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Abstract  

Background 

Several regression models have been proposed for estimation of isometric 

joint torque using surface electromyography (SEMG) signals. Common issues related 

to torque estimation models are degradation of model accuracy with passage of time, 

electrode displacement, and alteration of limb posture. This work compares the 

performance of the most commonly used regression models under these 

circumstances, in order to assist researchers with identifying the most appropriate 

model for a specific biomedical application. 

Methods 

Eleven healthy volunteers participated in this study. A custom-built rig, 

equipped with a torque sensor, was used to measure isometric torque as each 

volunteer flexed and extended his wrist. SEMG signals from eight forearm muscles, 

in addition to wrist joint torque data were gathered during the experiment. Additional 

data were gathered one hour and twenty-four hours following the completion of the 

first data gathering session, for the purpose of evaluating the effects of passage of 

time and electrode displacement on accuracy of models. Acquired SEMG signals 

were filtered, rectified, normalized and then fed to models for training. 

Results 

It was shown that mean adjusted coefficient of determination (  
 ) values 

decrease between 20%-35% for different models after one hour while altering arm 

posture decreased mean   
  values between 64% to 74% for different models.  

Conclusions 

 Model estimation accuracy drops significantly with passage of time, electrode 

displacement, and alteration of limb posture. Therefore model retraining is crucial for 
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preserving estimation accuracy. Data resampling can significantly reduce model 

training time without losing estimation accuracy. Among the models compared, 

ordinary least squares linear regression model (OLS) was shown to have high 

isometric torque estimation accuracy combined with very short training times. 

Background 
SEMG is a well-established technique to non-invasively record the electrical 

activity produced by muscles. Signals recorded at the surface of the skin are picked up 

from all the active motor units in the vicinity of the electrode [1]. Due to the 

convenience of signal acquisition from the surface of the skin, SEMG signals have 

been used for controlling prosthetics and assistive devices [2-7], speech recognition 

systems [8], and also as a diagnostic tool for neuromuscular diseases [9]. 

However, analysis of SEMG signals is complicated due to nonlinear behaviour 

of muscles [10], as well as several other factors. First, cross talk between the adjacent 

muscles complicates recording signals from a muscle in isolation [11]. Second, signal 

behaviour is very sensitive to the position of electrodes [12]. Moreover, even with a 

fixed electrode position, altering limb positions have been shown to have substantial 

impact on SEMG signals [13]. Other issues, such as inherent noise in signal 

acquisition equipment, ambient noise, skin temperature, and motion artefact can 

potentially deteriorate signal quality [14, 15]. 

The aforementioned issues necessitate utilization of signal processing and 

statistical modeling for estimation of muscle forces and joint torques based on SEMG 

signals. Classification [16] and regression techniques [17, 18], as well as 

physiological models [19, 20], have been considered by the research community 

extensively. Machine learning classification methods in aggregate have proven to be 

viable methods for classifying limb postures [21] and joint torque levels [22]. Park et 
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al. [23] compared the performance of a Hill-based muscle model, linear regression 

and artificial neural networks for estimation of thumb-tip forces under four different 

configurations. In another study, performance of a Hill-based physiological muscle 

model was compared to a neural network for estimation of forearm flexion and 

extension joint torques [24]. Both groups showed that neural network predictions are 

superior to Hill-based predictions, but neural network predictions are task specific and 

require ample training before usage. Castellini et al. [22] and Yang et al. [25], in two 

distinct studies, estimated grasping forces using artificial neural networks (ANN), 

support vectors machines (SVM) and locally weighted projection regression (LWPR). 

Yang concluded that SVM outperforms ANN and LWPR. 

This study was intended to compare performance of commonly utilized 

regression models for isometric torque estimation and identify their merits and 

shortcomings under circumstances where the accuracy of predictive models has been 

reported to be compromised. Wrist joint was chosen as its functionality is frequently 

impaired due to aging [26] or stroke [7], and robots (controlled by SEMG signals) are 

developed to train and assist affected patients [2, 3]. Performance of five different 

models for estimation of isometric wrist flexion and extension torques are compared: 

a physiological based model (PBM), an ordinary least squares linear regression model 

(OLS), a regularized least squares linear regression model (RLS), and three machine 

learning techniques, namely SVM, ANN, and LWPR. 

Physiological Based Model 

Physiological based model (PBM) used in this study is a neuromusculoskeletal 

model used for estimation of joint torques from SEMG signals. Rectified and 

smoothed SEMG signals have been reported to result in poor estimations of muscle 

forces [27, 28]. This is mainly due to (a) existence of a delay between SEMG and 
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muscle tension onset (electromechanical delay) and (b) the fact that SEMG signals 

have a shorter duration than resulting forces. It has been shown that muscle twitch 

response can be modeled well by using a critically damped linear second order 

differential equation [29]. However since SEMG signals are generally acquired at 

discrete time intervals, it is appropriate to use a discretized form. Using backward 

differences, the differential equation takes the form of a discrete recursive filter [30]: 

  ( )   

   (   )      (   )      (   )   (1) 

where ej is the processed SEMG signal of muscle j at time t, d is the 

electromechanical delay, α is the gain coefficient, uj(t) is the post-processed SEMG 

signal at time t, and β1 and β2 the recursive coefficients for muscle j. 

Electromechanical delay was allowed to vary between 10 and 100 ms as that is 

the range for skeletal muscles [31]. The recursive filter maps SEMG values ej(t) for 

muscle j into post-processed values uj(t). Stability of this equation is ensured by 

satisfying the following constraints [32]: 

         

         

|  |    

|  |        (2) 

 Unstable filters will cause uj(t) values to oscillate or even go to infinity. To 

ensure stability of this filter and restrict the maximum neural activation values to one, 

another constraint is imposed: 

                   (3) 
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 Neural activation values are conventionally restricted to values between zero 

and one, where zero implies no activation and one translates to full voluntary 

activation of the muscle. 

Although isometric forces produced by certain muscles exhibit linear 

relationship with activation, nonlinear relationships are observed for other muscles. 

Nonlinear relationships are mostly witnessed for forces of up to 30% of the maximum 

isometric force [33]. These nonlinear relationships can be associated with exponential 

increases in firing rate of motor units as muscle forces increase [34]: 

  ( )  
 
   ( )  

    
     (4) 

where A is called the non-linear shape factor. A=-3 corresponds to highly exponential 

behaviour of the muscle and A=0 corresponds to a linear one. 

Once nonlinearities are explicitly taken into account, isometric forces 

generated by each muscle at neutral joint position at time t are computed using [35]: 

  ( )           ( )     (5) 

where        is the maximum voluntary force produced by muscle j. 

 Isometric joint torque is computed by multiplying isometric force of each 

muscle by its moment arm: 

  ( )    ( )          (6) 

where MAj is moment arm at neutral wrist position for muscle j and τj(t) is the torque 

generated by muscle j at time t. Moment arms for flexors and extensors were assigned 

positive and negative signs respectively to maintain consistency with measured 

values. 

As not all forearm muscles were accessible by surface electrodes, each SEMG 

channel was assumed to represent intermediate and deep muscles in its proximity in 

addition to the surface muscle it was recording from. Torque values from each 
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channel were then scaled using mean physiological cross-section area (PCSA) values 

tabulated by Jacobson et al. and Lieber et al. [36-38]. Joint torque estimation values 

have been shown not to be highly sensitive to muscle PCSA values and therefore 

these values were fixed and not a part of model calibration [39]. The isometric torque 

at the wrist joint was computed by adding individual scaled torque values: 

  ( )  ∑
∑     

     
   ( )

 
       (7) 

where M is the number of muscles used in the model, and ΣPCSAj is the summation 

of PCSA of the muscle represents by muscle j and PCSA of muscle j itself. 

EDC, ECU, ECRB, PL, and FDS represented extensor digiti minimi (EDM), 

extensor indicis proprius (EIP), extensor pollicis longus (EPL), flexor pollicis longus 

(FPL), and flexor digitorum profundus (FDP) respectively due to their anatomical 

proximity [40]. Abductor pollicis longus (APL) and extensor pollicis brevis (EPB) 

contribute negligibly to wrist torque generation due to their small moment arms and 

were not considered in the model [41]. Steps and parameters involved in the PBM are 

summarized in Figure 1. 

 Models were calibrated to each volunteer by tuning model parameters. 

Yamaguchi [42] has summarized maximum isometric forces reported by different 

investigators. We used means as initial values and constrained Fmax to one standard 

deviation of the reported values. Initial values for moment arms were fixed to the 

mean values in [43], and constrained to one standard deviation of the values reported 

in the same reference. Since these parameters are constrained within their 

physiologically acceptable values, calibrated models can potentially provide 

physiological insight [24]. Activation parameters A, C1, C2, and d were assumed to be 

constant for all muscles a model with too many parameters loses its predictive power 

due to overfitting [44]. Parameters x={A, C1, C2, d, Fmax,1, …, Fmax,M, MA1, MA2, …, 
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MAM} were tuned by optimizing the following objective function while constraining 

parameters to values mentioned beforehand: 

     (  ( )    ( ))
 
    (8) 

Models were optimized by Genetic Algorithms (GA) using MATLAB Global 

Optimization Toolbox (details of GA implementation are available in [45]). GA has 

previously been used for tuning muscle models [20]. Default MATLAB GA 

parameters were used and models were tuned in less than 100 generations (MATLAB 

default value for the number of optimization iterations) [46].  

Ordinary Least Squares Linear Regression Model 

Linear regression has been shown to be a suitable tool for estimation of 

isometric joint torques using processed SEMG signals [23]. Linear regression is 

presented as: 

[  ]    [    ]   [ ]    [ ]      (9) 

where N is the number of samples considered (observations), M is the number of 

muscles, τm is a vector of measured torque values, SEMG is a matrix of processed 

SEMG signals, β is a vector of regression coefficients to be estimated, and ε is a 

vector of independent random variables. 

Ordinary least squares (OLS) method is most widely used for estimation of 

regression coefficients [47]. Estimated vector of regression coefficients using least 

squares method ( ̂) is computed using: 

 ̂  *[    ] [    ]+
  
[    ] [  ]   (10) 

Once the model is fitted, SEMG values can be used for estimation of torque 

values (  ) as shown: 

[  ]    [    ]    ̂       (11) 
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Regularized Least Squares Linear Regression Model 

The ℓ1-regularized least squares (RLS) method for estimation of regression 

coefficients is known to overcome some of the common issues associated with the 

ordinary least squares method [48]. Estimated vector of regression coefficients using 

ℓ1-regularized least squares method ( ̂) is computed through the following 

optimization: 

         ∑ | ̂ |

 

   

 

 ∑ (
[    ]   [ ̂]   
 [ ]    [  ]   

)

 

 
      (12) 

where     is the regularization parameter which is usually set equal to 0.01 [49, 

50]. 

 We used the Matlab implementation of the ℓ1-regularized least squares method 

[51]. 

Support Vector Machines 

Support vectors machines (SVM) are machine learning methods used for 

classification and regression. Support vector regression (SVR) maps input data using 

a non-linear mapping to a higher-dimensional feature space where linear regression 

can be applied. Unlike neural networks, SVR does not suffer from the local minima 

problem since model parameter estimation involves solving a convex optimization 

problem [52]. 

We used epsilon support vector regression (ε-SVR) available in the LibSVM 

tool for Matlab [53]. Details of ε-SVR problem formulation are available in [54]. ε-

SVR has previously been utilized for estimation of grasp forces [22, 25]. The 

Gaussian kernel was used as it enables nonlinear mapping of samples and has a low 

number of hyperparameters, which reduces complexity of model selection [55].  
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Eight-fold cross-validation to generalize error values and grid-search for finding the 

optimal values of hyperparameters C, γ and ε were carried out for each model. 

Artificial Neural Networks 

Artificial neural networks (ANN) have been used for SEMG classification and 

regression extensively [22, 25, 56, 57]. Three layer neural networks have been shown 

to be adequate for modeling problems of any degree of complexity [58]. We used 

feed-forward back propagation network with one input layer, two hidden layers, and 

one output layer [59]. We also used BFGS quasi-Newton training that is much faster 

and more robust than simple gradient descent [60]. Network structure is depicted in 

Figure 2, where M is the number of processed SEMG channels used as inputs to the 

ANN and τe is the estimated torque value. 

ANN models were trained using Matlab Neural Network Toolbox. Hyperbolic 

tangent sigmoid activation functions were used to capture the nonlinearities of SEMG 

signals. For each model, the training phase was repeated ten times and the best model 

was picked out of those repetitions in order to overcome the local minima problem 

[52]. We also used early stopping and regularization in order to improve 

generalization and reduce the likelihood of overfitting [61]. 

Locally Weighted Projection Regression 

Locally Weighted Projection Regression (LWPR) is a nonlinear regression 

method for high-dimensional spaces with redundant and irrelevant input dimensions 

[62]. LWPR employs nonparametric regression with locally linear models based on 

the assumption that high dimensional data sets have locally low dimensional 

distributions. However piecewise linear modeling utilized in this method is 

computationally expensive with high dimensional data. 
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We used Radial Basis Function (RBF) kernel and meta-learning and then 

performed an eight-fold cross validation to avoid overfitting. Finally we used grid 

search to find the initial values of the distance metric for receptive fields, as it is 

customary in the literature [22, 25]. Models were trained using a Matlab version of 

LWPR [63]. 

Methods 
A custom-built rig was designed to allow for measurement of isometric 

torques exerted about the wrist joint. Volunteers placed their palm on a plate and 

Velcro straps were used to secure their hand and forearm to the plate. The plate 

hinged about the axis of rotation shown in Figure 3. 

A Transducer Techniques TRX-100 torque sensor, with an axis of rotation 

corresponding to that of the volunteer's wrist joint, was used to measure torques 

applied about the wrist axis of rotation. Volunteer's forearm was secured to the rig 

using two Velcro straps. This design allowed restriction of arm movements. Volunteer 

placed their elbow on the rig and assumed an upright position. 

Protocol 

Eleven healthy volunteers (eight males, three females, age 25±4, mass 

74±12kg, height 176±7cm), who signed an informed consent form (project approved 

by the Office of Research Ethics, Simon Fraser University; Reference # 2009s0304), 

participated in this study. Each volunteer was asked to flex and then extend her/his 

right wrist with maximum voluntary contraction (MVC). Once the MVC values for 

both flexion and extension were determined, the volunteer was asked to gradually flex 

her/his wrist to 50% of MVC. Once the 50% was reached the volunteer gradually 

decreased the exerted torque to zero. This procedure was repeated three times for 

flexion and then for extension. Finally the volunteer was asked to flex and extend 
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her/his wrist to 25% of MVC three times. Figure 4 shows a sample of torque signals 

gathered. Positive values on the scale are for flexion and negative values are for 

extension. 

Following the completion of this protocol, volunteers were asked to supinate 

their forearm, and follow the same protocol as before. Figure 5 shows forearm in 

pronated and supinated positions. 

Completion of protocols in both pronated and supinated forearm positions was 

called a session. Table 1 summarizes actions in protocols. 

In order to capture the effects of passage of time on model accuracy, 

volunteers were asked to repeat the same session after one hour. This session was 

named session two. Electrodes were not detached in between the two sessions. After 

completion of session two, electrodes were removed from the volunteer's skin. The 

volunteer was asked to repeat another session in twenty four hours following session 

two while attaching new electrodes. This was intended to capture the effects of 

electrode displacement and further time passage. 

Each volunteer was asked to supinate her/his forearm and exert isometric 

torques on the rig following the same protocol used before after completion of session 

1. This was intended to study the effects of arm posture on model accuracy. 

SEMG Acquisition 

A commercial SEMG acquisition system (Noraxon Myosystem 1400L) was 

used to acquire signals from eight SEMG channels. Each channel was connected to a 

Noraxon AgCl gel dual electrode that picked up signals from the muscles tabulated in 

Table 2. 

It has been reported that the extrinsic muscles of the forearm have large torque 

generating contributions in isometric flexion and extension [64]. Therefore we 
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considered three superficial secondary forearm muscles as well as the primary 

forearm muscles accessible via SEMG. The skin preparation procedure outlined in 

surface electromyography for the non-invasive assessment of muscles project 

(SENIAM) was followed to maximize SEMG signal quality [65]. Figure 6 shows the 

position of electrodes attached to a volunteer’s forearm. 

SEMG signals were acquired at 1kHz using a National Instruments (NI-USB-

6289) data acquisition card. An application was developed using LabVIEW software 

that stored data on a computer and provided visual feedback for volunteers. Visual 

feedback consisted of a bar chart that visualized the magnitude of exerted torques, 

which aided volunteers to follow the protocol more accurately. 

Signal Processing 

Initially DC offset values of SEMG signals were removed. Signals were 

subsequently high-pass filtered using a zero-lag Butterworth fourth order filter (30Hz 

cut-off frequency), in order to remove motion artefact. Signals were then low-pass 

filtered using a zero-lag Butterworth fourth order filter (6Hz cut-off frequency), full-

wave rectified and normalized to the maximum SEMG value for each channel. Figure 

7 shows the signal processing scheme. 

33,520 samples were acquired from each of the eight SEMG channels and the 

torque sensor for each volunteer. The data set was broken down into training and 

testing data. Figure 8 shows a sample of raw and processed SEMG signals. 

Results and Discussion 
Models were initially trained with the training data set. The performance of 

trained models was subsequently tested by comparing estimated torque values from 

the model and the actual torque values from the testing data set. Two accuracy metrics 

were used to compare the performance of different models: normalized root mean 
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squared error (NRMSE) and adjusted coefficient of determination (  
 ) [64]. Root 

mean squared error (RMSE) is a measure of the difference between measured and 

estimated values. NRMSE is a dimensionless metric expressed as RMSE over the 

range of measured torques values for each volunteer: 

      

√∑ (  ( )   ( ))
  

   
 

        |      |
    (13) 

where τe(i) is the estimated and τm(i) is the measured torque value for sample i, n 

corresponds to the total number of samples tested, and τm,flex and τm,ext are the 

maximum flexion and extension torques exerted by each volunteer. The absolute 

value of τm,ext is considered because of the negative sign assigned to extension torque 

values during signal acquisition. 

R
2
 is a measure of the percentage of variation in the dependant variable 

(torque) collectively explained by the independent variables (SEMG signals): 

     
∑ (  ( )   ( ))

  
   

∑ (  ( )   ̅̅ ̅̅ ) 
 
   

    (14) 

where τm  is the mean measured torque. 

 However R
2
 has a tendency to overestimate the regression as more 

independent variables are added to the model. For this reason, many researchers 

recommend adjusting R
2
 for the number of independent variables: 

  
    *(

   

     
)  (    )+   (15) 

where   
  is the adjusted R

2
, n is the number of samples and k is the number of SEMG 

channels. 

Models were trained using every 100 data resampled from the processed 

signals to save model training time. Data set was reduced to 335 samples with 

resampling. Training time t, was measured as the number of seconds it took for each 
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model to be trained. All training and testing was performed on a computer with an 

Intel® Core
TM

2 Duo 2.5GHz processor and 6GB of RAM. Table 3 compares mean 

training times for models trained using the original and resampled data sets. 

One-way Analysis of Variance (ANOVA) failed to reject the null hypothesis 

that NRMSE and   
  have different mean values for each model, meaning that the 

difference between means is not significant (with minimum P-value of 0.95). We used 

reduced data sets with data resampled every 100 samples for the rest of the study. 

Number of Muscles 

As merely one degree of freedom of the wrist was considered in this study, the 

possibility of training models using only two primary muscles was investigated 

initially. There are six combinations possible with one primary flexor and one primary 

extensor muscle: FCR-ECRL, FCR-ECRB, FCR-ECU, FCU-ECRL, FCU-ECRB, and 

FCU-ECU. Models were trained using 75% of the data for all six combinations and 

then tested on the remaining 25% and the model with the best performance was 

picked. Mean and standard deviation of NRMSE and   
  for models trained with two, 

five, and eight channels are presented in Table 4. 

It is noteworthy that best performance was not consistently attributed to a 

single combination of muscles for the case of models trained with two channels. It is 

evident that models trained with five channels are superior to models trained with 

two. However models trained with eight channels do not have significant performance 

superiority. Figure 9 compares NRMSE and   
  

for different number of training 

channels. 

 This result appears to be in contrast to the results obtained by Delp et al. [66] 

where extrinsic muscles of the hand are expected to contribute substantially to torque 

generation. However, due to the design of our testing rig, volunteers only generated 
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torque by pushing their palms against the torque-sensing plate and their fingers did 

not contribute to torque generation. Therefore the addition of SEMG signals of 

extrinsic muscles to the model did not result in a significant increase in accuracy. 

 It should be noted that using more data for training models increases accuracy 

for same session models. Table 5 compares NRMSE and   
  for two extreme cases 

where 25% and 90% of the data set is used for training models and the rest of the data 

set is used for testing using all SEMG channels. 

Mean   
  values increased 19%, 21%, 18%, 14%, 32%, and 26% while mean 

NRMSE values decreased 47%, 48%, 50%, 54%, 60%, and 46% for PBM, OLS, 

RLS, SVM, ANN, and LWPR, respectively. Figure 10 visualizes NRMSE and   
  for 

the two cases. 

 For PBM training with two and five channels, ΣPCSA term in equation 7 was 

modified. For the two channel case, equation 7 took the following form: 

  ( )  
∑           

          
        ( )      

 
∑             

            
          ( )   (16) 

where ΣPCSAflexors is the summation of PCSA of all flexor muscles, ΣPCSAextensors is 

the summation of PCSA of all extensor muscles, PCSAflexor is the PCSA of the flexor 

muscle used for training, PCSAextensor is the PCSA of the extensor muscle used for 

training, τflexor(t) is the torque of the flexor muscle used for training at time t, and 

τextensor(t) is the torque of the flexor muscle used for training at time t. 

 Similarly PBM training with the five primary wrist muscles was carried out 

with modified ΣPCSA terms. Half of the summation of PCSA values for non-primary 

flexors was added to each of the two primary flexors while a third of the summation 

of PCSA values for non-primary extensors was added to the ΣPCSA term of each of 

the three primary extensors.  
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 These modifications allowed tuned parameters to stay within their 

physiologically acceptable values, even though less SEMG channels were used for 

training models. 

Cross Session 

Passages of time as well as electrode displacement adversely affect accuracy 

of models trained with SEMG [22, 25]. Models trained with session 1 were tested 

with data from session 2 (in 1 hour without detaching electrodes) and session 3 (in 24 

hours and with new electrodes attached). Table 6 compares model performance for 

the two cases. 

 Results suggest that model reliability deteriorates with passage of time. Figure 

11 compares mean and standard deviation of NRMSE and   
  of models trained with 

session 1 and tested with data from the same session, after 1 and 24 hours. 

 Mean   
  values after one hour decreased 34%, 28%, 25%, 34%, 35%, and 

20% while mean NRMSE decreased 93%, 68%, 70%, 88%, 91%, and 79% for PBM, 

OLS, RLS, SVM, ANN, and LWPR, respectively. After twenty four hours mean 

NRMSE values decreased further. High standard deviations of NRMSE and   
  values 

suggest unreliability of model predictions with passage of time and electrode 

displacement. Therefore it is crucial for models trained using SEMG signals to be 

retrained frequently regardless of the model utilized. 

Arm Posture 

Arm posture changes SEMG signal characteristics [8]. A model trained with 

the forearm in pronated position was utilized to predict the measured values from the 

supinated position in the same session. Supinating the forearm resulted in the torque 

sensor readings for extension and flexion to be reversed. This was explicitly taken 
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into account when processing signals. Prediction accuracy of the trained models 

reduced significantly with forearm supination as shown in Table 7. 

ANOVA shows that the hypothesis that NRMSE and   
  of testing was the 

same is refuted with P<0.01. Results from this experiment validate that trained 

models are very sensitive to arm posture. Forearm supination shifts SEMG signal 

space. Since models trained in the pronated position do not take this shift into 

consideration, accuracy decreases [22]. SEMG patterns change with different arm 

postures that models need to explicitly take into consideration [67, 68]. Figure 12 

shows the effects of forearm supination on prediction accuracy of models trained with 

forearm in pronated position. Mean NRMSE values increased 2.50, 2.10, 2.13, 2.04, 

2.24, and 2.32 times for PBM, OLS, RLS, SVM, ANN, and LWPR. 

Table 8 summarizes performance of models based on different criteria. One 

advantage of machine learning techniques is that these models can be trained with raw 

SEMG signals as they are capable of mapping the nonlinearities associated with raw 

SEMG signals. In contrast, PBM can only be trained with processed SEMG signals 

since inputs to the PBM represent neural activity of muscles (a value bounded 

between zero and one) [69]. Moreover, nonlinear behaviour of muscles [10] observed 

in raw SEMG signals precludes utilization of linear regression for mapping. 

Conclusions 
 Eleven volunteers participated in this study. During the first session, 33,520 

samples from eight SEMG channels and a torque sensor were acquired while 

volunteers followed a protocol consisting of isometric flexion and extension of the 

wrist. We then processed SEMG signals and resampled every 100 samples to save 

model training time. Subsequently we trained models using identical training data 

sets. When using 90% of data as training data set and the rest of the data as testing 



 - 19 - 

data, we attained   
  values of 0.96±0.04, 0.97±0.04, 0.97±0.03, 0.97±0.03, 0.96±3, 

and 0.87±0.07 for PBM, OLS, RLS, SVM, ANN, and LWPR respectively. All models 

performed in a very comparable fashion, except for LWPR that yielded lower   
  

values and higher NRMSE values. 

 Models trained using the data set from session one were tested using two 

separate data sets gathered one hour and twenty four hours following session one. We 

showed that Mean   
  values after one hour decrease 34%, 28%, 25%, 34%, 35%, and 

20% for PBM, OLS, RLS, SVM, ANN, and LWPR, respectively. Tests after twenty 

four hours showed even further performance deterioration. Therefore it was 

concluded that all models considered in this study are sensitive to passage of time and 

electrode displacement. 

The effects of the number of SEMG channels used for training were explored. 

Models trained with SEMG channels from the five primary forearm muscles were 

shown to be of similar predictive ability compared to models trained with all eight 

SEMG channels. However, models trained with two SMEG channels resulted in 

predictions with lower   
  and higher NRMSE values. 

Finally models trained with forearm in a pronated position were tested with 

data gathered from forearm in the supinated position. Mean NRMSE values increased 

2.50, 2.10, 2.13, 2.04, 2.24, and 2.32 times for PBM, OLS, RLS, SVM, ANN, and 

LWPR. 

The substantial decrease in predictive ability of all models with passage of 

time, electrode displacement, and altering arm posture necessitates regular retraining 

of models in order to sustain estimation accuracy.  We showed that resampling the 

data set substantially reduces the training time without sacrificing estimation accuracy 

of models. All models were trained in under 20 seconds while OLS was trained in 
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under 10 ms. Low training times achieved in this work render regular retraining 

feasible. 
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Figures 

Figure 1  - Steps and parameters involved in the PBM. 

Figure 2  - ANN structure. 

Figure 3  - Custom-built rig equipped with a torque sensor. 

Figure 4  - Sample torque signal. 

Figure 5  - Volunteer’s forearm on the testing rig. 

(a) Forearm pronated. (b) Forearm supinated. 

Figure 6  - Electrode positions. 

Figure 7  - SEMG signal processing scheme. 

Figure 8  - Sample SEMG signal. 

(a) Raw. (b) Filtered.  

Figure 9  - Effects of the number of SEMG channels used for training on joint 
torque estimation. 

(a) NRMSE. (b)   
 . 

Figure 10  - Effects of training data size on joint torque estimation. 

(a) NRMSE. (b)   
 . 

Figure 11  - Effects of passage of time and electrode displacement on joint 
torque estimation. 

(a) NRMSE. (b)   
 . 
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Figure 12  - Effects of arm posture on joint torque estimation. 

(a) NRMSE. (b)   
 . 

Tables 

Table 1  - Actions and repetitions for protocols. 

Repetition Action 

1 Wrist flexion with maximum torque 

1 Wrist extension with maximum torque 

3 Gradual wrist flexion until 50% MVC and gradual decrease to zero 

3 Gradual wrist extension until 50% MVC and gradual decrease to zero 

3 Gradual wrist flexion until 25% MVC and gradual decrease to zero 

3 Gradual wrist extension until 25% MVC and gradual decrease to zero 

Table 2  - Muscles monitored using SEMG. 

Channel Muscle Action 

1 Extensor Carpi Radialis Longus (ECRL) 
Wrist extension 

Radial deviation 

2 Extensor Digitorum Communis (EDC) 
Wrist extension 

Four fingers extension 

3 Extensor Carpi Ulnaris (ECU) 
Wrist extension 

 Ulnar deviation 

4 Extensor Carpi Radialis Brevis (ECRB) 
Wrist extension 

Wrist abductor 

5 Flexor Carpi Radialis (FCR) 
Wrist flexion 

Radial deviation 

6 Palmaris Longus (PL) Wrist flexion 

7 Flexor Digitorum Superficialis (FDS) Wrist flexion 

8 Flexor Carpi Ulnaris (FCU) 
Wrist flexion 

Ulnar deviation 

Table 3  - Model training times for original and resampled data sets. 

Time (s) PBM OLS RLS SVM ANN LWPR 

Original 1,080.07 0.01 1.98 19,125.31 166.73 5,195.03 

Resampled 10.96 0.00 0.03 15.32 9.40 18.63 

Table 4  - Comparison of joint torque estimation for models trained with two, 
five, and eight SEMG channels. 

Model 
8 channels 5 channels 2 channels 

NRMSE   
  

NRMSE   
  

NRMSE   
  

PBM 
Mean 2.73% 0.85 3.07% 0.86 4.59% 0.77 

STD 0.97% 0.13 1.03% 0.11 1.32% 0.19 

OLS 
Mean 2.88% 0.84 3.17% 0.77 4.82% 0.63 

STD 0.94% 0.11 1.06% 0.13 1.81% 0.23 

RLS 
Mean 2.83% 0.82 3.11% 0.79 4.73% 0.69 

STD 0.93% 0.10 1.01 0.11 1.31% 0.18 

SVM 
Mean 2.85% 0.82 3.00% 0.80 4.77% 0.73 

STD 1.00% 0.09 1.04% 0.10 1.02% 0.14 
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ANN 
Mean 2.82% 0.82 3.03% 0.81 4.74% 0.69 

STD 0.95% 0.09 1.05% 0.12 1.17% 0.18 

LWPR 
Mean 3.03% 0.75 3.19% 0.78 4.97% 0.69 

STD 1.14% 0.21 1.19% 0.13 1.31% 0.21 

Table 5  - Comparison of training data set size on joint torque estimation. 

Model 
25% training 90% training 

NRMSE   
  

NRMSE   
  

PBM 
Mean 4.41% 0.81 2.32% 0.96 

STD 2.49% 0.09 0.59% 0.04 

OLS 
Mean 4.19% 0.80 2.19% 0.97 

STD 2.19% 0.10 0.58% 0.04 

RLS 
Mean 4.14% 0.82 2.07% 0.97 

STD 2.13% 0.08 0.51% 0.03 

SVM 
Mean 4.39% 0.85 2.02% 0.97 

STD 2.46% 0.09 0.92% 0.03 

ANN 
Mean 5.87% 0.73 2.34% 0.96 

STD 2.20% 0.20 0.61% 0.03 

LWPR 
Mean 6.41% 0.69 3.43% 0.87 

STD 3.14% 0.29 0.84% 0.07 

Table 6  - Effects of passage of time and electrode displacement on joint torque 
estimation. 

Model 
After 1 hour After 24 hours 

NRMSE   
  

NRMSE   
  

PBM 
Mean 5.28% 0.56 5.54% 0.47 

STD 2.68% 0.24 2.95% 0.26 

OLS 
Mean 4.84% 0.59 5.29% 0.51 

STD 2.98% 0.27 3.04% 0.25 

RLS 
Mean 4.81% 0.63 5.19% 0.54 

STD 2.91% 0.23 2.98% 0.27 

SVM 
Mean 5.35% 0.54 6.76% 0.46 

STD 2.22% 0.21 2.95% 0.28 

ANN 
Mean 5.40% 0.53 6.44% 0.51 

STD 2.15% 0.28 3.09% 0.31 

LWPR 
Mean 5.42% 0.60 5.93% 0.59 

STD 3.00% 0.23 3.18% 0.30 

Table 7  - Effects of forearm supination on joint torque estimation. 

Model NRMSE   
  

PBM 
Mean 9.55% 0.22 

STD 5.69% 0.32 

OLS 
Mean 8.93% 0.25 

STD 5.37% 0.33 

RLS 
Mean 8.86% 0.23 

STD 5.30% 0.29 

SVM 
Mean 8.65% 0.24 

STD 4.47% 0.37 
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ANN 
Mean 9.13% 0.23 

STD 4.76% 0.36 

LWPR 
Mean 10.05% 0.25 

STD 5.49% 0.30 

Table 8  - Comparison of models investigated. 

Criteria PBM OLS RLS SVM ANN LWPR 

Least training time  *     

Physiological insight *      

Does not require SEMG 

processing 
  

 
* * * 

Supination sensitivity * * * * * * 

Time passage sensitivity * * * * * * 

Electrode placement 

sensitivity 
* * * * * * 
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