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Abstract—Current manual joysticks have been widely used to 

control various artificial devices, but they are expensive and 

composed of mechanically bulky frames. To address these issues, 

we developed a myoelectric joystick using surface 

electromyogram (sEMG) from six muscles that make a wrist 

joint move. Fluid wrist movements were estimated by 

introducing a non-negative muscle synergy matrix and a joint 

synergy matrix. Only four movements were predefined (wrist 

extension, wrist flexion, radial deviation, and ulnar deviation) to 

construct the muscle synergy matrix, but an experimental result 

showed that a variety of movements (e.g., a combination of wrist 

extension and ulnar deviation) could be extracted using the joint 

matrix. This work also could be extended for development of an 

alternative computer interface and powered wrist prosthesis for 

individuals with transradial or wrist disarticulation level 

amputation. 

I. INTRODUCTION 

manual joystick has been used to control a variety of 

artificial devices in many industrial and home 

applications, such as assembly lines, video games, and 

aircrafts. This device consists of a stick that pivots on a base 

and reports its angle and direction. The reported information 

represents a two-dimensional Euclidean vector that consists of 

a direction and a magnitude. Due to the bulky frame and high 

cost of the joystick, there have been attempts to suggest an 

alternative joystick by capturing hand gestures from sEMG 

[1].  

SEMG is the electrical representation of activities produced 

by a number of muscle fibers in a contracting muscle. This 

electrical representation reflects the degree of the muscle 

activation: the higher the sEMG level, the greater the muscle 

force is developed. Most work using sEMG has come out for 

the development of the prosthesis [2], but recently much 

research has been carried out for other applications: 

teleoperation [3], exoskeleton [4], computer interface [5], and 

human-assisting manipulation  [6]. 

There are three advantages of using sEMG to alternate the 

conventional joystick. First, a mechanically bulky frame is not 

required and a sEMG sensor is cheap. Second, no additional 
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mental load is required to produce sEMG because the sEMG 

is naturally accompanied by body movements (perhaps even 

unconsciously). Third, mobile computing is possible because 

the sEMG sensor is light and wearable. 

There have been myriad methods to classify wrist 

movements via sEMG using machine learning algorithms: 

artificial neural networks [5], support vector machines [7], 

Bayesian networks [8], the Gaussian mixture model classifier 

[9], and a hidden Markov model [10]. Most proposed methods 

can extract only a static gesture (ON/OFF) of predefined wrist 

movements. Therefore, directions of the movements are 

limited and a proportional controllability is absent.  

In this paper, we proposed a myoelectric joystick by 

extracting wrist movements using a non-negative muscle 

synergy matrix and a joint synergy matrix. We selected wrist 

movements for the joystick inputs because the wrist is a 

mechanically universal joint, movements of which are similar 

to those of the conventional joystick. A non-negative muscle 

synergy matrix was introduced to transform six muscle 

activities into four predefined wrist movements (wrist 

extension, wrist flexion, radial deviation, and ulnar deviation) 

as shown in Fig. 1. The directions of the predefined 

movements were constrained only to the two axes that are 
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Fig. 1. Four representative wrist movements. 
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perpendicular in two-dimensional space. Therefore, each 

movement spanned only a one dimensional space. A joint 

synergy matrix was formulated to span the whole 

two-dimensional space by combining four predefined wrist 

movements. 

II. MATERIALS AND METHODS 

A. System Overview 

Figure 2 shows a block diagram for the myoelectric joystick. 

We selected six muscles of the forearm to record sEMG: 1) 

extensor carpi radialis (ECR), 2) abductor pollicis longus 

(APL), 3) flexor carpi radialis (FCR), 4) flexor carpi ulnaris 

(FCU), 5) extensor carpi ulnaris (ECU), and 6) extrinsic 

digital extensors (EDE). These muscles are responsible for the 

four wrist movements (wrist extension, wrist flexion, radial 

deviation, and ulnar deviation).  

We placed bipolar, noninvasive surface electrodes (DE-2.1, 

Delsys, U.S.A.) with built-in amplifiers using medical 

adhesive tape over the target muscles. The electrodes were 

connected to a data acquisition board (PCI 6224, National 

Instruments
TM

, U.S.A.), and the signals were sampled at 1000 

Hz. To quantitatively estimate the muscle activities from 

sEMG, we used mean absolute value (MAV) that has been 

widely used because of the probabilistic nature of sEMG 

magnitudes [11]. 

It has been generally accepted that the central nervous 

system simplifies control of movements through a hierarchical 

and modular architecture, and this strategy is regarded as an 

effective way to circumvent the difficulty of controlling many 

degrees of freedom in the musculoskeletal apparatus [12]. At 

the lowest level of the hierarchy, muscle recruitment might be 

controlled by a small number of functional units, thereby 

reducing dimensionality of output space. Higher levels in the 

hierarchy might recruit and flexibly combine these output 

modules to control a variety of different movements. Several 

researchers have provided evidence that the basic control 

modules allow for the generation of appropriate muscle 

patterns through simple modulation and combination rules 

[13]. We defined output modules to simplify mapping 

between the muscular activities and each wrist joint 

movement. The output modules were combined to extract 

fluid joint movements (direction and magnitude).  

B. Non-negative Muscle Synergy Matrix 

We constrained the synergy matrix as none of the 

components in the mapping matrix was negative. Synapses in 

a biological neural network are either excitatory or inhibitory 

but always send a signal rather than retracting one. For 

instance, if an agonist movement appears after its antagonist 

movement, agonist muscles should be excitatory and 

antagonist muscles should be inhibitory. To make agonist 

muscles excitatory, firing rates of neurons should increase. In 

contrast, to make antagonist muscles inhibitory, firing rates of 

neurons should decrease. Therefore, the non-negativity of the 

hidden and visible variables corresponds to the physiological 

fact that the firing rates of neurons cannot be negative. In a 

similar sense, we defined agonist and antagonist movements 

as having different synergies, although they could share the 

same DOFs (e.g., wrist extension and wrist flexion). The 

non-negativity characteristic in the synergy matrix does not 

directly allow an agonist muscle activation to decrease an 

antagonist movement, or vice versa. For an agonist movement, 

the magnitude of agonist muscle activations should be greater 

than the magnitude of antagonist muscle activations in the 

proposed matrix. This is in agreement with scientific 

understanding of how the joint movements of the human limb 

work with agonist and antagonist muscles. 

The output module was defined from six muscular activities 

to one (d-direction) of the predefined wrist movements as a 

row vector 

 

,1 ,2 ,5 ,6, , . . . , ,d d d d dS s s s s    . (1) 

 

A group of the muscular activities was defined as a column 

vector M(k) that produced a wrist joint movement wd(k) in  the 

d-direction based upon the output module.  

 

 (2) 

 

W1-4(k) represents wrist extension, wrist flexion, radial 

deviation, and ulnar deviation from its neutral position, 

respectively. 

C. Supervised Optimization 

If M(k) and W(k)  are sampled while moving a wrist joint 

during K discrete time intervals, the wrist movements can be 

expressed as a product of S times M. 

 

 W S M  (3) 

 

where W is a matrix consisting of W(k) over the total samples 

and has 4 rows and K columns (K is the total number of 

samples). M is a matrix consisting of M(k) over the total 

 

Fig. 2. A block diagram for the myoelectric joystick. 
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samples and has L rows and K columns (L is the number of the 

muscles involved in producing the wrist movements). To find 

an approximate optimal matrix S, we first needed to define a 

cost function that quantifies the quality of the approximation. 

The cost function was defined as follows: 

21

2

, 0.

Minimize E with respect to

subject to the constraints

  



W S M S

S

 (4) 

We used an additive update rule to find the optimal S that 

reduces the cost function and can be written as: 
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where η is a small positive number. Iteration of these update 

rules converges to a local minimum of the cost function. To 

constrain the non-negativity of elements in the matrix S, the 

updated elements which have negative signs change to zero at 

each iteration. It could be argued whether constraint of 

non-negative numbers leads to the convergence. Even though 

we constrained a range of elements in the matrix S, this 

constrains does not change the mean-square error surface 

defined by equation (4). Therefore, this optimization process 

with non-negativity constraints leads to the convergence to 

find the optimal matrix S. 

D. Joint Synergy Matrix 

The position of a prosthetic wrist is denoted as a column 

vector P(k) in a two-dimensional Cartesian space. The joint 

synergy matrix J is supposed to map between wrist movement 

intents and position of the prosthetic wrist. px(k) represents 

flexion-extension and py(k) represents radial-ulnar deviation. 

In this regard, the matrix J is constructed: 

 

1 1 0 0

0 0 1 1

 
  

 
J . (7) 

III. EXPERIMENT 

A. Subjects 

Four male (Subjects A-D) and one female (Subject E) 

volunteers with an average age of 22.8 years (SD 1.9) took 

part in our experiments. The KAIST Institutional Review 

Board approved the experimental protocol and the publication 

of this study (File No. KH2008-3). All participants reported 

no history of upper extremity or other musculoskeletal 

complaints, and participants were fully informed of the details 

of the experimental procedure. 

B. Experimental Setup 

Subjects were requested to sit comfortably on a chair, while 

sEMG sensors were attached on the forearm. Subjects could 

control the position of a control cursor (blue) on the screen via 

their wrist movements and were requested to place the control 

cursor on a target cursor. 

We used a personal computer (Pentium 4, 2.4 GHz 

processor) with a graphics card (NVIDIA GeForce 8600 GT). 

The source code was written in Microsoft Visual Studio 2005. 

The OpenGL library was used for graphics rendering, and an 

update of 40 Hz for the graphics loop was achieved. The 

visual graphic engine projected the visual representation of 

cursors via a beam projector (NP-2000, NEC, U.S.A.) with a 

100-inch screen as shown in Fig. 3. 

The origin of the coordinate was defined as the center of the 

visual display, and px(k) and py(k) were scaled by 400 pixels 

for visualization on a screen. The P(k)  was displayed as a line 

on the screen, and at the end of the line, a circle cursor was 

drawn. Therefore, the cursor represents the direction of wrist 

movements from the origin (neutral position), and the length 

of the line represents intensities of the movements. 

C. SEMG Amplitude Estimation 

For the real-time use of MAV, there is a trade-off between 

the responsiveness (rapid detection of onset or offset of 

muscle activation) and signal-to-noise ratio (SNR, in which 

the noise is defined as a variability in sEMG by Clancy [14]). 

When we use a large time window for MAV, it reduces not 

only variability in sEMG but also the rapid change, which 

could be intentional muscle activation. In addition, since 

MAV is a casual signal processor, this large time window 

introduces a significant delay. When we use a short window to 

reduce the delay effect, it increases the signal variability in 

sEMG. This trade-off has been reported in literature [15]; 

recently, there have been efforts to increase both SNR and 

responsiveness in sEMG estimations [16]. 

For the sEMG amplitude estimation in our experiment, a 

MAV with a 500-msec window was used. It could be argued 

that a 500-msec window used in this experiment was too long 

to catch rapid response of muscle activation. The window 

length was selected based on pilot studies. When the window 

length was set below 500 msecs, the control cursor by sEMG 

highly fluctuated, so we found subjects were unable to easily 

 

Fig. 3. Experimental setup. 
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catch the target and sometimes suffered from serious eyestrain. 

Therefore, we believe that the experimental protocol with 

shorter window length would not be helpful to verify the 

feasibility of a non-negative muscle synergy matrix. In a 

similar sense, we avoided using a small (19-inch) computer 

monitor, because we found subjects suffered from eyestrain. 

Using a 100-inch screen with a beam projector made subjects 

feel more comfortable, probably as a consequence of the 

distance between the subjects and the screen. 

D. Experimental Protocol 

The experiment consisted of 15 sessions in total, each 

consisting of one training and three tests. In the training, a 

target cursor (yellow) was displayed on the screen in two 

dimensions, as shown in Fig. 3; the displayed trajectories are 

shown in Fig. 4. While displaying the target cursor, subjects 

were asked to proportionally move their wrist towards the 

position of the target from the center of the screen. When the 

target was positioned at (0, 0) in the (X, Y) coordinate, the 

subjects held their wrist in the neutral position. When the 

target was positioned at (400, 0), the subjects fully extended 

the wrist. In a similar sense, (-400, 0), (0, 400), and (0, -400), 

the positions of the target represented full wrist flexion, full 

radial deviation, and full ulnar deviation, respectively. When 

the target gradually moved between the center and outer 

position on the screen, the subjects were asked to voluntarily 

modulate levels of wrist movements between full activation 

and no activation, according to the position of the target. 

During the training, the smoothed sEMG and target positions 

were recorded at 1000 Hz and stored in matrices M and W, 

respectively, as shown in Equation (3). In the matrix M, the 

stored data in each row represents the smoothed sEMG from 

each single channel and these data were normalized from 0 to 

1. Then, the iteration process of Equation (5) was begun to 

find an optimal matrix S in Equation (3). η in Equation (5) was 

0.0001, and the number of maximum iterations was 

constrained to 200.  

After constructing the optimal matrix S, W(k) in Equation 

(1) of the cursor movement intents was estimated in real time 

by the matrix S times vector M(k). Then, position of a control 

cursor (blue) was displayed using the joint synergy matrix in 

Equation (7) on the screen as shown in Fig. 2. In the three tests 

of each session, the subjects were asked to position the control 

cursor upon the target location. The target trajectories 

changed as shown in Fig. 4: (b) for the first test, (c) for the 

second test, and (d) for the third test. The trajectory in two 

dimensions for the first test is similar to the training stage. In 

the second test, the path of the trajectory was tilted by 45° with 

respect to the horizontal axis. To place the control cursor on 

the tilted trajectory, subjects combined multiple wrist 

movements among the four possible: wrist extension, wrist 

flexion, radial deviation, and ulnar deviation. In the third test, 

the horizontal line was repeatedly tilted by 0°, 30°, 60°, 90°, 

120°, and 150° with respect to the horizontal axis. When the 

target was placed in the 0° or 90° tilted line, subjects did not 

need to combine multiple wrist movements as they did in the 

first test. In contrast, when the target was placed in the 30°, 

60°, 120°, or 150° tilted line, subjects needed to combine 

multiple wrist movements as in the second test. Therefore, the 

third test was a combination of the first and second tests 

IV. RESULTS 

Figure 5 shows the convergence of the error based on the 

updated rules in Equation (5) with the non-negativity 

constraints to find the optimal matrix S, and the error 

converged to a fixed point within approximately 20 iterations.  

Figure 6 shows graphical representations of muscle 

synergies averaged for each subject. Muscle synergies 

represent the muscle activations during wrist extension, wrist 

flexion, radial deviation, and ulnar deviation extracted by 

iterations of the updated rules. Each muscle synergy is 

represented as a bar graph across the six recorded muscles, 

and the vector magnitude was normalized to one. The 

synergies have a unique representation which involves an 

intuitive meaning of how much the activation of individual 

 

Fig. 4. Trajectories of a target cursor and its paths in the 2-dimensional 

space. Trajectory (a) was used for the training; trajectory (b), (c), and 

(d) were used for three tests. 
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muscles affect individual wrist movements. 

Figure 7 shows an example of the cursor tracking results via 

sEMG in a two-dimensional coordinate for three tests. It was 

evident that the subject could move a control cursor not only 

by wrist extension, wrist flexion, radial deviation, or ulnar 

deviation individually (first test), but also by combining them 

(second and third tests). TABLE I summarizes the estimation 

performances of the real-time experiment. 

V. DISCUSSIONS AND SUMMARY 

The experimental results showed a great potential to 

develop a myoelectric joystick based on the wrist movements. 

Fluid wrist movements were extracted regarding a direction 

and its magnitude on a two-dimensional coordinate, and they 

provides the same information as a two-dimensional 

controller as a conventional joystick does. The myoelectric 

joystick is wearable and does not require a mechanically bulky 

frame. These facts are the most powerful motivations for the 

development of the myoelectric joystick.  

This work could be extended to an alternative computer 

interface for individuals with the individual with transradial or 

wrist disarticulation level amputation. Limitations have been 

mentioned in the literature for applications specialized to the 

sEMG-based computer interface [5]. Those computer 

interfaces allow cursor movements restricted to only two 

directions (horizontal and vertical movements), and does not 

allow movement in a diagonal direction. The suggested 

methods could improve accessibility of the computer by 

extracting the user intents to move the cursor not only 

horizontally and vertically but also diagonally. 

This work is located in a line of research which seeks to 

develop a mapping model for multiple muscle activations to 

joint movements with multiple DOFs for myoelectric powered 

prosthetic wrists [17]. The non-negative muscle synergy 

matrix can map the relationship between multiple muscle 

activations and joint movements using only predefined 

movements (e.g., wrist extension, wrist flexion, radial 

deviation, and ulnar deviation), but can also express 

non-predefined movements (e.g., a combination of wrist 

extension and radial deviation). Although a muscle synergy 

concept has been involved in the previous researches [18], 

they have not been performed in real time. Our real-time 

 

Fig. 5. Error convergence under the updated rules. 

 

Fig. 6. Muscle synergies of Subject A are shown for wrist extension, 

wrist flexion, radial deviation, and ulnar deviation. Each muscle 

synergy is represented as a bar graph across the six recorded muscles, 

and the vector magnitude is normalized to one. Muscle synergies for 

the other subjects were not included here due to the limited length. We 

found that muscle synergies are different from all subjects. 

TABLE I. R2
 (MEAN ± STANDARD DEVIATION) OF THE TARGET CURSOR 

POSITION RELATIVE TO THE CONTROL CURSOR POSITION FOR EACH 

SUBJECT IN THE EXPERIMENT. 

 First Test Second Test Third Test 

Subject A 95.56% ± 1.93 94.07% ± 4.52 94.48% ± 1.87 

Subject B 91.10% ± 3.46 84.98% ± 8.20 87.35% ± 4.97 

Subject C 88.24% ± 2.77 88.05% ± 3.29 89.07% ± 2.41 

Subject D 92.13% ± 3.28 92.42% ± 2.15 92.86% ± 2.78 

Subject E 96.00% ± 0.95 94.03% ± 2.14 94.13% ± 2.44 

Average 92.61% ± 3.38 90.71% ± 5.79 91.58% ± 4.16 

 

 

Fig. 7. Experimental results for the third test sessions. The upper graph 

shows raw sEMG and smoothed sEMG. The bottom graph shows 

positions of the target cursor and the control cursor. 
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implementation and validation of the algorithm with the 

muscle synergy matrix could be one step forward to actual 

clinical applications.  

As shown in Fig. 6, the non-negative muscle synergy matrix 

enables visualization of the quantitative dependencies 

between multiple muscle activations and wrist joint 

movements. Even though previous research attempts have 

mapped muscle activations from sEMG to the wrist 

movements, these studies were performed using a machine 

learning algorithm [19-20], which has weak ability to obtain 

physiological meaning and whose internal parameters are 

difficult to interpret in contrast to the proposed matrix.  
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