
A chronic generalized bi-directional brain–machine interface

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 J. Neural Eng. 8 036018

(http://iopscience.iop.org/1741-2552/8/3/036018)

Download details:

IP Address: 83.139.130.95

The article was downloaded on 31/05/2011 at 10:24

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1741-2552/8/3
http://iopscience.iop.org/1741-2552
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF NEURAL ENGINEERING

J. Neural Eng. 8 (2011) 036018 (19pp) doi:10.1088/1741-2560/8/3/036018

A chronic generalized bi-directional
brain–machine interface
A G Rouse1, S R Stanslaski2, P Cong2, R M Jensen2, P Afshar2,
D Ullestad2, R Gupta3, G F Molnar3, D W Moran1 and T J Denison2

1 Department of Biomedical Engineering, Washington University, St Louis, MO, USA
2 Neural Engineering, Medtronic Neuromodulation, Minneapolis, MN, USA
3 Neurostimulation Research, Medtronic Neuromodulation, Minneapolis, MN, USA

Received 17 September 2010
Accepted for publication 2 March 2011
Published 5 May 2011
Online at stacks.iop.org/JNE/8/036018

Abstract
A bi-directional neural interface (NI) system was designed and prototyped by incorporating a
novel neural recording and processing subsystem into a commercial neural stimulator
architecture. The NI system prototype leverages the system infrastructure from an existing
neurostimulator to ensure reliable operation in a chronic implantation environment. In
addition to providing predicate therapy capabilities, the device adds key elements to facilitate
chronic research, such as four channels of electrocortigram/local field potential amplification
and spectral analysis, a three-axis accelerometer, algorithm processing, event-based data
logging, and wireless telemetry for data uploads and algorithm/configuration updates. The
custom-integrated micropower sensor and interface circuits facilitate extended operation in a
power-limited device. The prototype underwent significant verification testing to ensure
reliability, and meets the requirements for a class CF instrument per IEC-60601 protocols. The
ability of the device system to process and aid in classifying brain states was preclinically
validated using an in vivo non-human primate model for brain control of a computer cursor
(i.e. brain–machine interface or BMI). The primate BMI model was chosen for its ability to
quantitatively measure signal decoding performance from brain activity that is similar in both
amplitude and spectral content to other biomarkers used to detect disease states (e.g.
Parkinson’s disease). A key goal of this research prototype is to help broaden the clinical scope
and acceptance of NI techniques, particularly real-time brain state detection. These techniques
have the potential to be generalized beyond motor prosthesis, and are being explored for unmet
needs in other neurological conditions such as movement disorders, stroke and epilepsy.

1. Introduction

A fundamental problem in the treatment of neurological
disease is determining when and how the disease is affecting
the patient. This issue is demonstrated by existing treatments
such as deep brain stimulation (DBS) for Parkinson’s disease,
essential tremor and dystonia, which operate without sensing
or interpreting a patient’s state (i.e. in ‘open-loop’ mode).
As illustrated in figure 1, in the absence of this embedded
capability the sensing and titration algorithms are essentially
performed through either direct observation and programming
by a clinician or by limited patient intervention. Visibility
into potentially useful neurological information derived from
the electrodes is limited to an acute setting in which leads
are externalized. This restricted access limits the observation

of biomarkers that might be useful for therapy optimization
[1–3].

The ability to chronically sense, process and telemeter
signals from the nervous system might help address these
unmet needs and create new clinical applications in the future.
This could lead to improved monitoring of disease progression
and therapy efficacy in applications as diverse as movement
disorders [4], epilepsy [5] and psychiatric disorders [6, 7].
As understanding of neural dynamics improves, embedded
sensors and chronic signal classification might also help
optimize and deliver therapy in real time (i.e. in a closed-
loop mode). This could result in a decrease in the burden
required from the clinician and patient to optimize the therapy,
improved longevity of implantable devices with adaptive
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Figure 1. Abstracted therapy control loops in a bi-directional NI.

titration, and improved patient outcomes with therapy tied to
quantitative physiological markers. Significant unmet needs
of current interest include:

• sensing the on and off states of Parkinson’s disease for
potential stimulation therapy titration and using biomarker
localization to guide optimal electrode selection [1–3],

• burden monitors that can detect or predict the onset of
seizures [8–10], and

• assistive interfaces that could allow for direct translation
of motor intentions to drive externalized controllers for
physically impaired patients [11–13] or provide internal
control signals for an implantable system.

The neural interface (NI) technology required for
deriving brain state information directly from neural signals
is embodied in brain–machine interfacing (BMI). BMI is
typically defined as a system that senses and decodes a
subject’s intentions, usually in the context of motor control.
Bi-directional BMI includes a means to provide feedback to
the nervous system, such as stimulation of sensory afferents to
provide bi-directional information flow in the nervous system.
It has been explored for many decades, but has yet to be
clinically adopted.

While the clinical opportunities for sensing and
processing with NI, like BMI, are relatively clear, significant
practical hurdles have kept this technology from translating
into a clinical setting. These include both the hurdles of
deploying BMI as a stand-alone technology for applications
like motor prosthesis, as well as adoption of closed-loop
methodologies with sensing capabilities for existing therapy
systems.

Foremost among the hurdles for stand-alone BMI
deployment are the substantial development and clinical trial
costs of developing such a device for human use. Medical

devices require design innovation and verification overhead,
substantial manufacturing infrastructure, regulatory oversight,
and a clinical deployment strategy. For instance, while
BMI prosthesis systems have shown promising results in
small clinical experiments [14], the practical issues associated
with chronic deployment such as implantation technique,
reliability of components, chronic signal integrity and power
consumption remain largely unaddressed [15]. In addition,
clinical translation to the field requires rigorous use validation,
not only to ensure that the device solves relevant clinical
problems and does not interfere with existing therapy delivery,
but also that it functions reliably in a diverse set of real-world
environments such as surgical electrocautery, passing through
metal detectors and electrostatic discharge.

The hurdle of adding neural sensing technologies to
existing therapy devices arises largely from the fact that the
biomarkers of disease states are not currently well established
and algorithms to appropriately titrate stimulation are therefore
still being defined. Further exacerbating this is the fact
that many neurological diseases are chronic and do not have
adequate animal models, so that chronic human data are
needed to obtain the data to perform research and improve
treatments. In addition, neural–sensing interfaces might not
be sufficient to achieve adequate specificity. The monitoring
of complementary information such as movement and posture
might be required. Some promising discoveries related to
DBS have been made in an acute setting [1–3, 14, 16, 17]. But
in order to fully understand the opportunity and limitations
of sensor-based systems, a chronic method of collecting data
must be provided to clinical researchers to help clarify the
signals correlated with disease dynamics. This information
can then serve to bridge the clinical translation of BMI
technologies into broader applications.

This paper provides an overview of a bi-directional,
NI prototype’s preclinical hardware design, verification and
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Figure 2. Spectral band fluctuations for (a) a typical LFP of a patient with Parkinson’s disease in on and off states (data were provided by A
Abosch and N F Ince, University of Minnesota), (b) motor intention tuning signals for BMI prosthesis control. The red color illustrates
power increases in the beta range for putative Parkinson state, and high gamma for neural prosthesis control, respectively.

validation. The design is meant to provide a bridge for
exploring bi-directional BMI technologies in the broader
scope of treating neurological disease, while at the same time
providing a practical pathway for clinical BMI deployment
by building on the capabilities of an existing therapy device.
Section 2 provides the device requirements and describes
the design of the system, with an emphasis on the sensing
and algorithmic infrastructure’s generalization to a broad
class of neurological applications. Section 2.2 presents a
summary of the design and bench verification used to test
the device for safety and functionality. Section 3 provides
details on the validation of the recording subsystem using
a real-time BMI derived from an epidural electrocortigram
(EcoG) in a non-human primate. The intent is to demonstrate
the device’s feasibility for clinically relevant applications,
both for prosthesis and broader neurological applications.
The validation methodology provides quantitative metrics for
comparing our device’s performance against typical laboratory
instrumentation that serves as the control. Section 4 provides
a discussion of the design and results within a broader
application space. Section 5 provides this paper’s conclusion.

2. Implantable bi-directional neural interface
system design

2.1. Motivation for and overview of design requirements

2.1.1. Stimulation requirements for the interface equivalency
to predicate designs. A core motivation for the design of
this system is to provide a strong predicate of clinically
relevant functionality and reliability in order to increase
clinical acceptance. To achieve this goal, we established a
requirement that the existing therapy stimulation capability
of the ActivaPC system, which includes using approved
electrodes in specific neural targets with the appropriate
stimulation parameters for providing effective therapy, was
fully replicated in this design. In addition to the maintenance of
stimulation circuitry and control, this requirement forced us to
carefully design the microvolt NI to be compatible with active
stimulation, including minimized cross-channel coupling. We
also required that the hardware and firmware architecture
use a multi-core partition that allows for the BMI and

accelerometer to run independently of the primary stimulation
controller. This partition provides a firewall to prevent
inadvertent malfunction of the predicate neurostimulator
due to the addition of sensor processing. Longevity and
reliability requirements for previous-generation designs were
also transferred to this design, which motivated the creation
of custom interface circuitry to meet the requirements.
Additional details on the effects of these design requirements
will be discussed in the next sections.

2.1.2. Sensing requirements of the interface: local field
potentials and ECoG. One of the critical design questions
in determining brain state from neural activity is to find
the appropriate scale to measure the neural activity. Neural
activity can be measured using a number of techniques, ranging
in resolution from single cell recording to the measurement of
gross cortical activity with the electroencephalogram (EEG).
Local field potentials (LFPs) and ECoG are intermediate
resolution techniques that represent the ensemble activity of
functional cellular networks in an in vivo neural population,
and represent the neural scale over which existing devices
provide therapeutic stimulation. From a scientific and
clinical perspective, LFPs and ECoG appear to encode the
key information on the functional neuronal networks that
are correlated with disease symptoms [1–3]. This signal
reflects the neural network problems of many diseases, and
yields different information than observing only single-cell
signals. A common theme for several neurological disorders
is that biomarkers are believed to be encoded in LFPs as
distinct fluctuations in the spectral content of the signal
[1–3, 18]. For example, figure 2(a) illustrates a spectrogram
of LFP data collected from a Parkinson’s patient’s DBS
leads recorded in an acute clinical setting. The spectral
band in the beta range appears to correlate with the putative
treatment state and is being explored for correlations to disease
state. Furthermore, beta signals recorded from electrodes have
demonstrated correlation with proper electrode placement [3].
Similar spectral signatures are seen for standard cortical-
thalamic processing in processes like motor planning [19, 20],
olfaction [21, 22] and visual processing [23, 24]. Abnormal
spectral fluctuations can also serve as a marker for pathological
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Figure 3. Trade-offs of different sensing modalities for the BMI system.

Table 1. System performance summary.

LFP/ECoG sensing Inertial sensor

Supply voltage 1.7–2.2 V Supply voltage 1.7–2.2 V
Supply current 2.5 μA/channel Supply current 1 μA
Function mode Time domain/bandpower Sensitivity 125 mV g−1

Number of channels 4 Dynamic range ±5 g
Minimal detectable signal <1 μVrms Noise (X, Y axis) 3.5 mgRMS (0.1–10 Hz)
Noise spectral density 150 nV Hz−1/2 Noise (Z axis) 5 mgRMS (0.1–10 Hz)
Bandpower center frequency DC to 500 Hz Nonlinearity <1%
Bandwidth of spectral estimate 1–20 Hz Shock survival 10 000 g
CMRR/PSRR >80 dB Telemetry
High pass corners 0.5–8 Hz Real-time uplink 11.7 kbps at 175 kHz (ISM)
Input voltage range ±10 V Memory size
Algorithm power 5 μW/channel (typical) SRAM 8 Mb

states as seen in epilepsy [25–27], essential tremor [18],
Parkinson’s disease [1, 2, 18] and potentially depression
[6]. Interestingly, the motor intention tuning signals for BMI
prosthesis control exhibit similar spectral band fluctuations as
shown in figure 2(b) [28]. The spectral characteristics of these
signals are quite diverse, ranging from low frequency theta
waves of a few Hz to high frequency oscillations of more than
100 Hz. A summary of our design considerations motivating
the use of LFP and ECoG is provided in figure 3.

Another design requirement driven by the neural signals
is the detection floor of the system. The biomarker signals
from neural diseases, as well as motor intention tuning, are in
the order of the microvolt range [1, 2]. For example, typical
beta band LFPs for Parkinson’s disease range from 1.1 to
7.2 μVRMS [4]. MicroECoG-based BMIs use high-gamma
control signals as low as 1 μVRMS, while the signal amplitude
for epilepsy exhibits increased amplitudes from 10 μVRMS

to hundreds of μVRMS. A minimum 1 μVRMS detection floor
based on noise and digitizer resolution is required to cover most
diseases and prosthesis control applications, while maintaining
reasonable circuit power consumption. Adjustable gain

settings are also required based on the wide dynamic range
encountered across disease paradigms.

A final design consideration is the power budget, which
should be less than 10% of existing therapy stimulation to
minimize longevity trade-offs and the physical size of the
device. The result of this technical requirement is to cap
the power usage on the order of 10 μW/sensing channel for
up to four channels. The requirements for the brain activity
sensing IC (BASIC) circuit are summarized in table 1.

2.1.3. Supplemental sensing requirements: inertial
measurements. While LFP activity is important for detecting
a neural state, additional information available about a
patient’s disease state improves the specificity of disease state
estimation. This information is particularly important when
the neurons in proximity to the lead do not provide sufficient
information about the disease state, or technical limitations
place constraints on the signal fidelity. For example, the
beta band biomarker illustrated in figure 2(a) appears to
be correlated with response to pharmacologic therapy (i.e.
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Figure 4. Functional block diagram for the bi-directional NI system.

levodopa), but poorly correlated with bradykinetic symptoms
[29]. In addition, the measurement of depression state is not
yet clearly defined from LFP targets, but is showing promising
correlations with the activities of daily living [30]. To capture
this additional information, a custom three-axis accelerometer
is also incorporated in the system to provide additional sensing
for posture, tremor and activity chronically from a device.

The design requirements of the accelerometer are driven
by two use cases. The first is the measurement of posture,
which focuses on constructing a stable sensor that minimizes
the variation in measurements of parameters like sensitivity
and offset over time. Maintaining an absolute accuracy
of <20 mg/axis over the lifetime of the sensor allows for
the estimation of posture within roughly 10◦. The other
use case is the measurement of activity, which sets the
requirements for the detection floor of the system to sense
activities of daily living and potential tremor. Considering
the coupling of the mechanical interface from the body to
the microelectromechanical (MEMS) sensor element, tremor
detection is limited to axial projections at the location of the
implantable pulse generator (IPG). This drives a low detection
level of 1 mg Hz−1/2 to maximize the capability of measuring
low-level signals like tremor.

In addition to measurement characteristics, technical
constraints also drive sensor requirements. A total power
budget of 20 μW is allowed for the three-axis accelerometer
and algorithm, to limit the impact on longevity of the battery
in the implantable device. From a reliability perspective, a
high shock rejection is desirable to withstand drops in the
field. This suggests using a MEMS structure with a high
resonance frequency. High resonance frequency mechanical
elements, however, result in decreased sensitivity. This leads
to a trade-off that must be addressed in the interface circuit
design.

2.1.4. Algorithm constraints. A key element of the bi-
directional NI is the design of an algorithm that integrates
all physiologically relevant sensor information to estimate the
patient’s disease state. This estimate is the signal that will
ultimately drive a researcher-clinician’s decision to perform
further diagnostic testing, modify therapy or provide other
treatment options [31]. The algorithm has several constraints
that need to be simultaneously addressed. For our application,
these constraints include keeping the power consumption
on the order of 10 μW/channel, maintaining programming
flexibility, and achieving acceptable performance for the
sensitivity and specificity of biomarkers. In addition, the
algorithm should be intuitive to a physician to program
and be consistent with existing clinical practice. Finally,
the algorithm should be amenable to patient personalization
to maximize the opportunities for learning and therapy
optimization.

2.2. Design implementation of the prototype BMI

2.2.1. Architectural overview. To address the challenges
associated with deploying NI technology, we designed
and built an implantable research prototype for chronic
use, with design inputs drawn from a broad range of
neurological diseases. This is accomplished by using the
device to record and identify biomarkers relevant to a
broad class of therapies. These new functionalities were
added to the existing technology and clinical infrastructure
of existing DBS systems. As illustrated in the functional
block diagram of figure 4, the NI technology core is the
existing stimulator and telemetry system found in released
neurostimulators (ActivaPC). This design model allows us
to take advantage of an implant base of approximately
75,000 devices. A conceptual bi-directional interface system
that leverages existing implant technologies is depicted

5
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in figure 5(a). The stimulator system provides the
core therapy system approved by regulatory bodies and
accepted by patients, clinicians and reimbursement agencies.
Furthermore, the architecture is designed to operate in three
modes.

• In diagnostic mode, signals are recorded, classified and
telemetered from the device, without changing therapy.
Clinician-researchers can use this mode to collect data and
test hypotheses about the relationships between measured
signals and disease state.
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• As biomarker and algorithm research matures, the device
has the built-in capability to make therapy adjustments in
closed-loop mode for real-time therapy.

• Finally, in the standby mode, the sensing capabilities
become inert so that the device reverts back to the
functionality and power usage of existing devices.

The prototype builds on this architecture with the addition
of three major hardware subsystems:

• a biopotential (ECoG/LFP) sensing module that amplifies
and processes field potentials from the electrodes,

• a three-axis accelerometer for measuring activity and
posture, and

• an algorithmic micro-processor for signal classification,
telemetry streaming and system control.

A supplemental recording memory is also included within
the algorithmic processor block for logging event-based
waveforms for later upload from the implant. The hardware
system is controlled with embedded firmware that can be
downloaded via telemetry, which facilitates research into
classification algorithms.

Referencing figure 6, the sensor hardware, algorithm
processor and firmware partition are inserted into the existing
infrastructure with well-defined signal pathways in the
physical and algorithmic domains. The interface to the neural
circuitry is made via a 90–10 Pt-Ir electrode array consisting
of four cylindrical electrodes per hemisphere, spaced roughly
1.5 mm apart down a cylindrical lead. The electrode

dimensions of these circuits are determined by the anatomy
of the neural circuit of interest, and can be adjusted based on
the application [32, 33]. A model for the electrical pathway
is shown in figure 5(b). Bioelectrical sensing is achieved
by measuring bipolar vectors across electrodes contained
within one hemisphere using the existing electrode systems
for stimulation therapy. Use of low impedance DBS or ECoG
electrodes minimizes leakage currents between connection
points that may degrade the signal. Typical impedance values
are included in figure 5(b). Stimulation therapy is delivered
between electrodes (bipolar) or from electrodes to device
case (unipolar). Both the stimulation and sensing electronics
are isolated from the tissue through coupling capacitors that
eliminate leakage pathways from the device through the
electrodes. Connections from the BASIC electronics to the
electrode connector are made through a set of switch matrices
and isolation-protection circuitry. In parallel, a custom three-
axis accelerometer provides continuous sensing of posture,
tremor and activity. The signals from both the BASIC and
the accelerometer can be time interleaved and passed within
the new partition to an ultra-low-power microprocessor. This
processor controls the biomarker extraction and event logging,
telemetry uplink, and in restricted modes the therapy delivery.
The system uses an 8 Mb SRAM for long-term recording of
detected events and storing raw waveforms.

Interfaces to external programming and analysis
instruments utilize the existing wireless inductive telemetry
link. The sensor configuration and the algorithm firmware can
be re-configured through telemetry for system flexibility and
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extensibility, and the data stored in SRAM and real-time data
can be uplinked for analysis.

Additional infrastructure is placed inside the IPG as well.
For example, the telemetry coil to pass information between
the implant and external instrument is also embedded within
the IPG’s titanium enclosure. Referencing both figures 5 and 6,
the majority of existing DBS infrastructure is used to prototype
a viable NI system. The major change is to the existing IPG
through the addition of a new sensing and algorithmic sub-
system.

2.2.2. Custom-integrated circuit for brain sensing (BASIC).
The BASIC integrated circuit is designed for efficient
processing of LFP/ECoG signals. This allows the sensing
BMI to meet the combined requirements of microvolt-level
signal extraction while drawing minimal power. This is
accomplished by taking advantage of the properties of the
neural coding in LFP/ECoG signals. The spectral power
fluctuations in LFPs, which are the essential biomarkers, have
a bandwidth that is one to two orders of magnitude slower than
the frequency of the oscillation itself. This suggests a sensing
architecture that directly extracts energy in key frequency
bands and tracks the relatively slow power fluctuations prior
to digitization and algorithmic analysis, similar to the spectral
processing paradigm of AM demodulation to extract the audio
signal from a high-frequency carrier signal prior to complex
processing [31, 34, 35]. Adopting this strategy reduces
overall system power consumption, especially in the digital
signal processing and algorithm blocks. As described in
[34], the BASIC implements a short-time Fourier transform
(STFT) estimation by using a modified chopper-amplification
scheme to extract power over a given frequency band. The
power band of interest is programmable and can be tuned
by programming I/O registers on the BASIC for different
applications. Table 1 outlines the settings. The output power
signal has a bandwidth of less than 5 Hz, which greatly reduces
the processing rate requirements of downstream digital signal
processing and algorithms to keep the power constrained (the
algorithm partitioning will be discussed in greater detail in

section 2.1.4). For generalized recording in the time domain,
the BASIC acts as a regular linear amplifier [34, 36]. The direct
extraction of spectral power does impose a noise floor penalty
of roughly 2.5 times for the same power in the preamplifier
due to harmonic sampling properties in the computation of
the Fourier transform [34]. For our architecture, however, the
total power savings by computing the STFT on-chip, and not
in the microprocessor, more than offsets the power penalty of
on-chip computation from a total system perspective. This
STFT processing approach can be generalized, and has been
reported for ECG signal processing and arrhythmia detection
[37].

The BASIC can be configured in a flexible manner
depending on the needs of the specific algorithm or application
protocol. Referring to the die photo in figure 7, the BASIC
has four independent signal processing channels, with a
budget of 5 μW/channel to achieve sub-microvolt resolution;
<150 nV Hz−1/2 in the time domain, <1 μVRMS resolution in
STFT processing mode. These channels can be independently
configured to optimize the algorithm or protocol, including
using a mixture of time-domain and spectral processing.
The trade-off of this configuration is power consumption
and memory, particularly for the telemetering and storage of
multiple time-domain signals. While the telemetering of RMS
or spectral power at a few Hz draws roughly 10 μW, real-time
uplinking of time-domain data can draw more than 100 times
this amount due to telemetry overhead, dominating the system
power. This is a common trade-off with implantable designs,
and the clinician-researcher must determine the optimal trade-
off between signal fidelity, maximal information, storage
time and power consumption for their application. Another
degree of freedom that the BASIC provides for the clinician-
researcher is the switch montage, which allows sampling of
different electrode dipoles in the neural circuit within each
array. This allows for the sampling of multiple dipoles to
help guide programming of devices or to focus on the most
informative pair for chronic sensing [1, 3]. For example, we
can simultaneously measure beta and gamma band signals
from any pair of electrodes for the life of the implant, while
sacrificing less than 10% of the battery life.
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2.2.3. Custom-integrated inertial sensor for activity, posture
and tremor monitoring. The accelerometer is designed to
make posture and activity measurements. As described in
[38] and illustrated in figure 8, the accelerometer consists
of a MEMS polysilicon sensor that transduces acceleration
to a differential capacitance measurement on the order of
1 fF g−1. The sensor can survive shocks in excess of
10 kG, which is possible in a 1 m drop of an IPG. A custom
micropower application-specific integrated circuit (ASIC) is
designed to convert the capacitance change to a voltage signal
that is digitized by the algorithm processor. The sensor
can measure ±5 g, and through extended life testing has
demonstrated stabilities of ±5 mg (one sigma) and a noise
floor of 1 mg Hz−1/2, while drawing <1 μW/axis. This
is suitable for both the chronic measurement of posture and
potentially for the activities of daily living. A detailed circuit
design overview can be found in [38], and the specifications
are summarized in table 1.

2.2.4. Algorithm architecture strategy and canonical design.
The algorithmic architectural partitioning was designed to
balance these constraints and meet the needs of several
potential applications. This partitioning leverages the
capability of the overall system architecture and the neural
coding of many biomarkers. As shown in figure 9, the
algorithm is split between the spectral estimation circuit on
the BASIC IC and digital signal processing firmware running
on the microcontroller. The fixed hardware functionality of

time domain and spectral processing are efficiently embodied
on the BASIC. The more flexible and complex algorithms,
such as median filtering and support vector machines, are
embodied in firmware where they can be re-configured in
downloadable updates through telemetry. The boundary for
digitization was chosen at a point where the dynamic range and
bandwidth requirements are largely minimized. This helps to
keep power to a minimum, while balancing flexibility in the
digital processing in a manner similar to the neuromorphic
processors introduced for other biomedical applications [39].

The algorithm architecture was applied to a canonical
design that is applicable to a variety of neurologically based
applications. As illustrated in figure 10, the general principle
is to track fluctuations in spectral power or RMS within
discrete bands against a long-term average and/or other
bands’ characteristics. This spectral tracking mode has
already found application for motor prosthesis [11], epilepsy
detection [5, 31] and Parkinson’s on/off state estimation
[28]. The algorithm can also be scaled to observe multiple
channels for additional specificity, including data from other
sensors like the accelerometer, and is amenable to machine
learning techniques within the power constraints [31]. A
detailed algorithm design for a seizure burden monitor
using this algorithm scheme with support vector machines
and the BASIC can be found in [15]. From this design
example we can estimate that a typical linear support vector
machine processing four channels of spectral data from the
BASIC draws 20 μW (5 μW/channel) of power for digital
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Figure 11. Physical prototype of the implantable bi-directional BMI system.

computation. Including additional sensor information such as
the accelerometer creates a linear increase in power usage as
the data rate increases. At this power consumption, updates
on a subject’s neurological state can be estimated at the rate of
1 Hz, which is suitable for many applications. Increasing the
rate of estimation for applications like BMI is achieved at the
proportional power increase.

3. Physical implementation and characterization of
the prototype implantable system

3.1. Physical prototype

The complete implantable system prototyped using state-of-
the-art medical device technology previously approved for
chronic human use is shown with a cutaway window in
figure 11. The BASIC and accelerometer interface were
fabricated using a 0.8 μm CMOS process. The BASIC
was stacked on the 8 Mb SRAM to provide a module
with small form-factor, and the accelerometer interface was
packaged with the MEMS die to allow for reflow in a standard
manufacturing process. The electrode-interconnect, BASIC,
accelerometer and algorithm processor are in close proximity

on the electronic hybrid and shielded to maintain signal
integrity by preventing coupling to the stimulation circuits.
The right-hand side of figure 11 is a close-up of the side
of the hybrid board containing the sensing and algorithm
electronics. The other side of the hybrid (not pictured) contains
the existing stimulator and telemetry electronics. This device
has complete bi-directional functionality and is suitable for
chronic preclinical research.

3.2. General system characterization and verification

The prototype system, including implantable circuits,
electrodes and telemetry, was tested both on the bench and in
a saline tank with recorded subject data. The core therapeutic
functionality of the existing stimulator was maintained by
the architecture, and demonstrated through design verification
testing using the production test suite from the predicate
device, the ActivaPC system. We also verified that the
hardware and firmware in the sensing partition did not impact
the stimulation circuitry in the core neurostimulator. In
particular, cross-channel isolation was verified to meet existing
therapy requirements. This ensured that the additional shunt
impedance added to the electrode array would not impact
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stimulation current flow and deviate therapy settings and
efficacy from established norms.

The new components were also verified to operate as
expected. The BASIC was verified to consume 2.5 μA/

channel from a 2 V supply, achieving a signal resolution
of 1 μVRMS for a 5 Hz spectral estimation for four
channels of operation. The accelerometer was confirmed
to draw 1.0 μA and resolve measurements of posture and
activity with a minimum resolution of approximately 10 mg
(20 Hz bandwidth) and a dynamic range of ±5 g. The linear
support vector machine (SVM) classification algorithm drew
an additional 10 μW to classify signals in real time with
1 s estimation updates that can adaptively drive the stimulation
circuitry and/or log detection events in the memory record.

In addition to demonstrating operational functionality,
the system was also verified to pass the design assurance
reliability testing expected from an implantable system. These
tests included the ability to withstand electrosurgery with a
maximum power up to 300 W applied to the LFP/ECoG
inputs, defibrillation test with maximum energy up to 360 J
across the electrodes to IPG case, and ESD CDM-model
to 500 V. The system has also been verified to maintain
a normal performance after x-ray exposure with a total
dose of approximately 500 rads. The prototype underwent
significant verification to ensure safety for leakage currents
and meets all requirements for a class CF instrument per IEC-
60601 protocols. Additional testing included CENELEC EMI
testing. In summary, the performance was verified to the
requirements in table 1.

4. Validation of sensing functionality

4.1. Validation of posture and activity-based signal
processing

The inertial sensing and algorithmic subsystem was tested for
nominal baseline resolution, noise floor and accuracy, per the
specifications of table 1. The accelerometer hardware and
algorithm architecture are derivatives of the RestoreSensor
posture responsive spinal cord stimulation system for the
treatment of chronic pain. The RestoreSensor system is CE-
marked and undergoing US clinical trials at the time of writing.
Given the maturity of the inertial measurement subsystem in
predicate device architectures, we focused on validation of the
novel brain-interface electronics.

4.2. Applying motor-intention servo control for validating
bioelectrical signal processing

The relationship between neural information and disease state
is still evolving, making technology validation a significant
challenge. To overcome this, we chose to validate a behavioral
response in a trained non-human primate performing a one-
dimensional motor control task. In contrast to disease
state models, this validation paradigm makes it possible to
quantify system performance since the neurological state is
relatively well known. In addition, this paradigm mimics
several key features of the disease state. Both signals have
two states with a signal level of approximately 1 μVRMS

for biomarker discrimination, require spectral analysis to
determine the neurological state, and can utilize canonical
detection algorithms (see section 2.1.4).

A series of tests were performed to highlight the
capabilities and trade-offs of the BMI system using a chronic
model with in vivo electrodes externalized for instrumentation
access. Particular emphasis was placed on evaluating the
trade-offs of different levels of IPG-based signal processing
and telemetry rates versus device performance and power
usage. Referring to the equivalent electrical model of the
device shown in figure 5(b), the in vivo protocol was also
designed to address the most challenging interfaces in the
model as they relate to sensing brain activity. These include
the chronic interface between the electrode and the brain, the
processing of signals on the IPG hardware and firmware, and
the ability to run a feedback control algorithm in real time.

4.2.1. Protocol overview. The experimental paradigm
design, surgical procedures, neurophysiological recordings
and daily animal care were approved by the Institutional
Animal Care and Use Committee and followed all guidelines
set by the Association for Assessment and Accreditation of
Laboratory Animal Care, and were consistent with the Guide
for the Care and Use of Laboratory Animals (NRC, 1996).

A micro-electrocorticography (μECoG) grid was
implanted in a non-human primate (macaca fascicularis) over
one hemisphere of primary motor cortex (Area M1). The
electrode impedances of the ECoG array were nominally
200 k� at the center of the measurement band. This represents
a 20 times increase in impedance over a typical DBS electrode
[36], providing a good margin for testing interactions and
coupling between the electrodes and the IPG sensing interface.
Referencing figure 12(a), the non-human primate was trained
to perform a one-dimensional, two-target selection task using
cortical activation, normally associated with motor commands,
to control a cursor on a computer screen. At the beginning
of each trial a cursor would appear at the center of the video
monitor. Next, one of two targets would change color to
indicate the desired target for the trial. Following a 500 ms
delay, the cursor would be controlled by the recorded μECoG
brain signals. The subject had 5 s to move the cursor to one
of the two targets. If neither target was selected within 5 s,
the trial ended and was repeated in a pseudo-random order. If
the subject selected the correct target, he was given a liquid
reward. Figure 12 illustrates the basic timing of the task.

The same task was performed by the subject using three
different recording setups:

• control mode,
• time-domain mode,
• power mode.

The intent was to compare our implantable instrumen-
tation against typical laboratory instrumentation, as well as
different signal processing modalities, to understand the trade-
off between power dissipation and performance. The control
setup (control mode) was a wired, externally powered labora-
tory recording system (Tucker-Davis Technologies, Alachua,
FL) that the non-human primate had been trained to use and
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Figure 12. One-dimensional motor neuroprosthetic control test. (a) Temporal illustration of target selection task. The cursor is centered, the
desired target appears, the subject moves the cursor using its brain signal, and rests during an inter-trial interval (with possible reward),
(b) signal path illustration.

had been using to perform brain-control tasks for approxi-
mately three months. Signal processing was performed using
the digital signal processors of the recording system base sta-
tion.

The IPG prototype device was tested in two conditions
against the control. In time-domain mode the signal was
sampled at 200 Hz and transmitted to a receiving computer
where the spectral estimation was performed in software
(LabView, National Instruments, Austin, TX) to generate a
control signal. In the second mode, a spectral power detection
mode (power mode) was used, where the spectral energy was
estimated directly on the BASIC electronics and transmitted
to the receiving computer. In all three cases, the resulting
amplitude estimate was normalized in the same way and used
to control cursor velocity as the non-human primate performed
the two-target selection task.

The control mode was performed first. As illustrated in
figure 12(b), the amplitude of the μECoG signals between
75 and 105 Hz was used for control. An envelope detection
method of band-pass filtering, rectifying and low-pass filtering
was used for the signal. The band-pass filtering was done using
a standard 16th order Butterworth filter to limit the signal to

the 75–105 Hz frequency band. The resulting signal was
then full-wave rectified by taking the absolute value of the
signal. Finally, the signal was low-pass filtered at 3 Hz to
smooth the spectral envelope and estimate the amplitude. The
amplitude estimate was then normalized by subtracting the
running mean for the previous 100 s and dividing by the root-
mean-square of this signal for the past 100 s. This signal was
then mapped to the velocity of the cursor. In the experiments
described here, electrodes for the two channels were spaced
15 mm apart to provide cursor control in a push–pull decoding
scheme. A large amplitude signal between 75 and 105 Hz
moves the cursor to the left while a small amplitude control
signal relative to the running average causes the cursor to
move to the right. The use of a push–pull scheme serves as
a first-order control against actuation from far-field sources
such as muscle EMG or EMI coupling. For this particular
subject, the cortical activity was modulated much more under
one electrode, while the other electrode remained relatively
constant. Thus, all recorded signal amplitudes reported here
are for the electrode showing the modulated activity. Time-
domain mode was then performed using the prototype device
with similar settings.
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Figure 13. (a) The percentage of correct trials for the two conditions of laboratory control (75–105 Hz) and time-domain sampling.
Percentages are the total correct targets out of the number of trials where one of the two targets was selected. (b) Mean movement time to
select one of the targets for the same two conditions. (c) Percentage correct for control (80–96 Hz) and on-board power estimation. (d)
Mean movement time for the two conditions.

For the power estimation mode, the amplitude of the signal
was limited to the frequency band of 80–96 Hz. As a control
comparison, the decoding for the wired laboratory recording
system for one block of trials was altered to use the same
sized band-pass filter between 80 and 96 Hz for amplitude
estimation. Using the 80–96 Hz band was a novel change
for the non-human primate over two days of testing with the
BASIC device (the animal had used the 75–105 Hz band for
months prior to this study).

4.2.2. Validation results. The closed-loop control
experiments were performed over a period of two days.
For the time domain and corresponding control setup, the
subject completed 64 correct trials each day with 32 correct
movements to the right and 32 correct movements to the left.
Thus, the analysis includes a total of 128 correct trials as well
as all incorrect trials across two days. The target for each
trial was pseudo-randomly chosen in blocks of eight such that
the non-human primate was required to complete four right
targets and four left targets before moving to the next block.
Performance was measured as a percentage of the number of
correct targets selected to the total number of targets presented.
Trials where neither the left or right target were selected within
5 s were not included in the percentage or mean movement
time (<8% of trials in all conditions). Figure 13(a) shows the
percentage correct for the control (75–105 Hz) and time mode.
The subject hit over 90% of the targets correctly in both cases
and there was no statistical difference (using 95% confidence
intervals) in performance between the control setup and the
prototype device when transmitting data in the time domain. In
addition, the mean movement time required to select a correct

target was calculated and is shown in figure 13(b). The mean
movement time to select a target was 1.31 s for the prototype
device, while it was 1.53 s for the control condition. Therefore,
when transmitting signals in the time domain, the prototype
device performance in terms of percentage correct and speed
was essentially equivalent to the control system designed for
recording neural signals in the laboratory setting.

The performance metrics (percentage correct and mean
movement time) were also compared between device-
estimated power and the control condition between 80 and
96 Hz. Figure 13(c) shows that the percentage correct dropped
to 86% for the control condition when only 80–96 Hz was
used for control. Likewise, control with power estimation
on the BASIC device resulted in an 83% correct target hit
rate. Once again, the mean movement times (figure 13(d))
were comparable with the prototype being slightly faster
than the control condition and similar to what was observed
during the time-domain setup. These results suggest that the
performance of the device’s power estimation was very similar
to the control system when the equivalent control frequency
band of 80–96 Hz was used.

4.2.3. Analysis of results using detection theory. A
more rigorous validation method involves the use of binary
classification information theory. To better evaluate the
discriminability of the recorded signals during the different
conditions, the signals were examined in a signal detection
framework. Figure 14 shows the histograms of the signal
amplitude within the control frequency band for each trial
for the different recording setups. The control condition
(figure 14) shows the signal amplitudes between 75 and
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Figure 14. Histograms of the signal amplitudes for trials where the desired target was left (red) and right (blue). The four conditions are
(a) control (75–105 Hz), (b) time-domain mode, (c) control (80–96 Hz) and (d) power mode.

105 Hz in the control channel for both left and right targets.
For this channel, the non-human primate needed to increase
the amplitude to move the cursor to the left or decrease it
to move to the right to successfully complete the trial. All
trials (correct, incorrect and timed out) are included in the
plot. There is a clear separation between the trials depending
on which target was presented, as one expects for a subject
achieving a high percentage correct. During trials where the
right target appeared, the mean amplitude of the signal on the
recording electrode was 1.83 μVRMS. For left trials, the mean
amplitude increased to 3.13 μVRMS. Thus, in a simple two
target task, successful state classification depends on a given
device’s ability to detect this difference of 1.30 μVRMS. The
separation between the two conditions can further be quantified
by the sensitivity index (d′):

d ′ = μL − μR√
σ 2

L+σ 2
R

2

.

Here, μ represents the mean RMS signals and σ is the
standard deviation of the signal. The d′ statistic provides a
mean difference between the two target conditions in units
of standard deviations. The d′ for the control condition
was 2.88. Figure 14(b) shows the histogram for when the
time-domain signal from the prototype device was used to
estimate the amplitude of the signal between 75 and 105 Hz.
Once again, there is a clear separation between the two target
conditions. The corresponding d′ was 2.73 standard deviations

of separation between the two means. This modest decrease
in separation is likely caused by the high electrode impedance,
which attenuates the signal prior to entering the BASIC.

In figures 14(c) and (d), the amplitude of the signal
between 80 and 96 Hz is shown. There is clearly less
separation and more overlap between the two target conditions
when only the 80–96 Hz control band was used. During
the control condition (figure 14(c)), the mean amplitude
between 80 and 96 Hz was 2.58 and 1.59 μVRMS for
the left and right targets, respectively. This difference of
0.99 μVRMS resulted in a d′ of 2 standard deviations. Finally,
figure 14(d) shows the amplitude difference between targets
when the on-board BASIC electronics were used for power
estimation. The left versus right separation had a d′ of 1.41
standard deviations, suggesting that the noise contribution
of the spectral processing IC is at par with the background
variance of the brain state.

Signal detection for the three conditions can be visualized
using the receiver operating characteristic (ROC) curve, a
standard method of evaluating binary classifiers. The ROC
curve plots the percent of left targets correctly classified
versus the percentage of right targets that would be incorrectly
classified for various threshold levels. A plot along the
diagonal indicates only chance performance, while a curve
along the far upper-left indicates perfect discriminability.
Figure 15(a) shows the ROC curves for the control condition
(75–105 Hz) compared to the time-domain condition and
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(a) (b)

Figure 15. Receiver operating characteristic (ROC) curve for the different conditions. For a series of thresholds, the curve traces out the
percentage of left target trials above the threshold versus the number of right target trials above the same threshold. (a) Control and time
domain. (b) Control and power estimation.

Table 2. Performance summary of system validation with one-dimensional motor neuroprosthetic control (95% confidence intervals in
parenthesis).

Number Number Percentage Mean movement Area under
correct incorrect (%) time (s) d′ ROC curve

Control (75–105 Hz) 128 11 92.1 (±4.5) 1.53 (0.96–2.45) 2.88 0.98
Time 128 13 90.8 (±4.8) 1.31 (0.83–2.09) 2.73 0.96
Control (80–96 Hz) 64 10 86.5 (±7.8) 1.53 (0.81–2.90) 2.00 0.87
Power 128 26 83.1 (±5.9) 1.29 (0.83–2.00) 1.41 0.84

illustrates their similar level of performance. This can be
quantified by the area under the curve (AUC) and represents the
probability that the amplitude of a randomly selected left trial
will be greater than a randomly selected right trial. The control
and time-domain conditions had AUC values of 0.98 and
0.96, respectively. Once again, the control and time-domain
conditions using the full 75–105 Hz band were significantly
better than the power estimation and control conditions using
80–96 Hz (figure 15(b)), which were in turn significantly better
than chance. An AUC of 0.87 was calculated for the control
condition between 80 and 96 Hz, while 0.84 was the AUC in
the power estimate condition.

From this data, we conclude that the nominal ROC curves
in both modes of operation are essentially equivalent between
off-the-shelf research equipment and our custom-integrated
circuitry, with the time-domain data streaming providing
the highest fidelity signal as expected. The performance
degradation observed while running in the prototype’s power
mode was predominately caused by the shift in control
bandwidth; the prototype essentially matched the control
performance when the bandwidths of the two systems were
adjusted to the same value. The d ′ metric does demonstrate
that for this bandwidth of spectral power, approximately
1 μVRMS resolution is our approximate floor for accurate
signal processing and detection. The performance of the
system for all use cases is summarized in table 2. All
range estimates represent the 95% confidence intervals. The
power-sensitivity/specificity trade-offs will be summarized in
section 4.

4.3. Characterization of sense–stimulation interactions and
constraints

Ultimately, the goal of the bi-directional NI is to allow
information to pass to and from the device with minimal
interactions or constraints. A significant challenge in
combining sensing and stimulation in a bi-directional system
is dealing with signal cross-contamination as illustrated in
figure 4. The signals we want to sense are on the order of
microvolts, while the signals we are injecting (the stimulation)
are on the order of volts. The implementation of a practical
bi-directional system is important for many therapies where
we do not want to impose overly restrictive constraints such as
simply disallowing coincident sensing and stimulation, which
would limit both detection diagnostics and potential closed-
loop strategies.

To overcome this challenge, several methods are
employed in the prototype system. Reducing the differential
signal relies upon careful placement of the electrodes and
sense–stimulation configuration. The strategy is to reduce
the differential signal seen by the preamplifier and to filter it
out by separating the stimulation frequency from the sensing
frequency of interest. Sensing electrode dipoles can be
configured to be orthogonal with respect to the stimulation
electrode dipole [31]. The residual stimulation signal seen
across the sensing dipole, therefore, becomes a common-mode
signal for the sensing channel. With orthogonal dipoles, the net
stimulation artifact seen by the sensing dipole and amplifier
is zero. The amplifier must only reject the common-mode
stimulation artifact, and our chances for extracting a signal
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Figure 16. Sensing capability in the presence of 145 Hz stimulation.

are greatly increased given the high-common-mode rejection
ratio of the preamplifier. The other key method employed in
all electrode configurations is to take advantage of the spectral
filtering properties of the BASIC. In particular, the architecture
of the BASIC is capable of rejecting signals that are out of its
tuned band. Saturation is avoided by filtering the signal before
significant gain is applied as part of the STFT processing, and
the BASIC includes an additional 100 Hz input low-pass filter
versus the design in [34]. This allows for the possibility of
delivering stimulation therapy in one spectral band and sensing
in another at the same time, off the same lead but not the same
electrode.

The ability of the system to perform sensing during the
delivery of stimulation was tested in a saline tank. Figure 16
shows the results from a test where 145 Hz stimulation
was delivered between electrode 1 and the IPG. A 24 Hz
signal, representing typical β band biomarkers like those
found in epilepsy and Parkinson’s disease, with 10 μVPP

(3 μVRMS) amplitude, was injected into the tank and sensed
across electrodes 0 and 2 using the BASIC. It was compared to
results obtained using the same stimulation but no test signal.
The separation of the two curves indicates a promising ability
to sense during delivery of stimulation, especially since most
clinical therapy is delivered using 5 V of amplitude or less. The
limitations of the current test include the relative symmetry of
the saline tank, which provides almost optimal common-mode
rejection ratio (CMRR) performance. In an actual in vivo
setting, discrepancies in tissue impedance will likely make
the system more susceptible to cross-contamination. This
motivates the next generation of testing in chronic implantable
models of disease states, which is currently ongoing.

5. Discussion

The prototype architecture validated in this protocol addresses
several of the major challenges to the development of an
implantable bi-directional BMI device. In our view, the
adoption of BMI methods is limited by a combination of

practical, technical issues and the alignment of available
technology to address significant unmet clinical needs. This
includes striking an acceptable balance between invasiveness
and risks with patient benefits and outcomes [11].

The architecture was designed to address both of these
issues. To address the technical challenges we designed
and manufactured custom-integrated sensing and processing
capability in two paradigms relevant for a broad range of
applications. Based on early acute data, both the custom-
integrated inertial sensing and spectral processing circuits
have the required resolution to detect clinically relevant
physiological activity at power levels suitable for chronic
implantable applications. While the inertial hardware and
algorithm has already undergone CE-marking, the brain state
detection circuitry is still novel. To provide greater confidence
in its capabilities, the signal chain was validated by the
acute motor prosthesis. Using this validation paradigm, we
demonstrated similar ROC curve performance compared to
off-the-shelf research hardware in a validation study reflecting
the lower signal levels reported in therapy applications [4].
The differences in the d ′ metric does indicate that we are
approaching the ultimate resolution capability of the device
at approximately 1 μVRMS, the lower limit of expected
signals from DBS applications, but we can still maintain
meaningful algorithm performance. In addition, the system
input impedance is designed to be approximately 1 M�

at the center of the measurement band, which is sufficient
for DBS-like electrodes with a normal impedance of
10 k�. However, with the 200 k� micro-electrocorticography
(μECoG) grid impedance from this protocol, a 20% signal
attenuation penalty is expected and external interference is
exacerbated. Therefore, this preclinical validation activity
truly represented a worst case situation.

The choice of sensing methodology also represents a
pragmatic approach to BMI implementation. The restriction
of technology to materials and components proven within
existing implant devices greatly increases the viability of
translation. The use of field potentials, which is predominantly
motivated by applications in neurological disease treated by
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existing stimulation therapies, also provides some degree of
confidence in more stable measurements. Recent work has
established the viability of recording from basal ganglia targets
beyond the operating room, and suggests that impedance
and field potential stabilize in the weeks following surgery
[3, 18]. Similarly, the preclinical validation work performed
as part of this work used epidural electrodes in place for several
months, which have demonstrated stable recordings. Others
have shown signal stability in subdural implants for over a year
[40]. With the technical issues appearing to be resolved, we
can now focus on translational challenges.

In parallel with technical issues, significant challenges
remain prior to the deployment of BMI methodologies to
a clinical setting. To attempt to address these issues we
designed the system to address existing unmet needs in
established therapies that already have clinical acceptance,
reimbursement structures, and a patient care continuum,
such as Parkinson’s disease, epilepsy (CE-marked) and
future indications under investigation such as depression or
stroke. In addition to motivating our technical choice of
using the spectral processing of field potentials as sensing
methodology, this broader application requires flexibility in
the system partitioning for adjusting the algorithms and sensor
characteristics as needed. Through telemetry, the device can
be tailored for specific applications in vivo. In principle, this
allows the same core device to be used to guide programming
in Parkinson’s disease based on detected signals from the
electrodes, to keep a seizure burden log and/or dynamically
respond to seizures in epilepsy, or to operate as a bi-directional
interface for a motor prosthesis. This flexibility is provided
by firmware updates, which also allow the same device to
evolve from a data collection tool to a diagnostic/monitoring
instrument to a closed-loop system for various applications.
These updates will ultimately be gated by regulatory approval
as the performance at each stage is verified and validated,
but the infrastructure for discovery is now in place. The
system was also designed and verified for performance within
the usual care continuum of implantable devices. This
includes the ability to withstand the body’s harsh environment,
ESD, electrosurgery, defibrillation and other medical device
assurance testing. The device also uses implantation methods
demonstrated with over 75,000 procedures to date, increasing
the expected reliability of the system. We believe that the
unique combination of performance, flexibility and reliability
make this architecture a practical milestone on the roadmap
toward the translation of BMI concepts into a chronic clinical
setting.

Building on the architecture of an existing device and
clinical infrastructure does put constraints on the design
and perhaps its achievable system performance. This is
particularly the case for the bioelectrical sensing capability
of the device. The limited channels and the restriction
to local field potential/ECoG sensing do limit the ultimate
information throughput compared to spike-based systems with
large numbers of channels [15, 41]. Along similar lines, recent
work in seizure detection suggests that there will be potential
motivation to scale field potential measurements down further,
as microseizures at higher spatiotemporal frequencies might

be a better seizure predictor than large scale ECoG [42]. We
feel that this design choice balances the limitations of current
BMI technology and the required degrees of freedom for the
detection of neurological states in our initial applications. For
the first generation of systems, our fidelity of field potentials at
the square millimeter level does address several unmet needs
for programming guidance and an accurate two-state monitor
with a bias for reliability. Ultimately the clinical solution
might be biased to simple but robust methods such as those
found in cardiac closed-loop systems. Supporting this view,
recent research has suggested an approximate equivalency
of LFPs and single-unit activity in prosthesis applications
[11, 43, 44].

The results of the one-dimensional BMI protocol
highlight a fundamental trade-off in the design partition
of a BMI system. The key issue is how to balance
the embedded processing and its power efficiency against
potential performance limitations; essentially, does one run the
algorithm inside the device or external to it? The advantage of
performing computations external to the device is flexibility
and maintenance of maximal information, but this comes at
the expense of greater power dissipation in high-rate signal
processing and telemetry. Alternatively, one can partition the
system to compute algorithms internal to the device with the
advantage of better power efficiency, but at the potential cost
of limited flexibility that might impact detection accuracy.

We partitioned our system to optimize for spectral
processing applications of LFP and ECoG applications
to minimize power utilization. This design approach
was validated in the validation study. The ROC curves
are essentially identical between the device and off-the-
shelf instrumentation for both time-domain and low-power
spectral processing. The prototype device did show modest
performance degradation in the spectral power estimation
mode, but the majority of performance degradation is
suggested to result from the shift in the bandwidth as opposed
to fundamental device capability. The constraints of the
signal processing chain impact our performance compared to
raw data streaming, as we could not precisely replicate the
control paradigm in silico. This degradation is balanced by a
more than 20 times improvement in power dissipation, largely
enabled by a reduction in telemetry processing, data sampling,
and data processing overhead, which translates directly into
device longevity. While the sensing device running in
time-domain mode with streaming telemetry real time might
run for approximately two years in the prototype, it would
last for several decades running in the spectral processing
domain. Although the current limitations are modest in
impact, both within our laboratory and in several other research
groups, a new generation of custom-integrated circuits is being
developed that reduce the impact of embedded processing with
more powerful algorithmic capability and a larger number of
amplifier channels. This should help to mitigate the current
trade-offs of the presented device in the future [45, 46].

6. Conclusion

This paper presented a prototype bi-directional NI system.
The new device added sensing capabilities and algorithm
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processing to an approved neurostimulator architecture.
The device was verified on the bench to provide chronic
measurement capabilities while still being robust to
electrostatic discharge, electrosurgery, defibrillation and other
medical device requirements per standard design assurance
testing. The demonstrated ability to sense microvolt signals
in the presence of therapeutic stimulation levels in a saline
tank was demonstrated as a key feature to potentially enable
continuous closed-loop control in the future. Although the
concurrent bi-directionality of the device was not tested in the
non-human primate model, the newly implemented recording
and processing elements of the device were preclinically
validated using a BMI paradigm, providing quantitative
validation of the architecture’s ability to detect brain signals
with acceptable sensitivity while operating at microwatt levels.
Future experiments will validate concurrent bi-directionality
in closed-loop BMI experiments for prosthesis and broader
disease state applications, and in vivo work is currently
evaluating the impact of stimulation on the ultimate sensing
floor. The ECoG-based prosthesis test was used as an
effective technology validation method for a broad range
of neuromodulation therapy applications, including epilepsy
and Parkinson’s detection, given the similar signal encoding
properties and signal levels. By leveraging existing technology
and clinical practice, and expanding the scope of applications
to include accepted implant devices today, the device prototype
represents a key initial milestone toward practical BMI and its
translation to chronic clinical research.
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