in the input. Currently, facial expressions are being 
evaluated as a bidirectional information channel between humans and robots 
as well. However, those approaches focus on emotional human robot 
interaction and do not concentrate on commanding a robot assistant for 
manipulation tasks. Skin colour is used as the basic feature for a typical hand 
tracking. For recognizing gestures, it is necessary to focus the user’s hand. 
Therefore, the camera follows hand movements. For the gesture 
classification, since hand contours are different in length and depend on 
rotational angle, translation and scale, a Fourier description of the silhouette 
is usually computed taking samples at equidistant points all over the outline 
(Fig 3.3.1). 
 

 

 
FIG. 3.3.1: gesture pre-processing and contour whit 8, 16 and 32 point (from [20]) 
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3.3.4 Wearable electromechanical trackers:  
Wearable systems that integrate displacement or deformation sensors codify 
gesture into an appropriate electric response.  
EXAMPLES: 
a) DataGlove: this glove, developed by VPL Research, is made of 
lightweight lycra (Fig 3.3.2.a). The system that measures finger and hand 
movement consists of a position/orientation sensor and a set of coated fiber-
optic cables that run along the back of each finger. The fibre optic cables 
running along the fingers are sectioned according to the joints of the hand. 
One end of each fibre optic cable is equipped with a light emitting diode 
(LED) and the opposite end is connected to a photosensor. The amount of 
light detected passing through the fibre is proportional to the degree to which 
the corresponding joint is bent. This information is sent to the system, which 
determines which fingers are being bent and by how much. The second 
measurement device incorporated to the system is a tracking mechanism that 
uses magnetic detection to determine the position and orientation of the hand 
position in relation to the whole scene [21]. 
 
b) 5TH GLOVE: this is a commercial product by iREALITY.COM, INC. It 
is equipped with fiber-optic flex sensors to generate finger-bend data (Fig 
3.3.2.b) [22]. 
 
  

                        
a)                                                                     b) 

FIG. 3.3.2: a) DataGlove (from[2]) and b) 5HT GLOVE (from [22]) 
 
c) PowerGlove: this glove is partially derived from the DataGlove with the 
expensive fibre optic system replaced by flat plastic strain gauges. A small 
strip of plastic is coated with an electrically conductive ink and placed along 
the length of each finger. A small electrical current passing through the ink 
remains stable until a finger is bent. The computer can measure the change 
in the ink's electrical resistance and compute the finger position. The 
PowerGlove also uses two ultrasonic trackers to track the position and the 
orientation of the hand [23]. 
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FIG. 3.3.3: PowerGlove (from [22]) 

 
 
d) CyberGlove: the CyberGlove from Virtual Technologies uses extremely 
thin strain gauges enclosed in the glove's material to measure how much the 
finger is bent. The CyberGlove uses up to 22 sensors to measure joint angles 
[23]. 
 

 
FIG. 3.3.4: CyberGlove (from[23]) 

 
 
e) Pinch Glove: the Pinch glove system does not measure finger joint 
angles. Instead, gloves are worn on both hands and contact between any two 
or more fingers completes a conductive path, allowing the definition of a 
variety of "pinch" gestures, which an application developer can map actions 
against. Over 1,000 gestures are theoretically possible. The gloves are 
constructed of a stretchable fabric and contain an electrical sensor in each 
fingertip. Each glove has a back-of-hand mount to accommodate a spatial 
tracker. The user’s point of interaction in the virtual environment is 
represented by a 3-D cursor [23]. 
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FIG. 3.3.5: Pinch Glove (from [23]) 

 
f) Sensorized garments based on piezoresistive polymer sensors 
In order to endow garments with strain sensing capabilities for the 
monitoring of body-kinematics, such as position and movement of 
articulation segments, piezoresistive strain sensors (also known as strain 
gages) can be advantageously used. 
In recent years, an innovative technology for wearable sensors based on 
electroactive polymers (EAP) has been developed by University of Pisa, 
Interdepartmental Research Centre ‘E. Piaggio’. In order to confer strain 
sensing properties to garments, two types of piezoresistive polymer materials 
have been integrated into elastic fabrics: π-electron conjugated conducting 
polymers and carbon loaded elastomers. 
Conducting polymers are a class of organic materials able to transport 
electricity. Since their discovery in the early seventies, several conducting 
polymers, such as polypyrrole, polyaniline and polythiophene, have been 
synthesised and their quality has been continuously improved [23, 24]. 

The research at University of Pisa has investigated their use for the 
development of organic piezoresistive sensors. To this aim, conducting 
polymer sensors have been fabricated by epitaxial deposition of a thin layer 
of polypyrrole (PPy) on a Lycra®/cotton fabric [25-28]. These sensors, 
showing both piezoresistive and thermoresistive properties [25,28], have 
been used to sensorise a glove and a leotard [27]. Similarly, CSIRO and 
University of Wollongong has integrated this kind of fabric based sensors 
into a knee sleeve [29]. The quasi-static characterisation of PPy-coated 
fabrics has indicated an average gage factor (GF) of about –12 [28,30,31]. 
Furthermore they have shown a temperature coefficient of resistance (TCR) 
of about 0.018 °C-1 [28,30,31]. Despite the fact that the reported high 
absolute value of GF is suitable for strain gage implementations, two serious 
problems typically affect PPy-coated fabric sensors. The first one resides in 
the strong variation with time of their resistance (chemical instability) [28]. 
The second problem is represented by the high response time: following the 
application of a sudden mechanical stimulus, the sensor resistance reaches a 
steady state in a few minutes, strictly limiting the applicability of such 
devices [9]. Moreover, conducting polymer based sensors are not easily 
amenable to textile technology. In fact, they would require the problematic 
insertion in textile processes of tanks for the material synthesis and 
deposition/coating on fabrics. A new generation of high-performance strain 
sensors has been obtained by coating yarns and fabrics with carbon loaded 
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elastomers (CLR), typically consisting of a silicone matrix filled with carbon 
black powder.  Sensors are fabricated on a Lycra®/cotton textile by masked 
smearing of the conducting mixture. The same polymer/conductor composite 
is also used as material for the tracks of connection between sensors and an 
acquisition electronic unit, avoiding the stiffness of conventional metal 
wires. A GF of about 2.5, quite similar to those of metals, has been measured 
for CLR-coated fabrics, making this kind of device suitable for high-
performance sensing [30, 31]. Moreover, CLR sensors show, as for PPy 
sensors, thermoresistive properties, with reported TCR values of about 0.08 
°C-1 [30, 31]. Such devices have been used to demonstrate prototype 
sensorised garments, including gloves, leotards, knee bands and sleeves 
(fig.3.3.6) [35]. 
 

   

 
FIG. 3.3.6: Sensorised glove, leotard and sleeve developed by  

University of Pisa, Interdepartmental Research Centre ‘E. Piaggio’ 
 

All these systems are truly wearable fabrics, incorporating compliant 
polymer sensors, capable of recording body posture and gesture, with no 
discomfort for the subject wearing the garment and with negligible motion 
artifacts.  

 

3.4 Speech recognition based interfaces 
The goal of an automatic speech recognition system is to deduce meaningful 
linguistic units (i.e., words) from acoustic waveforms. Due to the random 
nature of the process and interferences, it is not possible to derive a 
deterministic formulation that provides a mapping between acoustic signal 
and conceptual meanings. Instead the problem is generally formulated in a 
probabilistic framework. In probabilistic setting, the speech recognition is 
stated as the estimation of ‘most probable’ linguistic representation of a 
‘given’ acoustic waveform [38]. The mathematical formulation of this 
problem is: 
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)O/W(PmaxargŴ
W

=
  (3.4.1) 

 
,where O is a set of observations from the acoustic waveform and W is a 
random variable that takes its values from the possible linguistic 
representations in the language under consideration. P(W/O) is the 
conditional probability distribution of the linguistic representation given the 
observations. This conditional distribution constitutes the knowledge base of 
the recognizer. This knowledge base is constructed using statistical learning 
techniques and a priori expertise on speech production mechanisms. The role 
of a priori expertise on the domain is to provide a set of simplification 
assumptions that will guide the statistical machinery to extract relevant 
information for recognition. Because of the complexity of the speech 
production mechanisms there is no simple parametric representation of 
P(W/O) that involves both acoustic and linguistic information. The basic 
approach is to first divide the problem into acoustic and linguistic 
components that can be handled separately. This is achieved using a 
Bayesian reformulation: 
 

)W(P)W/O(PmaxargŴ
W

=
  (3.4.2) 

 
In this formulation, the acoustic model, P(O/W), encodes the statistical 
distribution of speech acoustics given the linguistic labeling. P(W) is the 
probability assigned by the language model which encodes the a priori 
linguistic information. This approach is called the source-channel model. 
P(W) constitutes the language source with all the linguistic constraints of the 
underlying language and P(O/W) is the acoustic channel that outputs the 
speech signal based on the linguistic unit W. With this formulation the two 
components of the system can be constructed separately later to be combined 
in the recognition phase. The information source for the linguistic 
component is written text documents, supposed to be sufficient to represent 
the properties of language. The statistical approach consists of extraction of 
relevant information content from data and formulation of a parametric 
representation that is capable to encode this content. State-of-the-art 
automatic speech recognition (ASR) systems are based on probabilistic 
modelling of the speech signal using Hidden Markov Models (HMM). The 
goal of decoding process is to determine a sequence of states that the 
observed signal has gone through. There are three main problems: the 
evaluation problem; the decoding problem; the learning problem. 
Recently, the acoustic modelling problem in speech recognition was 
reformulated within the probabilistic graphical models (PGM) formalism. 
PGM is a unifying framework for statistical learning which provides an 
abstraction of quantitative and qualitative components of a statistical model. 
Dynamic Bayesian networks (DBN) are a subset of PGM which are defined 
on directed acyclic graph structures. These models are defined with graph 
structures that encode the probabilistic relations between its variables 
through a set of associated conditional probabilities. One of the main 
advantages of PGM is the graphical abstraction that provides a visual 
understanding of the modeled process. Moreover they provide a powerful 
setting to specify efficient inference algorithms that can be specified 
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automatically once the initial structure of the graph is determined. In feature 
extraction stage, the speech signal is considered as a quasi-stationary process 
consisting of consecutive frames that can be treated independently. The goal 
of front-end speech processing in ASR is to attain a projection of the speech 
signal to a compact parameter space where the information related to speech 
content can be extracted easily. Most parameterization schemes are 
developed based on the source-filter model of speech production 
mechanism. In this model, speech signal is considered as the output of a 
filter (vocal tract) whose input source is either glottal air pulses or random 
noise. For voiced sounds the glottal excitation is considered as a slowly 
varying periodic signal. This signal can be considered as the output of a 
glottal pulse filter feed with a periodic impulse train. For unvoiced sounds 
the excitation signal is considered as random noise. State of the art speech 
feature extraction schemes (Mel frequency cepstral coefficients (MFCC) and 
perceptual linear prediction (PLP)) are based on auditory processing on the 
spectrum of speech signal and cepstral representation of the resulting 
features. The spectral and cepstral analysis is generally performed using 
Fourier transform. The advantage of Fourier transform is that it possesses 
very good frequency localization properties. Feature extraction methods can 
be categorized into overlapping classes that share a number of common 
ideas. The most common ideas are related to filterbank processing, features 
inspired by the physiology of the auditory system, features utilizing 
perceptual knowledge, or inspired by phenomena that occur during speech 
production (e.g. modulations). A review of the proposed features for ASR 
systems indicates that cepstral analysis features have become one of the most 
common approaches. A popular alternative is the PLP or related features that 
are based on knowledge of the human auditory peripheral system. Finally, 
nonlinear speech processing techniques (e.g. modulations, fractals) have 
started to gain momentum. Many techniques share the concept of short-time 
processing. However, recently there have been introduced alternative 
methods - e.g. RASTA, TRAP - that filter out parts of the modulation 
spectrum or process frames that span longer time intervals. ASR is 
commonly described as converting speech to text. The reverse process, in 
which text is converted to speech (TTS), is known as speech synthesis. 
Speech synthesizers often produce results that are not very natural sounding. 
Speech synthesis is different from voice processing, which involves 
digitizing, compressing (not always), recording, and then playing back 
snippets of speech. Voice processing results are very natural sounding, but 
the technology is limited inflexibility and is disk storage-space-intensive 
compared to speech synthesis. Speech recognition developers are still 
searching for the perfect HMI, a recognition engine which understands any 
speaker, interprets natural speech patterns, remains impervious to 
background noise, and has an infinite vocabulary with contextual 
understanding. However, practical product designers can indeed use today’s 
speech recognition engines to make major improvements to today’s markets 
and applications. Selecting such an engine for any product requires 
understanding how the speech technologies impact performance and cost 
factors, and how these factors fit in with the intended application [41]. 
Speech recognition is more complicated than speech synthesis. However, it 
too can be thought of as having a front end and a back end. The front end 
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processes the audio stream, isolating segments of sound that are probably 
speech and converting them into a series of numeric values that characterize 
the vocal sounds in the signal. The back end is a specialized search engine 
that takes the output produced by the front end and searches across three 
databases: an acoustic model, a lexicon, and a language model. The acoustic 
model represents the acoustic sounds of a language, and can be trained to 
recognize the characteristics of a particular user’s speech patterns and 
acoustic environments. The lexicon lists a large number of the words in the 
language, along with information on how to pronounce each word. The 
language model represents the ways in which the words of a language are 
combined. Neither of these models is trivial. It's impossible to specify 
exactly what speech sounds like. Human speech rarely follows strict and 
formal grammar rules that can be easily defined. An indispensable factor in 
producing good models is the acquisition of very large volumes of 
representative data. An equally important factor is the sophistication of the 
techniques used to analyse that data to produce the actual models. Of course, 
no word has ever been said exactly the same way twice, so the recogniser is 
never going to find an exact match. And for any given segment of sound, 
there are very many things the speaker could potentially be saying. The 
quality of a recogniser is determined by how good it is at refining its search, 
eliminating the poor matches, and selecting the more likely matches. A 
recogniser's accuracy relies on it having good language and acoustic models, 
and good algorithms both for processing sound and for searching across the 
models. The better the models and algorithms, the fewer the errors that are 
made, and the quicker the results are found. Needless to say, this is a 
difficult technology to get right [43]. Automatic speech recognition can be 
viewed as a mapping from a continuous-time signal, the speech signal, to a 
sequence of discrete entities-for example, phonemes (or speech sounds), 
words, and sentences. The major obstacle to high accuracy recognition is the 
large variability in the speech signal characteristics. This variability has three 
main components: linguistic variability, speaker variability, and channel 
variability. Linguistic variability includes the effects of phonetics, 
phonology, syntax, semantics, and discourse on the speech signal. Speaker 
variability includes intra- and inter-speaker variability, including the effects 
of coarticulation - that is, the effects of neighboring sounds on the acoustic 
realization of a particular phoneme due to continuity and motion constraints 
on the human articulatory apparatus. Channel variability includes the effects 
of background noise and the transmission channel (e.g., microphone, 
telephone, reverberation). All these variabilities tend to shroud the intended 
message with layers of uncertainty, which must be unraveled by the 
recognition process (Figure 3.4.1). 
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FIG. 3.4.1: Training and recognition process of a speech based interface 

 (from [43]) 
 
The first stage in the continuous-to-discrete mapping that is required for 
recognition is performed by the analysis or feature extraction. Typically, the 
analysis consists of estimation of the short-term spectrum of the speech 
signal over a frame (window) of about 20 ms. The spectral computation is 
then updated about every 10 ms, which corresponds to a frame rate of 100 
frames per second. This completes the initial discretisation in time. So, there 
is the need to discretise the spectrum into one of a finite set of spectra. Given 
a computed spectrum for a frame of speech, one can find the template in the 
codebook that is "closest" to that spectrum, using a process known as vector 
quantisation. In both training and recognition the first step in the process is 
to perform feature extraction on the speech signal. 
 
As an observation, it worth noting here that even sub-vocal recognition 
systems are currently under development. They use wearable sensors to 
collect nerve signals transmitted from the brain to the vocal cords when the 
subject ‘reads silently to himself’. The sensors detect the nerve signals that 
generate this sub-vocal speech and relay those to a computer program. 
Applications of this technology include improved voice recognition systems, 
systems allowing the transmission of vocal commands in noisy 
environments. 
 
APPLICATIONS 
Results have been reported about a research project aimed at exploring ways 
to command an industrial robot using the human voice [41]. This feature can 
be interesting with several industrial, laboratory and clean-room 
applications, where a close cooperation between robots and humans is 
desirable. A demonstration was presented using two industrial robots and a 
personal computer (PC) equipped with a sound board and a headset 
microphone. The demonstration was coded using the Microsoft Visual Basic 
and C#NET 2003 and associated with two simple robot applications: one 
capable of picking-and-placing objects and going to predefined positions, 
and the other capable of performing a simple linear weld on a work-piece. 
The speech recognition grammar was specified using the grammar builder 
from the Microsoft Speech SDK 5.1. Moreover Speech interfaces have the 
potential to address the data entry bottleneck of many applications in the 
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field of medical informatics [42]. Data entry has been identified as a key 
bottleneck in many biomedical applications. Large volumes of information 
must be gathered by clinicians and researchers to support patient care and 
clinical trials. This data must be collected and managed according to specific 
protocols. Often the situation exists where a clinician is occupied with 
patient care and cannot document his or her findings until later. This interval 
of time between the generation of information and its recording can 
compromise the data collection process. Despite considerable advances in 
computer architectures over the last 20 years, the keyboard and video 
display remain the principal means of entering and retrieving data. New 
human-computer interface modalities are needed which can automate the 
data collection process at the source, where the information is actually 
generated. Speech-driven computer interfaces can address two key concerns 
in biomedical computer interfaces: the demand for ease of use and 
constraints on the user’s ability to work with the keyboard or mouse. Speech 
technology is still limited, however, with most successful systems using 
medium-sized vocabularies with well-defined grammar rules. As described 
in the literature, the main applications of speech include template-based 
reporting, natural language processing, multimodal integration of speech 
with other methods of input, and hands-busy data entry. The first two reflect 
the need for more intuitive interfaces. The latter two deal with limitations of 
traditional input using the keyboard or mouse.  Template-based reporting has 
been applied to radiology, pathology, endoscopy, and emergency medicine. 
The potential advantage is that turnaround time is decreased and accuracy is 
increased by eliminating the need for dictation and transcription by clerical 
personnel. An alternative to template-based reporting explored methods that 
circumvent shortcomings in the current technology while maintaining the 
flexibility and naturalness of speech. The reduction of speech errors is 
typically viewed as a technical problem. Another study reported a reduction 
in spoken disfluencies by using more structured interfaces. A significant 
positive correlation was also observed between the increased acceptance and 
decreased diagnosis errors including domain knowledge into the user 
interface would be advantageous. Moreover speech interfaces play a very 
important role also in the manufacturing systems efficiency will increase if 
the interface is more natural or similar to the human way of commanding 
things [41]. Industrial-manufacturing systems would benefit very much from 
speech recognition for human machine interface (HMI) even if the 
technology is not so advanced. Gains in terms of autonomy, efficiency and 
agility seem evident. The modern world requires better products at lower 
prices, requiring even more efficient manufacturing plants because the focus 
is in achieving better quality products, using faster and cheaper procedures. 
This means autonomy, having systems that require less operator intervention 
to operate normally, better HMIs and cooperation between humans and 
machines sharing the same workspace as real co-workers. The final 
objective is to achieve, in some cases, semiautonomous systems, i.e. highly 
automated systems that require only minor operator intervention. In many 
industries, production is closed tracked in any part of the manufacturing 
cycle, which is composed by several in-line manufacturing systems that 
perform the necessary operations, transforming the raw materials in a final 
product. In many cases, if properly designed, those individual manufacturing 
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systems require simple parameterization to execute the tasks they are 
designed to execute. If that parameterization can be commanded remotely by 
automatic means from where it is available, then the system becomes almost 
autonomous in the sense that operator intervention is reduced to the 
minimum and essentially related with small adjustments, error and 
maintenance situations. In other cases, a close cooperation between humans 
and machines is desirable although very difficult to achieve, due to 
limitations of the actual robotic and automation systems [43]. In the past 
decade, tremendous advances in the state of the art of automatic speech 
recognition by machine have taken place. A reduction in the word error rate 
by more than a factor of five and an increase in recognition speeds by 
several orders of magnitude (brought about by a combination of faster 
recognition search algorithms and more powerful computers), have 
combined to make high-accuracy, speaker independent, continuous speech 
recognition for large vocabularies possible in real time, on off-the-shelf 
workstations, without the aid of special hardware. These advances promise 
to make speech recognition technology readily available to the general 
public. As is often the case in technology, a paradigm shift occurs when 
several developments converge to make a new capability possible. In the 
case of continuous speech recognition, the following advances have 
converged to make the new technology possible: higher-accuracy continuous 
speech recognition, based on better speech modelling techniques; better 
recognition search strategies that reduce the time needed for high-accuracy 
recognition; and increased power of audio-capable, off-the-shelf 
workstations. The paradigm shift is taking place in the way we view and use 
speech recognition. Rather than being mostly a laboratory endeavour, speech 
recognition is fast becoming a technology that is pervasive and will have a 
profound influence on the way humans communicate with machines and 
with each other. 
 
ADVANTAGES 
Speech is a natural form of communication that is pervasive, efficient, and 
can be used at a distance. Nevertheless, with respect to speech interfaces, 
user acceptance is complicated by limitations in current technology. Often 
expectations of how a speech interface should work are biased by our 
experience with human-to-human interaction. User acceptance was 
influenced more by accuracy than speed. In addition, factors unrelated to the 
software itself affected acceptance, such as the level of domain expertise. 
 
DRAWBACKS 
Although research in this area has been active for many decades, robustness 
is still a key issue that should be considered. Thus more effort should be 
placed in order to accomplish satisfactory performance in adverse acoustic 
environments [38,41]. Speech recognition is not a common feature among 
industrial applications, namely because: the technologies of speech 
recognition and text-to-speech are relatively new although they are already 
robust enough to be used with industrial applications; the industrial 
environment is very noisy which puts enormous difficulties to automatic 
speech recognition (ASR) systems; and the industrial systems were not 
designed to incorporate these types of features, and usually do not have 
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powerful computers especially dedicated to HMI. Noise is still a problem, 
but using a short command structure with a specific word as pre-command 
string it is possible to reduce enormously the noise effects. Recent studies 
[39] have shown that ASR performance is far from the human performance 
in a variety of tasks and conditions. Indeed, ASR to date is very sensitive to 
variations in the channel (desktop microphone, telephone handset, 
speakerphone, cellular, etc.), environment (non-stationary noise sources such 
as speech babble, reverberation in closed spaces such as a car, multi-speaker 
environments, etc.), and style of speech. A typical approach for achieving 
robustness of environment focuses on obtaining a clean signal through a 
head-mounted or hand-held directional microphone. However, this is neither 
tether-free nor hands-free, and it makes speech-based interfaces very 
unnatural. Moving the speech source away from the microphone can degrade 
the speech recognition performance due to the contamination of the speech 
signal by other extraneous sound sources. The research work in robust ASR 
in noise may be classified into three broad areas: 1) Filtering of the noisy 
speech prior to classification. In this class of techniques, represented by 
spectral subtraction, an estimate of the clean speech spectrum is obtained by 
subtracting an average noise spectrum from the noisy speech. A 
disadvantage of such techniques is that crucial speech information may be 
removed during the process. 2) Adaptation of the speech models to include 
the effects of noise. In this class of techniques, speech models are adapted to 
include the effects of noise in an attempt to obtain models that would have 
been obtained in matched conditions. 3) Use of features that are robust to 
noise. In this class of techniques, an attempt has been made to incorporate 
temporal and cross-spectral correlation between speech features modeled 
after the mammalian auditory processing. These signal-based and model-
based techniques to make speech recognition independent of channel and 
environment have been attempted with limited success. Most of these 
methods make strict assumptions on the environment characteristics and 
require a sizable sample of the environment to get small improvements in 
speech recognition performance. Furthermore, modelling reverberation is a 
hard problem. In summary, current techniques are not designed to work well 
in severely degraded conditions [39]. 
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4. Space applications of BMI and other non 
invasive man-machine interfaces 
 

4.1 BMI: preferred candidate concepts  
Table 4.1.1 briefly summarises fundamental issues resulting from an analysis 
of ESA technical requirements (according to the ESA ARIADNA call 
AO4919 activity 05/6402) for space applications of BMI: 
 
 

Table 4.1.1: Summary of technical requirements for space applications of BMI 
ESA technical 
requirement 

Comments Candidate concept 

Non-invasive 
brain-machine 
interfaces (BMI) as 
advantageous 
systems in space 
applications 

(e.g. tele-control of 
robotic systems 
operating in extra-
vehicular activity) 

Need for an interface characterised 
at least by the following 
fundamental properties:  
- non-invasivity 
- high reliability 
- high efficiency 
- high sensitivity 
- ease of use by the astronaut 
- sufficient comfort for the 

astronaut 
- electromagnetic compatibility 

with electronic equipment of the 
spacecraft cabin 

- low weight and volume of the 
driving and reading equipment 

The need of respecting at least all these 
characteristics limits the types of BMI 
potentially useful. In particular, it tends to 
exclude, in principle, fMRI-based 
interfaces and MEG-based interfaces, for 
the following reasons: 

- both of these types require complicate, 
bulky, heavy and expensive driving and 
reading equipment; 

- both of these types are definitely not 
practical for astronauts, especially in 
consideration of the activities that they 
have to perform continuously. 

On the contrary, EEG-based interfaces 
represent a more suitable candidate 
concept, as summarised in  the following 
Table 4.2.1.  

Multi-
teleoperations to be 
performed using 
BMI 

A BMI may consent to a user to 
perform, in principle, multiple tasks 
following an adequate training. 
Nevertheless, considerable benefits 
for a BMI employed in multi-task 
activities may derive from the 
concomitant use of additional and 
auxiliary man-machine interfaces. 
They would permit to compensate, 
speed-up, make easier and more 
efficient some actions to be 
performed in parallel to others. 

Different types of non-invasive man-
machine interfaces to be used as auxiliary 
systems for a BMI can be considered: see 
summary in section 4.2. 
As an example, electromyographic signals 
detected from the arm muscles of an 
astronaut may permit him to control a 
robotic arm. Electrical activity recorded in 
proximity of his muscle could be 
elaborated and used as the control input 
for the robotic mechanism. Such an action 
may be performed in parallel to those 
controlled by the brain interface. 
Therefore, the two interfaces could work 
at the same time to enable easier and 
efficient implementations of multiple 
tasks. 

 

An evaluation of such technical requirements suggests a reasonable 
exclusion, in principle, of fMRI-based and MEG-based interfaces, from the 
candidate concepts to develop non-invasive BMI for space applications, due 
to their lack of practicality.  
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On the contrary, EEG-based interfaces are expected to represent the most 
suitable candidate concept for a BMI to be employed for space applications. 

In fact, interfaces based on electroencephalogram are characterized by 
relative simplicity and non-invasiveness. Although the quality and resolution 
of brain signals measured detected via EEG skin electrodes are not 
comparable to those recorded by means of implanted electrodes (due to a 
reduced spatial resolution and increased noise), such a non-invasive EEG 
method is of course preferable. Detected signals have been demonstrated 
(section 2) to permit to mentally operate devices and systems, e.g. robots in 
indoor environments. This is possible owing to the combination of advanced 
robotics, opportune protocols for the analysis of online EEG signals and 
machine learning techniques. This technology is in continuous development, 
thanks to recent scientific and technological results. In fact, first of all basic 
and clinical research has yielded detailed knowledge of the signals that 
comprise the EEG. For the major EEG rhythms and for a variety of evoked 
potentials, their sites and mechanisms of origin and their relationships with 
specific aspects of brain function are no longer wholly obscure. Second, the 
extremely rapid and continuing development of inexpensive computer 
hardware and software supports sophisticated online analyses of 
multichannel EEG. In addition, there have been significant advances in the 
development and use of electrophysiological recording methods. 
Nevertheless, beyond these recent advances, a number of challenging issues 
are still open as described in section 2. This must be carefully taken into 
consideration in perspective of potential space applications. 

Interestingly, different types of non-invasive man-machine interfaces may 
offer potential advantages as auxiliary and complementary systems for such 
a type of BMI. This might result particularly advantageous whenever 
different tasks have to be performed at the same time (multi-task activities). 
For instance, this can be the case of an astronaut having to deal with multiple 
operations (e.g. multi-teleoperations) to control robotic arms operating in 
extra-vehicular activity. In such a situation, the astronaut may benefit from 
having the possibility of sending multiple control signals by using different 
types of interfaces at the same time. Each interface may be dedicated to a 
specific set of tasks. This may reduce the amount of information to be 
processed by the single brain interface and, therefore, may increase the 
accuracy, sensitivity and efficacy of the overall operation. Moreover, 
depending on the type of activity to be performed, a suitable interface (with 
specific properties and performance) could be selected. Nevertheless, 
depending on the type of auxiliary interface used, a further specific training 
of the operator, as well as specific signal elaboration strategies, should be 
adopted. The main features of the potential auxiliary interfaces presented in 
section 3 are summarized in section 4.2. 
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4.2 Non invasive man-machine interfaces 
besides BMI: summary evaluation 

Among the techniques analysed in section 3, some of them are considered 
particularly promising for future space applications. Some of these are 
related to systems which have been already demonstrated for commercial 
civil applications. As an example, speech based interfaces are already 
available on the market. On the other hand, improvements are necessary for 
some types of such interfaces, in perspective of more demanding fields of 
applications, such as space. Table 4.2.1 summarizes fundamental properties 
of the considered different types of interfaces. 
Interfaces based on speech recognition are today rather advanced. However, 
as discussed in section 3, they still present specific problems. For instance, 
better methodologies for improving recognition performance are necessary, 
as previously described. Moreover, the potential usability of this technique 
must be evaluated with respect to the particular application. As an example, 
the astronaut must speak also with colleagues and ground station. So, the 
feasibility is actually related to the application. 
Concerning motion capture, the feasibility is high with wearable systems, 
while optical systems need too much cumbersome and complicate 
equipment. With opportune and personalized calibration strategies, a suitable 
reliability can be obtained.  
A lower reliability is typically achieved with EMG based interfaces. 
Regardless the particular elaboration scheme adopted, this is frequently due 
to possible failures from the user in the control of his muscular contraction 
(e.g. due to fatigue). 
The worst properties are shown by gaze tracking techniques. They typically 
are characterized by a low resolution. This is particularly problematic if it is 
necessary to recognize between more than two states. The reliability of these 
techniques is considered not sufficient for delicate tasks, as in the case of 
potential space applications. Moreover, they are not readily applicable: 
equipment for corneal reflection is not practical, while EOG electrodes are a 
source of discomfort. Accordingly, gaze tracking techniques are not 
considered as appropriate candidates for space applications. 
On the contrary, both speech recognition, motion capture and EMG 
activation can be considered as valid strategies for non invasive interfaces. 
These technologies could advantageously be used as auxiliary tools for BMI, 
as previously described. 
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Table 4.2.1: Non invasive man-machine interfaces besides BMI: 
fundamental properties 

Interface Number of 
controllable 
degrees of 
freedom 

Reliability Feasibility Main  
advantages 

Main disadvantages 

Speech 
recognition 
 
 

Not defined High 
 

High 
 • No devices to be 

worn 

• Readily and easily 
applicable 

• Applicable in any 
light/darkness 
condition 

• The user can perform 
any other action at 
the same time 

• Not applicable in 
noisy environments 

• Not compatible with 
usual verbal 
communications 
(inside cabin or with 
ground station) 

Sub-vocal 
commands 
(vibration of 
vocal cords 
and tongue) 

Not defined High/ 
Medium 
 

Medium 
 • Applicable in noisy 

environments 

• Applicable in any 
light/darkness 
condition 

• The user can perform 
any other action at 
the same time 

• Need to wear a 
device 

• Not compatible with 
usual verbal 
communications 
(inside cabin or with 
ground station) 

Motion 
capture and 
gesture 
recognition 
(wearable 
systems) 

Equal to the 
number of 
monitored joints 

High/ 
Medium 

High/ 
Medium • Applicable in any 

light/darkness and 
noisy condition 

• Exploitation of body 
commands 

 

• Need to wear a 
device 

• The user can’t 
perform any other 
action at the same 
time with that 
portion of the body 

EMG 
activation 

2  
(recommended) 

Medium Medium • Applicable in any 
light/darkness and 
noisy condition 

• ‘Biomimetic’ 
activation  

• Skin electrodes 
applicable beneath 
standard suits, 
without any 
additional device. 

• Need to wear skin 
electrodes  

• Need of considerable 
and accurate training 
of the operator 

• High tendency to 
muscular fatigue  

Gaze-
Tracking: 
corneal 
reflection 

1-2 Low Low • No devices to be 
worn  

• Applicable in noisy 
environments 

• Need of absence of 
obstacles for light 
propagation 

• Tendency to 
muscular fatigue 

Gaze-
Tracking: 
EOG 

1 Low  Low • Applicable in any 
light/darkness 
condition and noisy 
environment 

• Discomfort (skin 
electrodes around 
eyes) 

• Tendency to 
muscular fatigue 

 
 
 

4.3 Technology readiness and perspectives 
Currently, numerous systems based on the use of the speech technology are 
available on the market. On the contrary, for motion capture the market 
offers still few usable systems. Accordingly, a higher time scale for possible 
exploitations in the space field can be foreseen for interfaces based on 
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motion capture with respect to speech recognition. An even higher time scale 
is envisaged for the EMG based technology. In this case, one of the major 
difficulties, which currently limit the wide spreading of this technique, is the 
considerable training required to properly use it. Table 4.3.1 summarizes the 
technology readiness and perspectives (tentative indication of possible time 
scale) of the different methodologies.  
 

 
Table 4.3.1: Non invasive man-machine interfaces besides BMI: 
 technology readiness and perspectives for space applications 

Interface Technology 
readiness 

Comments Perspective time 
scale for possible 
space applications 

BMI EEG activation Low No reliable commercial 
examples 

> 10 years 

Speech recognition High Already established 
commercial uses  

1 year 

Sub-vocal 
commands 

Medium No reliable commercial 
examples 

3 years 

Motion capture and 
gesture recognition 
(wearable systems) 

Medium The first few commercial 
products are appearing on the 
market 

5-10 years 

Non 
BMI 

EMG activation Medium/ 
Low 

No reliable commercial 
examples 

> 10 years 

 

 

4.4 Examples of potential space applications  
 
Both BMIs and the different kinds of non-invasive man-machine interfaces 
described above may result particularly useful for several types of potential 
space applications. Some of the most relevant ambits of possible use are 
briefly mentioned below. 

4.4.1 Spacecraft robotic systems 
The possibility of controlling spacecraft robotic systems, such as robotic 
arms or tele-manipulators, is certainly one of the main fields of potential 
space application for both BMIs and different non-invasive interfaces. 
As an example, Fig. 4.4.1 shows the robotic arm of the space shuttle. 
Astronauts may control operations of this system through elaborations of 
brain signals or alternative body inputs. 
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FIG. 4.4.1: Space shuttle robotic arm (NASA public pictures) 

 
 
As reported in sections 2 and 3 for the different considered interfaces, 
ongoing research efforts spent by several groups all over the world are 
progressively consolidating the scientific and technological knowledge 
necessary to face these (and many other) kinds of delicate applications. 
The human control of a robotic arm of the type shown in the example of Fig. 
4.4.1 opens a series of new challenging issues. Nevertheless, some of them 
could result not so far from those related to other kinds of systems studied 
for different applications: for instance, artificial robotic hands to be used as 
prostheses. As an example, this could be the case when the robotic system 
should be managed by the astronaut as a sort of ‘appendix’ of his own body. 
Actually, in such a case several lessons learned from those different systems 
may result particularly useful. Accordingly, the reader is here referred to 
Section 3.1, where some basic issues related to EMG controls of prosthetic 
hands is reported. 
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4.4.2 Autonomous vehicles 
Tele-controls of autonomous vehicles (to be used for instance for 
explorations, reparations or maintenance) are another example of potential 
field of application for the considered interfaces. The scientific bases for 
such tasks are currently being explored and successful results have been 
already reported (see ref. [11] of section 2). In that work, two human 
subjects were able to drive a robot between several rooms (Fig. 4.4.2) by 
mental control only, using an EEG-based BMI that recognized three mental 
states.  
 

 
FIG. 4.4.2: A mobile robot (two-wheeled vehicle) in its environment, consisting of 
several rooms along a corridor. The robot had three lights on the top to provide 
feedback to the user and 8 infrared sensors around its diameter to detect obstacles 
(from ref. [11] of section 2). 
 
 
The performance of mental controls was comparable to manual controls on 
the same task, with a performance ratio of 0.74. This work introduced as a 
novel idea to control robots by mapping asynchronously high-level mental 
commands into a finite state automaton (see ref. [11] of section 2). 

4.4.3 Cabin instrumentation and equipment 
Providing commands to cabin instrumentation or equipment may be 
accomplished not only manually, but also exploiting man-machine 
interfaces. The most promising types of useful interfaces for such purposes 
are certainly those based on speech recognition or sub-vocal commands. 
They have been reported in section 3.4. Both of them permit to the user to 
provide easily and quickly direct commands. Accordingly, astronauts may 
take advantage of these systems, to control cabin instrumentation or 
equipment without any manual command. For instance, they could 
advantageously provide instructions both remotely and preserving their 
hands free.  
The current higher reliability of interfaces based on speech recognition is 
paid with a substantial uselessness in noisy environments. In such cases, sub-
vocal interfaces are more suitable, although their performance is currently 
lower. More generally, the second type of systems could allow astronauts to 
silently control instrumentation or equipment aboard a spacecraft. 
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4.4.4 Exoskeletons 
Human exoskeletons are conceived as wearable systems (Fig. 4.4.3) 
typically intended to serve for augmenting different types of human 
functions, such as muscular power or protection from dangerous 
environments. 
 

 
FIG. 4.4.3: CAD rendering of an arm exoskeleton (adapted from [1]). 

 
 
Exoskeleton concepts are currently being studied for both soldiers, labourers 
(lifting of heavy weights), nurses (lifting of patients) and patients requiring 
rehabilitation (e.g. after stroke or spinal cord ingiuries).  
They may result particularly useful as auxiliary systems for astronauts too. 
The controllabilty of such a type of systems is a relevant potential space 
applicaton for both BMIs and different types of non-invasive man-machine 
interfaces. Section 3.1 reports some basic issues related to EMG controls of 
exoskeletons. 
Several studies have been committed by ESA in this ambit of application. 
Therefore, according to a specific ESA request, this topic is not further 
considered in this report. 

4.4.5 Extra-vehicular robotic activities 
In addition to the considered types of applications, different examples are 
possible too, although they appear as quite challenging for the current 
maturity of the technology. For example, a robotics team at NASA's Johnson 
Space Center in Houston is developing a new breed of space robots called 
Robonaut [2]. Robonaut, designed to be as human-like as possible, will be 
remotely controlled to work in Extra-Vehicular Activity (EVA) 
environments, allowing astronauts to remain safely inside the spacecraft. 
This humanoid design criterion was key, because, over the last 50 years, 
space flight hardware has been made for human servicing and space walks 
(Fig. 4.4.4) are the main contingency for repairing on-orbit failures.  
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FIG. 4.4.4: Astronauts’ space walks for extra-vehicular activity (NASA public 
pictures) 
 
 
Robonaut's value is not only in assuming some of the mundane repair chores 
aboard the spacecraft, but it will respond much more quickly to emergencies 
than a human can. Since it can take several hours to suit up a human in 
preparation for a spacewalk, the Robonaut is better suited for unexpected 
emergency situations, since no life support equipment or supplies are 
required. A typical use will be from the International Space Station. 
Robonaut will be housed on-board, in its own locker, ready for an 
assignment. Although the robot is designed to be as human-like as possible, 
some adaptations have been made to avoid some of the disadvantages of the 
human design. For instance, in a weightless environment like space, human 
feet are a hindrance and are usually bolted down, in a portable foot, to avoid 
unnecessary drift. Therefore, Robonaut does not have legs rather it is 
connected to the space craft using a “tail” design. Once outside the 
spacecraft, Robonaut will be controlled by telepresence and will mimic the 
movements made by an astronaut. If the application is too complex to be 
done without human intervention, the Robonaut can still be successfully 
employed as an assistant, removing hardware from lockers, setting up tools, 
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and having everything ready for the human worker. Robonaut is being 
designed and built to interface with external space station systems that only 
have human interfaces. To this end, the Robonaut hand provides a high 
degree of anthropomorphic dexterity ensuring a compatibility with many of 
these interfaces [3]. Another application concerns, as an example, the 
Hubble Space Telescope (HST) that was carried into orbit in 1990 aboard 
the Space Shuttle Discovery (STS-31). High focal length designs are too 
large to fit in the Orbiter payload bay as a single unit. Instead, components 
of these space telescopes could be launched separately for a rendezvous in 
Low Earth Orbit (LEO) for assembly and final repositioning. These and 
other larger, lighter, more extendable space structures will require greatly 
expanded EVA and Extra-Vehicular Robotic (EVR) capabilities as well as 
new and innovative structural systems. The recent emergence of highly 
dexterous space robots dramatically increases the opportunities for humans 
and robots working together in space. These machines can help conserve 
EVA hours by relieving human astronauts of many routine chores and 
assisting them in more complex tasks. Robots can take risks unacceptable to 
humans, perform contingency EVA operations in minutes, instead of hours, 
and setup worksites in preparation for the arrival of human astronauts. The 
Filled-Aperture Infra-Red (FAIR) telescope is one example of the new 
generation of space science platforms requiring expanded EVA/EVR 
capabilities. Boasting an extremely long focal length, the FAIR design is too 
large and flimsy to be carried into orbit as a single pre-integrated assembly. 
Instead, the spacecraft subassembly and components of the telescope are 
launched aboard the Space Shuttle, while the propulsion stage is launched 
separately on an expendable vehicle. For this task, humanoid robots, 
controlled by remote human tele-operators, may serve in various roles 
supporting the astronaut. Higher-fidelity tests involving more sophisticated 
gravity compensation and more realistic mobility, communication time 
delay, lighting conditions, etc. will complicate some operational aspects of 
EVR but simplify others. The multi-agent team featured represents only one 
particular instance of humans and robots working together. It represents a 
novel integration of existing technology prototypes and test beds intended to 
meet test objectives. However, it should only be interpreted as a part of the 
solution for increasing EVA capability and productivity [4]. 

4.4.6 Final remark 
Some examples of potential space applications for BMIs and other non-
invasive man-machine interfaces have been considered. It is worth noting 
that for all these examples it could be useful to combine the action of a BMI 
with another non invasive interface. In fact a BMI could require and may 
benefit from an auxiliary system to be used for specific tasks. This is the 
case of multi-task operations, which require several efforts from the 
astronauts. The challenge is to properly combine these technologies, by 
making the system robust and intelligent. Some tasks may be performed by 
using signals detected by a BMI while others, at the same time, may be 
accomplished by exploiting alternative means of communication enabled by 
different types of non-invasive interfaces. Fulfilment of such issues may 
open completely new approaches to manage space operations. 
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