
1

2 Fast implementation for EMG signal linear envelope computation

3 Ouriel Barzilay ⇑, Alon Wolf

4 Biorobotics and Biomechanics Lab (BRML), Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, Haifa, Israel

5

7
a r t i c l e i n f o

8 Article history:
9 Received 14 February 2011

10 Received in revised form 10 April 2011
11 Accepted 18 April 2011
12 Available online xxxx

13 Keywords:
14 Electromyogram
15 Linear envelope
16 Fast implementation
17

1 8

a b s t r a c t

19Numerous medical and biomechanical applications involve electromyogram (EMG) signal processing in
20real time. Amplitude analysis of the EMG often requires computation of the signal’s linear envelope.
21For this purpose, several methods are commonly described in the literature; however, not all match
22the speed requirement of real-time applications. We introduce an implementation which accelerates
23the computation of EMG signals linear envelopes, based on the pipeline commonly found in the literature
24for this kind of operation. The algorithm improves the computation’s time requirement, at the expense of
25memory requirement, by using the result of the envelope’s computation at the previous instant. This
26algorithm saves approximately 96% of the computation time and allows computing linear envelopes of
27several EMG signals in real time.
28Ó 2011 Published by Elsevier Ltd.

29

30

31 1. Introduction

32 Computation of the linear envelope of an electromyogram
33 (EMG) signal is a step required by numerous applications involving
34 the amplitude analysis of muscular activation. Although some elec-
35 tronic hardware devices performing part of the operation, such as
36 band-pass filtering or rectification, have been developed (e.g. (Mo-
37 tion Lab Systems™)), linear envelopes are still computed in many
38 cases by software algorithms. However, an increasing number of
39 studies require computation of the EMG envelope in a fast and effi-
40 cient way.
41 Examples of applications involving electromyographic signal
42 processing in real time are abundant. For instance, several studies
43 aim to develop and implement prosthetic robotic hands for ampu-
44 tees. Such prostheses may be controlled by the activation of some
45 key muscles monitored by EMGs. The capability of this kind of sys-
46 tem to rapidly process incoming EMG signals provides the oppor-
47 tunity to insert additional degrees of freedom and define further
48 commands to prostheses: for example, finger movement and con-
49 trol from additional muscles could be included in a robotic hand
50 prosthesis, allowing new abilities such as grasping or handling
51 (e.g. in Bitzer and Van Der Smagt (2006) and Castellini and Van
52 Der Smagt (2008)).
53 Another kind of applications necessitating a fast EMG signal
54 processing are systems providing a visual feedback on the activa-
55 tion of muscles. For instance, the EMG-driven virtual arm de-
56 scribed in (Manal et al., 2002) is a graphical anatomic model of

57the human arm controlled from processed EMG signals. In real-
58time graphical applications, the data acquisition and processing
59need to be conducted in less than 40 ms in order to obtain a
60smooth display.
61In such applications, the computation needs to be fast and to in-
62duce the smallest possible delay. Consequently, it is essential to
63minimize the number of operations performed for the computation
64of envelopes at each instant, as a prolonged signal processing may
65slow down the whole system.
66We introduce in this paper a fast implementation for the pipe-
67line commonly used in the literature for linear envelope computa-
68tion of EMG signals (see (Hodges and Bui, 1996) or (Gagnon et al.,
692001), and Fig. 1). As pointed out in (Farina and Merrletti, 2000),
70the estimation of amplitude features is mostly performed by two
71evaluators: average rectified value and root mean square. The pro-
72posed method computes the envelope based on the average recti-
73fied value. The basic idea of the method is to exploit as much as
74possible the envelope computed at the previous instant, and to up-
75date only, in an efficient manner, the last part of the processed sig-
76nal. This optimization results in a faster computation, allowing the
77determination of the envelopes of several EMG signals in real time.
78We would like to stress that the method described in this paper
79accelerates the standard algorithm without altering its accuracy.

802. Methods

812.1. Standard algorithm description

82The standard algorithm used for the computation of EMG sig-
83nals linear envelopes involves four successive operations. First,
84the signal is cleaned from irrelevant frequencies with a band-pass

1050-6411/$ - see front matter Ó 2011 Published by Elsevier Ltd.

doi:10.1016/j.jelekin.2011.04.004

⇑ Corresponding author. Tel.: +972 778871857; fax: +972 4 8295711.

E-mail addresses: barzilay@technion.ac.il (O. Barzilay), alonw@technion.ac.il

(A. Wolf).

Q1

Journal of Electromyography and Kinesiology xxx (2011) xxx–xxx

Contents lists available at ScienceDirect

Journal of Electromyography and Kinesiology

journal homepage: www.elsevier .com/locate / je lek in

JJEK 1235 No. of Pages 6, Model 5G

4 May 2011

Please cite this article in press as: Barzilay O, Wolf A. Fast implementation for EMG signal linear envelope computation. J Electromyogr Kinesiol (2011),

doi:10.1016/j.jelekin.2011.04.004



85 filter (BPF), with cutoff frequencies commonly being 10 and
86 500 Hz. The signal is then rectified with an absolute value, before
87 being smoothed with a moving average (MA). Finally, high fre-
88 quencies are filtered out with a low-pass filter (LPF), generally with
89 a cutoff frequency of 30 Hz (Fig. 1).
90 At the input of the pipeline, the raw EMG signal e0 is given as an
91 array whose elements are the recordings at each time sample, with
92 the latest EMG reading at its end. This array is updated at each
93 timestamp as a queue, popping out its first element, shifting all
94 elements leftward, and inserting the last recording at the last posi-
95 tion. Its size L remains constant all along the recording session. An
96 envelope of the same size L is expected to be computed as the
97 product of the signal processing.
98 The band-pass and low-pass filters can be defined as finite
99 impulse response (FIR) filters and implemented as discrete convo-

100 lutions with pre-computed kernels, dependant on the filters’
101 properties.
102 The convolution operation results in an array longer than the in-
103 put array, holding the greatest amount of information in its most
104 inner part. We truncate both the first and last parts of the result
105 vector to obtain a vector with the same size as the input vector.
106 Alternatively, it is possible to keep the vector’s last part only, con-
107 sisting of the last recordings. That solution may reduce the delay
108 induced by the processing, but only to the detriment of accuracy.
109 We note the result vectors by em, the kernels by km and their
110 lengths by Lm, with m specifying the corresponding step in the
111 pipeline (BPF: 1, rectification: 2, MA: 3, and LPF: 4). For the BPF,
112 MA, and LPF, we assume, without loss of generality, the kernels’
113 lengths to be odd and defined in each case as Lm = 2nm + 1, where
114 nm > 0 (the MA can be considered as a particular case of convolu-
115 tion where the kernel’s elements are all equal). Considering only
116 odd-sized kernels makes the implementation simpler and the fur-
117 ther development clearer. When required to make a distinction be-
118 tween the signals at the previous timestamp t ÿ 1 and the current
119 timestamp t, the timestamp is indicated by a superscript.The stan-
120 dard pipeline described above can be mathematically expressed by
121 Eqs. (1)–(4).
122123 � BPF124

e1ðiÞ ¼

P

iÿ1

j¼ÿn1

e0ðiÿ jÞ � k1ðjþ n1 þ 1Þ; i 2 ½1;n1�

P

n1

j¼ÿn1

e0ðiÿ jÞ � k1ðjþ n1 þ 1Þ; i 2 ½n1 þ 1; Lÿ n1�

P

n1

j¼iÿL

e0ðiÿ jÞ � k1ðjþ n1 þ 1Þ; i 2 ½Lÿ n1 þ 1; L�

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð1Þ126126

127128 � Rectification129

e2ðiÞ ¼ je1ðiÞj; i 2 ½1; L� ð2Þ131131

132133 � MA134

e3ðiÞ ¼

1
n3þi

�
P

n3

j¼ÿiþ1

e2ðiþ jÞ; i 2 ½1;n3�

1
L3
�
P

n3

j¼ÿn3

e2ðiþ jÞ; i 2 ½n3 þ 1; Lÿ n3�

1
n3þLÿiþ1

�
P

Lÿi

j¼ÿn3

e2ðiþ jÞ; i 2 ½Lÿ n3 þ 1; L�

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð3Þ

136136

137138 � LPF

139

e4ðiÞ ¼

P

iÿ1

j¼ÿn4

e3ðiÿ jÞ � k4ðjþ n4 þ 1Þ; i 2 ½1;n4�

P

n4

j¼ÿn4

e3ðiÿ jÞ � k4ðjþ n4 þ 1Þ; i 2 ½n4 þ 1; Lÿ n4�

P

n4

j¼iÿL

e3ðiÿ jÞ � k4ðjþ n4 þ 1Þ; i 2 ½Lÿ n4 þ 1; L�

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð4Þ

141141142

1432.2. General considerations for the computation’s acceleration

144TheEMGrawsignals of two consecutive instants are very similar:
145all the older array elements are shiftedby oneplace in the newarray,
146with the exception of the older signal’s first element which disap-
147pears in the newone, andof the newEMGreading at the last position
148of the new array. To reduce the number of computations, we con-
149sider themathematical relationship between the envelopes of a sig-
150nal at two successive timestamps. The purpose is to minimize the
151number of computations by retrieving as much of the known infor-
152mationcontained in thepreviousenvelope’s calculationsaspossible.
153At any time, the resulting arrays from each of the pipeline’s four
154operations are stored into the computer’s memory. In the case of
155real-time EMG envelope computation, this is a reasonable cost,
156considering the small size of commonly computed envelopes com-
157pared to the average storage capacity of today’s computer. We
158show that a considerable amount of calculations can be saved by
159this method.
160The convolution required in the computation of element em(i)
161involves 2nm + 1 elements from the input array, from emÿ1(i ÿ nm)
162to emÿ1(i + nm). If none of these 2nm + 1 input array’s values has
163been modified since the previous timestamp, the matching result
164vector element is unchanged from the previous timestamp result
165vector and can be inherited with no additional computation.
166However, the first nm elements, as well as the last nm ones, do not
167have as many elements to their left and right sides and their com-
168putation is less accurate. Nevertheless, whereas the last part really
169lacks future information, the first part involves elements known in
170the past time samples and were only discarded from storage. They
171were used in the previous timestamps convolution operations, to-
172gether with elements that have not been modified. Consider, for in-
173stance, element number n1 + 1 in e1. Its computation involves
174elements number 1 to 2n1 + 1 in e0. At the next timestamp, element
175number n1 in e1 involves exactly the same operations on the same
176elements, but lacks the discarded first element of e0 at the previous
177timestamp. It is thus more accurate and efficient to set that ele-
178ment’s value as the already known e1(n1 + 1) from the previous
179timestamp. In a general manner, the first part with length nm is de-
180rived from the previous timestamp’s more precise computation on
181the inner part of the vector, with no further calculation. In that way,
182only the computation of the first-timestamp envelope requires the
183total number of calculations defined in the pipeline whereas, at the
184following instants, the envelope computation can be accelerated.
185The last element of em obtainable from the previous timestamp
186is the element involving only elements of emÿ1 that have not been
187previously modified at the current timestamp.

1882.3. Band-pass filter

189Asmentioned in the previous section, the initial and central parts
190of the BPF result vector can be obtained from the previous time-

Fig. 1. Linear envelope computation pipeline.

2 O. Barzilay, A. Wolf / Journal of Electromyography and Kinesiology xxx (2011) xxx–xxx

JJEK 1235 No. of Pages 6, Model 5G

4 May 2011

Please cite this article in press as: Barzilay O, Wolf A. Fast implementation for EMG signal linear envelope computation. J Electromyogr Kinesiol (2011),

doi:10.1016/j.jelekin.2011.04.004



191 stamp. The only new element in e0 is the last one. From the convo-
192 lution formula (Eq. (1)), only e1’s elements on [L ÿ n1, L] involve that
193 element in their computation. These elements need to be recalcu-
194 lated. All the elements up to index L ÿ n1 ÿ 1 are inherited, accord-
195 ing to the previous subsection’s last consideration (Eq. (5)).
196 The calculations performed on the last interval at the previ-
197 ous timestamp can be used again. According to Eq. (1), the inter-
198 val [L ÿ n1 + 1, L] corresponds to the elements of e1 that use less
199 than L1 elements of e0 in their computation. Those elements, if
200 given a new input element after the last one, will be able to
201 complete the convolution sum once step further, by adding to
202 their value the new element multiplied by the corresponding
203 kernel element. That is precisely what happens at the following
204 timestamp. There, all of e0’s elements are shifted to the left and
205 one additional element is inserted. Elements of e1 on [L ÿ n1,
206 L ÿ 1] can be obtained from the elements of previous-timestamp
207 e1 on [L ÿ n1 + 1, L] with the adequate corrective term (Eq. (5)).
208 The last element of e1 requires a full computation over n1 + 1
209 elements (Eq. (5)).

210

et1ðiÞ ¼

etÿ1
1 ðiþ 1Þ; i 2 ½1; Lÿ n1 ÿ 1�

etÿ1
1 ðiþ 1Þ þ et1ðLÞ � k1ðiÿ Lþ n1 þ 1Þ; i 2 ½Lÿ n1; Lÿ 1�

P

n1

j¼0

etðLÿ jÞ � k1ðjþ n1 þ 1Þ; i ¼ L

8

>

>

>

>

>

<

>

>

>

>

>

:

ð5Þ212212

213 2.4. Rectification

214 The rectification is performed by a simple absolute value on e1’s
215 elements. Although this operation is almost costless, it was per-
216 formed at the previous timestamp for the elements of e1 that have
217 not changed, and can thus be partially inherited (Eq. (6)).
218

et2ðiÞ ¼
etÿ1
2 ðiþ 1Þ; i 2 ½1; Lÿ n1 ÿ 1�

jet1ðiÞj; i 2 ½Lÿ n1; L�

(

ð6Þ
220220

221 2.5. Moving average

222 Similar to the band-pass filter case, the inner part of the MA re-
223 sult vector e3 is the most relevant, but the first part can be quickly
224 replaced by the inner part elements from previous instants. The
225 last element of e2 to be modified at the current timestamp is at
226 location L ÿ n1. Therefore, the first element of e3 requiring a new
227 computation is at location L ÿ n1 ÿ n3.
228 Elements on the last interval can be computed recursively,
229 starting from the last element. That element is computed as the
230 mean of the last n3 + 1 elements of e2 (Eq. (7)). The previous ele-
231 ment computes the average of the same elements and one addi-
232 tional element at location L ÿ n3 ÿ 1. We can thus retrieve the
233 sum of the n3 + 2 last elements of e2 by multiplying et3(L) by the
234 number of elements of which the average was computed, i.e.
235 n3 + 1. To obtain the final average, it suffices then to add element
236 number L ÿ n3 ÿ 1 and to divide the sum by the new total number
237 of elements, n3 + 2. Every element of e3 on [L ÿ n3 + 1, L ÿ 1] is effi-
238 ciently computed in the same manner (Eq. (7)).
239 On [L ÿ n1 ÿ n3, L ÿ n3], the elements average L3 elements of
240 e2. The difference between two consecutive elements on that
241 interval is that the averaging window moves by one index. In-
242 stead of computing the whole average for element i of e3, we cor-
243 rect the following element i + 1 already computed, by adding
244 element i ÿ n3, and subtracting from it element i + n3 + 1, not in-
245 cluded in the present averaging. This corrective term must be
246 normalized by L3 (Eq. (7)).

247

et3ðiÞ ¼

etÿ1
3 ðiþ 1Þ; i 2 ½1; Lÿ n1 ÿ n3 ÿ 1�

et3ðiþ 1Þ þ 1
L3
� ðet2ðiÿ n3Þ ÿ et2ðiþ n3 þ 1ÞÞ; i 2 ½Lÿ n1 ÿ n3; Lÿ n3�

1
wi
� ððwi ÿ 1Þ � et3ðiþ 1Þ þ et2ðiÿ n3ÞÞ; i 2 ½Lÿ n3 þ 1; Lÿ 1�

1
n3þ1

�
P

0

j¼ÿn3

et2ðLþ jÞ; i ¼ L

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð7Þ 249249

250where wi ¼ n3 þ Lÿ iþ 1

2512.6. Low-pass filter

252The first part [1, L ÿ n1 ÿ n3 ÿ n4 ÿ 1] of e4, only involving un-
253changed elements of e3, can be inherited from the previous time-
254stamp. The rest of the elements is computed according to the
255convolution formula (Eq. (8)).
256

et4ðiÞ ¼

etÿ1
4 ðiþ 1Þ; i 2 ½1; Lÿ n1 ÿ n3 ÿ n4 ÿ 1�

P

n4

j¼ÿn4

et3ðiÿ jÞ � k4ðjþ n4 þ 1Þ; i 2 ½Lÿ n1 ÿ n3 ÿ n4; Lÿ n4�

P

n4

j¼iÿL

et3ðiÿ jÞ � k4ðjþ n4 þ 1Þ; i 2 ½Lÿ n4 þ 1; L�

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð8Þ 258258

2593. Results

260A comparison between the number of computations (additions
261and multiplications) required in both the full and fast implementa-
262tions is provided in Table 1. The results presented there depend on
263each of the kernels’ sizes and on the size of the input vector L. For
264clarity, we chose to display the case where all nm are equal to a gi-
265ven n. This assumes the same size for all three kernels and is a per-
266tinent approximation in comparison with the kernel sizes
267commonly used in practice for this application. For the exact num-
268ber of computations or the separate numbers of additions and mul-
269tiplications, the reader is invited to contact the corresponding
270author.We also remind the reader that the kernel sizes are typically
271much smaller than the input vector size (n << L). The gain in compu-
272tation for typical input arrays and kernel sizes is presented in Fig. 2.
273Most of the fast implementation’s efficiency relies on the
274retrieval of the envelope’s unmodified part from the previous
275timestamp. Nevertheless, if we solely consider the interval
276[L ÿ n1 ÿ n3 ÿ n4, L], corresponding to the envelope’s part requiring
277an update, the fast implementation saves yet (33n2 ÿ n)/2 ÿ 1
278operations (Table 1), or typically 56–60% of the operations (Fig. 3).
279Both methods have been implemented in Matlab™. Their run-
280time on a PC Intel Core i5 750@2.67GHz, 4Gb RAM is presented
281for different values of n and L in Table 2. The results fit the theoret-
282ical expectation. Similarly, a gain of 56–60% has been obtained for
283comparison on the last interval only.

2844. Discussion

285We have presented in this paper an efficient way to implement
286the computation of linear envelopes for EMG signals, based on the
287knowledge of the envelope at the previous time sample. The algo-
288rithm exploits the properties of convolution, used by the FIRs, to
289accelerate the envelope computation. The scope of this paper
290may be extended to the use of infinite response filters (IIR), often
291used in this application, with the generalized convolver developed
292by Wiklund and Knutsson (1995). Furthermore, the kernels used in
293the described pipeline are generally symmetric and contain several
294zeros and, by taking advantage of these properties, the implemen-
295tation could be accelerated further.

O. Barzilay, A. Wolf / Journal of Electromyography and Kinesiology xxx (2011) xxx–xxx 3

JJEK 1235 No. of Pages 6, Model 5G

4 May 2011

Please cite this article in press as: Barzilay O, Wolf A. Fast implementation for EMG signal linear envelope computation. J Electromyogr Kinesiol (2011),

doi:10.1016/j.jelekin.2011.04.004



296 This method may find its application in every study involving
297 knowledge on the amplitude of muscular activity in real-time,
298 and can save precious time for further processing, such as classifi-
299 cation or pattern matching (e.g. (Naik et al., 2006)). Several studies
300 on robotic prosthetics (e.g. (Bitzer and Van Der Smagt, 2006)) and
301 exoskeletons (e.g. (Kiguchi et al., 2004)) controlled by muscles
302 could gain from the method’s computation speed in the EMG signal
303 processing.
304 Some specific applications, such as the virtual arm of (Manal et
305 al., 2002), use the amplitude of muscle activation for immediate vi-

306sual feedback to the user. This is the framework in which the meth-
307od has been developed. In (Barzilay and Wolf, 2009), we present a
308virtual reality platform for patient-specific neuromuscular rehabil-
309itation. In that platform, the user bears reflectors tracked by
310(Vicon™) motion capture system and 3D goggles in which a virtual
311task is displayed in the form of a game. A virtual replica of the
312user’s arm is displayed in the virtual environment. The task may
313be, for instance, to track a floating ball with one’s virtual hand con-
314sistently displayed according to the recorded kinematics. The user
315continuously receives an audiovisual feedback on the distance to
316the target. Additionally, activations of the muscles involved in
317the task (biceps and triceps in the case of arm rehabilitation) are
318represented by sweat drops coming out of the sleeve in the virtual
319environment, proportionally to the amplitude of the corresponding
320EMG signal envelopes. The rationale for providing EMG biofeed-
321back lays in the fact that augmented feedback on the performance
322has been proved to enhance motor learning (Adams et al., 1977),
323and thus physical therapy. The system employs then artificial neu-
324ral networks to adapt the task to the subject’s performance.
325The three-dimensional display in the goggles requires a mini-
326mum frame rate of 60 Hz (30 Hz for each eye, alternately). In order
327to display the activations of several muscles in real time, the EMG
328signal processing needs to be performed quickly. Since the speed
329attained with the naïve implementation was not sufficient, the
330processing had to be accelerated with the proposed method.
331The described implementation allows digitally computing the
332envelope of an EMG signal in less than 10 ms for a standard raw
333EMG array and kernel sizes. To the best of our knowledge, no study
334describing a faster computation has been published in the litera-
335ture. This computation speed allows an almost immediate EMG
336feedback that could be used in the analysis or visual display of
337the activations of several muscles in real time.

338Conflict of interest

339All the authors were fully involved in the analysis and manu-
340script preparation. The manuscript has not been submitted for
341publication elsewhere. The authors have no conflict of interest to
342declare or acknowledgment to state.

343References

344Adams JA, Gopher D, Lintern G. Effects of visual and proprioceptive feedback on
345motor learning. J Mot Behav 1977;9:11–22.
346Barzilay O, Wolf A. An adaptive virtual system for neuromuscular rehabilitation. In:
347IFMBE proceedings of world congress on medical physics and biomedical
348engineering, Munich, Germany. 2009; 25(4): 1291–94.
349Bitzer S, Van Der Smagt P. Learning EMG control of a robotic hand: towards active
350prostheses. In: Proceedings of international conference on robotics and
351automation, Orlando. 2006. pp. 2819–23.

Table 1

Comparison of the number of operations required in both methods.

Total numbers of operations

On the whole interval:

[1, L]

On the last interval:

[L ÿ n1 ÿ n3 ÿ n4, L]

Full computation 10Lnþ 3Lÿ 5n2 ÿ n 55
2 n2 þ 33

2 nþ 3

Fast implementation 11n2 þ 17nþ 4 11n2 þ 17nþ 4

Number of saved

computations
10Lnþ 3Lÿ 16n2 ÿ 18n 33

2 n2 ÿ 1
2nÿ 1

Fig. 2. Gain in the number of operations saved on the whole interval.

Fig. 3. Gain in the number of operations saved on the last interval on which the

envelope computation requires an update.

Table 2

Computation time of an EMG envelope.

n 15 50 100 200 400

L

Full implementation

[msec]

2000 12.8 27.7 48.6 88.8 161.8

4000 25.7 56.1 98.2 181.0 339.8

8000 51.4 111.9 197.8 367.0 699.8

10,000 64.5 139.7 246.9 460.1 878.0

Fast implementation

[msec]

2000 0.26 0.95 2.95 10.6 41.1

4000 0.39 1.06 3.04 10.8 41.1

8000 0.66 1.32 3.31 11.1 41.6

10,000 0.79 1.45 3.56 11.3 42.0

Gain in time [%] 2000 98.0 96.6 93.9 88.1 74.6

4000 98.5 98.1 96.9 94.0 87.9

8000 98.7 98.8 98.3 97.0 94.1

10,000 98.8 99.0 98.6 97.5 95.2

4 O. Barzilay, A. Wolf / Journal of Electromyography and Kinesiology xxx (2011) xxx–xxx

JJEK 1235 No. of Pages 6, Model 5G

4 May 2011

Please cite this article in press as: Barzilay O, Wolf A. Fast implementation for EMG signal linear envelope computation. J Electromyogr Kinesiol (2011),

doi:10.1016/j.jelekin.2011.04.004



352 Castellini C, Van Der Smagt P. Surface EMG in advanced hand prosthetics. Biol
353 Cybern 2008;100:35–47.
354 Farina D, Merrletti R. Comparison of algorithms for estimation of EMG variables
355 during voluntary isometric contractions. J Electromyogr Kinesiol
356 2000;10(5):337–49.
357 Gagnon D, Lariviere C, Loisel P. Comparative ability of EMG, optimization, and
358 hybrid modelling approaches to predict trunk muscle forces and lumbar spine
359 loading during dynamic sagittal plane lifting. Clin Biomech 2001;16:359–72.
360 Hodges P, Bui B. A comparison of computer-based methods for the determination of
361 onset of muscle contraction using electromyography. Electroenc Clin
362 Neurophysiol 1996;101:511–9.
363 Kiguchi K, Tanaka T, Fukuda T. Neurofuzzy control of a robotic exoskeleton with
364 EMG signals. IEEE Trans Fuzzy Systems 2004;12(4):481–90.
365 Manal K, Gonzalez R, Lloyd D, Buchanan TS. A real-time EMG-driven virtual arm.
366 Comput Biol Med 2002;32:25–36.
367 Motion Lab Systems. Available from: <http://www.motion-labs.com/>.
368 Naik GR, Kumar DK, Singh VP, Palaniswami M. Hand gestures for HCI using ICA of
369 EMG. HCSNet Workshop on the Use of Vision in HCI 2006:67–72.
370 VICON Motion Systems. Available from: <http://www.vicon.com>.
371 Wiklund J, Knutsson H. A generalized convolver. In: Proceedings of the 9th
372 Scandinavian conference on image analysis, Uppsala, Sweden, June 1995. SCIA.

373

375375

376 Ouriel Barzilay received his B.Sc. and M.Sc. degrees in
377 Mechanical Engineering at the Technion I.I.T. He is
378 currently a Ph.D. candidate in the Biorobotics and Bio-
379 mechanics Laboratory (BRML) at the Technion I.I.T. His
380 fields of interest include biorobotics, kinematics, com-
381 puter vision, computational geometry, and artificial
382 intelligence.
383

385385

386Alon Wolf, PhD, earned all his academic degrees from
387the Faculty of Mechanical Engineering at Technion-I.I.T.
388In 2002 he joined the Robotics Institute of Carnegie
389Mellon University and the Institute for Computer
390Assisted Orthopaedic Surgery as a member of the
391research faculty. He was also an adjunct Assistant Pro-
392fessor in the School of Medicine of the University of
393Pittsburgh. In 2006 Dr. Wolf joined the Faculty of
394Mechanical Engineering at Technion, where he founded
395the Biorobotics and Biomechanics Lab (BRML). The
396scope of work done in the BRML provides the frame-
397work for fundamental theories in kinematics, biome-
398chanics and mechanism design, with applications in
399medical robotics, rehabilitation robotics, and biorobotics, such as snake robots.
400

O. Barzilay, A. Wolf / Journal of Electromyography and Kinesiology xxx (2011) xxx–xxx 5

JJEK 1235 No. of Pages 6, Model 5G

4 May 2011

Please cite this article in press as: Barzilay O, Wolf A. Fast implementation for EMG signal linear envelope computation. J Electromyogr Kinesiol (2011),

doi:10.1016/j.jelekin.2011.04.004


