ISSN 0002-306Х. Изв. НАН РА и ГИУА. Сер. ТН. 2010. Т. LXIII, № 2.

УДК 62-236.58:62-5:519.7

МАШИНОСТРОЕНИЕ

С.Т. МЕЛКОНЯН, К.Г. СТЕПАНЯН, К.С. АРЗУМАНЯН, Ю.Л. САРКИСЯН

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ МАНИПУЛЯТОРАМИ С УЧЕТОМ ХАРАКТЕРИСТИК ЭЛЕКТРОПРИВОДОВ

На основе уравнений Лагранжа-Максвелла разработан метод решения задачи оптимального управления манипуляторами с последовательной и параллельной структурами, рассматриваемыми как электромеханические системы. Метод позволяет без введения дополнительных сил, изменением лишь напряжений в электроприводах, спланировать требуемые оптимальные движения механизмов, что существенно упрощает системы их управления.

Ключевые слова: манипулятор, оптимальное управление, уравнение Лагранжа-Максвелла, критерии качества.

Введение. При построении движений манипуляторов важное значение имеет определение таких законов изменения движущих сил в шарнирах или напряжений в электроприводах, которые бы обеспечивали заранее заданный закон движения выходного звена. Эта задача сводится к решению прямой задачи динамики манипуляторов, рассматриваемых как механические [1] или электромеханические системы [2,3]. Для многоподвижных манипуляторов она имеет бесчисленное множество решений, что позволяет осуществлять заданное движение выходного звена различными способами, отличающимися кинематическими и динамическими характеристиками. Во множестве этих движений важен выбор именно тех, при которых оптимизируются критерии качества, характеризующие желаемые кинематические и динамические свойства механизмов. Эти требования приводят к решению задач оптимального управления манипуляторами.

Анализ работ по оптимальному управлению роботами-манипуляторами [4-7] показывает, что при построении движений манипуляторов методы оптимального управления [8] не получили широкого применения, а известные приложения имеют частный характер [9,10]. Кроме того, известные до сих пор методы разработаны для манипуляторов с последовательной структурой и не могут быть применены к манипуляторам с параллельной структурой, особенно когда они рассматриваются как электромеханические системы. С целью устранения указанного пробела в настоящей сформулирована работе в общем виде задача оптимального управления многоподвижными манипуляторами произвольной структуры С учетом характеристик электроприводов и разработан упрощенный численный метод ее решения.

Предлагаемый в статье подход к динамическому управлению манипуляторами отличается простотой и эффективностью. При этом вместо принятого сложного процесса управления вращающими моментами в активных парах манипулятора заданные законы движения выходных звеньев манипуляторов достигаются простым варьированием входных напряжений электроприводов, что позволяет значительно упростить систему управления [2].

1. Уравнения движений манипуляторов с электроприводами. Основным объектом исследования являются манипуляторы, оснащенные электроприводами. Важнейшим этапом оптимального проектирования и управления этими манипуляторами, представляемыми как электромеханические системы, является решение смешанной задачи их динамики. С этой целью составим дифференциальные уравнения, описывающие поведение этих систем, для манипуляторов с последовательной и параллельной структурами (рис.1,2).

Рис.1. Манипулятор с последовательной структурой

Рис.2. Манипулятор с параллельной структурой

Согласно известным уравнениям Лагранжа-Максвелла, уравнения движения манипуляторов с последовательной структурой приводятся к виду

$$\sum_{j=1}^{n} a_{ij}(p,q)\ddot{q}_{j} + \sum_{j=1}^{n} b_{ij}(p,q)I_{j} + c_{i}(p,q,\dot{q}) = 0, \quad i = 1, 2, ..., n ,$$
(1)
$$\sum_{i=1}^{n} d_{ij}(p,q)\dot{I}_{j} + e_{i}(p,q,\dot{q},I) = U_{i} - I_{i}R_{i}, \quad i = 1, 2, ..., n ,$$
(2)

где q=(q₁,q₂,...,q_n), $\dot{q} = (\dot{q}_1, \dot{q}_2, ..., \dot{q}_n)$, $\ddot{q} = (\ddot{q}_1, \ddot{q}_2, ..., \ddot{q}_n)$ - вектор-функции обобщенных координат, скоростей и ускорений механической части; $I = (I_1, I_2, ..., I_n)$ - вектор-функция сил тока, возникающих в роторе электродвигателя; $p = (p_1, p_2, ..., p_v)$ - вектор постоянных параметров электромеханической системы; U_i (i = 1, 2, ..., n) - напряжения в роторах; R_i -сопротивление в электрических цепях, а

 $a_{ij}(p,q)$, $b_{ij}(p,q)$, $c_{ij}(p,q)$ $d_{ij}(p,q)$ и $e_{ij}(p,q,\dot{q},I)$ - известные функции указанных параметров.

Из-за сложности уравнений, описывающих кинематические связи, традиционные методы образования уравнений движений не пригодны для параллельных манипуляторов. В настоящей работе разработан другой подход, который совмещает применение уравнений Лагранжа-Максвелла, принципа Ньютона-Эйлера и аксиом связей. В соответствии с предлагаемым подходом в параллельных манипуляторах уничтожается определенное число кинематических связей и согласно аксиомам связей прикладываются реакции этих связей. Для полученных подсистем составляются уравнения Лагранжа-Максвелла, которые дополняются уравнениями, восстанавливающими уничтоженные кинематические связи. В результате получаем систему смешанных дифференциальных и алгебраических уравнений:

$$\sum_{j=1}^{m} a_{ij}(p,q)\ddot{q}_{j} + \sum_{j=1}^{n} b_{ij}(p,q)I_{j} + \sum_{j=1}^{m-n} c_{ij}(p,q)\overline{R}_{j} + d_{i}(p,q,\dot{q}) = 0, i = 1, 2, ..., m,$$
(3)

$$\sum_{j=1}^{n} e_{ij}(p,q)\dot{I}_{j} + f_{i}(p,q,\dot{q},I) = U_{i} - I_{i}R_{i}, \quad i = 1, 2, ..., m,$$
(4)

$$F_i(p,q) = 0, i = 1, 2, ..., m - n,$$
 (5)

$$\sum_{j=1}^{m} \frac{\partial F_{i}}{\partial q_{j}} \dot{q}_{j} = 0, \ i = 1, 2, ..., m - n,$$
(6)

$$\sum_{j=1}^{m} \frac{\partial F_i}{\partial q_j} \ddot{q}_j + \sum_{j=1}^{m} \sum_{k=1}^{m} \frac{\partial^2 F_i}{\partial q_j \partial q_k} \dot{q}_j \dot{q}_k = 0, i = 1, 2, ..., m - n , \qquad (7)$$

где $\mathbf{q} = (\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_n, \mathbf{q}_{n+1}, ..., \mathbf{q}_m)$, $\dot{\mathbf{q}} = (\dot{\mathbf{q}}_1, \dot{\mathbf{q}}_2, ..., \dot{\mathbf{q}}_n, \dot{\mathbf{q}}_{n+1}, ..., \dot{\mathbf{q}}_m)$, $\ddot{\mathbf{q}} = (\ddot{\mathbf{q}}_1, \ddot{\mathbf{q}}_2, ..., \ddot{\mathbf{q}}_n, \ddot{\mathbf{q}}_{n+1}, ..., \ddot{\mathbf{q}}_m)$ - вектор-функции подгруппы обобщенных $\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_n$, $\dot{\mathbf{q}}_1, \dot{\mathbf{q}}_2, ..., \dot{\mathbf{q}}_n$, $\ddot{\mathbf{q}}_1, \ddot{\mathbf{q}}_2, ..., \ddot{\mathbf{q}}_n$ и "лишних" $\mathbf{q}_{n+1}, \mathbf{q}_{n+2}, ..., \mathbf{q}_m$, $\dot{\mathbf{q}}_{n+1}, \dot{\mathbf{q}}_{n+2}, ..., \dot{\mathbf{q}}_m$, $\ddot{\mathbf{q}}_{n+1}, \ddot{\mathbf{q}}_{n+2}, ..., \ddot{\mathbf{q}}_m$ координат, скоростей и ускорений; $\overline{\mathbf{R}}_j$ - реакции уничтоженных связей. Остальные обозначения приняты по аналогии с предыдущим случаем.

2. Динамическое исследование манипуляторов с электроприводами. На основе уравнений (1)-(7) авторами ранее был разработан универсальный метод решения прямой и обратной задач динамики манипуляторов, рассматриваемых как электромеханические системы, для дальнейшего использования в процессе оптимального проектирования и управления этими системами.

Однако анализ показывает, что при построении оптимальных движений манипуляционных механизмов без введения дополнительных сил приходится решать

смешанную задачу динамики, постановка и алгоритм реализации которой приводятся ниже.

Допустим, заданы вектор постоянных параметров электромеханической системы $p = (p_1, p_2, ..., p_v)$, а также законы изменения

$$q_{j} = q_{j}(t), \quad \dot{q}_{j} = \dot{q}_{j}(t), \quad \ddot{q}_{j} = \ddot{q}_{j}(t), \quad j = 1, 2, ..., n$$
(8)

обобщенных координат, скоростей и ускорений ее механической части. Требуется определить законы изменения напряжений $U_i = U_i(t)$ (i = 1, 2, ..., n) в электрических цепях в зависимости от времени так, чтобы они обеспечили заданные законы изменения (8) обобщенных координат системы.

Ввиду сложности уравнений (5) кинематических связей аналитическое решение поставленной задачи для механизмов с параллельной структурой (рис. 2) не представляется возможным. Поэтому она решается численным методом, реализуемым по следующему алгоритму.

1. В период времени $[t_0,t_k]$ движения электромеханической системы вводим равномерно распределенную сетку $t_0,t_1,t_2,...,t_N=t_k,\;t_r=t_0+r\cdot\Delta\,t$, $\Delta\,t=(t_k-t_0)\,/\,N$ (r=0,1,2,...,N).

2. Для момента времени t = t_r (r = 0,1,2,..., N) определяем значения

$$q_{j}^{r} = q_{j}(t_{r}), \quad \dot{q}_{j}^{r} = \dot{q}_{j}(t_{r}), \quad \ddot{q}_{j}^{r} = \ddot{q}_{j}(t_{r}), \qquad j = 1, 2, ..., n$$

обобщенных координат, скоростей и ускорений механической части.

3. Подставив значения $q_j = q_j^r$ (j = 1, 2, ..., n) обобщенных координат механической части в систему уравнений (5) и решив ее относительно "лишних" координат q_j (j = n + 1, n + 2, ..., m), получим их значения $q_j^r = q_j(t_r)$ (j = n + 1, n + 2, ..., m) в момент времени $t = t_r$.

4. Подставив значения $q_j = q_j^r$ (j = 1, 2, ..., m), $\dot{q}_j = \dot{q}_j^r$ (j = 1, 2, ..., n)обобщенных и "лишних" координат и скоростей в систему уравнений (6) и решив ее относительно "лишних" скоростей \dot{q}_j (j = n + 1, n + 2, ..., m), получим их значения $\dot{q}_j^r = \dot{q}_j(t_r)$ (j = n + 1, n + 2, ..., m) в момент времени $t = t_r$.

5. Подставив значения $q_j = q_j^r$, $\dot{q}_j = \dot{q}_j^r$ (j = 1, 2, ..., m), $\ddot{q}_j = \ddot{q}_j^r$ (j = 1, 2, ..., n)обобщенных и "лишних" координат, скоростей и ускорений в систему уравнений (7) и решив ее относительно "лишних" ускорений \ddot{q}_j (j = n + 1, n + 2, ..., m), получим их значения $\ddot{q}_j^r = \ddot{q}_j(t_r)$ (j = n + 1, n + 2, ..., m) в момент времени $t = t_r$.

6. Подставив значения $q_j = q_j^r$, $\dot{q}_j = \dot{q}_j^r$, $\ddot{q}_j = \ddot{q}_j^r$ (j = 1, 2, ..., n) обобщенных и "лишних" координат, скоростей и ускорений механической части в систему

уравнений (3) и решив ее относительно сил реакции \overline{R}_j (j=1,2,...,m-n) и сил тока I_j (j=1,2,...,n), получим их значения $\overline{R}_j^r = \overline{R}_j(t_r)$ (j=1,2,...,m-n) и $I_j^r = I_j(t_r)$ (j=1,2,...,n) в момент времени $t = t_r$.

7. Осуществляя пункты 1-6 данного алгоритма для случаев r = 0, 1, 2, ..., N-1, получим искомые значения указанных параметров в узловых точках построенной выше сетки.

8. Принимая постоянными обобщенные ускорения \dot{I}_j электрической части в период времени $[t_r, t_{r+1}]$ (r = 0, 1, 2, ..., N-1), определяем их значения в моменты времени $t_0, t_1, t_2, ..., t_{N-1}$ с помощью выражений

$$\dot{I}_{j}^{r} = \frac{I_{j}^{r+1} - I_{j}^{r}}{\Delta t}, \ j = 1, 2, ..., n, \ r = 0, 1, 2, ..., N-1$$

9. Подставив для каждого момента времени tr (r=0,1,2,...,N-1) значения обобщенных координат, скоростей и ускорений $q_j = q_j^r$, $\dot{q}_j = \dot{q}_j^r$, $I_j = I_j^r$, $\dot{I}_j = I_j^r$, $\dot{I}_j = \dot{I}_j^r$ (j = 1,2,...,n) в систему уравнений (4) и решив ее относительно напряжений U_i , получим их значения $U_i^r = U_i(t_r)$ (i = 1,2,...,n, r = 0,1,2,..., N-1) в момент времени t=tr. Нетрудно убедиться, что для механизмов с последовательной структурой (рис. 1) поставленная выше задача решается аналогично. Поскольку эти механизмы не имеют "лишних" координат, скоростей и ускорений, то решение этой задачи сводится к выполнению пунктов 1,2 и 6-9 предыдущего алгоритма, причем при выполнении пункта 6 для определения значений I_j (j=1,2,...,n) сил тока и напряжений U_i (i=1,2,...,n) необходимо решить систему уравнений (1) и (2).

3. Постановка задачи оптимального управления манипуляторами. Наличие большого числа степеней свободы в манипуляторах позволяет осуществлять движения их исполнительных механизмов различными способами, что, в свою очередь, позволяет учитывать ряд дополнительных условий при построении движений. В частности, из множества законов движения возможно выбрать такие, которые минимизируют заданные критерии качества, характеризующие эффективность функционирования механизма. Такие требования приводят к задачам оптимального управления, которые в данном случае можно сформулировать следующим образом.

Допустим, поведение электромеханической системы описывается системами уравнений (1)-(2) или (3)-(7). Обозначим вектор-функции обобщенных координат и ускорений механической части соответственно через $q(t) = (q_1(t), q_2(t), ..., q_n(t))$ и $\dot{q}(t) = (\dot{q}_1(t), \dot{q}_2(t), ..., \dot{q}_n(t))$, вектор-функцию обобщенных координат электрической части - $I(t) = (I_1(t), I_2(t), ..., I_k(t))$, а вектор-функцию напряжений электрической

части - $U(t) = (U_1(t), U_2(t), ..., U_n(t))$. В дальнейшем пару $(q(t), \dot{q}(t))$ назовем фазовыми координатами, а U(t) - функцией управления или просто управлением.

Допустим, задан также критерий качества

$$\Psi_{0}(q,\dot{q},I,U) = \int_{t_{0}}^{t_{0}} f_{0}(q,\dot{q},I,U)dt, \qquad (9)$$

оценивающий работу электромеханической системы, а также его начальное

$$\mathbf{C}_{0} = (\mathbf{q}_{1}(\mathbf{t}_{0}), ..., \mathbf{q}_{n}(\mathbf{t}_{0}), \dot{\mathbf{q}}_{1}(\mathbf{t}_{0}), ..., \dot{\mathbf{q}}_{n}(\mathbf{t}_{0}))$$
(10)

и конечное

$$C_{k} = (q_{1}(t_{k}), ..., q_{n}(t_{k}), \dot{q}_{1}(t_{k}), ..., \dot{q}_{n}(t_{k}))$$
(11)

состояния в моменты времени $t=t_0$, где функция $f_0(q, \dot{q}, I, U)$ определена постановкой задачи.

Требуется из всех возможных функций управления определить такую функцию U(t)=(U1(t),..., Un(t)), которая, переводя систему из начального состояния (10) в конечное (11), минимизирует критерий качетсва (9) при следующих ограничениях:

$$\begin{aligned} f_{1j}(t) &\leq q_{j}(t) \leq f_{2j}(t), \ t \in [t_{0}, t_{k}], \ j = 1, 2, ..., n, \\ f_{3j}(t) &\leq \dot{q}_{j}(t) \leq f_{4j}(t), \ t \in [t_{0}, t_{k}], \ j = 1, 2, ..., n, \\ f_{5j}(t) &\leq I_{j}(t) \leq f_{6j}(t), \ t \in [t_{0}, t_{k}], \ j = 1, 2, ..., n, \\ f_{7j}(t) &\leq U_{i}(t) \leq f_{8i}(t), \ t \in [t_{0}, t_{k}], \ j = 1, 2, ..., n, \end{aligned}$$
(12)

где f_{1j}(t), f_{2j}(t),..., f_{8j}(t) – известные функции.

4. Численный метод решения задачи оптимального управления. Для решения рассматриваемой задачи можно применить известные численные методы оптимального управления [11]. Однако в данном случае это приведет к затруднениям вычислительного характера. Ниже приводится упрощенный итерационный метод решения указанной задачи, который основан на равенстве числа обобщенных координат рассматриваемой электромеханической системы числу функций управления и учитывает ограничения (12) и (13) на их области изменения. На каждом шагу (q, q) фазового пространства происходит переход от одной текущей опорной траектории (рис.3) к другой с уменьшением значения минимизируемого критерия качества (9).

Для решения задачи предлагаемым методом в период времени [t_0, t_k] движения манипулятора вводится равномерно распределенная сетка

 $t_0, t_1, t_2, ..., t_N = t_k$, $t_r = t_0 + r \cdot \Delta t$, $\Delta t = (t_k - t_0) / N$ (r = 0, 1, 2, ..., N - 1). Далее по узловым точкам сетки дискретизируются критерий качества (9) и ограничения (12) и (13), в результате чего они получают следующие выражения:

$$\Psi_0 = \sum_{r=0}^{N-1} f_0(q^r, \dot{q}^r, I^r, U^r) \Delta t \quad , \tag{14}$$

$$\begin{aligned} f_{1j}(t_r) &\leq q_j(t_r) \leq f_{2j}(t_r), \ t_r \in [t_0, t_k], \ j = 1, 2, ..., n, \end{aligned} \tag{15} \\ f_{3j}(t_r) &\leq \dot{q}_j(t_r) \leq f_{4j}(t_r), \ t_r \in [t_0, t_k], \ j = 1, 2, ..., n, \\ f_{5j}(t_r) &\leq I_j(t_r) \leq f_{6j}(t_r), \ t_r \in [t_0, t_k], \ j = 1, 2, ..., n, \end{aligned}$$

Дискретизируется также выбранная опорная траектория, что приводит к дискретному множеству точек $C_0(C_{t_0}), C_1, ..., C_N(C_{t_k})$ (рис. 3) в данном пространстве, для которых вычисляется значение Ψ_0 критерия качества (14).

После дискретизации задачи переход от выбранной опорной траектории к новой траектории в фазовом пространстве (рис. 3), при сохранении точек C_0 и C_N , сводится к определению нового множества точек $C_1, C_2, ..., C_{N-1}$, для которых критерий качества (14) принимает значение, меньшее Ψ_0 для предыдущего множества точек.

Рис.3. Изменение опорной траектории

Ниже приводится алгоритм решения рассматриваемой задачи, в каждой фазе которого замена множества точек C_r (r = 0, 1, 2, ..., N - 1) новыми точками осуществляется чередованием подфаз. Для каждой подфазы из всех C_r (r = 0, 1, 2, ..., N - 1) точек производится замена некоторым числом чередующихся точек. В данном случае число заменяемых точек равно трем, что вытекает из равенства чисел обобщенных координат и функций управления, а также непрерывности изменения фазовых координат. r-я подфаза одной фазы алгоритма осуществляется в следующей последовательности.

1. В окрестностях точек $C_{r+2}(q^{r+2},\dot{q}^{r+2})$ фазового пространства (q,\dot{q}) строим гиперкуб со стороной 2a, где составляющие векторов $q^{r+2} = (q_1^{r+2}, q_2^{r+2}, ..., q_n^{r+2})$, $\dot{q}^{r+2} = (\dot{q}_1^{r+2}, \dot{q}_2^{r+2}, ..., \dot{q}_n^{r+2})$ представляют собой значения обобщенных координат и скоростей механической части в момент времени $t = t_{r+2}$, которые являются известными величинами, определяемыми по опорной траектории.

2. Гиперкуб, построенный в окрестности точки $C_{r+2}(q^{r+2},\dot{q}^{r+2})$, покрываем сеткой требуемой плотности. Текущую узловую точку этой сетки обозначим через $C_{r+2}^{\ \mu}(q^{(r+2)\mu},\dot{q}^{(r+2)\mu})$ (μ = 1, 2, ..., N_1).

3. Выбираем текущую узловую точку $C_{r+2}^{\ \mu}(q^{(r+2)\mu},\dot{q}^{(r+2)\mu})$ и с помощью выражений

$$\begin{split} q_{j}^{(r+k)\mu} &= 0,25(\dot{q}_{j}^{(r+k-1)\mu} - \dot{q}_{j}^{(r+k+1)\mu})\Delta t + 0,5(q_{j}^{(r+k+1)\mu} + q_{j}^{(r+k-1)\mu}), \ k = 1,3, \\ \dot{q}_{j}^{(r+k)\mu} &= -0,5(\dot{q}_{j}^{(r+k-1)\mu} - \dot{q}_{j}^{(r+k+1)\mu})\Delta t + (q_{j}^{(r+k+1)\mu} + q_{j}^{(r+k-1)\mu})\Delta t^{-1}, \ k = 1,3, \\ \ddot{q}_{j}^{(r+k)\mu} &= (\dot{q}_{j}^{(r+k+1)\mu} - \dot{q}_{j}^{(r+k)\mu})\Delta t^{-1}, \ k = 0,1,2,3, \\ q_{j}^{r\mu} &= q_{j}^{r}, \dot{q}_{j}^{r\mu} = \dot{q}_{j}^{r}, q_{j}^{(r+4)\mu} = q_{j}^{r+4}, \dot{q}_{j}^{(r+4)\mu} = \dot{q}_{j}^{r+4}, \\ j = 1,2,...,n \end{split}$$

определяем значения обобщенных координат, скоростей и ускорений механической части для моментов времени $t_{r,}t_{r+1},t_{r+2}$, которые определяются из условий непрерывности изменения обобщенных координат и скоростей, а также постоянства обобщенных ускорений в периодах времени $[t_{r,}t_{r+1}],[t_{r+1},t_{r+2}],[t_{r+2},t_{r+3}],[t_{r+3},t_{r+4}].$

4. Для полученных значений (17) обобщенных координат и скоростей проверяем ограничения (15) и из индексов μ выбираем те, для которых имеют место указанные ограничения. Если такие индексы существуют, то переходим к пункту 5 алгоритма. В противном случае, принимаем r = r + 1 и возвращаемся к пункту 1 алгоритма.

5. Для моментов времени $t_r, t_{r+1}, t_{r+2}, t_{r+3}$, пользуясь полученными из выражения (17) значениями обобщенных координат, скоростей и ускорений, решаем смешанную задачу динамики системы и определяем значения функции управления и сил тока $U_i^{r\mu}, U_i^{(r+1)\mu}, U_i^{(r+2)\mu}, U_i^{(r+3)\mu}$ (i = 1, 2, ..., n), $I_j^{r\mu}, I_j^{(r+1)\mu}, I_j^{(r+2)\mu}, I_j^{(r+3)\mu}$ (j = 1, 2, ..., n), ($\mu \in [1, N_1]$) для моментов времени $t_r, t_{r+1}, t_{r+2}, t_{r+3}$.

6. Для полученных значений функций управления и сил тока проверяем ограничения (16) и из индексов μ выбираем те, которые удовлетворяют указанным ограничениям. Если такие номера существуют, то переходим к пункту 7 алгоритма, в противном случае, принимаем r = r + 1 и возвращаемся к пункту 1 алгоритма.

7. Подставив значения обобщенных координат, скоростей и функций управления в выражение критерия качества (14), определяем его значение Ψ_0^{μ} . При определении значения выражения Ψ_0^{μ} в сумме (14) меняются только те значения функции f_0 , которые соответствуют моментам времени $t_r, t_{r+1}, t_{r+2}, t_{r+3}$.

8. Для полученных индексов μ определяем тот индекс μ^* , для которого имеет место следующее условие:

$$\psi_0^{\mu^*} = \min_{\{\mu\}} \psi_0^{\mu} \cdot$$

9. Проверяем условие $\Psi_0^{\mu^*} \leq \Psi_0$. Если оно удовлетворяется, то во множестве точек $C_0, C_1, ..., C_N$ опорной траектории точки C_{r+1}, C_{r+2} , C_{r+3} заменяем точками $C_{r+1}^{\mu^*}(q^{(r+1)\mu^*}, \dot{q}^{(r+1)\mu^*})$, $C_{r+2}^{\mu^*}(q^{(r+2)\mu^*}, \dot{q}^{(r+2)\mu^*})$, $C_{r+3}^{\mu^*}(q^{(r+3)\mu^*})$, принимаем r = r+1 и возвращаемся к пункту 1 алгоритма.

Построение новой траектории в фазовом пространстве завершается, когда $r=N\mathchar`-4$.

Если условие $\Psi_0^{\mu^*} \leq \Psi_0$ и ограничения (15) и (16) не удовлетворяются для всех $r \in [0, N]$, то уменьшаем в два раза размеры гиперкуба, построенного в пункте 1, и повторяем данный алгоритм.

Решение задачи заканчивается, когда размеры гиперкуба, построенного в пункте 1, удовлетворяют условию 2а ≤ є, где є- заданная точность вычислений. Вычисленные значения фазовых координат и управлений представляют собой решение поставленной задачи.

Заключение. На основании общей математической теории оптимальных процессов сформулирована и решена задача оптимального управления манипуляторами с параллельной и последовательной топологиями, рассмотренными как электромеханические системы. Разработан численный метод решения поставленной задачи с возможностью определения таких управляющих функций манипуляторов, которые бы позволяли при построении движений оптимизировать желаемые критерии качества. Предлагаемый в работе подход позволяет изменением лишь напряжений в электроприводах и без введения дополнительных сил построить оптимальные движения манипуляторов, что существенно упрощает системы их управления. Ввиду ограниченного объема статьи результаты и примеры численной реализации представленного метода здесь не приведены.

СПИСОК ЛИТЕРАТУРЫ

- 1. Попов Е.П., Верещагин А.Ф., Зенкевич С.Л. Манипуляционные роботы, динамика и алгоритмы.-М.: Наука, 1978.- 398 с.
- 2. **Fateh M. M.** On the Voltage-Based Control of Robot Manipulators// International Journal of Control, Automation, and Systems.- October, 2008. V. 6, №5.-P.702-712.
- Izadbakhsh A., Fateh M. M., Sadrnia M. A. Discontinuous Feedback Linearization of an Electrically Driven Fast Robot Manipulator/ World Academy of Science// Engineering and Technology.-2007.-29.-P.217-222.
- 4. **Konolige K.** A Gradient Method for Realtime Robot Control// <u>Intelligent Robots and</u> <u>Systems.-2000 (IROS 2000).</u>- V.1. - P.639 – 646.
- 5. **Simmons G., Demiris Y.** Optimal Robot Arm Control Using The Minimum Variance Model// Journal of Robotic Systems. November, 2005.
- 6. **Veeraklaew T., Malisuwan S.** The Direct Approach of General Dynamic Optimal Control: Application on General Software// International Journal of The Computer, the Internet and Management. – May-August, 2006.-V.14, №2.-P.82-87.
- Hast M., Ekesson J., Robertsson A. Optimal Robot Control Using Modelica and Optimica// Proceedings 7th Modelica Conference. - Como, Italy, Sep. 20-22, 2009.
- 8. Понтрягин Л.С. Математическая теория оптимальных процессов.-М.: Наука, 1976. 392 с.
- Schiller Z. Time-energy optimal control of articulated systems with geometric path constraints// Journal of Dynamic Systems, Measurement and Control, Trans. ASME. – 1996.-V. 118.-P.135-143.
- Саркисян Ю.Л., Степанян К.Г., Оганджанян А.Ж. Численный метод оптимального управления механизмов искусственных органов// Проблемы прикладной механики.-Тбилиси, 2002.- №4 (9).- С.9-13.
- 11. **Федоренко Р.П.** Приближенное решение задач оптимального управления.-М.: Наука, 1978.-488с.
- ГИУА (П). Материал поступил в редакцию 15.04.2010.

Ս.Տ. ՄԵԼՔՈՆՅԱՆ, Կ.Գ. ՍՏԵՓԱՆՅԱՆ, Կ.Ս. ԱՐՉՈՒՄԱՆՅԱՆ, ՅՈՒ.Լ. ՍԱՐԳՍՅԱՆ

ՄԱՆԻՊՈՒԼՅԱՏՈՐՆԵՐԻ ՕՊՏԻՄԱԼ ԿԱՌԱՎԱՐՈՒՄՆ ԷԼԵԿՏՐԱՇԱՐԺԱԲԵՐՆԵՐԻ ԲՆՈՒԹԱԳՐԵՐԻ ՀԱՇՎԱՌՄԱՄԲ

Հագրանժ-Մաքսվելի հավասարումների հիման վրա մշակվել է որպես էլեկտրամեխանիկական համակարգեր դիտարկվող հաջորդական և զուգահեռ կառուցվածքներով մանիպուլյատորների օպտիմալ կառավարման խնդրի լուծման պարզեցված մեթոդ։ Այն թույլ է տալիս միայն էլեկտրաշարժաբերներում մուտքի լարումների փոփոխման միջոցով կառուցել մեխանիզմների պահանջվող օպտիմալ շարժումները, ինչն էապես պարզեցնում է դրանց կառավարման համակարգերը։

Առանցքային բառեր. մանիպուլյատոր, օպտիմալ կառավարում, Լագրանժ-Մաքսվելի հավասարում, որակի չափանիշներ։

S.T. MELKONYAN, K.G. STEPANYAN, K.S. ARZUMANYAN, Yu.L. SARKISSYAN

OPTIMAL CONTROL OF MANIPULATORS TAKING INTO ACCOUNT CHARACTERISTICS OF ELECTRIC DRIVES

A method of an optimum control problem solving of electrically actuated manipulators with serial and parallel structures based on the Lagrange-Maxwell equations is developed. The method allows to construct required optimal movements of mechanisms by changing only input voltages in electric drives that essentially simplifies their control systems.

Keywords: manipulator, optimal control, Lagrange-Maxwell equations, quality criteria.