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Abstract
Movement-assist devices such as neuromuscular stimulation systems can be used to generate
movements in people with chronic hand paralysis due to stroke. If detectable, motor planning
activity in the cortex could be used in real time to trigger a movement-assist device and restore
a person’s ability to perform many of the activities of daily living. Additionally, re-coupling
motor planning in the cortex with assisted movement generation in the periphery may provide
an even greater benefit—strengthening relevant synaptic connections over time to promote
natural motor recovery. This study examined the potential for using electroencephalograms
(EEGs) as a means of rapidly detecting the intent to open the hand during movement planning
in individuals with moderate chronic hand paralysis following a subcortical ischemic stroke.
On average, attempts to open the hand could be detected from EEGs approximately
100–500 ms prior to the first signs of movement onset. This earlier detection would minimize
device activation delays and allow for tighter coupling between initial formation of the motor
plan in the cortex and augmentation of that plan in the periphery by a movement-assist device.
This tight temporal coupling may be important or even essential for strengthening synaptic
connections and enhancing natural motor recovery.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Each year, approximately 795 000 Americans experience a
new or recurrent stroke. Many stroke survivors are left with
chronic motor, sensory and cognitive impairments, making
stroke the leading cause of serious long-term disability in
the United States [1]. Common deficits after a stroke
affecting the motor areas of the brain include muscle weakness,
spasticity, and problems with joint coordination, dexterity and
movement precision. The middle cerebral artery stroke is the
most common non-hemorrhagic stroke, which preferentially

affects the upper limb [2]. This loss of upper-limb function
substantially limits one’s ability to perform the basic activities
of daily living.

Some natural recovery of motor function usually occurs
in the first few months following a stroke. Therapies that
encourage or require voluntary, repetitive and functionally
relevant use of the affected limb have been shown to be
effective in enhancing motor recovery even years after a stroke
[3, 4]. Strategies, such as constraining one’s unaffected limb,
force individuals to attempt daily tasks with their affected
limb to further encourage motor recovery [5]. However, in
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Table 1. Study participant information. All participants were right-hand dominant prior to their stroke. Fugl–Meyer scores for normal wrist
and hand function are 10 and 14, respectively [22].

Fugl–Meyer
score

Time post Hemisphere Data used to determine
Subject stroke of stroke movement onset Wrist Hand

1 2y 10 mo Right EMG 7 7
2 7y 0 mo Left Bend sensor 5 10
3 11 mo Right EMG 7 10
4 2y 1.5 mo Left Bend sensor 7 13

spite of these available therapies, many individuals are left
with some chronic hand paralysis even after the rest of the
limb has regained significant function.

Several types of devices are being developed to generate
or augment hand movements in people with paralysis. For
example, neuromuscular stimulation systems can generate
hand movements by electrically activating the peripheral
nerves to the paralyzed muscles [6, 7] and motorized
exoskeletons can restore function by moving the paralyzed
hand directly [8–10]. These movement-assist devices can help
people with partial or complete chronic hand paralysis perform
more of the activities of daily living. Movement-assist devices
may also improve therapeutic outcomes following stroke by
facilitating repetitive practice of functional tasks.

Repetitive, voluntary and functionally relevant
movements are thought to promote recovery of motor
function through use-dependent plasticity. With repetitive-
movement therapies, task-specific synaptic connections are
strengthened over time due to coordinated and repeated
activation of the pre- and post-synaptic neurons throughout
the sensorimotor pathways. This activity-dependent motor
relearning is thought to occur through Hebbian mechanisms,
which are strongly affected by the intensity and relative timing
of activity in the pre- and post-synaptic neurons [11–16].

Studies have shown two key aspects of timing that affect
synaptic plasticity. First, ‘causal’ timing (where the pre-
synaptic neurons fire before the post-synaptic neurons) results
in an increase in the strength of a synapse. Second, this
increase in synaptic strength is highly dependent on how
closely in time the pre- and post-synaptic cells fire. The closer
in time the two cells fire, the greater the effect this firing has
on changing the strength of the synapse [11–16].

The tight causal timing required to maximize Hebbian
plasticity may impact the effectiveness of different movement
therapy strategies after stroke, especially when a movement-
assist device is used to generate or augment movements.
For a movement-assist device to be used, the device has to
receive and interpret a signal telling it what movement the
person is trying to make. Then the device has to generate an
appropriate action in the limb. Both of these processing steps
can take time, resulting in a longer-than-normal delay between
motor planning in the cortex and execution of that plan in the
periphery. This long delay may limit the therapeutic gains
from using a movement-assist device.

For people who are only moderately impaired, residual-
muscle activity or small movements can be detected and
used to trigger a device that will augment those very same

movements. In this case, the device can only be activated
after peripheral signs of movement have already started.
Alternatively, characteristic changes in brain activity are
known to occur prior to movement onset throughout the
parietal, supplementary motor, premotor and primary motor
cortices. Extracting one’s intended movements directly from
the cortex before movement onset may be a viable option for
reducing these time delays and tightly linking motor planning
in the cortex with execution in the periphery. For individuals
with complete hand paralysis, detecting intent to move from
the cortex may be the only natural option for triggering a
movement-assist device.

Most EEG-based brain–machine interface studies
evaluate able-bodied individuals or individuals paralyzed due
to spinal cord injury or amyotrophic lateral sclerosis. So far,
only a few groups besides ours have focused on detecting
hand movements from EEG in the stroke population where
the damage is in the brain itself [17–20]. None of these
other stroke studies assess the ability to detect intent to
move specifically during the motor planning phase prior to
the earliest time that movement could be detected in the
periphery. In this study, our group uniquely focused on early
detection in this very narrow and challenging pre-movement
time window. We developed a process to identify signal
processing and classification parameters that optimize the
balance between the speed and accuracy of detection in order
to maximize early detection. We focused on this brief pre-
movement time window for two reasons. First, reducing time
delays in triggering device-assisted movements will result
in more natural movements and could potentially enhance
beneficial plasticity by more closely restoring the natural
timing between cortical intent and the movement assistance
in the periphery. Second, the muscle activity or the finger
motion itself could be used as a reliable device trigger in
this moderately impaired stroke population once the actual
movement has started. Therefore, later movement detection
from EEGs is not as clinically useful in this population.

2. Methods

2.1. Experimental design

Four individuals with moderate chronic hand paralysis
participated in this study. All participants previously had a
subcortical ischemic stroke and were left with a limited ability
to voluntarily extend their fingers. Specifically, participants
exhibited at least some volitional finger extension, but strength
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was four or less on the Medical Research Council scale [21].
Table 1 indicates time since the stroke, the hemisphere in which
the stroke occurred, the scores for wrist and finger function
from the Fugl–Meyer assessment6 [22], and if bend sensor or
electromyographic (EMG) data were used to determine onset
of movement for that participant. All participants came in for
testing on four different days over a four week period. The
study protocol was approved by MetroHealth Medical Center’s
Institutional Review Board.

During each session, participants were seated in front of
a computer screen with both forearms resting comfortably on
a padded table. Visual cues to open or relax either the affected
or unaffected hand were presented on the computer screen.
Participants were instructed to attempt to maintain active
extension of the fingers throughout the hand-open cue and
to simply relax the hand and allow the hand to close naturally
during the relax cue. Each ‘trial’ consisted of relaxing both
hands for 5 s followed by a cue to actively extend the fingers
of the right or left hand for 5 s. Cues were presented in
random order in blocks of up to 20 movement cues per block.
Participants were encouraged to take breaks between blocks
to prevent fatigue. Each day’s testing session was analyzed
separately.

2.2. Data collection

Thirty-two gold cup EEG electrodes spanning the
sensorimotor areas were attached to the scalp with conductive
paste (locations approximately corresponding to a rectangular
grid spanning F3 through CP4 in the 10–5 system [23]).
Bipolar EMG sensors were placed on the forearms over
the finger extensor muscles (extensor digitorum communis).
Flexible bend sensors (electrogoniometer from Biometrics,
UK) were taped along the dorsal surface of the index fingers
spanning the first proximal knuckle. These bend sensors put
out a voltage proportional to the angle of the proximal finger
joint. Bend sensor, EMG and EEG voltages were recorded
simultaneously at 610 Hz using a 64-channel recording system
(Pentusa RX5, Tucker Davis Technologies, FL). The digital
EEG and EMG signals were bandpass filtered to 2–150 Hz
with an additional notch filter at 60 Hz.

Visual cues to open/relax either the right or left hand
were presented on a computer screen and controlled by
Matlab (Mathworks). Changes in the hand cue state were
accompanied in real time by changes in a digital cue code sent
from Matlab to the recording system. This hand movement
cue code was synchronized and integrated with the digitized
EEG, EMG and bend sensor data file. All of these data were
then down sampled to 305 Hz for further processing.

Additional processing was done to obtain cue data, hand
movement data and features of the EEG used to predict
movement onset in 100 ms intervals. Specifically, differential
EMG data were rectified and averaged over each 100 ms
window. Bend sensor voltage data were simply down sampled
to 10 Hz. Power was calculated via fast Fourier transforms
(FFT) from the EEGs every 100 ms using overlapping

6 The Fugl–Meyer assessment is used to quantify isolated and synergistic
voluntary-motor function.

(a) (b)

Figure 1. Examples of bend sensor and EMG data from all trials
within a session aligned at movement onset (t = 0). The thicker
gray line shows mean values. (a) Bend-sensor data from one
participant. Note that movement in either the flexed or extended
direction qualified as movement onset. (b) EMG data from a
different participant.

windows of data (FFT window length was varied as part of
the optimization process described below). The resulting
10 Hz sampling rate for all the processed data allowed for
new movement predictions to be made every 100 ms, which
is a movement update rate that can be accommodated by most
simple movement-assist devices.

Rectified EMG or bend sensor data were used to determine
actual movement onset times7. Cue onset and movement onset
were used as key landmarks for aligning the data from each
trial for later analysis. Figure 1 shows examples of bend
sensor and EMG data from each trial aligned on movement
onset. Movement onset was determined by a sustained change
in sensor value over the range seen during the prior 2 s of
the relaxed state. Note that the change in bend sensor value
can either be positive or negative because some participants
would, at times, briefly flex their fingers first as they tried to
generate finger extension (see figure 1(a)). Since our goal
was to identify attempted movements from the EEG prior to
any actual movement, all time points that could reasonably
be interpreted as part of the movement phase were labeled
as such. This approach ensured that only EEG data before
detectable movement onset were used in our pre-movement
analysis.

2.3. Data analysis

Classifiers for the early detection of attempted finger extension
of the affected hand were generated and assessed for each
session using only the movement trials where the affected
hand was cued to move (mean of 42 ± 12 trials per session).
Classifiers were developed in two phases. The goal of the first
phase was to identify combinations of specific EEG features

7 In two of the participants, the EMG signals had low signal-to-noise ratios
due to weak muscles and excess superficial fat in the arms. In those two
participants, the bend sensor data were used to determine movement onset
because they provided a more reliable, clear-cut indication of the start of
movement.
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Figure 2. Spectrogram from one channel of EEG showing the epochs used in the different stages of analysis (red = higher power; blue =
lower power). Triangles indicate the initial presentation of the hand-open cue and movement onset. The two gray boxes spanning the
spectrogram indicate the two 1 s time segments used in phase I of the analysis (i.e. the relaxed (0) and finger extension (1) epochs). Analysis
in phase II emphasized early detection of finger extension during the ‘movement-preparation’ epoch. The lower part of the figure shows
how the assigned rest/finger-extension transition point (0 to 1) was systematically shifted across the movement preparation epoch in phase
II as part of the process of optimizing an early detection classifier.

that modulate the most with finger extension of the affected
hand. The goal of the second phase was to maximize early
detection of movement onset using the best set of EEG features
identified in phase one. These two phases used two distinct
epochs of the EEG data.

2.3.1. Phase I analysis: identification of EEG features
modulated with finger extension. Phase I analysis used data
that were clearly in either the relaxed epoch or the finger-
extension epoch to first identify which EEG features were
significantly modulated with finger extension (see figure 2).
Approximately 1 s of data from the relaxed epoch just prior
to cue presentation and 1 s of data starting at movement
onset were used from each trial for phase I analysis. The
raw EEG signals from the extracted epochs were common
average referenced to produce 32 new signals with common
noise removed. In addition, common spatial pattern analysis
[24–26] was also applied to the raw EEGs to derive 32
additional signals, each of which was a weighted sum of the
original raw EEG signals. Common spatial pattern analysis
has been shown to generate linear combinations of signals that
maximize the difference in signal variance between two states
[24–26]: in this case the finger extension versus the relaxed
state.

FFTs were then applied to each of these 64 processed EEG
signals to extract power features from each epoch for analysis.
128-sample FFTs were calculated, resulting in power bands of
2.38 Hz width. Because the recording hardware itself filtered
out signals below 2 Hz, the lowest power band was discarded.
The next highest 11 bands spanning the 2.38–28.59 Hz range
were analyzed to determine which bands from which signals
changed the amplitude between the relaxed versus finger-
extension states. Multiple sliding 128-sample windows were

used to generate 10 power spectrum estimates per trial at even
intervals across each 1 s epoch. Linear regression was used
to predict the hand state from each power band from each
signal individually in a 10 × 10 fold cross-validation process.
Cross-validation results were used to identify which specific
power features showed significant modulation with the finger-
extension versus rest epochs at the 95% confidence level. We
further verified that these power features had the appropriate
decrease in power with attempted finger extension and increase
in power with relaxation (and not the other way around). This
check was done to ensure there were no significant scalp EMG
artifacts associated with the attempted movement.

After this initial screening to identify EEG power features
that were modulated with attempted movement, backward
feature elimination [27, 28] was used to identify a reduced
number of significant features that together convey the most
robust information about the relaxed versus finger-extension
epochs. Linear regression with five-fold cross-validation was
used to drop features during the backward feature elimination
process.

2.3.2. Phase II analysis: parameter optimization for early
transition detection. While phase I identified combinations
of EEG features that showed significant changes between
the relaxed and extended finger states, phase II focused
on using these features for the early detection of the
transition from the relaxed to the extended finger state during
movement-preparation (see figure 2). In phase II, three key
signal processing parameters were optimized using the best
combinations of features identified in phase I. These key
parameters were: (1) window size used to calculate the
FFT, (2) the number of sequential past and current power
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Table 2. Values of the three signal processing/classification parameters tested during phase II.

Parameter Parameter values tested

FFT window lengtha 100, 300, 500, 700 and 900 ms
Number of preceding processed data samples (at

10 Hz) used to predict present hand state
0 (current time sample only), 2, 4, or 6

Presumed transition point between the relaxed (0)
and finger-extension state (1) used for training
the classifier (see bottom of figure 2 showing
state labels transitioning from 0 to 1 at different
time points in the movement preparation epoch)

To be thorough, all transition points ranging from
1.2 s before to 0.5 s after movement onset were
tested in 100 ms increments

a FFTs were still calculated every 100 ms using overlapping windows of data. Although changing
window lengths altered the frequency band sizes, the frequency bands used for decoding were kept
consistent with those identified in phase I by interpolating across bands as needed.

calculations used by the classifier to predict the current hand
state, and (3) the presumed transition point on which to train the
classifier (i.e. at what point in the movement preparation epoch
do we define as the switch between the rest (0) versus finger
extension (1) state for the purpose of training an early detection
classifier). Properly optimizing these three parameters for
each participant is critical because their values determine
the balance between speed and accuracy of detection. For
example, using longer overlapping windows of data for FFT
calculation will increase the frequency resolution, which can
improve movement detection; however, these longer time
windows will also create a longer lag between the time the EEG
power changes and when the FFT calculation fully reflects
that change. Optimal combinations of these parameters were
identified for each person by testing each possible combination
of these three parameters over the ranges listed in table 2.

2.4. Classification and final performance measures from
phase II

The early movement prediction performance was assessed
for each of the above parameter combinations from
table 2, to identify which combinations maximized the ability
to predict finger extension during the motor planning prior to
movement onset. Linear discriminant analysis was used to
build classifiers with data from training trials and then test
classification accuracy on separate testing trials in a leave-
one-trial-out cross-validation process. Time points used for
building the classifiers from training trials differed slightly
from the time points used for assessing performance in the
testing trials. This difference was necessary to ensure the
classifiers were built using enough data from each movement
state to prevent over fitting, while still assessing performance
over the actual more-limited movement preparation window.

When training the classifier, 5 s of data (50 time points)
uniformly spanning the presumed relax/move transition point
were used from each trial regardless of where this transition
point fell (recall this assumed transition point for training the
classifier was one the parameters varied as part of the classifier
optimization process as described in table 2). Specifically, for
the sake of training each version of the classifier, 2.5 s or
25 time points from before the transition point were assigned
to the relaxed state, and 2.5 s or 25 time points from the
assumed transition point and beyond were assigned to the
finger-extension state.

However, when assessing each classifier’s performance,
time samples of processed data assessed from each testing trial
spanned 1 s (i.e. 10 time steps) before the cue through to the
last time step before movement onset8. False-positive rates
were calculated as the percentage of the rest epoch time points
incorrectly classified as finger extensions, and true-positive
rates were calculated as the percentage of time points during
the actual movement preparation phase correctly classified as
finger extension (movement preparation samples spanned the
first time sample after the cue to the last time sample before
detectable movement onset). The final overall performance
measure for each parameter combination was calculated as
the ‘adjusted’ true-positive rate (i.e. mean true-positive minus
false-positive rate). This adjusted true-positive rate was
used as the cost function to determine which combination
of parameters from table 2 maximized this difference.

2.4.1. Performance at controlled false-positive rates. Linear
discriminant analysis identifies a linear combination of the
signal features, which maximizes the difference between two
states while minimizing the variance within each state. The
classifier outputs a single scalar value at each time step, and
that time point is defined as either being in the rest state or the
finger-extension state based on whether the scalar output of
the classifier is above or below a predefined threshold. With
standard linear discriminant analysis, this threshold is set in a
way that maximizes the correct classification of the most time
points. However, this threshold can be shifted as needed to
change the sensitivity of the classifier and make it more or less
difficult to classify a time point as finger extension.

In stroke-therapy applications, the classification threshold
can be shifted to reduce false triggers of a therapeutic device
when a person is resting. However, this comes at the expense
of also making the system less responsive to true triggers
when a person is trying to move. Conversely, shifting the
threshold to make a therapeutic device respond more reliably
to attempted movements may come with a price of accepting
some additional unintended false triggers.

8 Classifiers were applied offline at each time step in the assessment window
in the same manner as they would be if the data were being collected and used
in real time. Therefore, classifiers that use additional time steps of past data
to predict movement state in the current time step made use of some data that
preceded the designated assessment window.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Adjusted true-positive rate and mean time benefit as a function of allowed false-positive rate. (a)–(d) Adjusted true-positive rates
plotted separately for participants one through four (i.e. true-positive rate during the movement-preparation phase minus the false-positive
rate during the rest phase. Note chance level = 0% and is indicated by the dotted lines). Within each graph, each black line indicates a
different testing session, and gray lines indicate the lower 95% confidence intervals for each session. (e)–(h) Corresponding average time
benefit of using EEGs to trigger a device over using EMGs or bend sensor data alone. In (e)–(h), gray lines indicate the maximum possible
time benefit based on the length of each person’s movement preparation time.

Since the therapeutic advantages are still unknown
regarding increasing/decreasing the sensitivity of an EEG-
triggered movement-assist device, performance was evaluated
at four different thresholds or sensitivity levels. Thresholds
were adjusted to produce 1, 5, 10 or 20% false positive
samples during the rest epochs prior to cue presentation.
The corresponding true-positive rates were calculated at each
classification threshold. ‘Adjusted’ true-positive rates were
then calculated as the true-positive rates minus the false-
positive rates for the four threshold sensitivity settings.

3. Results

The adjusted true-positive rates for each allowed false-positive
rate are shown for each person in figures 3(a)–(d). Each black
line indicates a different testing session. Since the plotted
adjusted true-positive rates already have the corresponding
false-positive rates subtracted out, the expected random chance
value for these data is zero because random data will generate
equal true- and false-positive rates. This zero chance level
holds true regardless of the classification threshold used.

The increase in adjusted true-positive rates at the higher
false-positive rates indicates that allowing some false positives
can pay off by disproportionally increasing the difference
between the true- and false-positive rates. In all participants,
attempted finger extension could be identified well above
chance levels during movement preparation prior to detection
of movement onset in the periphery. P-values ranged from
P < 0.2 × 10−4 to P < 3.7 × 10−9 across people and sessions9.
9 Calculated via a one-tailed Wilcoxon signed rank test for each session at
optimal decoding parameters using the default classification thresholds from
linear discriminant analysis.

However, as the threshold for classifying a time sample as
a finger extension event became more strict, the difference
between the true- and false-positive rates dropped. The gray
lines in figures 3(a)–(d) show the lower 95% confidence
intervals of the adjusted true-positive rates calculated at each
allowed false-positive rate (calculated via a bootstrap method
[29, 30]). The lower 95% confidence interval came close to
zero (chance level) in one or more sessions when the false-
positive rate was reduced to 1% in participant one and when
the false-positive rate was reduced to 1% or 5% in participant
three.

The average time benefit of using EEGs for detecting
movement onset over using EMG or bend sensor data alone
is shown in figures 3(e)–(h). Average time benefit is
calculated here as the average time difference between when
the classifier first determined a finger-extension event has
occurred during the movement preparation phase and when
the actual movement was detected via EMGs or bend sensors.
To minimize the contributions of false triggers to the time-
benefit calculation, only time points 100 ms or more after the
cue were used (time points classified as finger extension during
rest or less than 100 ms after the cue were ignored, so they did
not artificially inflate the calculated time benefit).

In this study, the EMG and/or bend sensor data were
analyzed offline. Therefore, the first detectable sign of
movement from EMGs or bend sensors could be rigorously
identified for each trial by looking at the whole trial to spot
when sustained changes in sensor values initially started.
This manual inspection of each trial was needed because of
variability within and between trials in the baseline sensor
values in the rest phase (i.e. the hand did not always go back
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to exactly the same position while relaxing; note in figure 1,
baseline differences between trials have been subtracted out).
However, reliably detecting movement onset from the EMGs
or bend sensors in real time would likely require at least one to
several additional time samples of data to be relatively certain
the change in sensor value represented a real and sustained
change from the previous value (i.e. not simply the result
of noise or non-stationarities). Therefore, the actual time
benefit of using EEGs is likely to be at least one hundred to
several hundred milliseconds greater than the values shown in
figures 3(e)–(h).

The participants had differences in the speed with which
they were able to initiate a movement after the cue. People
who take a long time to generate detectable muscle or
joint activity in the periphery could potentially benefit more
by using EEGs over EMGs/bend sensors than someone
where the peripheral signs of movement start rather quickly
in the movement generation process. The gray lines in
figures 3(e)–(h) indicate the average maximum time benefit
possible for each person based on how long it typically
took them to generate peripheral signs of movement. This
maximum possible time benefit was calculated as the time
from 100 ms after the cue to mean onset of movement as
measured by EMG or bend sensor data.

4. Discussion

Many brain–machine interface research labs have developed
algorithms for detecting different hand movement states
from EEGs in able-bodied individuals and in individuals
with a spinal cord injury or with locked-in syndrome due
to amyotrophic lateral sclerosis. These EEG-based brain–
machine interface studies have generally produced mixed
results. An estimated 20% of the people being tested in
any given study typically cannot generate an effective control
signal from their EEGs [31]. Here we have taken on
the additional challenge of trying to detect attempted hand
movements from EEGs using just a very short time window
prior to actual movement onset in people who have some
chronic hand paralysis due to stroke.

Our results show that attempted finger extension could
be detected significantly above chance during the narrow
movement preparation phase in all four stroke survivors tested
here. However, accuracy rates differed across individuals,
just like researchers have found in other populations. Perfect
accuracy may not be needed to provide a benefit in the
moderately impaired stroke population. Residual movements
or EMGs could be used as a backup trigger if the impending
movement failed to be detected from the EEGs during
the movement preparation window. Earlier triggering of
a movement assist device in at least some portion of the
attempted movement may still improve the therapeutic benefits
over EMG- or bend-sensor-based triggering alone. Early
device triggering will more tightly couple the motor planning
at the level of the cortex, with the motor action at the periphery,
thus potentially augmenting Hebbian plasticity and motor
relearning.

This study focused on evaluating early detection of the
transition from the relaxed state to the fingers-extended state.
It did not address the transition from the fingers-extended
state back to the relaxed state. Initial testing showed most
participants unintentionally started relaxing while the extend-
fingers cue was still on. Once they saw the relax cue and
realized they were already relaxed, they would re-extend
the fingers once more so that they could then re-relax in
response to the relax cue. These inconsistencies in the
data collected during the extend-to-relax transition made it
impossible to use this particular set of data to evaluate how
reliably extend-to-relax transitions can be detected. (We are
currently addressing problems with attention maintained in a
separate study evaluating alternative cue presentation methods
designed to keep people focused on the task.)

In real-time therapeutic applications, the hand state
classifiers could be used as either an all-or-nothing movement
command, or used in a more probabilistic integrative fashion.
For example, a movement-assist device could be activated in
an all-or-nothing manner by implementing a complete finger
extension program whenever the device detected a ‘finger
extension command’ while the hand was in the rest state.
In this type of system, the classification threshold should
be shifted to limit false positives because any false positive
would produce full finger extension. However, this study
showed that adjusting the threshold to reduce false positives
can also disproportionately reduce the true-positive rate. In
two of the four study participants, finger extension could
still be detected during movement planning in 30–40% of
the trials, even when false trigger rates were reduced to 1%
(participants two and four). These individuals may benefit
from the all-or-nothing EEG-based device triggering system
even though the EEGs provide a time benefit in only 30–40%
of the trials. However, reducing the false positives to 1%
or less would nearly eliminate most true positives in the other
two participants (participants one and three), thus substantially
reducing any therapeutic benefit over EMGs or bend sensors
alone.

Alternatively, a movement-assist device could be used in
a more graded ‘integrative’ fashion. When using the classifier
output in an integrative mode, the threshold should be set to
maximize the difference between the true- and false-positive
rates. For example, with a neuromuscular-stimulation system,
each time sample classified as a finger-extension event could
increase the current to the finger extensor muscles, whereas rest
classification events would decrease the current. Under this
probabilistic option, individuals with more correctly classified
time samples than incorrectly classified time samples will, on
average, build up stimulation when they are trying to open
the hand and reduce stimulation when they are relaxing. This
added stimulation could augment function, making the hand
easier to open/close than without EEG-triggered stimulation.

All four study participants could potentially use an EEG-
driven stimulation device in an integrative manner, because all
four had substantive differences in the true- and false-positive
rates at some classification thresholds. However, the gradual
nature of the build up or reduction of stimulation when EEG
triggers are used in an integrative mode will likely reduce the
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time benefits of using EEGs over using EMGs or bend sensors
alone. Online tests are needed to determine the therapeutic
benefits of using a device in a more graded probabilistic fashion
versus triggering a device in a rapid all-or-nothing manner,
given the various true- and false-positive rates seen here at the
different threshold settings.

Although each person’s cortical motor planning patterns
appeared to be relatively stable from day to day, there will
likely be some variability in EEGs between sessions due
to differences in the quality of the connection between the
electrodes and the scalp each time the EEG electrodes are
applied. Changes in medication and alertness level between
days can also cause overall changes in the EEG power
spectrum, even when the underlying motor planning patterns
remain constant. Therefore, in the real-world use of an EEG-
triggered movement-assist device, it is likely that at least some
daily refinement of the classifier would be beneficial to account
for any non-stationarities in the power spectrum or in the signal
quality. Streamlining this refinement process will be important
to make these systems practical for daily use. This process will
likely entail normalizing the power features by subtracting out
any baseline shifts as well as reweighting power features in
the classifier that have become noisy or problematic.

During actual use of a brain-triggered movement-assist
device, visual and tactile feedback of the resulting movements
could help train users to generate stronger, more-consistent
cortical activation patterns with practice. The cortical patterns
required to trigger the device could even be gradually altered
over time, thus encouraging the user to make even stronger or
more ‘normal’ cortical activation patterns as they progress with
their therapy. Results from this offline analysis suggest that
the EEG signals in these moderately impaired stroke survivors
contain enough hand movement information to trigger a
movement-assist device, even if device activation is not 100%
reliable. Feedback from this initial performance can then
allow a person to learn to strengthen or improve their cortical
activation patterns over time. Online tests are now needed to
determine how much cortical patterns can be improved with
feedback and if improved cortical patterns will result in greater
functional recovery.
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