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Kinematic Analysis and Computation of ZMP
for a 12-internal-dof Biped Robot
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Abstract—In this paper we present the kinematic anal-
ysis of a 12-internal-DOF (three-dimensional and anthro-
pomorphic) biped robot, the Scout Lynxmotion c⃝, towards
a ZMP-based control. Since there are only few contribu-
tions that contain explicit models of similar robots, but not
exactly this one, our first goal was to generate a kinematic-
dynamic model that will let us study and control the loco-
motion of the biped. As the space is limited, this paper is
restricted to the presentation of the representative steps of
the kinematic modeling and the computation of the ZMP,
which are then evaluated by numerical simulations. The
dynamic model, which has been already obtained, will be
published later on.
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Nomenclature
�ni: Rotation angle of the shaft of the servomotor that trasmits movement
to the ni link.
xni, yni, zni: Geometric parameters of the robot corresponding to the
length of the ni link.
mni: Mass of the ni-th link.
Imi
ni : Inertia matrix of the ni-th link with respect to the frame mi.
pni: Point ni.
(O; i0, j0,k0): Reference inercial frame formed by mutually-orthogonal
unit vectors i0, j0,k0, with origin at point O.
(pni; imi, jmi,kmi): Reference local frame mi formed by mutually-
orthogonal unit vectors imi, jmi,kmi, with origin at point pni.
Tzi: Basic homogeneous transformation matrix.
Tmi,(m+1)i: Homogeneous transformation matrix from reference
frame mi to (m+ 1) i.
rmi
ni : Position vector ni with respect to reference frame mi.

rmi
Gni: Position vector of the center of gravity niwith respect to reference

frame mi.
Rx: Basic rotation matrix.
Rmi

(m+1)i
: Rotation matrix from base (m+ 1) i to mi.

vmi
ni , !mi

ni , ami
ni , �mi

ni : Vectors of velocity, angular velocity, accelera-
tion, angular aceleration ni with respect to reference frame mi, respec-
tively.
pZMP: Position vector associated to the ZMP.

Introduction

The study of biped walking machines was formally
started during the 1970s and has rapidly increased in the re-
cent years with different applications: developing of biped
robots, exoskeletons, active ortheses, etc.
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In the literature of biped robots there are several contribu-
tions in different fields, for example in [1], [2], [3] general
issues are reported such as the state of the art, definitions,
guidelines to obtain models, discussions about mechanical
design, description of walking patterns, etc.; in the field of
control there are papers as [4], for trajectory planning some
others like [5], [6], [7], simulation tools are given in [8] and
so on.

However, in these contributions it is practically assumed
that the reader already has the mathematical model, that is,
they do not give it explicitly. For example, in the field of
trajectory planning, [6] deals with the problem of control-
ling the ZMP for simplified inverted-pendulum models and
then verifies the proposals on models of their own.

There are only few contributions that present explicit
models, but none of them describe the movement of spa-
tial 12 dof biped robots like the one presented here. For
example, in [4] kinematic and dynamic (based on Newton-
Euler formulation) models are given and [8] present dy-
namic equations for a two-dimensional biped robot. A ma-
jor drawback of such contributions is that control schemes
based on a Euler-Lagrange approach cannot be imple-
mented.

Since our goal is to control the walk of a three-
dimensional anthopomorphic biped robot, our first step
is to obtain both the kinematic and dynamic model us-
ing the Euler-Lagrange formulation of a biped robot Scout
Lynxmotion c⃝ (Figure 1).

In this paper only the kinematic model is presented.

Fig. 1. Robot de inters: Scout Lynxmotion c⃝

In order to verify numerically the obtained model, a first
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trajectory was tested. This trajectory was generated by in-
stantaneous positions obtained from a CAD model. Never-
theless the main idea is to use the ZMP criterion of stability
to generate the trajectories.

ZMP stands for Zero Moment Point, and can be briefly
defined as a center of pressure of the floor reaction force [2].
As stability criterion, it is said that if during the walking cy-
cle the ZMP is contained in the support polygon, the walk
is considered stable. This criterion has established the the-
oretical basis of dynamic stability of locomotion and is ap-
plied in current versatile robots as those from MIT, Waseda
University and Honda Company.

In Section I the simplified configuration of the robot is
described. Based on this configuration the kinematic anal-
ysis of Section II is made, that is, the analysis of position,
velocity and acceleration; because of space limitations, the
last two were not completely developed. Based on some of
these results, the computation of the ZMP is presented in
Section III. Our model was verified by numerical simula-
tions and the results are reported and discussed in section
IV. Last section contains some conclusions and final re-
marks.

I. Biped robot architecture

Biped robot Scout consists of two 6-DOF serial link legs
articulated between them by a central link, called torso be-
cause of its anatomical similarity to the human body. The
13 links are connected by rotational joints actuated by ser-
vomotors

In figure 2 the simplified CAD model of the robot is pre-
sented. That spatial configuration will be denoted as neutral
position. Torso is identified with letter B and the links of
each leg are labeled ni; where 1 ≤ n ≤ 6 is determined
by its position with respect to the torso, that is, n = 1 will
denote the links immediatly jointed to it and n = 6 those
who are playing the role of feet. The second index is used
to distinguish each leg, that is, i = 1 are the links of the left
leg and i = 2 those of the right leg.

The joints are presented as cylinders whose axes coin-
cide with the shafts of the servomotors of the real model
whereas the links are presented as bars. Rotations of the
shafts of servomotors are denoted as �ni, where ni refers to
the label of the link moved by the servo. According to the
clasification proposed in [3], Scout is an anthropomorphi-
cal tridimensional biped robot, therefore a direct analogy
with human anatomy is possible: the six red-colored angles
are equivalent to the dofs of the hip, the two green-colored
angles are meant to mimic the movement of the knee and
the four blue-colored angles represent the dofs of the an-
kle. The geometry of the structure of the robot which has
contact with the floor plane (which in fact is part of the
links denoted as 6i), has not been simplified since it will be
important in the future when trying to walk with dynamic
stability, in particular to force the ZMP to be placed within
the support polygon.

Since the robot can move in 3-D, the coronal and sagittal
views are required to define the geometric parameters with
kinematic importance, which in this case are the distances
between midpoints of the axes of the cylinders pni shown
in Figure 3.

Fig. 2. Simplified model of the Scout.

Fig. 3. Simplified model of the robot. Left: Sagittal right view. Right:
Coronal anterior view.

It is important to note that points pi are defined as the
intersection of the lines perpendicular to the rotation axes
�6i (which contain points p6i in planes parallel to the sagit-
tal plane) and the surfaces of the feet that make contact with
the floor; distances between points p6i and pi along links 6i
at the left (i = 1) and right (i = 2) feet are denoted as y6i.
Distances between the sagittal plane and parallel planes that
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contain the axes of the servomotors (fixed to the torso) are
denoted as x0i. In addition, l1 and l2 define the rectangled
surface of contact between each feet and the floor.

Since the robot has sagittal symmetry the following equa-
tions can be defined: x21 = x22, x01 = x02, x31 = x32,
z11 = z12, x41 = x42, y61 = y62, x51 = x52.

These equations let us reduce the notation of geometric
parameters to the following: x0i, z1i, x2i, x3i, x4i, x5i, y6i.

II. Kinematic Equations

The kinematic model on which the walking analysis of
the robot is based can be seen in Figures 4 and 5.

The origin O of the inertial fixed frame (O; i0, j0,k0)
and the unit vectors i0, j0 are located at the floor plane. Vec-
tor i0 is parallel to the anterior and posterior edges of the
robot’s feet, j0 is located at the intersection with the sagittal
plane and k0 is the result of the cross product i0 × j0.

Point pB of the local frame (pB; iB, jB,kB) is the mid-
dle point of the line defined from point p11 to point p12.
Vectors iB, jB are placed on the plane parallel to the supe-
rior face of linkB that contains pB; iB is parallel to the an-
terior and posterior edges of the same link and jB is parallel
to its lateral edges; finally, kB is the cross product iB× jB.

As mentioned before, i = 1 is defined for all elements
of the left leg and i = 2 for those of the right leg, so it
can be seen that points pi of the local frames (pi; ii, ji,ki)
are located at the plane of the feet-floor contact, as well
as vectors ii, ji. Vectors ii are parallel to the anterior and
posterior edges of the corresponding foot, ji are parallel to
the lateral edges and ki are the cross products ii × ji.

Based on the defined reference frames, the inverse kine-
matic problem for the analysis of the position of the biped
robot can de stated as:

Given a certain position of points pB,pi and the ori-
entation of the local frames (pB; iB, jB,kB), (pi; ii, ji,ki)
with respect to the inertial frame (O; i0, j0,k0), find the
angles �1i, �2i, �3i, �4i, �5i, �6i such that the spatial config-
uration determined by those positions and orientations can
be archieved.

The position of points pB,pi with respect to the intertial
frame is described by the following vectors

r0B = xBi0 + yBj0 + zBk0 (1)
r0i = xii0 + yij0 + zik0

The orientation of the local frame (pB; iB, jB,kB) with
respect to the inertial frame is defined by the following Eu-
ler angles:

�B , �B ,  B (2)

For local frames placed at the feet (pi; ii, ji,ki) the cor-
responding Euler angles are:

�i, �i,  i (3)

Define the Euler angles �i, �i,  i to describe the orien-
tation of the local frames (pi; ii, ji,ki) with respect to the

inertial frame. Angle �i corresponds to rotations about the
i0 axis, �i represents rotation about the j�i axis and  i cor-
responds to rotation about the k�i axis. Similarly, for the
orientation of the local frame (pB; iB, jB,kB), �B corre-
sponds to rotation about the i0 axis, �B describe rotation
about the j�B axis and B represents rotation about the k�B
axis.

By obtaining the time derivatives of position vectors (1)
and Euler angles (2) - (3), the inverse kinematic problem of
velocity is defined as follows:

Given certain translation and rotation velocities of the
torso and feet links, that is, with vectors v0

B = ẋBi0 +
ẏBj0+ żBk0,v

0
i = ẋii0+ ẏij0+ żik0 and time derivatives

of the Euler angles �̇B , �̇B ,  ̇B , �̇i, �̇i,  ̇i, find the joint ve-
locities of the links of the robot �̇1i, �̇2i, �̇3i, �̇4i, �̇5i, �̇6i.

By obtaining the time derivatives of velocity vectors
v0
B,v

0
i and �̇B , �̇B ,  ̇B , �̇i, �̇i,  ̇i, the inverse kinematic

problem of acceleration is then defined as:
Given certain translation and rotation accelerations of

the torso and feet links, that is, with vectors a0B = ẍBi0 +
ÿBj0 + z̈Bk0,a

0
i = ẍii0 + ÿij0 + z̈ik0 and second

time derivatives of the Euler angles �̈B , �̈B , ¨B , �̈i, �̈i, ï,
find the joint accelerations of the links of the robot
�̈1i, �̈2i, �̈3i, �̈4i, �̈5i, �̈6i.

In the next sections the answer to the three inverse kine-
matic problems are described, that is, some equations are
presented in order to give numerical solution to those prob-
lems.

Regarding the number of input data required to solve the
position problem, it is clear that the spatial configuration of
the robot can only be defined by eighteen input values: nine
Cartesian coordinates from (1), i.e. xB , yB , zB , xi, yi, zi,
i = 1, 2, and nine Euler angles from (2) and (3), i.e. �B ,
�B ,  B , �i, �i,  i, i = 1, 2. Therefore, it can be said that
the robot has 18 dof.

On the other hand, in the specialized literature biped
robots are usually characterized by its joint number, which
in fact is identified as the number of internal degrees of free-
dom. From this point of view, the Scout robot is described
as a robot with 12 internal dof.

According to literature, 12 is the minimum number of
internal dof required in a biped robot to synthesize three-
dimensional walking cycles similar to human locomotion
[1].

A. Position equations

In order to solve the position inverse kinematic problem,
the concept of basic homogeneous matrix transformations
was used.

Transformations Tz1,Tz2,Tz3 represent translations
with displacements x, y, z defined with respect to axes
i, j,k, respectively; transformations Tz4,Tz5,Tz6 de-
scribe rotations with angular displacements �x, �y, �z about
the same axes.
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According to the Cartesian coordinates of points pB,pi

with respect to the intertial frame and the Euler angles in
(2) and (3), the required transformations to express the
position and the orientation of local frames of the torso
(pB; iB, jB,kB) and the feet (pi; ii, ji,ki) with respect to
the inertial frame as a combination of translations and rota-
tions are the following:

T0,B = Tz1(xB)Tz2(yB)Tz3(zB)Tz4(�B)Tz5(�B)Tz6( B)

T0,i = Tz1(xi)Tz2(yi)Tz3(zi)Tz4(�i)Tz5(�i)Tz6( i)

Fig. 4. Local frames used to describe the position equation by homoge-
neous transformations. The transformation path from one local frame into
the next one is illustrated with violet-colored arrows.

Transformations Tni,(n+1)i, which are listed in the next
paragraph, establish the product of the basic homogeneous
transformations that translate and rotate the local frames
placed at pni into those which are placed at p(n+1)i.

TB,11 = Tz1(−x01)Tz6(�11 + �11)

TB,12 = Tz1(x02)Tz6(�12 + �12)

T1i,2i = Tz3(−z1i)Tz5(�2i + �2i)

T2i,3i = Tz1(x2i)Tz6(�3i + �3i)

T3i,4i = Tz1(x3i)Tz6(�4i + �4i)

T4i,5i = Tz1(x4i)Tz6(�5i + �5i)

T5i,6i = Tz1(x5i)Tz6(�6i + �6i)

T6i,i = Tz2(y6i)Tz6(�7)Tz5(�8)

Fig. 5. Local frames used to describe the position equation by homoge-
neous transformations. Green-colored frames are obtained after a transla-
tion; blue-colored frames are generated after a rotation.

Fig. 6. Local frames placed at the feet, angles �7 and �8 are the same in
both of them.

Transformations TB,11,TB,12 correspond to the align-
ment of the frame of the torso with local frames
(p1i; i1i, j1i,k1i); transformation T6i,i corresponds to
the alignment of local frames (p6i; i11i, j11i,k11i) and
(pi; ii, ji,ki), as it is illustrated in Figure 6. Angles �ni
are constant values defined in order to recover the so-called
neutral position, that is, when the servomotors are also in
neutral position: �1i = �2i = �3i = �4i = �5i = �6i = 0.

Taking into account that the product of the homogeneous
transformations that define the translations and rotations be-
tween the inertial frames and the local frames all the way
through the torso and the rotational joints of each leg must
be equal to the product of the transformations in T0,i, the
following matrix loop equation can be defined:

T0,BTB,1iT1i,2iT2i,3iT3i,4iT4i,5iT5i,6iT6i,i = T0,i

(4)
From matrix equation (4) one can pose a set of 12 scalar
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equations to solve the inverse kinematic problem of posi-
tion for each one of the legs of the robot. By taking 3 equa-
tions from the 4tℎ column and 3 others from the diagonal
of the spherical image a square system of equations can be
defined, that is, 6 equations and 6 unknown variables which
are the link-angles: �11, �21, �31, �41, �51, �61 for the left
leg and �12, �22, �32, �42, �52, �62 for the right one.

In order to consider the footprints in walking simula-
tions, the vectors that define the vertices of the correspond-
ing polygons should be given. Those vectors are illustrated
in Figure 7.

Fig. 7. Vertices of polygons that characterize the footprints. Vectors
r1p1, r

2
e2 represent the position of points pp1 y pe2 in the local frames

(p1; i1, j1,k1) and (p2; i2, j2,k2).

With vectors riai, r
i
bi, . . . , r

i
ti (defined in appendix A),

Cartesian coordinates of vertices with respect to the inertial
frame can be computed (aix0, aiy0, aiz0), (bix0, biy0, biz0),
. . . , (tix0, tiy0, tiz0). If we consider as an example vertices
pai, one must compute:

T0,iTz1(aix)Tz2(aiy)

⎡⎢⎢⎢⎣
0
0
0
1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
aix0
aiy0
aiz0
1

⎤⎥⎥⎥⎦
where aix, aiy are the coordinates of vertices pai with re-
spect to the axes ii and ji of the local frames, respectively.

B. Velocity equations

In order to get an efficient solution of velocity equations
a vectorial method based on the position equations [9] was
chosen

r0B + r00i + r01i + r02i + r03i + r04i + r05i + r06i = r0i (5)

where the position vectors of Figure 8 with respect to the
inertial frame are:

r0B = xBi0 + yBj0 + zBk0

r0i = xii0 + yij0 + zik0

r001 = −x01i0B r002 = x02i
0
B

r01i = −z1ik0
1i r02i = x2ii

0
3i

r03i = x3ii
0
5i r04i = x4ii

0
7i

r05i = x5ii
0
9i r06i = y6ij

0
11i

Fig. 8. Vectors used to define the velocity and acceleration equations
(violet-colored).

Unit vectors iB,k1i, i3i, i5i, i7i, i9i, j11i can be de-
scribed with respect to the inertial frame by basic rotation
matrices with angles �x, �y, �z about axes i, j,k:

i0B = Rx(�B)Ry(�B)Rz( B)iB

= R0
BiB

k0
1i = R0

BRz(�1i + �1i)k1i

= R0
1ik1i

i03i = R0
1iRy(�2i + �2i)i3i

= R0
3ii3i

i05i = R0
3iRz(�3i + �3i)i5i

= R0
5ii5i

i07i = R0
5iRz(�4i + �4i)i7i

= R0
7ii7i

i09i = R0
7iRz(�5i + �5i)i9i

= R0
9ii9i

j011i = R0
9iRx(�6i + �6i)j11i

= R0
11ij11i

Time derivative of position vector equation (5) is:

ṙ0B + ṙ00i + ṙ01i + ṙ02i + ṙ03i + ṙ04i + ṙ05i + ṙ06i = ṙ0i

If one define v = ṙ, the velocity vector equation for the
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translation of each leg is:

v0
B + v0

0i + v0
1i + v0

2i + v0
3i + v0

4i + v0
5i + v0

6i = v0
i (6)

where the velocity vectors with respect to the inertial frame
are:

v0
B = ẋBi0 + ẏBj0 + żBk0

v0
i = ẋii0 + ẏij0 + żik0

v0
0i = !0

B × r00i v0
1i = !0

1i × r01i
v0
2i = !0

2i × r02i v0
3i = !0

3i × r03i
v0
4i = !0

4i × r04i v0
5i = !0

5i × r05i
v0
6i = !0

6i × r06i

(7)

In these equations angular velocity vector of the torso is de-
noted as !0

B and !0
ni represents the angular velocity vector

of the ni-th link.
If vectors (7) are substituted in (6), one obtains:

ẋBi0 + ẏBj0 + żBk0 + !0
B × r00i + !

0
1i × r01i+

+!0
2i × r02i + !

0
3i × r03i + !

0
4i × r04i+

+!0
5i × r05i + !

0
6i × r06i = ẋii0 + ẏij0 + żik0

(8)

Angular velocity equations for each leg are:

!0
6i = !0

i

�̇Bi
0
�B + �̇Bj

0
�B +  ̇Bk

0
 B+ (9)

+�̇1ik
0
0i + �̇2ij

0
2i + �̇3ik

0
4i+

+�̇4ik
0
6i + �̇5ik

0
8i + �̇6ii

0
10i = �̇ii

0
�i + �̇ij

0
�i +  ̇ik

0
 i

where !0
i are angular velocity vectors corresponding to

each foot.
Assuming that numerical solution of equations (4) al-

ready gave the angular position values �1i, �2i, �3i, �4i, �5i, �6i,
system equation (8) - (9) is square, since they can be
posed as 6 scalar equations with 6 unknown variables:
�̇1i, �̇2i, �̇3i, �̇4i, �̇5i, �̇6i

C. Acceleration equations

Time derivative of velocity equation (6) can be expressed
as follows:

v̇0
B + v̇0

0i + v̇0
1i + v̇0

2i + v̇0
3i + v̇0

4i + v̇0
5i + v̇0

6i = v̇0
i

If one define a = v̇, acceleration equation for translation
is:

a0B + a00i + a01i + a02i + a03i + a04i + a05i + a06i = a0i (10)

where acceleration vectors with respect to the inertial frame

are given by:

a0B = ẍBi0 + ÿBj0 + z̈Bk0

a00i = �0
B × r00i + !

0
B ×

(
!0

B × r00i
)

a01i = �0
1i × r01i + !

0
1i ×

(
!0

1i × r01i
)

a02i = �0
2i × r02i + !

0
2i ×

(
!0

2i × r02i
)

a03i = �0
3i × r03i + !

0
3i ×

(
!0

3i × r03i
)

a04i = �0
4i × r04i + !

0
4i ×

(
!0

4i × r04i
)

a05i = �0
5i × r05i + !

0
5i ×

(
!0

5i × r05i
)

a06i = �0
6i × r06i + !

0
6i ×

(
!0

6i × r06i
)

a0i = ẍii0 + ÿij0 + z̈ik0

When these vectors are substituted in (10), the accelera-
tion equations for the translation of each leg are:

ẍBi0 + ÿBj0 + z̈Bk0 +

�0
B × r00i + !

0
B ×

(
!0

B × r00i
)

+

�0
1i × r01i + !

0
1i ×

(
!0

1i × r01i
)

+

�0
2i × r02i + !

0
2i ×

(
!0

2i × r02i
)

+

�0
3i × r03i + !

0
3i ×

(
!0

3i × r03i
)

+ (11)

�0
4i × r04i + !

0
4i ×

(
!0

4i × r04i
)

+

�0
5i × r05i + !

0
5i ×

(
!0

5i × r05i
)

+

�0
6i × r06i + !

0
6i ×

(
!0

6i × r06i
)

= ẍii0 + ÿij0 + z̈ik0

where�0
B is the angular acceleration vector of the torso and

�0
ni is the angular acceleration vector of the ni-th link.
Angular acceleration equations are obtained by comput-

ing the time derivative of (9):

!̇0
6i = !̇0

i

�0
6i = �0

i

�̈Bi0 + �̈Bj
0
�B

+ ¨
Bk

0
 B

+ �̇B

(
i0�B × !

0
�B

)
+�̇B

(
j0�B
× !0

 B

)
+  ̇B

(
!0
�B
× k0

 B

)
+�̈1ik

0
0i + �̇1i

(
!0
B × k0

0i

)
+ �̈2ij

0
2i + �̇2i

(
!0

1i × j02i
)

+�̈3ik
0
4i + �̇3i

(
!0

2i × k0
4i

)
+ �̈4ik

0
6i + �̇4i

(
!0

3i × k0
6i

)
+�̈5ik

0
8i + �̇5i

(
!0

4i × k0
8i

)
+ �̈6ii

0
10i

+�̇6i
(
!0

5i × i010i
)

= �̈ii0 + �̈ij
0
�i

+ ïk
0
 i
+

+�̇i

(
i0�i × !

0
�i

)
+ �̇i

(
j0�i
× !0

 i

)
+  ̇i

(
!0
�i
× k0

 i

)
(12)

Assuming that numerical solutions of equations of po-
sition and velocity have been already computed, that is,
numerical values of �1i, �2i, . . . , �6i and �̇1i, �̇2i, . . . , �̇6i,
system equation (11) - (12) can be solved since they
are 6 scalar equations with 6 unknown variables:
�̈1i, �̈2i, �̈3i, �̈4i, �̈5i, �̈6i

6
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III. Computation of the ZMP

The vectors that describe the position of the center of
gravity of the torso and of the ni-th link, r0GB and r0Gni

respectively , are defined as

r0GB = R0
Br

B
GB r0G1i = R0

1ir
1i
G1i

r0G2i = R0
3ir

3i
G2i r0G3i = R0

5ir
5i
G3i

r0G4i = R0
7ir

7i
G4i r0G5i = R0

9ir
9i
G5i

r0G6i = R0
11ir

11i
G6i

where rBGB and rmi
Gni are numerically given in appendix B.

Using these vectors and those obtained from the solution
for velocity, the position of centers of gravity of the torso
and the ni-link,b0

B and b0
ni respectively, with respect to the

inertial frame are given by:

b0
B = r0B + r0GB

b0
1i = r0B + r00i + r0G1i

b0
2i = r0B + r00i + r01i + r0G2i

b0
3i = r0B + r00i + r01i + r02i + r0G3i

b0
4i = r0B + r00i + r01i + r02i + r03i + r0G4i

b0
5i = r0B + r00i + r01i + r02i + r03i + r04i + r0G5i

b0
6i = r0B + r00i + r01i + r02i + r03i + r04i + r05i + r0G6i

Vectors b0
B,b

0
ni are illustrated in Figure 9.

Fig. 9. Vectors that define the gravity center of each link and the torso.

Matrices I0B, I0ni represent the inertia moments of the

links with respect to the inertial frame:

I0B = R0
BI

B
B

(
R0

B

)T
I01i = R0

1iI
1i
1i

(
R0

1i

)T
I02i = R0

3iI
3i
2i

(
R0

3i

)T
I03i = R0

5iI
5i
3i

(
R0

5i

)T
I04i = R0

7iI
7i
4i

(
R0

7i

)T
I05i = R0

9iI
9i
5i

(
R0

9i

)T
I06i = R0

11iI
11i
6i

(
R0

11i

)T
According to the method reported in [2], one can obtain

the center of mass vector b0
T, its total linear momentum

P and its total angular momentum ℒ with respect to the
inertial frame as follows:

b0
T =

mB

mT
b0
B +

2∑
i=1

6∑
n=1

mni

mT
b0
ni

)

P = mBḃ
0
B +

2∑
i=1

6∑
n=1

mniḃ
0
ni

)
ℒ = b0

B ×
(
mBḃ

0
B

)
+ I0B!

0
B +

+

2∑
i=1

6∑
n=1

(
b0
ni ×

(
mniḃ

0
ni

)
+ I0ni!

0
ni

))

One can refer to the elements of the previous column vec-
tors as: P =

[
Px Py Pz

]T
,

ℒ =
[
ℒx ℒy ℒz

]T
, b0

T =
[
bTx bTy bTz

]T
.

The position vector associated to the Zero Moment Point
pZMP with respect to the inertial frame is represented as
pZMP =

[
ZMPx ZMPy ZMPz

]T
, where:

ZMPx =
mT gbTx + ZMPzṖx − ℒ̇y

mT g + Ṗz

ZMPy =
mT gbTy + ZMPzṖy + ℒ̇x

mT g + Ṗz
(13)

and ZMPz is the height of the floor plane with respect
to the inertial frame, which in this case is zero.

IV. Numerical simulations

The walking pattern was chosen for these simulations
as simple as possible, that is, considering that: (a) the
feet are always parallel to the floor-plane, (b) point pB

moves in the sagittal plane during all the walk, (c) coor-
dinate zB is always constant. Under these restrictions, po-
sitions of points pB,pi and the orientations of local frames
(pB; iB, jB,kB), (pi; ii, ji,ki) with respect to the inertial
frame (O; i0, j0,k0) as function of time t are geometri-
cally restricted by: xB(t) = 0, zB(t) = 234.37[mm],
x1(t) = x2(t) = 44.54[mm], �B(t) = �1(t) = �2(t) = 0,
�B(t) = �1(t) = �2(t) = 0,  B(t) =  1(t) =  2(t) = 0.

Functions yB(t), y1(t), z1(t), y2(t), z2(t) are then freely
assigned.

7
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TABLE I. Geometric parameters. All lengths are in milimeters, that is
1× 10−3[m]

x0i = 44.54 z1i = 54.58 x2i = 29.08
x3i = 74.60 x4i = 57.29 x5i = 54.97
y6i = 23.06 l1 = 75.24 l2 = 127

TABLE II. Angles �ni in degrees, [∘]
�11 = 180 �21 = 90 �31 = 330 �41 = 60
�51 = 45 �61 = 180 �12 = 0 �22 = 90
�32 = 30 �42 = 300 �52 = 315 �62 = 0

�7 = 75 �8 = 270

Based on the physical dimensions of the robot, a CAD
model of the robot was generated using the specialized soft-
ware Solid Edge Academic c⃝ V16, where the geometric pa-
rameters of Tables I and II were introduced as well as the
position vectors to draw the feet structures (defined in Ap-
pendix A).

With the help of this CAD model, instantaneous val-
ues of coordinates yB , y1, z1, y2, z2 were obtained and then
used to generate second-degree splines that are taken as ref-
erence trajectories for the movement of the robot during
40[s]. The generated splines are:

yB (t) =

⎧⎨⎩
2.23t+ 38.5; 0 ≤ t < 15

0.03t2 + 1.23t+ 46; 15 ≤ t < 20
−0.24t+ 12.26t− 64.25; 20 ≤ t < 25

90.76; 25 ≤ t < 40

y1 (t) =

⎧⎨⎩
0; 0 ≤ t < 20

1.93t− 38.67; 20 ≤ t < 35
1.13t2 − 77.4t+ 1349.67; 35 ≤ t < 38

−2.55t2 + 202.66t− 3971.47; 38 ≤ t < 40

z1 (t) =

⎧⎨⎩
0; 0 ≤ t < 20

4t− 80; 20 ≤ t < 25
− 2

5
t2 + 24t− 330; 25 ≤ t < 35
−4t+ 160; 35 ≤ t ≤ 40

y2 (t) =

⎧⎨⎩
1.93t; 0 ≤ t < 15

1.13t2 − 32.07t+ 255; 15 ≤ t < 18
−2.56t2 + 100.59t− 938.94; 18 ≤ t < 20

52.26; 20 ≤ t < 40

z2 (t) =

⎧⎨⎩
4t; 0 ≤ t < 5

− 2
5
t2 + 8t− 10; 5 ≤ t < 15
−4t+ 80; 15 ≤ t ≤ 20

0; 20 ≤ t < 40

These piecewise functions as well as its analytic time
derivatives were used to solve position, velocity and accel-
eration equations. Results are presented in Figures 10 to
13.

Figure 10 presents the walking cycle using the simplified
model of the robot, where the fulfillment of geometric re-
strictions can be verified. A small cylinder was drew at the
bottom in order to have a reference point to appreciate the
translation of the robot. In the same figure the position of
the ZMP is drawn. It can be seen that it is outside the sup-
port polygon when the robot is in the single support phases.

Figures 11, 12 and 13 present the evolution in time of
position, velocity and acceleration of the rotational joints
of the robot, respectively (joint angles that remain at cero
for all time are not presented for obvious reasons).

These results were introduced as a sequence to move
the servomotors of the robot in order to verifiy the theo-
retical walking cycle to the real system. In order to ver-
ify the generated movement, a videoclip can be seen in
http://www.youtube.com/watch?v=mpRDsCrwvwk.

V. Conclusions

The obtained kinematic model is adequate since gener-
ates satisfactory results for the analysis of position, velocity
and acceleration of the biped robot. This model has been
already used to obtain the dynamic model by the Euler-
Lagrange approach.

Simulation results correspond to one of several possible
walking cycles. From the implementation of the generated
trajectories of the joints based on the second-degree splines
and the obtained positions of the ZMP, it can be stated that
the gait cycle is not dynamically stable (as can be verified in
the videoclip). We assume that this was due to the resticted
way in which the positions of the torso and feet were pro-
posed.

The next step in our research is to generate new spatial
configurations for the biped based on desired trajectories
for the ZMP.
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signed to O. Narváez-Aroche during his MsD. studies and
to the undergraduate students Mario Pacheco Velis, Ernesto
Villalobos Guerrero, Victor Arana Rodrı́guez and Rafael
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Appendix

I. Vectorial representation of feet

In Tables III and IV the position vectors that define the
base of the feet are given.

TABLE III. All units are in milimeters, that is 1× 10−3[m]

Left foot:
r1a1 = −2.45i1 + 64.34j1 r1b1 = −2.45i1 + 83.33j1

r1c1 = 26.18i1 + 83.33j1 r1d1 = 26.18i1 + 64.34j1

r1e1 = 28.18i1 + 64.81j1 r1f1 = 28.18i1 − 24.20j1

r1g1 = 26.18i1 − 24.70j1 r1h1 = 26.18i1 − 43.70j1

r1i1 = −2.45i1 − 43.70j1 r1j1 = −2.45i1 − 24.7j1

r1k1 = −15.12i1 − 24.7j1 r1l1 = −15.12i1 − 43.70j1

r1m1 = −44.33i1 − 43.70j1 r1n1 = −44.33i1 − 24.70j1

r1o1 = −46.33i1 − 24.20j1 r1p1 = −46.33i1 + 64.81j1

r1q1 = −44.33i1 + 64.34j1 r1r1 = −44.33i1 + 83.33j1

r1s1 = −15.12i1 + 83.33j1 r1t1 = −15.12i1 + 64.34j1

II. Vectors that define the position of the gravity centers

Torso (in milimeters, that is 1× 10−3[m]):

rBGB = −7.69jB − 0.62kB

TABLE IV. All units are in milimeters, that is 1× 10−3[m]

Right foot:
r2a2 = 15.70i2 + 64.34j2 r2b2 = 15.70i2 + 83.33j2

r2c2 = 44.33i2 + 83.33j2 r2d2 = 44.33i2 + 64.34j2

r2e2 = 46.33i2 + 64.81j2 r2f2 = 46.33i2 − 24.20j2

r2g2 = 44.33i2 − 24.70j2 r2h2 = 44.33i2 − 43.70j2

r2i2 = 15.70i2 − 43.70j2 r2j2 = 15.70i2 − 24.70j2

r2k2 = 3.03i2 − 24.70j2 r2l2 = 3.03i2 − 43.70j2

r2m2 = −26.18i2 − 43.70j2 r2n2 = −26.18i2 − 24.70j2

r2o2 = −28.18i2 − 24.20j2 r2p2 = −28.18i2 + 64.81j2

r2q2 = −26.18i2 + 64.34j2 r2r2 = −26.18i2 + 83.33j2

r2s2 = 3.03i2 + 83.33j2 r2t2 = 3.03i2 + 64.34j2

In Table V the position vectors of the centers of gravity
of the feet are given.

III. Inertia moments of the links

All units are in 1× 10−6
[
kg ⋅m2

]
.

Torso:
IBB =

[
152.08 −0.09 −0.02
−0.09 214.21 1.63
−0.02 1.63 306.38

]
Left foot:

I1111 =
[

29.40 0.04 −0.04
0.04 29.04 −0.09
−0.04 −0.09 11.63

]
, I3121 =

[
38.74 9.88 −5.06
9.88 63.10 −0.27
−5.06 −0.27 61.51

]

I5131 =
[

14.47 0.08 −1.09
0.08 57.65 −0.00
−1.09 −0.00 45.90

]
, I7141 =

[
21.97 4.37 −6.21
4.37 155.35 −1.82
−6.21 −1.82 144.59

]

I9151 =
[

11.62 10.53 −0.98
10.53 50.49 −0.23
−0.98 −0.23 50.05

]
, I11161 =

[
63.40 −26.31 6.48
−26.31 93.08 −8.23
6.48 −8.23 86.73

]
9
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TABLE V. All units are in milimeters, that is 1× 10−3[m]

Left foot:
r11
G11 = 8.49i11 + 0.22j11 − 18.77k11

r31
G21 = 14.48i31 + 2.60j31 − 6.24k31

r51
G31 = 34.33i51 + 0.08j51 − 1.21k51

r71
G41 = 19.52i71 + 2.13j71 − 3.44k71

r91
G51 = 35.49i91 + 8.37j91 − 1.21k91

r111
G61 = −9.58i111 + 11.39j111 − 7.92k111

Right foot:
r12
G12 = 8.49i12 + 0.22j12 − 18.77k12

r32
G22 = 14.48i32 − 2.60j32 − 6.24k32

r52
G32 = 34.33i52 − 0.08j52 − 1.21k52

r72
G42 = 19.52i72 − 2.13j72 − 3.44k72

r92
G52 = 35.49i92 − 8.37j92 − 1.21k92

r112
G62 = −9.58i112 + 11.39j112 + 7.92k112

Right foot:

I1212 =
[

29.40 0.04 −0.04
0.04 29.04 −0.09
−0.04 −0.09 11.63

]
, I3222 =

[
38.74 −9.88 −5.06
−9.88 63.10 0.27
−5.06 0.27 61.51

]

I5232 =
[

14.47 −0.08 −1.09
−0.08 57.65 0.00
−1.09 0.00 45.90

]
, I7242 =

[
21.97 −4.37 −6.21
−4.37 155.35 1.82
−6.21 1.82 144.59

]

I9252 =
[

11.62 −10.53 −0.98
−10.53 50.49 0.23
−0.98 0.23 50.05

]
, I11262 =

[
63.40 −26.31 −6.48
−26.31 93.08 8.23
−6.48 8.23 86.73

]

Fig. 11. Simulation results: angular positions

Fig. 12. Simulation results: angular velocities

Fig. 13. Simulation results: angular accelerations
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