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Abstract— Wearable robots have defined a new horizon for
elderly and disabled people, to regain control of their limbs,
as well as for healthy people, to increase their abilities of
hard missions execution. The present paper deals with the
control of a lower limb orthosis applied at the knee joint
level for rehabilitation purposes. A bounded control torque is
developed in order to guarantee the asymptotic stability of the
knee orthosis. The control law respects the physical constraints
of the system. Moreover, it is robust with respect to external
disturbances. The effectiveness of the control torque is tested
in real-time using the EICOSI orthosis of the LISSI Lab.

I. INTRODUCTION

Wearable robots are anthropomorphic, mechatronic sys-
tems that fit the geometry of the human body and work
in harmony with it. These robots collect signals from the
embodying limbs, by means of on-board sensors, and transfer
adaptable power to the limbs allowing to move them by
means of actuators. Defined trajectories of the limbs can then
be executed by applying adequate controls to the embodied
actuator. Note that wearable robots are intended for two
main applications: the increase of the wearer’s performance
in terms of energy economics, joint strength and endurance
specially for load transfer purposes [1], [2] and the assistance
of people suffering from physical weakness in order to help
them regaining control of their limbs (rehabilitation and
assistance of paralyzed persons and elderly).

Different works have dealt with the control of exoskeletons
having multiple degrees of freedom. The control in [2] is
based on a scaled compensation of the estimated exoskeleton
dynamics. Proportional derivative (PD) feedback is widely
used to control the exoskeletons. In [3], the control torque
is a proportional one at the hip level, proportional to the
square of the angular velocity at the knee joint level, and
the whole cycle of walking is ensured using a state machine
aiming to increase the load carrying. Exoskeletons are also
used for gait rehabilitation. For example, a PD coupled to a
constant-value control, balancing the gravity when the foot
is on the ground, is applied to control the leg’s trajectory of
a paraplegic patient and/or stabilize its body in [4]. A PD
with gravity, friction and coriolis forces compensation and a
force field controller are developed in [5] for stroke patients.
A fictitious gain is introduced in [6] to balance the change
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in body’s dynamics during walking, load, etc. and tested
with a proportional-integrator-derivative controller (PID). A
fuzzy control is developed in [7] and a neural networks based
control in [8] aiming to assist human walking. However, none
of these works has proved the exoskeleton’s stability.
Exoskeletons or orthoses having only one degree of free-
dom, at the knee or ankle levels, have also been developed
especially for gait rehabilitation. In the following, only the
works concerning the control of the knee are presented.
Some works have proposed to assist people through affording
a part of the effort necessary to achieve a movement,
allowing to relax their muscles. The desired movement is
computed by measuring EMG signals in [9] to achieve sit-
to-stand movements and climbing stairs, and by measuring
the ground reaction force in [10] to enhance the endurance.
The controller in this case acts as an amplifier. Note that
no desired trajectories are defined and therefore no position
controller is used. Another approach consists on modifying
the impedance parameters of the human limbs by setting
those of the embodied exoskeleton. This strategy allows to
increase the leg’s natural frequency and facilitates its flexion
and extension movements consequently. It is achieved in [11]
by modifying the damping parameter with respect to the
motion intention, used to compute the desired orientation
which is tracked by means of PID controller. The exoskele-
ton and user’s inertia compensation is considered in [12]
using a positive feedback of low pass-filtered knee’s angular
acceleration to determine a desired shank orientation that is
tracked by means of a Linear Quadratic (LQ) controller. In
the last two works, the shank embodying the exoskeleton
is modeled as a mass, spring, damper, sparing all system’s
non-linearities. Note that none of the aforecited works has
considered the physical constraints of the system.

The paper deals with the control of the EICOSI (Exoskele-
ton Intelligently COmmunicating and Sensitive to Intention)
having one degree of freedom at the knee level. It is intended
to be used for rehabilitation purposes by people having knee
joint impairments. The EICOSI orthosis is not cumbersome
and easy to don and doff which makes it very practical to use
by knee-joint disabled persons. The proposed control torque
ensures the asymptotic stability of the orthosis/wearer for
flexion-extension movements. Note that the stance phase of
locomotion has not been taken into account. The control is
bounded in order to take into account the provided power
limitation as well as the saturation of the actuator and prevent
consequently problems related to nonlinearities. As a first
approach, the wearer is considered completely passive, only
rehabilitation movements are studied and, the totality of the
gravity torque is compensated.
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The paper is structured as follows. The orthosis model as
well as its parameters identification are presented in section
II. The bounded control torque is proposed in section III
and the system’s stability is proved. Real-time experimen-
tations are addressed in section IV. Finally, conclusions are
presented in section V and future works are introduced.

II. SHANK-ORTHOSIS MODEL AND PARAMETERS
IDENTIFICATION

The system considered in the present work includes the
orthosis as well as the wearer leg. Movements of flexions
and extensions of the leg will be studied in a seated position
of the wearer for purposes of rehabilitation.

A. Shank-Orthosis Modeling

As mentioned previously, the design of the orthosis should
match the body’s geometry. In the project EICOSI, the
orthosis is one structure having two segments related along
a rotational axis. The first segment embodies the thigh while
the second embodies the shank and are fixed to the wearer
by means of braces (Fig. 1 and 3). The orthosis should be
fixed to the human leg such that they have the same rotational
degree of freedom at the knee level. As a sequel, the orthosis
and the leg are assumed coupled.
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Fig. 1. Human leg embodying the orthosis: Fixed and Shank frames.

Denote by F(~xf , ~yf , ~zf ) a fixed frame in the space and
by S(~xs, ~ys, ~zs) a frame attached to the shank at the knee
defined such that the direction of ~yf and ~ys coincide (Fig. 1).
The knee, and therefore the orthosis, are in rotation about
the pitch axis ~ys of an angle θ. Since the system has only
one degree of freedom, its angular velocity is equal to the
derivative of the rotational position. Let θ and θ̇ denote
the angular position and velocity of the shank relative to
the thigh, respectively. In the following, the model of the
shank-orthosis movement is given. The shank and orthosis
models will be derived similarly. The kinetic and gravita-
tional energies of the system are given by: Ek = 1

2Jθ̇
2 and

Eg = mgl(1 − sin θ), with J the inertia of the system in
S, m its mass, l the distance from the knee to the system’s
center of gravity and g is the gravity acceleration. Deriving
the system’s Lagrangian L = Ek −Eg , the dynamics of the
shank can be written as:

Jθ̈ +mgl cos θ = τext,

with τext is the external torque acting on the system. It
includes the friction torque τf and the control torque τ . The
solid and viscous frictions are the main components of the
friction torque. It is modeled as [13]:

τf = −Asignθ̇ −Bθ̇,

where A and B are the coefficients of solid and viscous
friction torques respectively, sign(·) is the classical sign
function. The main advantage of this model is the linearity
in parameters A and B which facilitates their identification.

1) Shank’s model: The wearer is considered completely
passive. This has been monitored, during the experiments,
by means of EMG electrodes used to detect and reject any
muscular activity generated by the shank muscles. Therefore,
the wearer is not developing any control torque. The model
of the shank can then be written as:

Jsθ̈ +msgls cos θ = −Assignθ̇ −Bsθ̇, (1)

with Js, ms, ls, As, Bs are respectively the inertia, mass,
distance to the center of gravity, solid and viscous friction
coefficients of the shank.

2) Orthosis’ model: The orthosis’ actuator delivers the
whole power to drive the system. Therefore, the model of
the orthosis can be written as:

Joθ̈ +moglo cos θ = −Aosignθ̇ −Boθ̇ + τ, (2)

with Jo, mo, lo, Ao, Bo are respectively the inertia, mass,
distance to the center of gravity, solid and viscous friction
coefficients of the orthosis.

Summing (1) and (2), the system’s (orthosis and shank)
dynamics can therefore be written as:

Jθ̈ = −τg cos θ −Asignθ̇ −Bθ̇ + τ, (3)

with J = Js +Jo the system’s inertia, τg = (msls +molo)g
the system’s gravity torque in full extension position of the
thigh, A = As + Ao the system’s solid friction coefficient,
B = Bs + Bo the system’s viscous coefficient and τ the
control torque applied by the actuator to drive the orthosis
and consequently the shank to a desired orientation.

B. Parameters identification

The shank’s and orthosis’ parameters are identified sepa-
rately using the weighted least square method.

1) Shank’s parameters: The mass of the shank ms and
the position of its center of gravity ls are determined based
on [14] given the height and weight of the subject, which
is a method commonly used in biomechanics. The other
parameters are identified using the pendulum test. It consists
on dropping the shank from a full extension position, letting
it swing till the rest position (see (c) and (a) of Fig. 3).
The angle θ is measured using the goniometer SG150 of
Biometrics Ltd., attached to the leg at the knee level, such
that its local frame coincides with the shank frame S.
The angular velocity and acceleration, θ̇ and θ̈, are derived
numerically. (1) is used to identify Js, As and Bs, knowing
the gravitational torque msgls, θ, θ̇ and θ̈.
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2) Orthosis’ parameters: To identify the orthosis’ param-
eters, an excitation sequence describing the trajectory of the
angle θ is predefined as well as the angular velocity and
acceleration, θ̇ and θ̈ [15]. The desired trajectory of the
shank, considered during the identification phase, is given
by: θ(t) =

∑n
i=1

al

ωf l
sin(ωf lt)− bl

ωf l
cos(ωf lt)+θ0, with ωf

is the fundamental radian frequency of the Fourier series, al

ωf l

and bl

ωf l
are the amplitudes of the sine and cosine functions,

t is the time and θ0 is the initial value of the trajectory.
The torque developed by the actuator when subject to the
excitation trajectory is computed using measurements of a
current sensor. Jo, moglo, Ao and Bo can be identified using
(2) and knowing τ , θ, θ̇ and θ̈.

(1) and (2) can be written in the general form:

Γi = Wi(θ, θ̇, θ̈)X + ρi,

where X is the vector of positive parameters to iden-
tify, X ∈ Rm with m the vector’s dimension, Γi is
the measured/computed torque during identification process,
Wi(θ, θ̇, θ̈) is the observation vector and ρi is the residue
representing measurement noise and modeling error, i ∈
{1, . . . , n} and n is the number of samples considered
within the trajectory and the torques values. Note that Γ =
[Γ1 . . .Γn]T ∈ Rn, W = [W1 . . .Wn]T ∈ Rn×m and
ρ = [ρ1 . . . ρn]T ∈ Rn. The parameters vector X̂ ∈ Rm
is then estimated using the least square optimization:

X̂ = Arg min ‖ρ‖2 = W+Γ,

with W+ ∈ Rm×n the pseudo-inverse of matrix W given
by W+ = (WTW )−1WT . Note that ρ is considered as a
vector of white noise having a null mean vector.
The optimization is performed using the following condi-
tions: −π2 rad ≤ θ ≤ 0 rad, −2.1 rad/s ≤ θ̇ ≤ 2.1 rad/s
and −π rad/s2 ≤ θ̈ ≤ π rad/s2.

III. EXOSKELETON CONTROL

A robust control should be applied to the orthosis in order
to guarantee a fair trajectory tracking of the actuated ortho-
sis. This control law takes into consideration two criteria
related principally to the safety of the mechanism since it
is in direct relation with the human body. Quick variations
of the friction, induced by unpredictable movements and
causing wear loading of the actuator, engender unacceptable
behavior of the orthosis and, therefore is not balanced in the
control law. On the other hand, a high value of the control
torque necessitates high power to ensure it, which cannot
be achieved in wearable robots because it affects the safety
of the wearer. Besides, the saturation of the actuators can
lead to undesirable closed loop behaviors resulting in robot’s
instability. Consequently, the actuator amplitude limitation is
taken into consideration in the design of the control torque
in order to avoid irreversible damages.
Bounded control has been treated in the literature for systems
falling in the framework of integrators chains [16], [17], [18],
[19], [20], rigid bodies [21] and manipulators [22], [23]. Note
that the last case of applications is of interest in the present

work because the orthosis falls within this category. The
aforecited control laws of manipulators are mainly based on
saturated PD/PID or composed of the sum of the saturations
applied individually to proportional and derivative terms. In
the present work, a control torque based on nested saturations
is proposed allowing not only to maintain bounded inputs,
but also to have a better management of the velocity and
position convergence. The control law is simple and therefore
adaptable for real-time applications like orthosis. Moreover,
it ensures the asymptotic stability of the system.

Let’s first define a saturation function satN (x), bounded
between ±N , as:

satN (x) = min(N,max(−N, x)), ∀x ∈ R (4)

The control torque and stability analysis are presented:
Proposition 1: Consider the knee-joint human-orthosis

model described by (3) with θ and θ̇ the knee joint angle
and angular velocity, respectively. Denote θd the desired
orientation and θ̃ = θ− θd the orientation error. The control
torque bounded between ±τ̄ and defined by:

τ = −satN1 [k1θ̇ + satN2(k2θ̃)] + τg cos θ, (5)

asymptotically stabilizes (3) at (θ, θ̇) = (θd, 0) with a domain
of attraction equal to [−θmax, 0]×R. k1 and k2 are positive
scalar parameters and satNi

(·), i ∈ {1, 2}, are saturation
functions defined in (4) with Ni the saturation bounds chosen
such that N1 > 2N2 > 2A. The saturation bound of the
control torque is τ̄ = N1 + τg .

Proof: Consider firstly that k2|θ̃| > N2 and k1|θ̇| >
N1 −N2 > N2 .
Consider the Lyapunov function V positive definite and
radially unbounded:

V =
1
2
Jθ̇2.

Based on the system’s model (3) and the control torque (5),
the derivative of the Lyapunov function V is given by:

V̇ = −Bθ̇2 −Aθ̇signθ̇ − θ̇satN1 [k1θ̇ + satN2(k2θ̃)].

Since |k1θ̇| > N2, then |k1θ̇ + satN2(k2θ̃)| > 0. Therefore,
θ̇ and k1θ̇+ satN2(k2θ̃) are of the same sign. The Lyapunov
function becomes:

V̇ = −Bθ̇2 −Aθ̇signθ̇ − |θ̇|N1.

The Lyapunov function V is decreasing and |θ̇| consequently.
θ̇ enters the set Ω1 : {θ̇, θ̃ : k1|θ̇| < N1 −N2, k2|θ̃| > N2}.
In Ω1, k1|θ̇|+N2 < N1. satN1(·) operates then in the linear
region and the control torque (5) becomes:

τ = −k1θ̇ − satN2(k2θ̃) + τg cos θ. (6)

In Ω1, define the Lyapunov function W as:

W =
1
2
J(θ̇ + λθ̃)2 + θ̃satN2(k2θ̃) +

1
2
λ(B + k1 − Jλ)θ̃2,
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with 0 < λ < B+k1
J and κ = N2 −A > 0.

The derivative of the Lyapunov function within the trajecto-
ries of the system is given by:

Ẇ = (θ̇ + λθ̃)[−(B + k1 − Jλ)θ̇ −Asignθ̇
−satN2(k2θ̃)] + θ̇satN2(k2θ̃)

+θ̃θ̇
d

dθ̃
(satN2(k2θ̃)) + λ(B + k1 − Jλ)θ̃θ̇.

Since k2|θ̃| > N2 then |satN2(k2θ̃)| = N2 and
d
dθ̃

(satN2(k2θ̃)) = 0. The derivative of W becomes:

Ẇ = −(B + k1 − Jλ)θ̇2 −Aθ̇signθ̇ − λθ̃satN2(k2θ̃)
−Aλθ̃signθ̇,

≤ −(B + k1 − Jλ)θ̇2 −Aθ̇signθ̇ − λ|θ̃|κ.

W is then decreasing. θ̇, θ̃ enter the set Ω2 defined by
Ω2 : {θ̇, θ̃ : k1|θ̇| < N1 − N2, k1|θ̃| < N2}. In Ω2,
satN2(·) operates in the linear region and the control torque
(6) becomes:

τ = −k1θ̇ − k2θ̃ + τg cos θ. (7)

Define in Ω2 the Lyapunov function L as:

L =
1
2
Jθ̇2 +

1
2
k2θ̃

2.

Replacing (7) in (3), the derivative of L is given by:

L̇ = −(B + k1)θ̇2 −Aθ̇signθ̇ ≤ 0. (8)

The Lyapunov function L is then decreasing till the angular
velocity reaches the origin θ̇ ≡ 0. In order to complete the
proof, the LaSalle Invariance Principle is invoked. All the
trajectories converge to the largest invariant set Ω̄3 in Ω3 =
{(θ̃, θ̇) : L̇ = 0} = {(θ̃, θ̇) : θ̇ = 0}. To remain in this
set, one must ensure that Jθ̈ = −k2θ̃ = 0 with k2 > 0.
Therefore, to remain in the set Ω̄3, one should satisfy θ̃ = 0
which means that θ = θd. Therefore, (θ, θ̇) = (θd, 0) is an
asymptotically stable point of the closed-loop system with a
domain of attraction equal to [−θmax, 0]× R.

IV. EXPERIMENTATION AND ROBUSTNESS TESTS

The control law is tested in real-time using the EICOSI
orthosis of the LISSI-Laboratory, University of Paris-Est
Créteil (UPEC). The mechanical structure of the orthosis
consists of two segments attached to the thigh and shank
respectively by means of braces, with a rotation axis at the
knee level. The orthosis is actuated using a brushless DC
motor (BLDC) chosen because it delivers a relatively high
torque and runs smoothly at low speeds. The maximal torque
that can be delivered by the actuator is τ̄ = 13N · m.
The orthosis is also equipped with an incremental encoder
that measures the angle of the shank segment relative to the
thigh one. The control torque is computed using a controller
board (dSPACE-DS1103) equipped with an IBM processor
running at 400Mhz. The controller takes the measurement
of the angle delivered by the EICOSI’s sensor and the angular

Parameter Value±s.d. (%)
Inertia (Jo) 0.0117± 3.5238Kg ·m2

Solid friction coefficient (Ao) 0.3525± 0.2491N ·m
Viscous friction coefficient (Bo) 0.6928± 0.3811N ·m · s · rad−1

Gravity torque (τgo ) 0.2424± 0.5518N ·m

TABLE I
ORTHOSIS PARAMETERS IDENTIFICATION

Parameter Value±s.d. (%)
Inertia (Js) 0.3883± 0.8088Kg ·m2

Solid friction coefficient (As) 0.2475± 2.5782N ·m
Viscous friction coefficient (Bs) 0.3072± 2.8567N ·m · s · rad−1

Gravity torque (τgs ) 4.7576N ·m

TABLE II
SHANK PARAMETERS IDENTIFICATION

velocity obtained by a simple derivation as well as the
desired angle and velocity. The controller board delivers the
pulse width modulation (PWM) level to control the actuator’s
velocity. The control loop runs at 1 kHz, fixed due to current
and position sensors constraints.
The block diagram is presented in Fig. 2.

dSPACE board

control
torque

τ torque
regulator

PWM power
stage

actuator

sensors

θ, θ̇ i

θd

θ̇d

EICOSI

signal conditioning

Fig. 2. Block diagram of the actuated orthosis in closed loop

The experiments are conducted on a healthy subject being
27 years old, weighing 90Kg and measuring 1.87m. The
parameters identification of the subject and the orthosis are
described in section II. The system’s (shank and orthosis)
identified parameters: inertia, solid and viscous coefficients,
the gravity torque are given in Tables I and II.

The saturation bounds of the control torque defined in (5)
are set such that it respects the limitation of the supplied
power and the maximal torque delivered by the actuator.
Therefore, N1 = 8 and N2 = 8

2.1 . The control parameters
are determined by poles placement at low velocities during
the linear regime, they are set to: k1 = 20 and k2 = 75.

Two experiments are performed to test the efficiency of
the control law. The first considers flexions and extensions
of the knee, actions that are often achieved in rehabilitation
phases. The desired trajectory is defined by successive steps
functions. The control torque (5) is applied. Fig. 3 shows
snapshots of the system’s (shank + orthosis) trajectory. The
angle, angular velocity and control torque are plotted in
Fig. 4. Experiments show a good convergence of the angle
at adaptable time. The control torque remains within the
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(a) (b) (c)
Fig. 3. Successive positions of the shank during flexion-extension: (a)
shows the rest position, (b) presents the shank during extension and (c)
shows the full extension position.

saturation bounds avoiding the nonlinearities of the actuator.
The angular velocity is not high, avoiding the wearer to
endure high velocities that may be harmful for disabled
people. When the shank reaches the desired position, the
angular velocity is null and the control torque balances
the shank and orthosis’ weight. If the desired position is
the full extension defined by angle θ = 0 deg, the control
torque has the value of τg . The second experiment considers
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Fig. 4. Flexions and extensions: The knee-joint angle, angular velocity
and control torque. The current values are plotted in continuous blue, the
desired values in dot-dashed red, and the torque saturation bound in dashed
red line.

a path tracking during locomotion phase of a person. A
sinusoidal reference trajectory is considered. Control torque
(5) is applied on the dynamics errors. The angle, angular
velocity and control torque are presented in Fig. 5. The
experiments show a good tracking of the angle and angular
velocity, besides acceptable values of angular velocity and
torque, which guarantees the safety of the wearer.

A. Robustness with respect to parameters identification

The control law is independent of the system’s inertia,
solid and viscous friction coefficients. However, the satu-
ration bound of the scaled orientation error should always
satisfy N2 > A to guarantee stability, condition that is
maintained true since the solid friction coefficient has always
a small value relative to the chosen bound N2. The control
depends only on the gravity torque. A bad estimation of this
parameter does not induce instability. It would only create a
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Fig. 5. Sinusoidal trajectory: The knee-joint angle, angular velocity and
control torque. The current values are plotted in continuous blue, the desired
values in dot-dashed red, and the torque saturation bound in dashed red line.

static error, i.e. the shank does not follow exactly the desired
trajectory. Note that, during tests, τg can be adjusted in the
control law to fit perfectly the wearer. This can be achieved
technically using a simple potentiometer.

B. Robustness with respect to external disturbances

A misstep can be caused by a wrong movement at the knee
level, it can cause instability or even falling down. Therefore,
one main property of the control law is to regain the
intended position whenever an unpredictable flexion occurs.
In other words, the control law should be robust to external
disturbances that may affect the knee and consequently the
whole stability and safety of the wearer. The experiments
consist on blocking the shank for a short period to highlight
the robustness of the control law. The results are presented in
Fig. 6 and 7 in both cases: flexion/extension and sinusoidal
trajectory, respectively. In the first case, the control torque
reaches the saturation bound before regaining stability. The
saturation helps limiting the current used by the actuator
to develop the desired torque and avoids its saturation.
In the second case, the disturbance effect is almost not
noticeable on the system’s trajectory. In both cases, the
angular velocities remain acceptable for the user.

V. CONCLUSIONS AND FUTURE WORKS

The present paper treated the control of a knee-joint
orthosis. For this purpose, a model of the shank and orthosis
has been proposed and its parameters have been identified
using the weighted least-square method. A bounded control
torque based on nested saturations with a gravity compen-
sation has been proposed and its asymptotic stability has
been proved using Lyapunov analysis. The control is low
cost in terms of computation, independent of the system’s
inertia and friction model. Moreover, it is robust with respect
to external disturbances allowing to guarantee the stability
of the wearer in case of a wrong movement at the knee
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Fig. 6. Flexions and extensions in presence of external disturbances at
t = 22 s: The knee-joint angle, angular velocity and control torque. The
current values are plotted in continuous blue, the desired values in dot-
dashed red, and the torque saturation bound in dashed red line.
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Fig. 7. Sinusoidal trajectory in presence of external disturbances at t =
19 s: The knee-joint angle, angular velocity and control torque. The current
values are plotted in continuous blue, the desired values in dot-dashed red,
and the torque saturation bound in dashed red line.

level. The proposed control has been tested in real-time
using the EICOSI orthosis of the LISSI Lab. Note that
this work considers a completely passive wearer. Future
works will integrate the contribution of the wearer by means
of its muscles’ effort, measured by EMG electrodes. The
development of an exoskeleton to control more degrees of
freedom of the lower limbs is also envisaged.
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