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Abstract - The problem of developing a model to describe and study human gait was undertaken using 
Lagrangian mechanics. The approach is that of the initial value problem, i.e. starting with the initial 
conditions which are the limb angles and velocities, and the system inputs which are the applied joint 
moments, the system response is found. Seven segments are used to model the human body with complete 
three segment lower limbs, and the head arms and trunk included as one segment. There are six joints, two 
each at the hips, knees, and ankles. 

To show the behavior of the developed model a set of initial conditions and moment histories were 
obtained from measurements in a gait laboratory. Using these data with minor modifications, it is shown that 
the model progresses through the normal walking cycle, or with minor perturbations, atypical gait patterns 
can be demonstrated. 

It is hoped that this model will provide further insight into human gait. For example, alterations of the time 
histories of the joint moments can be used to predict how certain muscle groups affect gait. Thus the teaching 
of the complexities of gait will be facilitated. Ultimately, predictions concerning the results of therapy and 
surgery might be made using this model as a diagnostic tool. 

The emphasis in this paper is on the development of the mathematical model and not on numerical results. 

INTRODUCTION 

One of the major drawbacks of the study of human 

movement is the fact that we are forced to look at the 
output of the system and thereby deduce the cause of 
the movement. As a result, link segment biomechanical 
analyses have evolved to enable a prediction of the 
joint reaction forces and muscle moments for any 
particular movement. When one considers the detailed 

interaction of internal and external forces and the 
energy exchanges within and between segments it is a 
small wonder that one can identify diagnostic patterns. 
One is hard pressed for answers to quite fundamental 

questions : 
1. In normal gait, what happens when certain 

muscle activity is altered, i.e. strengthened or 
reduced ? 

2. In the training of an athlete, or the therapy of the 
physically disabled, what changes to the present 
pattern could be recommended? 

3. Is the movement we see the most optimal from an 
energy or strength point of view? 

4. In the validation of certain theories of motor 
learning or motor control, what patterns are 
physically realizable? 

Relatively little research has been directed at model- 
ing the dynamics of human locomotion and most were 

* Rrceirrtl 8 Nocernber 1979. 

aimed at some form of optimization. However, in all 
models presented there were severe constraints. Bres- 

ler et al. (1951), Beckett and Chang (1968) and 
Townsend and Seireg (1972) all assumed sinusoidal 

trajectories in their analyses. By ignoring the higher 
harmonics, especially in the velocities associated with 

the important kinetic energy components, they have 
introduced considerable error. Also, by forcing the 
model to travel a predetermined trajectory they have 
constrained a wide range of possible muscle moments 
and have altered the problem from one of pure 
synthesis (forward solution) to one of curve fitting the 
limb displacement histories (inverse solution). In this 
same manner Chao and Rim (1973) used an optimi- 
zation technique to find the applied joint moments by 
iteratively varying these until the theoretical limb 
displacements tit those measured in the laboratory. 
This was done for one leg during the gait stride. In one 
case (Townsend and Seireg, 1972) the model had 
massless extendable legs which could not account for 
the dominant energy changes that rake place in the 
lower limbs (Ralston and Lukin, 1969; Winter et al., 
1976). 

None of these mathematical models are capable of 
investigator interaction expected in pure synthesis 
which would predict the trajectories resulting from any 
pattern ofjoint muscle moments. Such a model should 
have no trajectory constraints and even permit unde- 
sired patterns such as hyperextension of the knee or 
collapse of the leg. 
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PROPOSED APPROACH 

The proposed model and approach is that of the 
initial value problem, i.e. starting with the initial 
conditions which are the limb angles and velocities and 
system inputs which are the joint moments, the system 
response is found. Sometimes this is referred to as the 
direct dynamic problem (DDP). Much of the effort 
related to gait studies has been directed to solving for 
the forces and torques applied to the system based on 
motion information obtained from laboratory 
measurements, and is referred to as the inverse dy- 
namic problem (IDP). The IDP is easier to solve 
because it can be analysed one segment at a time; 
whereas, the DDP is more complex because the action 
of all segments must be considered simultaneously. 

The human body is modeled by seven segments with 
complete three segment lower limbs, and the head 
arms and trunk (HAT) included as one segment. There 
are six joints, two each at the hips, knees and ankles. 
No constraints regarding the trajectories of any of the 
segments have been assumed. 

With the proposed model the investigator can alter 
the time histories of net joint moments and examine 
the results. Ultimately, a clinician, for example, may 
wish to predict the results of surgery or therapy for a 
patient, and thereby more objectively plan the 
management of his patient. 

MATHEMATICAL MODEL OF THE TOTAL BODY 
IN GAIT 

The link segment model used to represent the 
human body is shown in Fig. 1. For convenience, it is 
assumed that, initially, the right foot is forward with 

(a) 

the right heel striking the floor. In Fig. l(b) the joint 
moments are denoted by subscripted M’s, with the first 
subscript indicating the side of the body, i.e. right or 
left, and the second subscript indicating the joint 
location, i.e. ankle, knee, or hip. The seven link 
segments representing the human body are assumed to 
move in the sagittal plane. In addition, the head, arms, 
and trunk (HAT) are represented by one segment, a 
reasonable assumption when the arms do not swing 
excessively (Cavagna et al., 1977 ; Dean, 1965). Each of 
the feet are represented by a triangle of appropriate 
shape, as shown in Fig. l(a). The forward point of the 
triangle was placed ca. 2.5 cm in front of the metatarsal 
joint to partially compensate for the toe action during 
the later stages of push-off. The link segment model 
just described is deemed to provide a good compro- 
mise between complexity and the accurate repre- 
sentation of the real situation. Additional segments 
rapidly increase the complexity of the resulting equa- 
tions of motion because of the complex coupling 
among all the segments. However, less than seven 
segments greatly reduces the accuracy of the model. 

The different phases of walking require two basically 
different mathematical representations. The different 
phases of walking are: 

Phase 1: 

Phase 2 : 

Phase 3 : 

Phase 4: 

From right-heel-strike (RHS) to left-toe- 
off (LTO). Here, the right heel and left toe 
are pivoting on the floor. 
From LTO to right-foot-flat (RFF). Only 
the right heel is pivoting on the floor. 
During RFF. Here, the right foot is not 
moving, and the remaining six segments 
are pivoting on the right ankle. 
From RHO to left heel strike. Only the 
right toe is pivoting on the floor. 

Cb) 

Fig. 1. Link segment model with details of foot in (a) and joint moments and their directions in (b). 
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The first mathematical model is required during Phase 
1, where the six variables describing the two lower 

limbs are not independent. The constraint equations 
describing this situation are very complex ; therefore, 
as suggested by Hemami et al. (1975), the so-called 
“hard constraint” is replaced by a “soft constraint”. 
That is, the right thigh is connected to the pivot 
between the left thigh and HAT by a stiff spring and a 
damper. This, in effect, removes the constraint, and yet, 
the two thighs and HAT are held together at the pivot 
by the stiff spring. Initially, the spring-damper com- 
bination was placed at the left toe. However, this did 
not work well because the mass of human foot is just 
over a kilogramm, and, by necessity, the constraining 
spring must be stiff. This caused oscillations in the left 
foot which were very difficult to damp out. The second 
set of equations of motion, is required during the swing 
phase, Phases 2, 3 and 4, where, only small variations 
are required to account for the differences. 

The development of the equations of motion in- 
volved several different approaches, including the use 
of various coordinate systems along with the appli- 
cation of Newtonian and Lagrangian mechanics. The 
temptation to use Cartesian coordinates for describing 
the position of the various body limbs, soon revealed 
that there are more constraint equations than equa- 
tions of motion. Further experimenting with various 
coordinates resulted in a final choice of limb angles as 
the variables, as shown in Fig. 2. The main reason for 
this choice is that the limb angles have the fewest 
constraints associated with them. Now, Lagrangian 
mechanics provides the most direct approach for 
obtaining equations of motion. 

Fig. 2. Link segment model showing limb angles and limb 
length variables (small triangles indicate centers of gravity). 

The Lagrangian mechanics approach requires the 
formation of the Lagrangian L, given by, 

L=T-V, (1) 

where T and V are the kinetic and potential energies of 
the system, respectively, written in terms of the inde- 
pendent variables, the 13~. The resulting equations of 
motion are given by. 

FBi Qit i=l,....7, (2) 

where the Qi are the virtual work expressions which 
involve the applied joint moments and the effect of the 
damper in the hip during Phase 1 of the walking cycle. 

Note, the effect of the spring, which is across the 

damper is included in the potential energy term V. The 
details of the formation of the Lagrangian L in 
equation (1) and the equations of motion shown in 
equation (2) are not given because the procedure is 
straight forward and the intermediate expressions are 
long and awkward, consequently, of questionable 
interest. Instead, only the final equations of motion 
will be given. 

The equations of motion for the double support case 
(Phase l), arranged such that only the second de- 
rivatives are kept on the left hand side, has the 
following form. 

a12 a13 0 0 0 0 

az2 a23 0 0 0 0 

a32 a33 0000 

0 0 0 a44 a45 

0 0 0 a54 %5 a56 a57 1 

0 0 0 a64 a65 a66 a67 

0 0 a74 a75 

(3) 

or, 

[aij]& = bi. 

The terms ai, involve anthropometric constants and 
the segment angles themselves, rendering the equa- 
tions of motion nonlinear. The form of aij is, 

aij = cij COS(Oi - Oj). (4) 

Since the cij are symmetrical, i.e. cij equals cji, this 
makes the aij symmetrical, also. 

On the right hand side of equation (3), the bi are 
more involved and contain moments caused by the 
spring-damper combination, moments caused by gra- 
vity, the applied joint moments, and terms involving 
the square of the angular velocities. The latter are 
actually moments caused by centrifugal forces acting 
on the limbs. 

A final comment on the form of equation (3) is that 
the first three equations appear uncoupled from the 
last four, which is because the right foot, shank and 
thigh are separated from the left foot, shank, thigh and 
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HAT. The connection is at the hips with a spring- 
damper combination, but there is no direct coupling 
between the accelerations of the right limbs and those 
of the left limbs. Therefore, the coupling is through the 
bi which include the spring forces caused by a small 
displacement of the two thighs at the hip joint. 

A detailed description of equation (3) is given in the 
Appendix. 

Next, consider the swing phase with the supporting 
foot pivoting either on the heel or the toe (Phase 2 and 
4). The form of the corresponding equations of motion 
is, 

a11 Q12 A13 A14 ‘215 At6 A17 

‘221 A22 A23 A24 A25 A26 A27 

031 A32 A33 a34 a35 a36 a37 

041 a42 A43 A44 0 0 0 

A51 A52 A53 0 A55 A56 a57 

A61 A62 A63 0 A65 A66 a67 

a71 A72 A73 0 a75 A76 A77. 

r 8’1 
8’2 

e; 

04 

e; 

O6 

_ e; 

b, 
bz 
b3 
b4 
b, 
be 
b_ 

(5) 

As in the previous case, the Aij are symmetrical and 
of the form shown in equation (4), however, they take 
on different values. The bi are similar, but do not 
include terms involving the spring-damper combi- 
nation because it does not now exist. Again, a detailed 
description of equation (5) is given in the Appendix. 

Finally, during Phase 3 with the supporting foot 
constrained against the floor the resulting equations of 
motion are identical to those shown in equation (5), 
except the first row and first column are eliminated. 
This accounts for the fact that the dynamics of the 
supporting foot do not enter into the equations of 
motion. 

IMPLEMENTATION OF THE MATHEMATICAL MODEL 

The solution to the proposed problem requires the 
knowledge of the initial conditions, which are the 
angular displacements and velocities of the limbs, plus 
the system inputs, which are the joint moments. These 
data were obtained from the Gait Laboratory at the 
University of Waterloo, Ontario, where large files of 
data exist of locomotion runs of individuals. The initial 
angular conditions had to be adjusted slightly to make 
them consistent, such that when applied to the segment 
lengths, this results in having both feet on the floor. 
Also, during double support, the angular velocities 
must be such that the top of the right thigh moves at 
the same velocity as the top of the left thigh. 

Again, due to differences between the mathematical 
model and the human body, the calculated joint 
moments were not exactly what is required for the link 
segment model to progress through a desirable walk- 
ing cycle. Consequently, the joint moments were 

adjusted, as required, to attain a desirable gait. The 
adjustments were made “manually” by inspecting the 
results and using judgment based on previous runs. It 
should be emphasized that one does not necessarily 
have to use measured moment patterns. Instead, one 
may want to experiment with a variety of conditions. 
The anthropometric data required in the equations of 
motion equations (3) and (5) are given in the Appendix 
in Table Al. 

The equations of motion are complex and non- 
linear ; therefore, the only practical approach is to use 
the digital computer for obtaining the solution, which 
is the set of limb angles as a function of time or of 
percent walking cycle. The approach used to finding 
the solution is as follows. Starting with the initial 
conditions one can find the aij, which depend on the 
angles, and the bi which depend on these same angles 
and the angular velocities (see equations (3) and (5)). 
Having the values of aij and bi at the initial time one 
can solve for the angular accelerations at this time by 
solving equation (3) or (5), depending on the walking 
phase. Next, the angular position and velocity can be 
found at some time interval later using any of a number 
of numerical integration techniques. In this case, 
Euler’s scheme was used, i.e. 

0i(t + h) = e,(t) + hei( (6) 

where h is the integration interval. It was found that 
the set ofequations in equations (3) and (5) were not ill- 
conditioned and this approach worked well. Perhaps, 
other more sophisticated techniques should have been 
used, however, this one is simple and it did the job. 

Having the integration process established, the next 
consideration is the determination of the different 
phases of walking as the solution progresses. The 
solution begins in Phase 1 which ends at left-toe-off 
(LTO). To determine LTO, the vertical floor reaction 
force on the left toe is calculated every integration 
interval. Initially, this force pushes up on the left toe, 
and, as soon as it becomes zero or just changes sign 
Phase 1 of walking ends. During this phase both feet 
are pivoting on the floor and there is a spring-damper 
combination at the hip. The vertical reaction force on 
the left toe depends on the vertical accelerations of the 
four segments connected to the left toe (left foot, shank, 
thigh and HAT), the gravitational forces on these 
segments, and the vertical force of the spring-damper 
combination at the hip. 

Phase 2 begins with the equations of motion cor- 
responding to the beginning of the swing phase, as 
illustrated in equation (5). Phase 2 had the right foot 
pivoting on the heel but the floor reaction force is not 
calculated anymore, instead, the right foot angle is 
monitored. Throughout Phase 2 this angle is positive 
and at RFF it becomes zero, determining the end of 
Phase 2. 

Phase 3 covers the single-support phase when the 
right foot is constrained against the floor, and ends 
when right-heel-off (RHO) occurs. The equations of 
motion are the same as those used in Phase 2, but with 
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the first row and first column eliminated. To determine 

the end of Phase 3, the moment on the right foot acting 

about the toe is monitored. This moment is a function 
of the reaction forces at the ankle, the joint moment at 
the ankle, and the weight of the foot itself. The reaction 
forces at the ankle are found by accounting for the 
accelerations of, and gravitational forces acting on the 
six segments supported by the ankle. During Phase 3 
the net moment on the foot about the toe acts in the 
direction to keep this foot against the floor. As soon as 
this moment changes sign to lift the heel, Phase 3 ends. 

The final phase, Phase 4, uses the equations of 
motion shown in equation (5), with the right foot 
pivoting on the toe. The end of Phase 4, and, thus, the 

end of the step is determined by monitoring the height 
of the left heel during Phase 4. When this heel reaches 
the floor, the walking step has ended and the calcu- 

lations cease. 

RESULTS 

The computer program that was developed includes 
the equations of motion and the required logic for 
progressing through the different phases of the walking 
cycle. Starting with a given set of initial kinematic 
conditions and time histories of the six joint moments 
the resulting kinematics of the various limbs were 
obtained. These were inspected, the joint moments 

were adjusted during each of the four phases of 
walking, and the program was run again. This pro- 
cedure was repeated until the model progressed 
through a complete walking cycle. When the final 

conditions were within a few percent of the initial 
conditions, the calculations were terminated. Instead 
of presenting vast tables of numbers, the results of this 
procedure are given in stick figure form in Fig. 3. 
Position (a) shows the initial conditions, (b) shows 

right-foot-flat (13% of step cycle) and (c) shows right- 
heel-off (570/d of step cycle). Positions (d) and (e) show 
the stick figure at 82 and 100% of the step cycle, 
respectively. One hundred percent corresponds to left- 
heel-strike. The time to complete the step is 0.55 sec. 
Left-toe-off, which is not shown in Fig. 3, occurs at 8% 
of the cycle. This is somewhat early; however, it is at 
least partly due to the fact that foot in the proposed 
model does not include a toe. 

Another response of the proposed model is shown in 
Fig. 4. In this case the applied joint moments are 
identical except the left ankle moment is increased by 
209, in Phase 1, which lasts until left-toe-off. Even 
though Phase 1 lasts for only 8% of the cycle, it has a 
significant effect on the response. Positions (a), (b), (c) 
and (d) show the limbs initially, at right-foot-flat, at 
right-heel-off and at left-heel-strike, respectively. Left- 
heel-strike occurs quite early, at 0.45 set which cor- 
responds to the point in time of position (d) in Fig. 3. 
Comparing the corresponding stick figures in Figs. 3 
and 4, the increased left ankle “push-off propels the 
body faster, resulting in a shorter time to complete the 
step and in a shorter step size. With this perturbation 

in the left ankle moment, the stick figure quickly “falls 

down”. 
A third response, not reported in stick figure form, 

involved a decrease of the left ankle moment during 
late push-off. This caused the body to not progress 
over the right leg properly. Eventually, the right leg 
buckled slightly and the step ended early and with a 
short step length. 

Other intuitively obvious effects have been observed 
while exercising the developed model. Three of these. 
for example, are: (1) A higher dorsi-flexion moment 
after right heel contact at the right ankle delays foot- 
flat, (2) An increase in the initial left ankle moment 
results in an increase in the floor reaction force. and (3) 

Fig. 3. Positions of limb segments, (a) initially, (b) at right- 
foot-flat,(c) at right-heel-off,(d) at 82”; of the step cycle,(e) at 

end of step. For detailed discussion see text. 

Fig. 4. Limb positions with left ankle moment increased 
during push-off, (a) initially, (b) at right-foot-flat, (c) at right- 
heel-off, (d) at end of step. For detailed discussion see text. 
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An incremental change in the knee moment, for 

example, can be compensated for by appropriate 
changes at the hip and ankle. 

SUMMARY AND CONCLUSIONS 

A mathematical model using Lagrangian mechanics 
was developed to simulate human gait, A specific set of 
initial conditions and adjusted joint moments were 

used to demonstrate that this model progresses 
through a walking step, as desired. With simple per- 

turbations of the joint moments the model responds as 
one would intuitively predict. It is anticipated that this 
model will provide insight into how specific or com- 

plex changes in muscle activity will affect human gait. 
Thus, it is anticipated that it will be valuable as a 
teaching and diagnostic tool. 

Future refinements to this model will include the 
natural ligamentous constraints that exist in human 
joints. For example, hyper-extension of the knee will 
be limited to a few degrees. Also, the foot will be refined 
to include the spring-like effect of the toes at push-off. 
Another helpful addition now being developed are 
interactive computer graphics to assist the operator in 
perturbing the model and seeing the results. 
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APPENDIX 

Included here are a list of anthropometric constants in Table 
Al and details of the equations of motion describing human 
gait. There are two basically different mathematical repre- 
sentations to cover the different phases of walking, one for the 
double support phase, Phase 1, and one for the single support 
phase, Phases 2, 3 and 4. The equations of motion for the 
beginning and end of the single support phase, Phases 2 and 4, 
are identical except that in Phase 2 the right foot pivots on the 
heel, i.e. the foot link is represented by the heel to ankle 
distance. Whereas, in Phase 4 the right foot pivots on the toe, 
thus, the toe to ankle distance is used for the foot segment 
length. Phase 3, when the right foot is flat, involves a larger 
variation because the right foot is constrained against the 
floor; however, as it turns out, one needs only to set the first 
row and column in equation (5) to zero to account for this. 
Therefore, the swing phase is covered with essentially one set 
of equations of motion. 

The form of the equations of motion during the double 
support, Phase 1, as given in equation (3) is, 

[ai,]q = bi, i = 1,. ,7; j = 1,. , ‘I, (AlI 

where the terms aij are symmetrical. Here the right foot is 
pivoting about the heel and the left foot about the toe, 
therefore, the required right foot and left foot angles are B1 + 

Table Al. Anthropometric and related constants 

Symbol Parameter (CG denotes center of gravity) Value (all MKS) 

B 
C 
A 

m/ 
1, 

; 
Y 
D 
E 

m, 
Is 
F 
G 

iy 
H 

mh 
1, 
Will 
Sk 
f 
g 

heel to ankle distance 
heel to CG distance 
ankle to CG distance 
foot mass 
foot moment of inertia about CG 
angle between sole and ankle measured at the toe 
angle between sole and ankle measured at the heel 
angle between sole and CG measured at the heel 
ankle to shank CG distance 
shank CG to knee distance 
shank mass 
shank moment of inertia about CG 
knee to thigh CG distance 
thigh CG to hip distance. 
thigh mass 
thigh moment of inertia about CG 
hip to CG of head, arms and trunk (HAT) distance 
HAT mass 
HAT moment of inertia about CG 
total body mass 
spring constant at hip 
damping coefficient of damper in hip 
gravitational constant 

0.140 
0.189 
0.116 
1.159 
0.010 
2.621 
0.967 
0.310 
0.247 
0.188 
3.717 
0.064 
0.227 
0.173 
7.994 
0.133 
0.325 

54.2 
3.591 

79.9 
274,400 

1,000 
9.807 



A mathematical model for the dynamics of human locomotion 367 

Table A2. Constants cij for Phase 1 
._____._ 

c,r = mlC2 + I, + (m, + m,)B’ 

clz = m,DB + m,(D + E)B 

Cl3 = m,FB 

cIL = I, + m,D’ + m,(D + E)’ 

cl3 = m,F(D + El 

(‘A1 = I, + m,F’ 

cb4 = I, + rn,H’ 

<‘45 = m,H(F + G) 

c.,~ = m,H(D + E) 

c4, = 2m,HA 

t’55 = I, + m,F’ + m,(F + G)’ 

cS6 = m,F(D + E) + m,(D + E)(F + G) 

c5: = 2m,FA + Zm,A(F + G) 

cb6 = I, + m,D2 + (mh + m,) (D + E)’ 

c h, = 20~ + m,)(D + E)A + 2m,AD 

c,, = I, + (0.25rnJ + mh + m, + m,)4A2. 

[j and 0, + a, respectively. To simplify the expressions for uij 
and b, given below, it will be assumed that during Phase 1, 0, 
and 0: include the /I and a, respectively. The expression for aij 
is, 

ai, = c,~cos(O, - 0,). i = I,.. ..7; j = i,.. .,7. (A2) 

The expressions for the c,~ for Phase 1 are given in Table A2. It 
should be pointed out that the required variables and 
constants needed in cij and in b, are defined in Figs. 1,2 and in 
Table Al. Also, the cij not given in the Table are zero and all 
are symmetrical (see the zeros in the left hand side ofequation 

(3)). 
Belore providing the expressions for the bi it is convenient 

to define the following set of constants, dj, 

d, = B 

d, = D + E 

d,=E‘+G 

d, = 0 

d, = - (F + G) 

d6 = - (D + E) 

d, = -2A. 

(A3) 

The b, are given by. 

hi = - f_ cij$ sin(B, - 0,) 
,= 1 

+ S, 
[ 

i d,djsin(O, - Bj) + diS sin fIi + Ri, (A4) 
jL, 

I 

where 

S = initial left-toe to right-heef distance 

R, = -m,gCcos(%, -_B+y) - (m,+m,)gBcos8, + M,, + D, 

Rz = - C2,g cos Bz + M,, - M,, + D, 

R, = -C,,gcos%, + M,, - M,k + D, 
(As) 

R, = - m,Hg cos 9, - M,, - M,, + D, 

R, = -[m,,(F+G) + m,F]gco~%~ + M,, -Ml, + D, 

R, = -[(m,+m,)(D+E) + M,D]gcos%, + M,, - M,, + D, 

R, = -[2A(m,+m,+m,) + Am,]gcos%, + M,, + D,. 

where the Di are moments caused by the damper in the hip. To 
determine these moments, one determines the virtual work 
done by thedamper force. When this virtual work expression 
is in the following form, the coefficients of the 60, become the 
desired moments for the Oi equation of motion. 

6W,> = D,ii%, + D,6%, + + D&L. f.46) 

One way to find the virtual work is to begin in the X-Y 
coordinate system. The damper force is proportional to the 
relative velocity of the tops of the right and left thighs. Writing 
the expressions relative to the left thigh, the damping force F, 
is, 

F, = _f(L’R - n,.), (A7) 

where cs and c,. are the velocities of the top of the right and 
left thighs, respectively. Writing equation (A7) in component 
form, 

where a, and cy are the S and Y components of the desired 
relative velocity. Note that F,, and f,, are not a function of 
virtual displacements and can easily be found by resolving the 
individual segment velocities into X and Y components. 

Table A.?. Constants c,~ for Phases 2. 3 and 4 

crt = K2(2m, + ?m, + mh + mJ.) + m,-Z’ + If 

c,~ = K[m,D + (Zm, + mh + m, + myI (D + El] 

Cl3 = K[m, + F + (mh + m, + m, + mf)(F + G,] 

cl4 = Km,H 

cl5 = - K[m,G + (m, + m,)(F + G)] 

cl6 = -K[m,E + mf(D + E)] 

cl7 = -Km,A. 

In above, K = Bin Phase 2, zero in Phase 3 and 2A in Phase 
4; 2 = C in Phase 2, zero in Phase 3 and A in Phase 4. Below. 
applies to all three Phases. 

cZ2 = I, + m,D2 + (m, + 2m, + mh + m,)(D + E)’ 

cl3 = [m,F + (mh + m, + m, + m,)(F + GI](D + E) 

cz4 = m,H(D + E) 

czS = -[m,G + (m, + m,)(F + G)](D + E) 

cz6 = - [m,E + mf(D + E)](D + E) 

cz7 = -mrA(D + E) 

cj3 = I, + m,F’ + (m, + m, + m, + mJ)(F + G)’ 

cj4 = m,H(F + G) 

cj5 = -[m,G + (m, + m,)(F + G)](F + G) 

c3,j = -[m,E + m,(D + E)](F + G) 

cg, = -mrA(F + G) 

cd4 = I, + m,H’ 

Cb5 = C‘$b = cq; = 0 

c55 = I, + m,G2 + (m, + m,)(F + G)’ 

cS6 = [m,E + m,(D + E)](F + G) 

c5, = mrA(F + G) 

c66 = I, + m,E2 + m,(D + E)* 

c6, = ml.4 (D + E) 

c,, = I, $- m,A’. 
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Now, the virtual work done by the damper, expressed in the cij are symmetrical. The right hand side of equation (Al) is 
X-Y coordinates is, given by, 

SW, = FD& + F&y. (A9) 

Expressing 6x and 6y in terms of the angular displacements, 
bi = - i c,,dj sin@, - ej) + Ri, 

j=l 
(All) 

writing 6 W, in the form shown in equation (A6), the required 
moments, D, caused by the damper are, 

where 

Di = di( - F,, sin f& + FDY cos &). (AlO) 
RI = - Bgm/ cos(0, - B + y) 

- (2m.+2m,+m,+me)cosB, + M.., Phase 2 

motion for Phase 1. Before proceeding, it may be of interest to 
R = o _ . ‘. ” _ Thiscompletes thedetaileddescription of theequations of 

1 1 
‘-. Phase 3 

note the make-up of bi in equation (A4). The first summation 
in the right hand side involves moments due to centrifugal 

RI = -2Agm,cos(e,-/3+y) 

force terms and the second summation due to the spring in the - (2m, + 2m, + m,, + m,)cos 0, + M,,, Phase 4 

hip. The remaining term Ri includes moments due to 
gravitational forces, the aDDlied joint moments and the effect 

R2 = -cl2 costl, + M,k - M,,, all phases (A12) 

of the damper in the hip: _ _ & = - +g COS e3 + M,,, - I&, all phases 
Next, the equations of motion for the swing phase, Phases 

2, 3 and 4, will be presented together. These equations of R4 = -ct4gcose4 - Mrs - Mthr all phases 

motion are similar in form to those for Phase 1 as shown in 
equation (Al), except the coefficients cij are different, and, 

Rs = -CrsgCOS& + Mu - MI,, all phases 

because there is no SDrina-damDer combination at the hiD the Rs = - c,,g cos 06 + M,, - M,,, all phases 
second summation ind tie Di terms in the right hand siddof bi 
in equation (A4) do not exist. Therefore, the expression for aii 

R7 = -Cr,gCOS& + MI,, all phases 

for Phases 2, 3 and 4 is the same form as given in equation This completes the detailed description of the equations of 
(A2), except for the cij which are given in Table A3. Again, the motion. 


