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Patient-cooperative control increases active
participation of individuals with SCI during
robot-aided gait training
Alexander Duschau-Wicke1,2,3*†, Andrea Caprez1,2,4†, Robert Riener1,2

Abstract

Background: Manual body weight supported treadmill training and robot-aided treadmill training are frequently
used techniques for the gait rehabilitation of individuals after stroke and spinal cord injury. Current evidence
suggests that robot-aided gait training may be improved by making robotic behavior more patient-cooperative. In
this study, we have investigated the immediate effects of patient-cooperative versus non-cooperative robot-aided
gait training on individuals with incomplete spinal cord injury (iSCI).

Methods: Eleven patients with iSCI participated in a single training session with the gait rehabilitation robot
Lokomat. The patients were exposed to four different training modes in random order: During both non-
cooperative position control and compliant impedance control, fixed timing of movements was provided. During
two variants of the patient-cooperative path control approach, free timing of movements was enabled and the
robot provided only spatial guidance. The two variants of the path control approach differed in the amount of
additional support, which was either individually adjusted or exaggerated. Joint angles and torques of the robot as
well as muscle activity and heart rate of the patients were recorded. Kinematic variability, interaction torques, heart
rate and muscle activity were compared between the different conditions.

Results: Patients showed more spatial and temporal kinematic variability, reduced interaction torques, a higher
increase of heart rate and more muscle activity in the patient-cooperative path control mode with individually
adjusted support than in the non-cooperative position control mode. In the compliant impedance control mode,
spatial kinematic variability was increased and interaction torques were reduced, but temporal kinematic variability,
heart rate and muscle activity were not significantly higher than in the position control mode.

Conclusions: Patient-cooperative robot-aided gait training with free timing of movements made individuals with
iSCI participate more actively and with larger kinematic variability than non-cooperative, position-controlled robot-
aided gait training.

Background
Body weight supported treadmill training (BWSTT) has
become a widely used rehabilitation technique for indi-
viduals with walking disabilities due to neurological
disorders such as stroke and spinal cord injury [1-4].
Robotic devices have been developed to relieve physical

therapists from the straineous and unergonomical burden

of manual BWSTT [5]. The Lokomat (Hocoma AG, Swit-
zerland) [6], the ReoAmbulator (Motorika, USA), and the
Gait Trainer (Reha-Stim, Germany) are used in clinical
practice to automate BWSTT by moving patients repeti-
tively along pre-defined walking trajectories.
A growing body of studies shows that both manual

BWSTT and robot-aided treadmill training improve gait
quality [7-15]. While some of these studies found advan-
tages of robot-aided treadmill training compared to
BWSTT [9,11,14], others found conventional treadmill
training to be more effective [12,13].
The studies in favor of robot-aided treadmill training

focused more closely on non-ambulatory patients, while
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the studies reporting better outcome of conventional
treadmill training included mainly ambulatory patients.
These results suggest that currently, robot-aided tread-
mill training is most effective for severely affected, non-
ambulatory patients, whereas it may not be ideal for
more advanced, ambulatory patients. In contrast to
these ambulatory patients, who may benefit more from
other approaches like over-ground training, patients in
the transition phase between being non-ambulatory and
ambulatory still require much physical support during
training. This situation demonstrates the need to
improve current rehabilitation robots in a way that
extends their spectrum of effective treatment to func-
tionally more advanced patients. Such an improvement
would allow patients to benefit from robot-aided tread-
mill training up to a point where they can safely and
efficiently perform over-ground training. Thus, rehabili-
tation robots would be able to optimally support
patients in their progression through their different
stages of recovery.
In most of the studies mentioned above, the rehabilita-

tion robots were controlled in a very simple way. A pre-
recorded gait pattern was replayed by the robot as accu-
rately as possible. This position control approach allows
the patient to remain passive during the training [16] and
reduces kinematic variability to a minimum [17]. How-
ever, both active participation and kinematic variability
are considered as important promotors of motor learning
and rehabilitation [18-23]. fMRI studies comparing train-
ing tasks with active and passive movements have shown
stronger cortical activation and subsequently also more
cortical reorganization leading to more effective forma-
tion of motor memory when subjects where contributing
actively to the trained movements compared to being
passively moved [18,19]. In a review of robotic therapy
approaches based on these findings, Dromerick et al.
conclude that these approaches are effective, but rigorous
comparisons with traditional techniques still need to be
performed [20].
Bernstein emphasized the crucial role of kinematic

variability during motor learning ("repetition without
repetition”) based on practical experience and theoreti-
cal considerations [21]. Lewek et al. have shown that
kinematic variability as introduced by conventional
treadmill training improved the coordination of intra-
limb kinematics in ambulatory stroke patients while
position-controlled robot-aided treadmill training with
little kinematic variability did not [22]. Huang and Kra-
kauer argue that from a computational motor-learning
perspective, robots should ensure the successful comple-
tion of movements, allowing the adapting human ner-
vous system to identify combinations of sensory states
and their transitions associated with the motor com-
mands required for the movements [23].

Therefore, researchers in the field of rehabilitation
robotics believe that robotic control approaches, which
increase active participation of the patients and allow
more kinematic variability while still guaranteeing suc-
cessful task execution, have the potential to substantially
boost the efficacy of robot-aided rehabilitation, espe-
cially in functionally more advanced patients. Numerous
research groups have been working on these patient-
cooperative control strategies [24-34]. While there have
been extensive tests of control strategies that increase
patient participation during training for upper-extremity
robots [35,36], most of the approaches for lower extre-
mity-robots have only been evaluated in single case stu-
dies with patients or in proof-of-concept experiments
with healthy volunteers.
In a recent publication, our group has demonstrated a

patient-cooperative control strategy ("Path Control”) for
the Lokomat which allows free timing of leg movements
while ensuring that the spatial kinematics of the legs
stay within definable desired limits [37]. We could show
that healthy volunteers participated more actively and
with more–especially temporal–variability than in a clas-
sical, position controlled training mode. Moreover, we
were able to modulate the level of activity by an addi-
tional supportive “flow” that did not reduce the amount
of movement variability when providing more support.
We assume that the ability to modulate the level of
required activity will be an important feature to adapt
the controller to the individual capabilities of patients,
particularly of patients transitioning from a non-ambula-
tory to an ambulatory state during their rehabilitation
process. Finally, we evaluated the feasibility of the path
control strategy with 15 individuals with chronic incom-
plete spinal cord injury (iSCI). Assuming a minimal
level of voluntary motor control, the patients were able
to train with the patient-cooperatively controlled
Lokomat.
In the present paper, we have investigated if the short-

term effects found for healthy volunteers do also trans-
late to spinal cord injured patients. More specifically, we
have posed the following research questions: (1) Does
patient-cooperative robot-aided treadmill training lead
to more active participation of individuals with iSCI
than classical, position-controlled training? (2) Can we
deliberately modulate the activity required by the iSCI
patient during the training? (3) Can we increase the
variability of the iSCI patients’ leg movements while still
maintaining functional gait?

Methods
Gait training robot
Experiments were performed with the gait rehabilitation
robot Lokomat. The robot automates body weight-sup-
ported treadmill training of patients with locomotor
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dysfunctions in the lower extremities such as spinal cord
injury and hemiplegia after stroke [38]. It comprises two
actuated leg orthoses that are attached to the patients’
legs. Each orthosis has one linear drive in the hip joint
and one in the knee joint to induce flexion and exten-
sion movements of hip and knee in the sagittal plane.
Knee and hip joint torques can be determined from
force sensors between actuators and orthosis. Passive
foot lifters can be added to induce ankle dorsiflexion
during swing phase. A body weight support system with
a harness attached to the patients’ trunk reduces the
effective body weight by a definable amount.

Control algorithms
Position control
The first approach implemented for the Lokomat was
position control [38]. In this approach, the control algo-
rithm tries to match the pre-defined reference trajectory
qref(t) as closely as possible1.
Impedance control
A first step towards patient-cooperative behavior of the
robot was the implementation of an impedance control
algorithm [26]. The actual joint positions qact are vir-
tually coupled to the reference positions qref(t) by a
simulated spring and damper system with spring stiff-
ness K and damping constant B. If Δq denotes the con-
trol deviation,

Δq q q= ( ) −ref actt , (1)

the desired joint torques τc for the robot drives are
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By adjusting the parameters of the virtual impedance,
the therapist can make the training more or less
demanding for the patient. With a very low virtual stiff-
ness, the patient has to participate more actively to
maintain a functional gait pattern. In practice, only K is
adjusted by therapist, and B is adapted automatically as
a function of K [26]. The classical position control
mode is included as a special case with K set to the
maximally achievable stiffness (Fig. 1, left side).
Path control
A prominent feature of the position and impedance con-
trol approaches is the direct coupling of temporal and
spatial guidance. The path control strategy [37] and
related approaches [35,39,40] overcome this limitation by
providing a virtual tunnel. Within this tunnel, patients
can move their legs with their own desired timing of
movements. The boundaries of the virtual tunnel provide
spatial guidance to make sure that the movements still
follow a physiologically meaningful pattern in space.

Details about the implementation of the path control
strategy for the Lokomat are given in [37]. In the con-
text of the impedance control algorithm described
above, the time-dependent reference qref(t) is replaced
by the nearest neighbor qNN(qact) on the spatial pattern
template. The modified control deviation Δ q is then
the difference between qNN and qact, reduced by a dead
zone around the tunnel center (Fig. 1, right side, (1)).
The spring stiffness rendering the tunnel wall is linearly
scaled from zero at the tunnel border to a maximum of
Khip = 720 Nm/rad, Kknee = 540 Nm/rad.
For the supporting “flow”, a torque vector is calculated

by differentiating the reference trajectory qref with
respect to the relative position in the gait cycle S. Thus,
the direction of the torque vector is tangential to the
movement path in joint space (Fig. 1, right side, (2)).
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The actual supportive torques are

 s s c s c( ) ( ) ( ) , [ , ]S S d k d= ⋅ − ⋅ ∈ 1 0 1 (4)

where ks is a scalar factor that determines the amount
of support in Nm, and dc is the relative distance of the
current position qact to the center of the path. The rela-
tive distance dc is normalized to the width of the tunnel
and saturated to the upper limit 1 for positions qact out-
side the tunnel. Thus, supportive torques are only pro-
vided within the tunnel.
Finally, a “moving window” can limit free timing to a

definable range wwindow around the timed reference qref
(t) as it is used by the impedance controller. qNN is then
constrained to be maximally a definable percentage of
the gait cycle ahead or behind the timed reference qref(t)
(Fig. 1, right side, (3)).

Experimental design
Fifteen patients with chronic iSCI (Table 1) participated
in a test training session to evaluate if they were able to
train successfully with patient-cooperative controllers.
Two out of these 15 patients were not able to train with
the path control strategy because they had very weak
control over their extensor muscles. Hence, they were
not able to induce sufficient knee extension at the end
of swing phase to move along the desired path. Two
other patients dropped out because of personal reasons.
The 11 remaining patients volunteered to participate in
further experiments.
All experimental procedures were approved by the

Ethics Committee of the Canton of Zurich, Switzerland,
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and all participants provided informed consent before
the experiments.
The 11 chronic iSCI patients trained with the Loko-

mat at a walking speed of 2 km/h (0.55 m/s) and with 30-
50% body weight support under four different condi-
tions:

1. POS: Position control with the stiffness of the
Lokomat controller set to Khip = 1200 Nm/rad, Kknee

= 900 Nm/rad
2.

2. SOFT: Impedance control with the stiffness set to
Khip = 192 Nm/rad, Kknee = 144 Nm/rad
3. COOP: Path control with wwindow set to 20% of
the gait cycle and the support gain ks adjusted indi-
vidually for each patient3

4. COOP+: Path control with wwindow set to 20% of
the gait cycle and the support gain ks increased to
130% of the value used in the previous condition

Prior to the experiment, surface EMG electrodes were
attached to the patients’ gastrocnemius medialis (GM),
tibialis anterior (TA), vastus medialis (VM), rectus
femorisi (RF), and biceps femoris (BF) muscles of the
left leg. The electrodes were placed according to the
SENIAM guidelines [42]. Custom-built foot-switches
were taped under the heel of the left foot of the patients
to determine heel strikes.
Two additional surface electrodes were placed over the

electrical dipole axis of the heart, one below the right cla-
vicle and one below the left pectoral muscle to record a
simplified ECG for heart rate extraction. Before each con-
dition, the patients were quietly standing in the Lokomat
for 60 seconds. During the final 30 seconds of this period,
ECG was recorded to determine the heart rate prior to
each condition. After these resting period, patients walked
for two minutes to get used to the respective controller.
Afterwards, data was recorded during one minute of walk-
ing. In addition to the EMG and ECG signals, joint angles
from the left hip and knee joints were recorded by sensors
at the joint axes of the Lokomat.

Data analysis
Spatiotemporal variability
To quantify the amount of temporal and spatial varia-
tions in the gait patterns during walking in the different

Figure 1 Control algorithms. Control algorithms. Impedance control (with its special case position control) is illustrated on the left side. Path
control is illustrated on the right side: (1) control action to bring the patient’s leg back to the inside of the virtual tunnel, (2) “flow” of supportive
torques, (3) “moving window” around time-dependent reference.

Table 1 Patient characteristics

Subj.
No.

Sex Age
(y)

Lev. of
injury

AIS SCIM
(mob.)

WISCI
(mob.)

ks
(Nm)

P1 m 31 L2 A 11 12 n/a

P2 m 42 L2 D 18 19 n/a

P3 m 63 L4 D 26 20 5

P4 f 63 Th9 D 29 20 5

P5 f 41 Th9 C 27 18 6

P6 m 63 L3 B 10 16 6

P7 m 51 Th9 C 10 5 7

P8 m 35 C7 D 23 20 5

P9 m 33 L3 B 23 18 6

P10 f 62 L3 D 27 20 4

P11 m 53 L4 A 11 16 n/a

P12 f 64 L3 C 15 16 6

P13 m 31 L1 C 14 12 5

P14 f 53 L3 D 15 20 n/a

P15 m 61 C4 D 17 15 2

iSCI patients were classified according to the ASIA Impairment Scale (AIS) [58].
The capabilities of the iSCI patients were assessed with the mobility subscore
of the SCIM III questionnaire [59], which can range from 0 to 30, and with the
WISCI II score [60], which can range from 0 to 20. For both scores, higher
values indicate better mobility. Patients P1 and P2 were not able to train with
the patient-cooperative controller, patients P11 and P14 dropped out because
of personal reasons.
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conditions, we computed the spatio-temporal character-
istics of the recorded trajectories qact(t) according to the
procedure described by Ilg et al. [43].
The recorded joint angles of each condition were cut

into single strides triggered by the heel strike signal of
the foot switches. The single strides were normalized in
time to the interval [0, 1), with S denoting the normal-
ized stride time. The trajectory of the kth normalized
stride is referred to as q(k) (S), and the number of
recorded strides is denoted N. The average trajectory
qavg(S) was determined as a reference for the spatio-
temporal analysis:

q qavg( ) ( )( )S
N

Sk

k

N

=
=

∑1

1

(5)

Each trajectory q(k) was mapped to the reference tra-
jectory qavg by a spatial shift function ξ(k) (S) and a time
shift function  shift

( ) ( )k S .

q q( ) ( ) ( )( ) ( ) ( )k k kS S S S= +( ) +avg shift  (6)

The values of the shift functions ξ(k) (S) and  shift
( ) ( )k S

were determined by optimization as described in [44].
The weighting factor for the optimization was deter-

mined according to the rules suggested in [43].
Finally, the spatial variability varξ and the temporal

variability varτ as defined in [43] were computed using
the following equations:
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The resulting spatial and temporal variability were
compared by a Friedman test (nonparametric equivalent
to a repeated measures ANOVA) at the 5% significance
level [45]. Multiple comparisons were accounted for by
the Bonferroni adjustment.
Interaction torques
To better understand the interactions between robot
and patient, the interaction torques in the joints of the
robot have been calculated. The robot’s force sensors
are located between drives and exoskeleton and not
directly at the interaction points with the human, such
that a model of the exoskeleton’s dynamics has to be
used to derive the interaction torques τint from the tor-
ques τmot, which are measured at the robot’s drives:

 int mot exo act act exo act act= − +M q q n q q( ) ( , )  (9)

with Mexo being the mass matrix capturing the inertia
of the Lokomat exoskeleton and nexo subsuming the
gravitational, friction, and Coriolis torques of the exos-
keleton. Static friction in the joints has been identified
in a separate experiment to be below 0.5 Nm and has
thus been neglected in the dynamic model. To allow
comparisons of the interaction torques under the differ-
ent conditions, we computed the root mean square over
whole recording time Trec:

 int int
rec

d
rec

= ∫1 2

0T
t t

T
( ( )) . (10)

The root mean square values under the different con-
ditions were compared by a Friedman test (nonpara-
metric equivalent to a repeated measures ANOVA) at
the 5% significance level with Bonferroni adjustment.
Heart rate
Heart rate was extracted from the simplified ECG
recordings by custom Matlab code which determined
the length of the RR intervals IRR. The reciprocal of the
median of all RR intervals during the 30 seconds prior
to each condition constitutes the pre-condition heart
rate

HR
l

median
pre

RR
pre =

( )
.

I (11)

Analogously, the heart rate during a condition HRduring

was defined as the reciprocal of the median of all RR
intervals during the last 30 seconds of each condition.
The absolute heart rate increase ΔHR for each condition
was then defined as

ΔHR HR HRduring pre= − . (12)

We defined the maximal heart rate increase ΔHRmax

for a specific patient as the maximum of the values for
ΔHR under the four different training conditions.
Finally, we normalized the absolute heart rate increase
for the different conditions with respect to ΔHRmax to
account for the variable cardiovascular reactions of the
different patients. The normalization results in the rela-
tive heart rate increase Δ HRrel

Δ Δ
Δ

HR
HR

HRmax
rel = . (13)

The values for ΔHRrel under the different conditions
were compared by a Friedman test (nonparametric
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equivalent to a repeated measures ANOVA) at the 5%
significance level with Tukey-Kramer adjustment.
Muscle activity
EMG signals were band-pass filtered between 15 and
300 Hz, rectified, and cut into single strides triggered by
the heel strike signal of the foot switches. The single
strides were normalized in time to 1001 samples each.
All strides of a patient under a given condition were
then averaged. Next, the average strides were broken up
into seven phases (initial loading, mid stance, terminal
stance, pre-swing, initial swing, mid swing, terminal
swing) according to Perry [46]. The root mean square
(RMS) of the EMG signals was calculated for each mus-
cle within each of these phases.
The RMS values of the EMG signals showed high

inter-subject variability, and the repeated measurements
for a single subject were not independent of each other.
Linear mixed models [47] are a statistical tool that can
account for such circumstances. In these models, ran-
dom variables can capture the covariance of multiple
data values originating from different individual sources.
The remaining subject-independent effects can be
described as the linear influence of fixed factors.
To investigate the influence of the different conditions

on muscle activity, we fitted a separate linear mixed
model to the logarithm of the RMS values of the EMG
signals of each muscle. For a given muscle, we define
the logarithmized RMS for an observation j in a subject
i as EMGij . An observation is a combination of one of
the four conditions and one of the seven gait phases.
Hence, there were 7 × 4 = 28 observations j (j = 1, 2, ...,
28) per subject. We included the factors “condition” and
“gait phase” as fixed effects. Thus, the value of EMGij

for a given observation j on the i-th subject was mod-
eled as

EMG COND COND

COND PHASE

P

ij ij ij

ij ij

= + × + ×

+ × + ×

+ ×
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(14)

The indicator variables COND1ij to PHASE6ij were set
to one, if the observation j belonged to the respective con-
dition or gait phase, otherwise to zero. To account for the
correlation of repeated measurements within a subject i, a
random intercept u0i was assumed for each subject. The
residual εij captures the difference between the measured
value EMGij and the prediction of the model.
In order to compare the different conditions, we com-

puted the estimated marginal means for each condition
by averaging the model predictions across the different
gait phases. These estimated marginal means were then

compared with post-hoc tests at the 5% significance
level. In these tests, multiple comparisons were
accounted for by the Bonferroni adjustment. A similar
statistical analysis of EMG data has been performed in
[37] and in [30].

Results
Kinematics and spatiotemporal variability
Patients changed their gait kinematics notably under the
different training conditions (Fig. 2). The virtual tunnel
in the path control modes allowed for a less extended
knee at initial contact, and consequently, patients
reduced their peak knee extension. Patients also
increased their maximal hip flexion during swing phase
in the path control modes.
Spatial variability under conditions SOFT (soft impe-

dance control mode), COOP (path control mode), and
COOP+ (path control mode with increased supportive
flow) was significantly higher than under condition POS
(stiff position control mode). There were no significant
differences between the conditions SOFT, COOP+, and
COOP (Fig. 3, left).
Temporal variability under the conditions COOP+ and

COOP was significantly higher than under condition
POS. Condition SOFT was not significantly different
from any other condition (Fig. 3, right).

Interaction torques
Interaction torques in the hip joint between patient and
robot were significantly smaller under conditions COOP+
and COOP than under condition POS. No significant dif-
ferences between the conditions could be found for the
interaction torques in the knee joint (Fig. 4).

Heart rate
The relative heart rate increase ΔHRrel was significantly
larger under condition COOP than under condition
POS. No other significant differences could be identified
(Fig. 5).

Muscle activity
Activity of the Tibialis anterior muscle was significantly
increased under the COOP+ and COOP conditions
compared to the POS and the SOFT conditions. No sig-
nificant differences could be found for the activity of the
Gastrocnemius medialis muscle. Activity of the Rectus
femoris muscle was significantly increased under the
COOP+ and COOP conditions compared to the POS
condition. For the Vastus medialis muscle, conditions
SOFT, COOP+, and COOP caused significantly higher
activity than POS. Activity of the Biceps femoris muscle
was significantly higher under the COOP condition than
under the POS condition (Fig. 6).
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Discussion
Active participation
Basic neuroscience studies have shown that motor learn-
ing is more effective when human subjects practice
movements actively rather than being passively moved
[18,19,48,49]. Although the underlying mechanisms are
not well understood yet, this principle is generally trans-
lated also to robotic neurorehabilitation [23], where
researchers aim at making patients participate as actively
as possible during training.

Our evaluation has shown that iSCI patients partici-
pated with higher muscle activity (Fig. 6) and higher
cardiovascular effort (increased heart rate, Fig. 5) when
they were training under the path control condition
(COOP) than under the position control condition
(POS). Theoretically, this increased activity could also
be caused by the robot generating torques opposed to
the movements of the patient. While there are studies
investigating the effects of such robotic resistance [50],
our goal was to obtain active, unobstructed participation

Figure 2 Kinematic data. Resulting kinematic data. Trajectories in joint space for one exemplary patient (P12) under the different conditions
POS (a), SOFT (b), COOP+ (c), COOP (d).

Figure 3 Spatiotemporal variability. Spatial variabilty varξ (°) and temporal variability varτ (% gait cycle).
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of the patients. The fact that interaction torques did not
increase under the path control conditions (Fig. 4)
shows that the patients were indeed contributing
actively to the movements and not working against
robotic resistance.
We have included a condition with soft impedance

control (SOFT) as a benchmark for the current state-of-
the-art of patient-cooperative Lokomat training in clini-
cal practice. The impedance setting (Khip = 192 Nm/rad,
Kknee = 144 Nm/rad, these values correspond to a “gui-
dance force” setting of 40% in the commercial Lokomat
software) for this condition was chosen based on discus-
sions with the physical therapy staff at University Hospi-
tal Balgrist (Zurich, Switzerland) about the lowest
impedance settings they use during clinical trainings on
a regular basis. Interestingly, it appears that the remain-
ing temporal guidance (Fig. 3, right) in this compliant
control mode still kept the patients in a rather passive
state: Only the vastus medialis muscle was significantly
more active in compliant control mode than in position
control mode. All other parameters did not differ signif-
icantly (Fig. 5, Fig. 6). This observation is in line with

theoretical models of human-robot interactions which
predict that the human motor system will “slack” when-
ever possible to reduce its effort [51-54]. Apparently, the
free timing of movements provided by the path control
strategy which requires patients to actively propel their
legs through the gait pattern makes patients less likely
to “slack” than the timing-based soft impedance control
mode used under condition SOFT.
Thus, the iSCI patients in our experiment participated

more actively during training only with the patient-
cooperative path control strategy.

Modulation of activity by additional support
Unlike in our study with healthy volunteers [37], we
were not able to modulate activity by adjusting the
amount of additional support. Apparently, subjects
reacted very inconsistently to the increased support in
condition COOP+. While for some subjects the addi-
tional support was actually helpful, others felt “pushed
forward” and had to put more effort in actively cancel-
ing this “perturbation”. This effect may be the reason
for the large variability of heart rate increase under the
condition COOP+ (Fig. 5).
As already seen in the feasibility experiment with iSCI

subjects in [37], iSCI patients have diverse needs for
support, usually limited to specific gait phases. There-
fore, the “global” support parameter ks which deter-
mines the intensity of the supportive “flow” for the
whole gait cycle appears to be not sufficient to adapt
the support for iSCI patients. For an impedance con-
troller based on a reference pattern with fixed timing,
gait-phase dependent adaptation of controller impe-
dance has been demonstrated by Emken et al. [33]. For
the path control strategy evaluated in this paper, which
allows free timing of movements, an automatic adapta-
tion algorithm that identifies the individual deficits of a
patient as implemented for the upper extremity by Wol-
brecht et al. [55] could possibly improve the training
mode by providing support that is better tailored to the
individual patients.

Figure 4 Interaction torques. Interaction torques τint (Nm) for hip and knee joint.

Figure 5 Relative change of heart rate. Relative change of heart
rate ΔHRrel while walking under the different conditions.
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Figure 6 Muscle activity. Muscle activity of TA (Tibialis anterior), GM (Gastrocnemius medialis), VM (Vastus medialis), RF (Rectus femoris), and BF
(Biceps femoris) muscles as predicted by the linear mixed models (left column). Comparison of mean muscle activity under the different
conditions (right column).
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Movement variability
Variability and the possibility to make errors is consid-
ered an essential component of practice for motor learn-
ing. Bernstein’s demand that training should be
“repetition without repetition” [21] is still considered a
crucial requirement, which is also supported by recent
advances in computational models describing motor
learning [23]. More specifically, a recent study by Lewek
et al. [22] has shown that intralimb coordination after
stroke was improved by manual training after stroke,
which allowed kinematic variability, but not by position-
controlled Lokomat training, which reduced kinematic
variability to a minimum.
The analysis of spatiotemporal variability shows that

while spatial variability is significantly increased in all
three compliant modes SOFT, COOP+, and COOP
compared to the stiff position control condition POS,
temporal variability is only significantly increased in the
path control modes COOP+ and COOP.
The virtual tunnel of the path control strategy allowed

spatial variability to an extent that still ensured a func-
tional gait pattern, therefore, it did not substantially
increase the patients’ risk of stumbling.
Thus, the path control strategy does not only techni-

cally provide free timing of movements, but iSCI
patients also showed more temporal variability in their
movements than with position control (POS) or with
the compliant, but timing-controlled impedance control
(SOFT).

Limitations
Limitations of the path control strategy
It should be noted that a constant treadmill speed was
used throughout the presented experiments. Thus, the
temporal freedom of the path control mode were lim-
ited to the swing phase. Nevertheless, a substantial
increase in temporal variability could be detected. To
increase patient interactivity during training, we will
combine the path control strategy with approaches
which adapt the treadmill speed according to the inten-
tion of patients [56].
The fixed walking pattern that defines the spatial

movement path may not be ideal for every patient. As
in position-controlled Lokomat training, the pattern can
be adapted manually by the therapist. However, it is not
guaranteed that a pattern close to the “healthy” pattern
of an individual patient can be achieved. For hemiparetic
patients, it would be possible to derive a desired path
for the affected leg from observing the unaffected leg, as
proposed by Vallery et al. [32]. For iSCI patients, an
adaptive re-shaping of the path, similar to the approach
by Jezernik et al. [25], may improve the applicability of
the path control strategy.

Limitations of the study
The present study only investigated the reactions of iSCI
patients to different controllers during a single training
session with short exposure to the different training
modes. Clearly, the long term effects of the different
training modes are much more important and should be
investigated in future work. However, we believe that
verifying the intended, presumably beneficial effects in a
single training session was an important first step in
preparation of a long term trial.
We deliberately included patients with a wide range of

ambulatory skills to gain insights into the feasibility of
path control training with patients at different skill
levels. The distribution of walking skills comprised four
fully ambulatory patients with a WISCI score of 20,
indicating that they were able to independently ambu-
late 10 m without any walking aids. Furthermore, six
patients had reduced, but good ambulatory skills
(WISCI score between 12 and 19) and were able to
independently ambulate 10 m using appropriate walking
aids (crutches and braces). Finally, there was one patient
in the transition range between non-ambulatory and
ambulatory, indicated by a WISCI score of 5. As we
expect the most practical benefits of patient-cooperative
control strategies for patients in the transition range
between non-ambulatory and ambulatory, more data
regarding the feasibility with functionally more restricted
patients would be desirable. Thus, future studies with
the path control strategy should more explicitly focus
on patients within this functional range.
As we planned to include patients with very different

walking skills, we decided that it would have been very
difficult to reliably standardize a control condition where
patients would have walked without assistance or manual
assistance of a therapist. Therefore, we performed our
experiments without such a condition which would of
course have allowed very interesting further analyses.
Future studies which will be focusing on patients from a
more narrow functional range. As these patients will
have similar–and thus standardizable–needs for support
during manual assisted treadmill training, it will then be
feasible to include such a condition.
The limited number of patients included in the study

does not provide sufficient statistical power to stratify
patients according to their disability levels, which might
reduce the variability in the results and provide further
insights into the different effects of the evaluated control
strategies on different groups of patients. The focus of
the study on iSCI patients leaves it an open question
whether similar results can be expected for patients with
stroke or other pathologies. The feasibility of patient-
cooperative training and the immediate effects for such
patients needs to be investigated separately.
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The choice of heart rate as a measure of effort was
made because it did put a relatively low additional bur-
den on the patients during the experiment. As discussed
by Pennycott et al., heart rate may be influenced by
emotional state, pain and hydration level, whereas oxy-
gen uptake would be a more robust measure of effort
during robot-aided gait training [57]. These factors may
explain the large variability under the condition COOP+
where some patients may have been irritated by the
increased amount of robotic support. However, as the
general trend of the heart rate results is consistent with
the results regarding the muscle activity of the patients,
we believe that the method has captured the patients’
effort in a sufficiently robust way for the sake of our
research questions.

Conclusions
Patients with incomplete spinal cord injury participated
more actively and with larger kinematic variability in
patient-cooperative robot-aided gait training than in
non-cooperative, position-controlled robot-aided gait
training. Free timing of movements appears to be an
important feature of patient-cooperativeness, as a com-
pliant impedance control mode with fixed timing did
not significantly increase active participation, but the
path control strategy with free timing did.
Future development should focus on providing adap-

tive, patient-specific support to make training with
patient-cooperative control strategies feasible for a larger
population of patients. Future clinical evaluation should
compare the effects of patient-cooperative robot-aided
training versus non-cooperative robot-aided training and
manual BWSTT in a long term randomized clinical trial.

Foot Notes
1The following notation is used throughout this paper:
all vectors of joint angles and torques consist of two ele-
ments, the first one for the hip joint and the second one
for the knee joint, e.g. q = (q(1), q(2))T = (qhip, qknee)

T.
The control algorithms discussed in this paper are
always defined for a single leg. The second leg is con-
trolled by an independent second instance of the respec-
tive control algorithm.

2The equivalent end-point stiffness of the exoskeleton
depends on the joint angles and the direction of force
application and, thus, can not be reflected in a single,
representative number. The relationship between end-
point stiffness and joint stiffness in a lower-limb exoske-
leton is discussed in [41].

3The therapist was instructed to adjust ks to the mini-
mal value that enabled the patient to walk in the path
control mode. The individual support gains which were
used under this condition are listed in Tab. 1.
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