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Muscle models are the essential components of any musculoskeletal simulation. In addition,
muscle models which are incorporated in neural-based prosthetic and orthotic devices may
significantly improve their performance. The aim of the study was to compare the performances
of two types of muscle models in terms of predicting the moments developed at the human
elbow joint complex based on joint kinematics and neuromuscular activity. The performance
evaluation of the muscle models was required to implement them in a powered myosignal-
driven exoskeleton (orthotic device). The experimental setup included a passive exoskeleton
capable of measuring the joint kinematics and dynamics in addition to the muscle myosignal
activity (EMG). Two types of models were developed and analyzed: (i) a Hill-based model
and (ii) a neural network. The task, which was selected for evaluating the muscle models
performance, was the flexion–extension movement of the forearm with a hand-held weight.
For this task the muscle model inputs were the normalized neural activation levels of the four
main flexor–extensor muscles of the elbow joint, and the elbow joint angle and angular velocity.
Using this inputs, the muscle model predicted the moment applied on the elbow joint during
the movement. Results indicated a good performance of the Hill model, although the neural
network predictions appeared to be superior. Relative advantages and shortcomings of both
approaches were presented and discussed. q 1999 Academic Press

1. INTRODUCTION

Integrating humans and robotic machines in one system offers a world of opportu-
nities for creating a new generation of assistance technology that can be used in
biomedical, industrial, and aerospace applications. The human contributes its natu-
ral and highly developed control algorithms that utilize advanced decision making
and specialized fuzzy sensing mechanisms, whereas the robotic system offers
technological advantages such as power, accuracy, and speed.

An ongoing project at the Biomechanics Laboratory of the Faculty of Engi-
neering, Tel Aviv University, is the study, design, and implementation of a myosig-
nal-based exoskeleton for the human arm. The purpose of the powered device is
to amplify the human muscular system. Alternatively it can be construed as an
orthotic device for assisting disabled persons, with impaired elbow muscles, to be
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used in regular daily activities. The powered exoskeleton arm is a robotic manipula-
tor, attached in parallel to the human arm, with links and joints corresponding to
the elbow and shoulder joints. The torque generated by an actuator located at the
elbow joint is used to amplify the moment produced by the elbow muscles such
that a major part of the joint torque is produced by the actuator, leaving a fraction
of the load to be carried by the human. The powered device thus increases the
body muscle strength while maintaining human control of the movement.

The concept is not new and several such devices have been designed and
implemented in the past (1, 2). However, what sets the present exoskeleton apart
from its predecessors is that it uses myosignals from the elbow muscles (3) in
addition to a set of feedback control signals to generate a command signal to the
exoskeleton actuator. Using this approach the human–machine interface level (the
junction in the system where the human and the machine exchange information)
is raised to the neuromuscular junction. The myosignals produced during the elbow
muscle contractions are used to predict the immanent muscle moments on the
elbow joint. A major advantage of establishing an interface at the physiological
muscle level is the ability to estimate the forces that will be generated by the
muscles before the contraction phenomenon is fully developed. During the short
time delay between the appearance of the myoelectric signals in the elbow muscles
and the intended movement of the arm, the exoskeleton control system acquires
the myosignals and the force feedback signals, processes, and interprets them,
feeding an appropriate command signal to the elbow joint actuator, in time, to add
its torque to the operator’s muscular moment to move the arm under external load.

It is clear that the entire concept depends on the ability to acquire and process
the myosignals in due time and in the quality of the predicted muscle forces. In
other words, the technique requires reliable myoprocessors (4), a term which defines
the module of the system responsible for estimating the moments about to be
applied to the joint, based on the myoelectric signals and the joint kinematics,
which are then fed into the actuator. This is the context of the present study. The
specific objective of the research was to establish the feasibility of a Hill-based
and/or neural network-type muscle model for predicting the muscle forces in the
musculoskeletal system of the human elbow joint as a function of muscle neural
activity and the joint kinematics.

Modeling neuromusculoskeletal systems is a major research subject in biomecha-
nics. It is at the heart of any attempt to model and quantify the human body
movement (5). Muscle models are also important in practical bioengineering re-
search of orthotic, prosthetic, and functional neuromuscular electrical stimulation
systems, for restoring lost or impaired motor function in disabled persons. A
classification of muscle models, based on the level of structure that they address,
was proposed by Zahalak (6). Using this approach the muscle models can be
categorized as: (i) microscopic models, (ii) fiber models, and (iii) macroscopic
models. The boundaries between these groups are not always distinct and some
muscle models bear characteristics of more than one group. This is the case of the
distributed-moment models (7–9) for instance, which may be construed as bridging
the microscopic and the macroscopic domains. The muscle models which are
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considered herein belong to the macroscopic whole-muscle category. This group
is further divided into: (iii-a) viscoelastic models which consider muscle to have
viscoelastic properties, (iii-b) Hill-based models which are variations of the proto-
type model proposed by A. V. Hill in his classic paper (10), and (iii-c) system
models which regard muscles as black boxes, the contents of which are to be
determined by formal parameter identification procedures.

In the context of the present study the performances of two types of macroscopic
muscles models were compared. The first model was the Hill-based (HB) muscle
model (iii-b). It was based on Hill’s classical muscle model which has been the
subject of numerous studies. Its practical implementations had many variants;
however, the current study was based on recent work of Winters and colleagues
(11–15) using the direct modeling approach (input; myoelectric activity and joint
kinematics; output, joint moment). The second muscle model was the neural net-
work (NN) muscle model (iii-c). Neural networks, which were inspired by nervous
systems, typically consisted of a large network of simple elements, capable of
solving complicated and ambiguous problems and also to “learn” to recognize new
patterns (16).

Applications of artificial NN for studying biological and biomechanical systems
have appeared only within the past few years. Sepulveda et al. (16), for instance,
used NN with a back-propagation algorithm to model the relationship between
muscle activity and lower-limb dynamics during human gait. Similarly, Holzreiter
and Kohle (17) applied a trained NN to distinguish between healthy and pathological
gait. In the current study NN was used to predict the muscle moments with respect
to the human elbow joint. The predicted moments of the HB and NN muscle
models were compared with actual measured data.

The subsequent sections include descriptions of the elbow exoskeleton setup
followed by fundamental definitions of the HB and the NN muscle models. The
experimental data were first used for training the NN in addition to performance
evaluation of both the HB and the NN (Section 2). The performance evaluation
was accomplished by comparing the predicted elbow moment with the measured
data (Section 3). This comparison is followed by a discussion of the relative merits
and shortcomings of both models and the paper closes with conclusions (Section 4).

2. METHOD

This section includes a detailed description of the exoskeleton experimental
setup and the various signals which were measured to create the experimental
database. This is then followed by defending the architecture of the present variant
of the HB muscle model and of the selected NN model. All the numerical simula-
tions were performed in Matlab environment using Simulink and the Neural Net-
work toolboxes.

2.1. The Exoskeleton Experimental Setup

The exoskeleton structure, used in the current study (Fig. 1), was a two degrees
of freedom mechanism with links and joints corresponding to the upper (SE ) and
the lower (EH ) right arm links and to the shoulder (S) and elbow (E ) joints of
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FIG. 1. (a) Frontal and lateral view of the experimental setup: The exoskeleton and human operator.
(b) Schema of the two-link, two-joint exoskeleton. (c) The human operator using the exoskeleton devise.

the human body. The mechanical integration between the human arm and the
exoskeleton was obtained by using a semicircular hollow cross section bracelet
attached to the upper arm and handle (H) that was grasped by the operator. Weight
plates (load) could be attached to the tip of the exoskeleton forearm link (T ). The
mechanism was fixed to the wall and positioned parallel to the sagittal plane of
the operator. The two-degrees-of-freedom mechanism was defined by the shoulder
joint angle (uS) and the elbow joint angle (uE). Black dots in Fig. 1a indicate
locations where EMG surface electrodes were positioned to capture myosignals.
In normal operating mode a rotational actuator was mounted on the elbow joint
of the exoskeleton. When the human operator exerted a moment on the elbow
joint, to lift a load, myosignals were generated and recorded by the surface elec-
trodes. These signals were transferred to a myoprocessor for proper processing.
The command signals were fed into the elbow actuator which supplied an additional
torque at (E ). The combined action of the human and the exoskeleton allowed the
system to generate moments at the elbow joint, well beyond the normal loading
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FIG. 1. Continued
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envelope of the human. As indicated earlier, the muscle model laid at the heart of
the myoprocessor.

For the purpose of assessing the quality of the muscle models the exoskeleton
was employed in passive mode. In this mode, the actuator at (E ) was disconnected
and the processed myosignals, instead of passing through the actuator, were re-
corded for off-line analysis. In addition, the system was reduced to a one-degree-
of-freedom mechanism by fixing the system shoulder joint (S) at specific angles.
Consequently the upper link of the exoskeleton and the upper arm (SE ) were also
fixed. The only possible movement was a rotation of the lower link and forearm
(AH ) about the elbow joint (E ). The system had a built-in mechanical constraint
limiting the elbow angle (uE) to remain within an average human antropometric
range.

During the flexion/extension movement of the forearm, the following types of
signals were sampled simultaneously: (i) the myosignals of the elbow joint muscles,
(ii) the elbow joint kinematics, and (iii) the actual moment applied by the external
loads on the exoskeleton elbow joint. The myosignals produced by the muscles of
the elbow joint were measured by reusable 8-mm silver–silver chloride (Ag–AgCl)
surface electrodes (BIOPAC EL208S). The electrodes were attached to the subject
skin by adhesive disks at locations recommended by Basmajian and Blumenstein
(18) for measuring the signals of the following muscles: biceps–brachii, brachiora-
dialis, triceps brachii medial-head, and triceps brachii lateral-head. The signals
were gained by EMG amplifiers (BIOPAC EMG100A) using a gain factor in the
range of 2000–5000 (depending on the subject). All the channels were connected
in parallel, sharing a same reference electrode (see Fig. 1a) and protected from
environmental interference by using shielded cables.

As indicated earlier the shoulder joint angle (uS) was kept constant at specific
values during the experimental session. The elbow angle (uE) was measured by
an optical encoder (HP 5500) with an accuracy of 60.038, integrated into the
exoskeleton joint. The elbow joint angular velocity (u̇E), which is also needed as
an input by the muscle models, was computed numerically by means of finite
differences. The moment applied by the external load at the elbow joint was
measured by using a load cell (TEDEA 1040) with an accuracy of 63%, located
on an extension (HT ) of the lower segment of the exoskeleton (Fig. 1a). The load
cell measured directly the dynamic shear load in a plane normal to the lower
segment axis. Consequently the total moment relative to the elbow joint was
obtained by multiplying the measured shear force by the moment arm (ET ).

All the signals were acquired simultaneously. The electromyosignals and the
load cell signal were sampled using an A/D convector (Scientific Solution Lab
Master 12 bit internal PC card), whereas the encoder signals (measuring the elbow
joint angle) were counted by digital counter.

2.2. Experimental Database

A typical arm movement session was full flexion followed by full extension of
the elbow for a stationary position of the shoulder joint. The forearm in full
supination position was free to move in the 2-D sagittal plane of the elbow joint.
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Starting from full elbow joint extension (uE 5 08) the forearm was rotated until
full elbow joint flexion (uE 5 1458) followed by full extension, ending in the
starting position (uE 5 08). The experiments were repeated for three positions of
the upper arm: two vertical (uS 5 2908, 908) and one horizontal (uS 5 08).
For each joint setup the experiment was performed while carrying weight plates
connected to the exoskeleton at (T ). The movements where repeated for loads of
up to 6 kg. Resting periods of 5 min between each experimental session were
imposed such as to alleviate any fatigue effects

The signals which were recorded during a session were defined in Table 1. The
first four signals, I1–I4, were the electromyosignals of the elbow muscles recorded
by surface electrodes. The first two (biceps brachii and brachioradialis) were
agonist muscles and the remaining two (triceps brachii medial and lateral head )
were antagonist ones. Note, the elbow muscle complex included a third agonist
muscle, the brachialis. However, since the brachialis muscle cannot be measured
by noninvasive techniques, the biceps-brachii activation was also used for the
brachialis when the HB model was used. It should be noted that muscle activation
level, which was used as one of the muscle model input, was represented by a
normalized value in the range of ^0, 1&. The muscle activation level was calculated
as the ratio between the current neural activity and the same activity during maximal
voluntary isometric muscle contraction. The algorithm for processing the raw
mayoelectric signal (EMG) included four steps which were implemented in soft-
ware: (i) high-pass fourth-order Butterworth filters with a cutoff frequency of 10
Hz, (ii) full-wave rectification, (iii) low-pass fourth-order Butterworth filters with
a cutoff frequency of 6 Hz, and (iv) normalizing with respect to the maximal value
of the muscle activation level, during isometric maximal voluntary contraction.

The three signals, I5–I7 in Table 1, were respectively the elbow angle, the elbow
angular velocity, and the shoulder angle. Based on the measurement of the elbow
joint angle, the angular velocity was computed by finite differences and the shoulder
angle was determined at the beginning of the session. All these signals were used
as input data to the muscle models from which the moment on the elbow joint
was computed. The last recorded signal (O in Table 1) was the actual moment M

TABLE 1

Description of I/O Parameters of the Muscle Models

Model I/O Symbol Description

I1 BIC Biceps brachii muscle myosignal
I2 BRD Brachioradialis muscle myosignal
I3 TRIM Triceps brachii medial-head muscle myosignal
I4 TRIL Triceps brachii lateral-head muscle myosignal
I5 uE Elbow joint angle [rad]
I6 u̇E Elbow joint angular velocity [rad/s]
I7 uS Shoulder joint angle [rad]
O M Total moment on elbow joint [nm]
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relative to the elbow joint, including dynamic and gravitational effects, exerted by
the load while moving the forearm.

All these data constituted the experimental database. Its purpose was primarily
to compile a set of input/output signals of the musculoskeletal system for training
the NN muscle model. Indeed, the HB model used the Winters and co-worker
approach (14) and needed no additional measurements. Finally, an experimental
session was selected for evaluating the performance of muscle models by using
the input signals I1–I7 with the HB and NN for predicting the moment on the
elbow joint. This prediction was compared with the measured moment O.

2.3. The Hill-Based Muscle Model

The HB model was derived from the classical model originally introduced by
A. V. Hill in 1938 (10). HB models provided a simplified representation of skeletal
muscles. Although they have well-known limitations, they were widely used be-
cause of their ease of implementation (8). Many researchers had contributed to
the development of the Hill model. The current formulation of HB model was a
synthesis set of ideas and mathematical expressions from several references. The
most consistent source of the HB model was Winters and colleagues (11–15, 19,
20) which included a modern engineering version of the model. All physiological
parameters were taken from these publications. However, the contractile element
(CE) force–velocity formulation and the algorithm for solving the model numeri-
cally were a synthesis of Winters’ approach and several other references (21–23).
For the benefit of providing a full and comprehensive description of the HB muscle
formulation, this section includes all the definitions of the HB model components
that were used in the current study.

The model consisted of three elements: a contractile element (CE), a series
element (SE), and a parallel element (PE) as shown in Fig. 2a. The SE and PE
components represented passive soft connective tissue including the tendon and
the nonactive muscle fibers. The force/extension relations of these tissues were
defined by [1] and [2]

FSE 5
FSEmax

eSEsh 2 1 1eSEshDLSE/DLSEmax 2 12 [1]

FPE 5
FPEmax

ePEsh 2 1 1ePEshDLPE/DLPEmax 2 12 [2]

where FSE, DLSE and FPE, DLPE are respectively the forces and extensions of
elements SE and PE subscript max indicates corresponding maximal values, and
SEsh and PEsh are SE and PE shape function parameters.

The CE component represented the active muscle fibers. Two properties charac-
terized this element: CE force–length, CE force–velocity relations. The total force
that was generated by the CE component was defined by a product relationship
and could be described in the general form by [3]
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FIG. 2. Musculoskeletal system model. (a) Hill-based muscle model main components, (b) schema
of the direct modeling approach, (c) model of the elbow joint complex.



424 ROSEN, FUCHS, AND ARCAN

FCE 5 fFV(VCE) ? fFL(LCE) ? Fmax ? U, [3]

where FCE is the force in the CE component, fFV and fFL are dimensionless force–
velocity and force–length functions, Fmax is the maximal force in CE, VCE and LCE

are respectively the lengthening (or shortening) velocity and length of CE, and U
is the normalized activation level of the CE component.

The dimensionless force–length function in [3] was defined by [4]

fFL 5 e20.5((LCE /L021.05)/0.19)2, [4]

where LCE and L0 are the length and resting length of the CE component.
It should be noted that Hill’s classical hyperbolic formulation of the CE force–

velocity function was valid in the muscle-shortening phase only. The generalized
form of the CE force–velocity characteristics was valid for both shortening and
lengthening regions (21, 22)

fFV 5
0.1433

0.1074 1 e21.409sinh(3.2VCE/Vmax11.6) [5]

Vmax 5 0.5(U 1 1)V0, [6]

where Vmax and V0 are maximal velocities of the CE at specific muscle activation
levels and at maximal activation level, respectively, and U is the activation level
of CE.

Furthermore, Eq. [6] was a modification according to Winters (15) in order to
include the dependency of the maximal velocity on the muscle activation.

The structure of the algorithm for solving the HB muscle Eqs. [1]–[6], shown
in the block diagram of Fig. 2b, followed the approach developed by Crowe et al.
(23). The method, applied to the elbow joint, implemented the direct modeling
approach, where the inputs were defined as the muscle activation level (U ) and
the elbow joint angle (uE) while the output was the muscle moment (Mm). This
approach was implemented for every muscle of the elbow complex separately.
Each muscle moment (Mm) applied on the joint was computed based on the muscle
force (Fm) and the joint geometry. The subscript m indicated the individual muscle.
The muscle length (Lm) was a function of the elbow joint angle and the muscle–joint
geometry (MJG). The latter defined the transformation between the joint angular
coordinates and the muscle local Cartesian coordinates (14). The algorithm for
solving the HB model made use of the fact that the force generated by the contractile
element was equal to the force generated by the serial element since they were
connected in series (FCE–SE 5 FCE 5 FSE ). The total muscle force was defined as
the sum of its active and passive parts (Fm 5 FCE–SE 1 FPE ). Finally, the total
moment (Mnet) with respect to the elbow joint [3] was the summation of individual
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muscle moments with the proper sign [1] for agonist muscles and [2] for antagonist
muscles (Fig. 2c).

Mnet 5 o
n

1
Mmi [7]

2.4. The Neural Network Muscle Model

In contrast to the semianalytical HB muscle model which might be considered
as a simplified approximation of the biology and the mechanics of the skeletal
muscle, the NN muscle model was a mathematical model of the process mapping
the input set to the output set, without the need to formulate the system functionality.
This modern mathematical tool took its name from the namesake arrangement
found in biological nervous systems. These two systems consist of a large number
of simple elements that are collectively able to learn the mapping of the process
and can then proceed to solve complex problems. The rationale behind the NN
technique was that a large array of typical inputs and related outputs of a system
were presented to the network. After the learning or training phase the NN was
expected to predict the output when given an arbitrary input set. In the context of
the HB muscle model the representation of elbow muscle/joint complex was
achieved by training the NN with a set of input signals I1–I7 and the related moment
output O was recorded while the subject moved the load by rotating the forearm.
Having learned typical relationships between {I} and {O}, the NN was capable
to provide a fair approximation of the elbow moment for any arbitrary input set.
By comparing this method with the classical HB approach, it was clear that the
two techniques were located at opposite ends of possible muscle models’ scale.

The primary consideration in developing the NN was to define its architecture.
A typical network architecture for function approximation was the feed-forward
multilayer NN composed of an input layer, an output layer, and one or more
intermediate hidden layers (24) (Fig. 3). The size of the input and output was
determined by the number of input/output signals; however, the number of neurons
in the middle layers determined the power of the system to generate the I/O
mapping (21). The selected NN architecture included one hidden layer with seven
neurons in the input layer (I1 to I7) and one unit in the output layer (the total
moment O exerted by the load on the elbow joint). The network architecture had
a tangential–sigmoid hidden layer [8] and a linear output layer [9] (Fig. 5).

{H} 5 TanSig([W1]{I} 1 {B1}) [8]

{O} 5 [W2]{H} 1 {B2}, [9]

where {H} is the output vector (n 3 1) of the hidden layer, [W1] is the weight
matrix (n 3 7) of the hidden layer, {B1} is the bias vector (n 3 1) of the intermediate
hidden layer, [W2] is the weight matrix (1 3 n) of the output layer, {B2} is the
bias vector (1 3 1) of the output layer, and n is the number of neurons (size) in
the hidden layer.
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FIG. 3. Fully connected two layer neural network myoprocessor. (a) NN schematic representation.
(b) NN compact form of transfer functions [8]–[10]. I, input; O, output; U, muscle activation levels;
u, joint angle; BIC, biceps brachii; BRD, brachioradialis; TRIM, triceps brachii medial head; TRIL,
triceps brachii lateral head; E, elbow; S, shoulder; M, moment on elbow hinge; W, weight matrices;
B, bias vectors.

The tangential–sigmoid transfer function (TanSig) was defined by Eq. [10]

TanSig 5 Tanh(x) 5
ex 2 e2x

ex 1 e2x [10]

This function produced values in the range ^21, 1&, whereas the biases and the
linear transfer function let the network generate values outside that range.

The purpose of the network was to compute the output vector {O} (1 3 1)
based on the input vector {I} (7 3 1). Equation [8] transforms {I} into {H} of
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the hidden layer. These n values constituted the inputs to the second transformation
[9] which produced the output O. All this depended of course on the entries of
the weight and bias matrices. Determining best values for these constants was
performed during the learning phase of the process. The network was presented
with a set of ({I}, {O}) pairs, the training set. For a given set of coefficients of
the matrices components [W1], {B1}, [W2], and {B2} in [8] and [9] the network could
calculate the current approximation of the output Õ and this could be compared to
the measured output O. Repeating this for all the ({I}, {O}) pairs in the training
set allowed to calculate the sum squared error (SSE)—Eq. [10], where the index
(i) runs over all the ({I}, {O}) pairs.

SSE 5 o
i

(Oi 2 Õi)2 [11]

The SSE was used as an indication of the NN performance for the current values
of the weighting and bias matrices. Modifying these matrices to minimize the SSE
was performed by the back-propagation algorithm. If the minimum value of SSE
was less than a target value, or if the number of the training sessions had reached
a limiting value, the learning process was stopped. If the SEE had not reached its
target value during the iterative process before the preset number of iterations was
performed, the number of the training iteration could increased. Another alternative
was to modify the network architecture by adding a hidden layer and/or changing
the number of neurons in the intermediate layers. The process was then repeated
with the purpose of pushing the SSE below the threshold value.

Selecting the number of neurons in the hidden layers is influenced by two
contradictory considerations. The size or number of neurons in the hidden layers
determines the power of the NN. A large number of neurons enhances the network’s
ability in mapping the I/O gates thereby curtailing the error [11]. On the other
hand, reducing the number of neurons decreases the time needed for the learning
procedure and also the number of floating point operations needed to calculate
{O}, a key factor in any real-time approach.

Several techniques were used to accelerate the training procedure of a NN with
an architecture based on a neural layer and a tangential–sigmoid transfer function
(24). The Nguyen–Widrow method (26) was used for selecting such initial condi-
tions which shorten the training time. In addition, the adaptive learning rate algo-
rithm was used. It decreased the time needed for the learning process while keeping
the network from bouncing around, thus maintaining a stable learning procedure
(25). Finally, the momentum technique allowed the network not only to respond
to the local gradient, but also to comply with recent trends in the error surface
while ignoring small features in the error. It was recognized that with a momentum,
a network can slide through shallow local minima (24).

In applying the NN for modeling the muscles, the I/O signals were the same as
those used for the HB model. The reason was primarily that this type of I/O
configuration was based on the standard simplified assumption, that a muscle was
generating a moment relative to a joint as a function of the muscle activation level,
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and the joint kinematics. Moreover, selecting identical I/O ports for both the HB
and NN models provided a common ground base to perform a comparison between
them. However, it should be noted that whereas the HB model defined each muscle
as a different entity to be modeled separately (the final result was the superposition
of all the elements) in the NN model, the muscles were lumped into a unified set
and the superposition was inherent to the system.

3. EXPERIMENTAL RESULTS

This section includes a description of the experimental results and the model
performances. The first subsection describes the I/O set and the target tasks for
training of the NN muscle model. This is then followed by second and the third
subsections defining the quantitative performance of the NN model and comparing
it to the HB model.

3.1. Recording a Typical Session

In a typical data acquisition session the upper arm was kept fixed at a constant
shoulder angle. The forearm in full supination position was free to move in the
2-D sagittal plane of the elbow joint. Starting from full elbow joint extension the
forearm was rotated until full elbow joint flexion followed by full extension, ending
in the starting position. During the session the subject was wired as described in
Section 2.

An example of a data set of a typical experimental session is plotted in Fig. 4.
The subject who participated in the study was a 30 year old male in good physical
conditions. A typical task included moving the forearm from full extension to full
flexion and back to full extension. In this particular task (Fig. 4), the upper arm
was kept in a vertical extension position (uS 5 2908) and a weight of 5 kg was
attached to the exoskeleton tip.

In Fig. 4a the raw EMG signal and the muscle activation level (^0, 1&) are
plotted as a function of time for each one of the flexor muscles (biceps brachii,
brachioradialis) and the extensor muscles (triceps brachii medial head, triceps
brachii lateral head ). Figure 4a indicates that the flexor muscles are active both
in flexion (t 5 2.5–5 s) and in the extension (t 5 5–8 s) movements. The minor
cocontraction of the extensor muscle is performed to overcome the passive elasticity
of the flexor muscles keeping the arm in a full flexion position (t 5 0–2.5,
8–12 s) and to stabilize the elbow joint during the contraction of the flexor muscles’
activity (t 5 2.5–8 s). Figures 4b and 7a show the kinematics and dynamics of
the flexion/extension of the elbow joint respectively as a function of time.

The elbow joint moment (Fig. 7a) is characterized by two peaks which occur
when the forearm was perpendicular to the (vertical) upper arm and the system
has to carry the full thrust of the load moment. The two peaks in the elbow joint
moment are created once during the flexion movement and once during extension.
Similar phenomena (two peaks) but with a negative sign also occur when uE 5
908, as can be seen in Fig. 5. Note that in these shoulder positions the moment
signals have the same value but with opposite signs.
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a

FIG. 4. Typical session recordings. (a) EMG of the elbow flexor and extensor muscles: BIC,
biceps brachii; BRD, brachioradialis; TRI M, triceps brachii medial head; TRI L, triceps brachii
lateral head; EMG, raw signal; Act, normalized activation level. (b) Elbow kinematics: elbow joint
angle, angular velocity, and angular acceleration.
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b

FIG. 4. Continued

3.2. Neural Network Training

The HB model (Section 2.3) from a system engineering perspective is a phenome-
nological-based, lumped parameter model in which its mathematical formulation
defines a simplified characterization of the skeletal muscle. Once the model is
defined, a single set of inputs is sufficient for predicting its output. In contrast,
the NN-based model requires a training set to compute best values of the weight
matrices ([W1], [W2]) and bias vectors ({B1}, {B2}) of the network transfer functions
[8] and [9]. For that purpose the 13 sessions appearing in Table 2 were used.

The parameters of the training sessions were the shoulder position and the
applied load (Table 2). In the first five sessions the upper arm was supported
vertically in a flexion position (uS 5 2908). In the next four sessions the upper
arm was supported horizontally (uS 5 08), and in the last four sessions the upper
arm was supported vertically in extension position (uS 5 908). The system was
loaded from 0 kg, with increments of 1 kg, up to 5 kg. In all cases the forearm
moved from full elbow extension (uE 5 08) to full flexion (uE 5 1458) and back
to full extension. Every session was recorded similarly to what was described in
Section 3.1.

Concatenated experimental results for all 13 sessions are plotted in Fig. 5. The
first 7 diagrams represent the input components {I} and the last diagram is the
measured total moment relative to the elbow joint O. The 13 sessions are concate-
nated and presented as one continuous output, although 5-min resting periods are
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FIG. 5. Concatenated I/O signal recordings of the 13 experimental sessions for training the NN
muscle model. I1, normalized biceps brachii activation level; I2, brachioradialis; I3, triceps brachii
medial head; I4, triceps brachii lateral head; I5, elbow joint angle; I6, elbow joint angular velocity;
I7, shoulder joint angle; O, moment on elbow joint.

imposed between the sessions to alleviate any fatigue effects. Signals I1 to I4 are
the normalized muscle activities, I5 and I6 are the elbow angle and angular velocity,
I7 is the shoulder joint angle, and O is the measured moment applied by the load
on the elbow.

This concise overview of the entire database gave some insight on the whole
process. One might notice, for instance, the step function in I7 (the shoulder angle).
This angle was kept fixed at 3 angular positions for a recording time of about 20
s in each position. In addition, when the shoulder was in full flexion position, the
agonist muscles’ activities I1, I2 were higher than the activities of the antagonist
muscles I3, I4. The opposite prevails when the shoulder was in full extension. In
sessions where the upper arm was supported horizontally (uS 5 08), as expected,
the agonist muscles were active in the joint angle range of 08 , uS , 908 and the
antagonist muscles were active in the joint angle range of 908 , uS , 1458. The
elbow joint kinematics I5 was a rather smooth curve and, as indicated, I6 was the
time derivative of I5. Finally, the measured elbow moment and the NN predicted
values (O) were plotted in Fig. 6.

The network training data were composed of 260 (13 sessions 3 20 samples
each) sets of vectors yielding a 7 3 260 input matrix and a 1 3 260 output vector.
As noted earlier, the sampling rate was much higher but the recorded data were
resampled to include 20 data sets per session to bring it in line with the computa-
tional power of Matlab and NN toolbox. The training set was presented to the



432 ROSEN, FUCHS, AND ARCAN

TABLE 2

Configuration of the Experimental Sessions of the NN Training Set

Elbow joint Shoulder joint
angle (8) angle (8) Weight (kg)

0–145 290 1
0–145 290 2
0–145 290 3
0–145 290 4
0–145 290 5

0–145 0 1
0–145 0 2
0–145 0 3
0–145 0 4

0–145 90 1
0–145 90 2
0–145 90 3
0–145 90 4

network, and optimal values of the weight matrices ([W1],[W2]) and bias vectors
({B1},{B2}) were determined. The actual calculation was performed in batch mode.
The entire set was presented to the network and the constants were determined in
iterative manner. For each input presentation (epoch) the network computed its
estimated output Õ. The network learning performance was tested using the sum
squared error (SSE ) between the network estimation Õ and the target output O (11).

During the training session which included 200,000 epochs of a NN with a 50
neuron in the middle layer, the SEE decreased exponentially with a final value of
14.8 (nm)2. This value corresponded to an average error of 0.015 nm. By increasing
the number of neurons to 100, the SEE was decreased to 12.8 (nm)2. Reducing
the number of neurons in the middle layer to 25 caused the SEE to increase
dramatically to a value of 167.6 (nm)2. Figure 6 shows the performance of the
NN with 50 neurons in the middle layer in predicting the joint moment. The 260
target values of the output (1) are plotted against the NN prediction, given by a
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FIG. 6. Neural network estimation of the elbow moment for the training set (line) and measured
(target) values (1).

continuous line. As shown in Fig. 6, the NN estimates the moments of the training
set in a very satisfactory manner.

3. HB and NN Muscle Models Performance Comparison

To determine the qualities and compare the predictions of the HB and NN models
of the human elbow joint complex, a typical movement of the lower arm, the target
movement, was selected. This movement, which was not included in the training
set of the NN, was described in detail in Section 3.1. Note that although the target
movement was performed by the same subject and under the same conditions (arm
position and loading) as defined by session 4 of the training set, the data of session
4 in the training set and the target movement were different. Although a same
operator performed both movements, they were recorded separately at different
times, and indeed, a variability in all the I/O signals exists.

The measured and the predicted moments by the HB and NN models for the
selected arm movement are plotted in Fig. 7. The measured moment (Fig. 7a)
presents typically two peaks separated by a local minimum. The peaks correspond
to approximate horizontal positions of the forearm where the load has a maximum
lever arm with respect to the elbow joint. The minimum value of the moment
corresponds to the maximum flexion angle when the lever arm is, locally, minimum.
The HB model (Fig. 7b) follows the general trend, although the first maximum
becomes here a double hump with the first peak larger than the second one. This
discrepancy is most probably due to the activity of the biceps brachii muscle during
flexion. The average error between the HB model prediction and the measured data
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a

b

c

FIG. 7. The moment developed at the elbow joint during flexion/extension of target movement
of the forearm while carrying a weight of 5 kg. (a) Measured data, (b) Hill-based model estimation,
and (c) neural network model estimation.

is 4.2 nm. The NN model (Fig. 7c) gives, in general, better predictions for the
elbow joint load moment. The moment peaks are almost exactly where they appear
in Fig. 7a (measured data). The amplitude of the first peak fits perfectly, although
the second peak of the NN model is somewhat lower than the corresponding
measured value. The average error between the NN model prediction and the
measured data is 0.012 nm.

4. DISCUSSION AND CONCLUSIONS

The present study is an attempt to evaluate the performances of two types of
muscle models with a view of employing them as myoprocessors in an orthotic
device—a powered exoskeleton for the human elbow joint. The task of a muscle
model (myoprocessors) in the exoskeleton application is to predict the moment
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that should be developed by the muscle for manipulating an external load as a
function of the corresponding muscles activation levels and the joint kinematics.
The selected models are a classical Hill-based muscle model and a neural network
model. The two examples are extreme cases of possible alternative solutions. The
HB model is a simplified phenomenological-based, lumped parameter model of
the skeletal muscle, whereas the NN model is a black-box I/O mapping without
any attempt to follow the internal knowledge of the muscle complex.

It is clear that the NN predictions, for a well-defined set of data, are in this case
better than what the HB model could provide. These results are at first glance
rather startling. A black box (NN model), with no knowledge of the underlying
physical phenomena ruling its I/O ports, is capable of predicting the I/O mapping
at least as well as a semiempirical model (HB model) based on years of minute
observations, testing, and a good understanding of the principles guiding the phe-
nomena. This newcomer in muscle modeling is outperforming time-honored tech-
niques such as the HB muscle model. The broader picture is however not so definite.

Due to the fact that NN models rely on training sets, NN is very much task
dependent. This feature turns out to be both its advantage and its disadvantage.
Indeed, the power of the NN as a myoprocessor, for instance, lies in its ability to
accommodate predefined I/O sets. The NN is capable of representing the physiology
of one specific operator for tasks defined in the learning set, but its scope is limited
to performances within this set only. As the range of applications broadens, by
performing tasks outside the space defined by the learning set or by applying the
predefined NN to a different subject, NN models are known to loose their effective-
ness. Models of the HB type, on the other hand, are universal. They are valid for
most individuals and they can handle a large variety of situations. The drawback
of the HB approach is that its predictive power is somewhat hampered by its global
nature, leading to results inferior to those of specially trained NN models.

In addition, the HB model does not need any training sessions, and due to its
compact form and small number of parameters, it does not require high computa-
tional power. This is an important consideration. Handling the current network
architecture with 50 neurons in the middle layer was not a simple numerical task.
One should bear in mind that Fig. 7c was obtained off-line and that the computation
time was thus of little relevance. It was however rapidly recognized that computing
power was an important consideration in an on-line mode. Adopting, for instance,
the 100-neuron-size middle layer was out of the question, and as indicated, moving
to a more tractable 25-neuron middle layer was very detrimental for the quality
of the moment predictions. It is noteworthy that in the context of the arm exoskeleton
the HB model was eventually adopted because of its generality and independence on
training sessions. Training the NN with handicapped persons proved rather difficult.

Table 3 summarizes some characteristics of the NN and the HB models. As
already mentioned, the HB and NN models belong to the macroscopic muscle
model group. The architecture of the HB model is complex and requires one to
solve a set of differential equations; however, the number of model parameters is
relatively small and these parameters are related to the anatomy/physiology of an
average human. The NN formulation, on the other hand, is relatively simple and
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TABLE 3

Comparing Neural Network and Hill-Based Model Characteristics

Category Characteristic Neural network Hill-based

Type System—Black box Phenomenological
Architecture Formulation Simple Complex

Parameter number Large Small
Parameter value Adjustable Fixed
Parameter meaning None Anatomy/physiology

Training Yes No
Computational power High Low
Performance I/O in training set High Acceptable

I/O out of training set Low Acceptable
Scope of application Limited Wide

its architecture is based on two types of neuron transfer functions (tangential–
sigmoid and linear). But the cost of using simple building blocks is the large
number of neurons in the intermediate layer which is necessary to provide the NN
with sufficient flexibility for learning the various instances of the I/O spectrum.
The NN parameters are thus adjusted to the specific conditions by means of back-
propagation algorithm which tuned the constants of the transfer functions. One the
other hand, the HB model does not need any training sessions, and due to its
compact form and small number of parameters does not require high computational
power. A further flexibility of the network models is that the quality of the model
can be enhanced by increasing the training set and by modifying the network
architecture (number and size of the hidden layers). But care must be exercised,
since overtraining may cause the system to fluctuate very rapidly to simulate as
close as possible the instances of the training set.

A known limitation of the present study was due to the fact that all the simulations
were performed using data from a single subject. Although a single subject provided
enormous versatility in terms of the kinematics, dynamics, and myosignals activity,
a full understanding of both the HB and the NN might be achieved by using a
number of subjects. The approach outlined in this study might be replicated for
different joints with more subjects as well as different task movements.

The interim evidence that may be deduced from the present results is that
the classical HB model may provide a limited but reasonable estimation of the
physiological muscle performances. Making allowance for the fact that the model
is universal and is not task dependent is an additional argument in favor of classical
HB muscle models. On the other hand, the results have also shown that NN muscle
models are serious contenders in the quest for efficient models. The architecture
that is used in the present network in conjunction with the training set produced
moment predictions which are in many respects superior to the HB data. What
limits the NN method is the need to keep the applications inside the training space
in addition to the necessity for substantial computing power. Neural networks can
be numerically cumbersome. Further research is obviously warranted, both in
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applying the technique to other muscular systems and in employing improved NN
architectures. It is to be expected that, with increased computational power, NN
models may become successful contenders in the quest for reliable and efficient
neuromuscular models.

APPENDIX

List of Symbols

{B1}—Intermediate (hidden) layer bias vector (n 3 1)
{B2}—Output layer bias vector (1 3 1)
CE—Contractile element of HB model
FCE —Force of the CE
Fm—Muscle force
Fmax—Maximal force of the CE
FPE—Force of the PE
FPEmax—Maximal force of the PE
FSE—Force of the SE
FSEmax—Maximal force of the SE
{H}—Intermediate (Hidden) layer output vector (n 3 1)
{I}—Input vector (7 3 1)
fFL—Force–length dimensionless function
fFV—Force–velocity dimensionless function
L0—Resting length of the CE.
LCE—Length of the CE
DLPE—PE extension
DLPEmax—Maximal PE extension
DLSE—SE extension
DLSEmax—Maximal SE extension
Mm—Moment applied by a muscle on the joint
Mnet—Total net moment applied by all the muscles on the joint
n—Number of neurons in the intermediate (hidden) layer (size of the layer)
{O}—Output vector (1 3 1)
{Õ}—Output vector (1 3 1) approximation during the NN training
PE—Parallel element of the HB model
PEsh—PE shape function parameter
SE—Serial element of the HB model
SEsh—SE shape function parameter
SSE—Sum squared error
U—Activation level (^0, 1&)
V0—Maximal velocity of the CE at maximal activation level
VCE —Lengthening or shortening CE velocity
Vmax—Maximal velocity of the CE at specific muscle activation
[W1]—Intermediate (hidden) layer weighting matrix (n 3 7)
[W2]—Output layer weighting matrix (1 3 n)
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