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Département de Génie Mécanique et Automatique, LGCGM EA 3913, Institut National des Sciences Appliquées (I.N.S.A.) de Rennes,
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Abstract

The balancing of robotic systems is an important issue because it allows significant reduction of torques. However the
literature review shows that the gravity balancing of robotic systems is carried out by weightless springs. For many bal-
ancing schemes it is the source of errors.

This paper deals with an analytically tractable solution for the gravity balancing considering the spring mass. For this
purpose, the relationship between the stiffness coefficient of the spring and its mass is provided. Then this relationship is
introduced into the balancing equation and spring elastic force is determined taking into account its mass. For zero length
springs, the stiffness coefficient of the springs is determined from a quadratic equation and for non-zero length springs from
a cubic equation. In this way, an exact balancing of gravitational forces is achieved, which allows improving the balancing
accuracy of robotic systems.

The efficiency of the suggested approach is illustrated by numerical examples. An application to the balancing of the leg
orthosis for robotic rehabilitation is also presented.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Balancing of mechanisms is a well-known research field, which finds practical applications in high-speed
machines, machine-tool industry, robotics and in many other branches of industry. Despite its ancient history
[1–3], mechanism balancing theory continues to develop and new approaches and solutions are constantly
being reported. A new field of its applications is the robotic rehabilitation [4–7] and the parallel mechanisms
[8–13].

The aim of present study is the balancing of gravitational forces of robotic systems for minimization of
input torques. For this purpose different approaches and solutions have been developed and documented.
0094-114X/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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It can be carried out a systematization of these solutions by balancing means: counterweight, spring, pneu-
matic or hydraulic cylinder, etc. Taking into account that the suggested approaches may be applied in the
rehabilitation devices, we limit our literature review only by spring balancers. Previous work on the design
of spring balancers might be arranged in the following groups (Table 1):

A. Balancing by springs jointed directly with links (schemes A1–A6) [9,14–20].
B. Balancing by using a cable and pulley arrangement (schemes B1–B4) [21–26].
C. Balancing by using an auxiliary mechanism, which can be presented by three subgroups:
CI: Balancing by using an auxiliary linkage (schemes C1–C9) [27–33].

CII: Balancing by using a cam mechanism (schemes C10–C12) [34–36].

CIII: Balancing by using gear train (schemes C13–C14) [37,38].

The analysis of these studies showed that the balancing of robotic systems is carried out by weightless springs,
i.e. the mass of spring is neglected. In most cases of balancing by using a cable and pulley arrangement such a
approach is justified. The spring mass has not any influence on the balancing. However, for balancing by
springs jointed directly with links of robotic systems or balancing by using an auxiliary linkage it is necessary
to introduce the spring mass into balancing equations. Among several works, we can distinguish the study of
Simionescu and Ciupitu [27], in which the spring mass is included in the balancing equations. However it is
considered as a known parameter before the stiffness coefficient determination. It is obvious that by an iter-
ation approach or by a preliminary estimation it is possible to obtain any approximate value of the spring
mass and carry out a quasi-complete balancing of the mechanical system. However, especially for the rehabil-
itation devices, it might be as well to achieve a perfect balancing.

The organization of this paper is as follows: The next section describes the balancing equation of a rotating
link with respect to the spring mass. Then the minimization technique is discussed, which takes into account
the spring mass. Finally, an application such as an approach for balancing of rehabilitation device is also
presented.
2. Improvement of balancing accuracy by taking into account the spring mass

The balancing of the gravitational forces of a link (1), which rotates around a horizontal axis, is schemat-
ically shown in Fig. 1. In this scheme, for weigh balancing a helical spring (2), jointed between a point A of the
link and a fixed point B, is used. The movable co-ordinate axis system x1Oy1 attached to link 1 was chosen so
that the point A is upon the Ox1 axis.

The unbalanced moment can be expressed as follows:
Mu ¼ Mg þMb ð1Þ
where Mg is the moment of the gravitational forces, Mb is the balancing moment of the elastic force of the
spring.

For the cancellation of the unbalanced moment it is necessary to achieve the following condition:
½m1s1 sinðuþ wÞ þ m2Ar sin u�g þ F S
ðX BY A � X AY BÞ

l
¼ 0 ð2Þ
where m1 is the mass of the rotating link, s1 ¼ lOS1
is the distance of gravity center S1 from axis O, u is the

angle between Y-axis and x1-axis, w is the angle between the axis x1 and OS1, m2A is the concentrated point
mass of the spring situated at the point Aðm2A ¼ m2s2=lÞ, m2 is the mass of spring, s2 ¼ lBS2

is the distance of
gravity center S2 of the spring from point B, l = lAB the length of the spring at current angle u,
FS = F0 + k(l � l0) is the elastic force of the helical spring, l0 is the initial length of the spring, F0 is the initial
force of the spring (the initial force is the internal force that holds the coils tightly together), k is the stiffness
coefficient of the spring, XA = r sinu, YA = rcosu, XB and YB are the co-ordinates of the points A and B in the
fixed co-ordinate axis system XOY, r = lOA is the distance of point A from axis O.



Table 1
Spring balancers
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Fig. 1. Balancing of a rotating link.
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The analysis of Eq. (2) shows that there are two solutions: (i) complete balancing when the zero free length
spring is applied, (ii) partial balancing when the non-zero free length spring is applied.
2.1. Zero free length springs

The balancing of rotating link is favored by the use of zero free length springs, which is distinguished by the
relationship F0 = kl0 or F0 = l0 = 0.

In this case, when w = 0 and XB = 0, Eq. (2) leads to the following condition:
k ¼ 1

Y Br
m1s1 þ m2

rs2

l

� �
g ð3Þ
Considering that the extension of the spring is regular and s2 = l/2, Eq. (3) can be written as
k ¼ 1

Y Br
ðm1s1 þ 0:5m2rÞg ð4Þ
The stiffness coefficient and the mass of the spring also depend on its geometric and material parameters [39]
k ¼ Gd4

8D3n
and m2 ¼

qLwpd2

4
ð5; 6Þ
where G is the Shear modulus calculated from the material’s elastic modulus E and Poisson ratio m (G = E/
2(1 + m)), d is the diameter of the wire that is wound into a helix, D is the mean diameter of the helix, n is
the number of active coils, q is the material mass density, Lw is the length of wire.

From Eqs. (5) and (6) we can obtain the relationship between the mass of the spring and its stiffness
coefficient
m2 ¼ qpLw

ffiffiffiffiffiffiffiffiffiffi
D3nk
2G

s
ð7Þ
On substituting this expression in (4), we obtain quadratic equation, from which we determine the stiffness
coefficient
k ¼ � q
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2

� u

r !2

ð8Þ
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where
q ¼ � qgpLw

2Y B

ffiffiffiffiffiffiffiffi
D3n
2G

s
and u ¼ �m1s1g

Y Br
ð9; 10Þ
taking into account that
� q
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2

� u

r
> 0 ð11Þ
Now let us consider the balancing by non-zero length springs.

2.2. Non-zero free length springs

There are two cases of the force-length characteristic of non-zero free length springs: with initial zero force
(F0 = 0) and non-zero initial force (taking into account that F0 5 kl0).

In this case the complete balancing of a rotating link is impossible. Thus, an approximate solution may be
applied.

For this purpose, we propose to minimize the root-mean-square (RMS) value of unbalanced moment
RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

ðMgi þMbiÞ2=N

vuut ; ð12Þ
where N is the number of calculated positions of rotating link.
For the minimization of the RMS, it is necessary to minimize the sum
� ¼
XN

i¼1

ðMgi þMbiÞ2 ! min
k

ð13Þ
or
� ¼ ðC1 þ C2

ffiffiffi
k
p
þ C3kÞ2 ! min

k
ð14Þ
where
C1 ¼
XN

i¼1

m1s1g sinðui þ wÞ ð15Þ

C2 ¼
XN

i¼1

0:5qpgrLw

ffiffiffiffiffiffiffiffi
D3n
2G

s0
@

1
A sin ui ð16Þ

C3 ¼
XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX B � r sin uiÞ

2 þ ðY B � r cos uiÞ
2

q
� l0

� �
X Br cos ui � Y Br sin uiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX B � r sin uiÞ
2 þ ðY B � r cos uiÞ

2
q ð17Þ
For this purpose, we shall achieve the condition
oD=ok ¼ 0 ð18Þ
from which we obtain the following cubic equation:
z3 þ az2 þ bzþ c ¼ 0 ð19Þ
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where
a ¼ 3C2=2C3 ð20Þ
b ¼ ðC2

2 þ 2C1C3Þ=2C2
3 ð21Þ

c ¼ C1C2=2C2
3 ð22Þ

z ¼
ffiffiffi
k
p

ð23Þ

The solution of equation (19) with real coefficient can be expressed in algebraic form by means of Viette-Cord-
ano method.

For determination of roots, first of all, we shall calculate
Q ¼ ða2 � 3bÞ=9 ð24Þ
R ¼ ð2a3 � 9abþ 27cÞ=54 ð25Þ
When R2 < Q3, cubic equation has three real roots, determined by the following expressions:
z1 ¼ �2
ffiffiffiffi
Q

p
cosðtÞ � a=3 ð26Þ

z2 ¼ �2
ffiffiffiffi
Q

p
cosðt þ 2p=3Þ � a=3 ð27Þ

z3 ¼ �2
ffiffiffiffi
Q

p
cosðt � 2p=3Þ � a=3 ð28Þ

t ¼ cos�1 R
ffiffiffiffiffiffi
Q3

q� ��
3

� 	
ð29Þ
When R2 P Q3, general cubic equation case has one real root and two real roots for confluent case.
For determination the complex roots, it is necessary to calculate
A ¼ �signðRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � Q3

q
3

r
ð30Þ

B ¼ Q=A ðif A 6¼ 0Þ and B ¼ 0 ðif A ¼ 0Þ ð31Þ
The real root is
z1 ¼ Aþ B� a=3 ð32Þ

In the case, when A = B, the complex roots become the real roots
z2 ¼ �A� a=3 ð33Þ

After determination of z, we determine the stiffness of the spring (Eq. (23)) taking into account that z > 0.

3. Numerical examples and error analysis

For illustration of the suggested approach let us consider numerical examples. Numerical simulations were
carried out for the balancing of the rotating link with following parameters: m1 = 8 kg; s1 = 0.183 m; w = 0
and u 2 [2p/3; p]. The parameters of the fixed points of the spring are the following: YB = 0.16 m and
r = 0.3 m.

Firstly, this rotating link will be balanced by zero free length spring and then by non-zero free length spring.

3.1. Balancing by zero free length spring

The simple model of link balancing with weightless spring leads to the following parameters: k = 299 N/m;
F0 = 121 N.

Now let us balance the same link with zero free length spring taking into account its mass. The parameters
which characterize the selected spring are the following: G = 81,000 N/mm2, q = 7800 kg/m3, D = 0.04 m,
n = 80 and Lw = 10.38 m.

When the spring mass is included in the balancing equation we obtain k = 324.5 N/m and F0 = 131 N. The
mass of the spring is 0.8 kg.



Fig. 2. Balancing moments for two examined cases: (- - -) first model with weightless spring; (—) second model with spring mass.
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It should be noted that the parameters of the spring was selected, taking into account the admissible max-
imum extension and the spring index (4 6 D/d 6 15).

Fig. 2 shows the balancing moments for two examined cases. The error caused by neglect of the spring mass
is 8.3%.

3.2. Balancing by non-zero free length spring

Now we consider the same problem with F0 = 0 and l0 = 0.3 m. The simple model of link balancing with
weightless spring leads to k = 990 N/m. The spring with such stiffness and the selected geometric parameters
(with Lw = 8 m) has 1.1 kg weight. This weight, which is neglected in the simple model add some unbalanced
moment (Fig. 3).

Fig. 4 shows the theoretical values of the unbalanced moment and the effective values of this moment with
spring mass.
Fig. 3. Moment of the gravitational forces and the balancing moment of the spring elastic force: (- - -) moment of the gravitational forces
for first model with weightless spring; (—) moment of the gravitational forces for second model taking into account the spring mass; (- Æ -)
balancing moment with k = 990 N/m.

Fig. 4. Theoretical values of the unbalanced moment (- - -) and the effective values of this moment with spring mass (—).
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The obtained results showed that the maximum value of the theoretical unbalanced moment is 1.81 N/m
and the maximum value of the effective value (with spring mass) is 3.2 N/m.

Let us balance now the same link taking into account the spring mass. With the same parameters selected
for our first example, from (15)–(17) we obtain C1 = 88.454, C2 = 0.316, C3 = � 0.089 and the following cubic
equation:
Fig. 5.
spring
z3 � 5:3z2 � 989:7zþ 1748:8 ¼ 0 ð34Þ
with Q = 333 and R = �5.3.
Thus R2 < Q3, we have three real roots determined by (26)–(29): z1 = 1.76, z2 = 33.38 and z3 = � 29.84.

Taking z = z2, we determine the stiffness of the spring k = 1114 N/m.
The spring with such a stiffness and the selected geometric parameters has 1.16 kg weight.
Fig. 5 shows the effective unbalanced moment due to the weights of the rotating link and spring, as well as

the balancing moment of the spring with k = 1114 N/m.
Fig. 6 shows the effective values of the unbalanced moment when the mass of the spring was taken into

account in the balancing equation.
Thus, in this case, the maximum value of the effective unbalanced moment is 1.86 N/m, which shows that

significant improvement in balancing performance can be achieved through the use of the suggested approach.
It should be noted that the minimization of the function (14) was carried out by only one parameter: the

spring stiffness. However this approach can be further optimized for spring connection points and other
parameters of spring such as free length, i.e.
� ¼ ðC1 þ C2

ffiffiffi
k
p
þ C3kÞ2 ! min

k;X B;Y B;r;w;l0

ð35Þ
The unknowns might be determined from the system of six equations obtained from the following condi-
tions: oD/ov = 0, v = k, XB, YB, r, w, l0. In this case, the solution cannot be achieved by analytical methods
and the unknowns can be only determined by numerical investigation.
Moment of the gravitational forces of the rotating link taking into account the spring mass (—) and the balancing moment of the
with k = 1114 N/m (- - -).

Fig. 6. Effective values of the unbalanced moment considering the spring mass.
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4. Application to the balancing of leg orthosis for rehabilitation devices

Let us consider the design of a rehabilitation device, which can support the weight of leg during walking
(Fig. 7). It is obvious that especially for the rehabilitation devices, it is hoped that the balancing will be perfect.

The following mass distribution and geometric parameters are considered for the leg [7]: l1 = 0.4322 m,
l2 = 0.421 m, m1 = mthigh = 7.39 kg, mshank = 3.11 kg, mfoot = 0.97 kg, m2 = mshank + mfoot = 4.08 kg, lOS1

¼
0:41l1, lDS2

¼ 0:44l2. It should be noted that for two links design example m2 consists of mass of the shank
and the foot.

Let us consider the exact balancing of the leg with zero free length spring. For this purpose let us substitute
mass m1 of link 1 by two concentrated masses m1O and m1D situated at the centers of joints O and D. Then we
determine the common center of mass of the link 2 with concentrated mass m1D
* No
sM ¼
m2lDS2

M
ð36Þ
with
M ¼ m2 þ m1lOS1
=l1 ð37Þ
where sM is the distance of the mass M from the center of joint D, lDS2
is the distance of the center of S2 from

the center of joint D.
Thus, the masses of moving links are replaced by two masses: m1O, which is fixed and M situated at the

point sM.
Now we connect a zero free length extension spring with the body at the point B and with the link 2 at the

point A, and a compression spring with the body at the point O and with the link 2 at the point A. Please note
that the point A coincides with the center of masses sM.

Let us balance this system by considering the potential energy. The potential energy of the system can be
written as
V ¼ V g þ V S1 þ V S2 ð38Þ
V g ¼ �½M þ 0:5ðmS1 þ mS2Þ�glOA sin b ð39Þ
V S1 ¼ 0:5kS1l2

AB ð40Þ�

V S2 ¼ 0:5kS2l2
OA ð41Þ
where b = \XOA, mS1 and mS2 are the masses of the springs, lOA and lAB are the distances between the cor-
responding points, kS1 = k and kS2 = �k. Note please that k is the stiffness coefficient of springs, which is the
same for both springs.

On substituting
l2
AB ¼ l2

OB þ l2
OA þ 2lOBlOA sin b ð42Þ
in Eq. (40) and after Eqs. (39)–(41) in (38), we get
V ¼ ½klOB �Mg � 0:5gðmS1 þ mS2Þ�lOA sin bþ 0:5kl2
OB ð43Þ
where lOB is the distance of point B from axis O.
Thus, the potential energy becomes constant when the coefficient of sinb and lOA is zero, i.e.
klOB �Mg � 0:5gðmS1 þ mS2Þ ¼ 0 ð44Þ
This expression taking into account Eq. (7) can be rewritten as
Mg þ 0:5gp
ffiffiffi
k
p

q1Lw1

ffiffiffiffiffiffiffiffiffiffi
D3

1n1

G1

s
þ q2Lw2

ffiffiffiffiffiffiffiffiffiffi
D3

2n2

G2

s0
@

1
A� klOB ¼ 0: ð45Þ
te please that it is the potential energy for zero free length spring.



Fig. 7. Balancing device for the leg of a walking person.
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Thus, by using two springs with parameters G1 = G2 = 81000 N/mm2, q1 = q2 = 7800 kg/m3, D1 = D2 =
0.4 m, n1 = 66, Lw1 = 8.6 m, n2 = 62, Lw2 = 7.8 m, we obtain kS1 = 522 N/m and kS2 = � 522 N/m and the
potential energy of the system becomes constant for all possible configurations, i.e. zero torques are required.
In this way, an exact balancing of gravitational forces is achieved, which allows improving the balancing accu-
racy of rehabilitation devices.

5. Conclusion

The previous methods of gravity balancing of robotic systems presented in literature are limited by balanc-
ing through the use of weightless springs. In this paper, we had presented a new analytical approach to gravity
balance considering the spring mass. For this purpose, the relationship between the stiffness coefficient of the
spring and its mass is provided. Then this relationship is introduced into the balancing equation and the spring
elastic force is determined by taking into account its mass. The both zero and non-zero free length spring
designs were discussed. For zero length spring, the stiffness coefficient of the spring is determined from a qua-
dratic equation and for non-zero length springs from a cubic equation. In the case of non-zero free length
springs, the optimization was performed, which gave spring stiffness coefficient that minimizes the root-
mean-square value of the torque at the joint.

The errors in gravity balancing due to the spring mass were also examined. It was shown that the mass of
the balancing spring increases the unbalanced moment and it cannot be neglected. A numerical example was
presented, which showed that the error caused by neglect of the spring mass can be reach until 8%.

In study [6] it was noted that the errors due to the practical restrictions and assumptions were 10–20%. We
showed that the errors due to the spring mass are significant and for many balancing schemes the balancing
accuracy can be increased by considering the spring mass.

A new balancing scheme for a rehabilitation device, which can support the weight of leg during walking,
was proposed. It consists of two springs with the same stiffness coefficients, which are connected with the
shank of the leg. It was shown an application of the improved balancing to the suggested system for a reha-
bilitation device. Future works concerning this study will be devoted to the development of a prototype and
experimental verification of the obtained results taking into account not only the spring mass but also friction
force.

Finally, we would like to note that many publications were mainly focused on the theoretical aspects of
balancing. This paper sought to contribute practical considerations and it could be a useful tool for improve-
ment of the balancing accuracy of robotic systems.
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[9] I. Ebert-Uphoff, C.M. Gosselin, T. Laliberté, Static balancing of spatial parallel mechanisms – revisited, ASME Transactions. Journal

of Mechanical Design 122 (2000) 43–51.
[10] J. Wang, C.M. Gosselin, Static balancing of spatial three-degree-of-freedom parallel mechanisms, Mechanism and Machine Theory

(34) (1999) 437–452.
[11] A. Russo, R. Sinatra, F. Xi, Static balancing of parallel robots, Mechanism and Machine Theory (40) (2005) 191–202.
[12] S. Foucault, C.M. Gosselin, Synthesis, design and prototyping of a planar three degree-of-freedom reactionless parallel mechanism,

ASME Transactions. Journal of Mechanical Design (126) (2004) 992–999.
[13] A. Fattah, S.K. Agrawal, On the design of reactionless 3-DOF planar parallel mechanisms, Mechanism and Machine Theory (41)

(2006) 70–82.
[14] N.A. Lakota, L.N. Petrov, Manipulators for assembly tasks. Automation of assembly tasks, Moscow, 1985, pp. 137–153.
[15] J.L. Herder, Energy-free systems, Theory, conception and design of statically balanced mechanisms, Ph.D. thesis, Delf University of

Technology, 2001.
[16] V.P. Maksimov, V.A. Moiseenkov, Manipulator pivoted arm counterbalancing mechanism, Patent SU617255, July 30, 1978.
[17] E.M. Tsarev, M.V. Popov, Manipulator, Patent SU1197832, December 15, 1985.
[18] D.A. Streit, E. Shin, Equilibrators for planar linkages, ASME Transactions. Journal of Mechanical Design (115) (1993) 604–611.
[19] J.L. Herder, Design of spring force compensation systems, Mechanism and Machine Theory 33 (1/2) (1998) 151–161.
[20] D.A. Streit, B.J. Gilmore, Perfect spring equilibrators for rotatable bodies, ASME Transactions. Journal of Mechanisms.

Transmissions and Automation in Design (111) (1989) 451–458.
[21] I.L. Vladov, V.N. Danilevskij, V.D. Rassadkin, Module of linear motion of industrial robot, Patent SU848350, July 23, 1981.
[22] N. Vrijlandt, J.L. Herder, Seating unit for supporting a body or part of a body, Patent NL1018178, December 3, 2002.
[23] I. Ebert-Uphoff, K. Johnson, Practical considerations for the static balancing of mechanisms of parallel architecture, Journal of

Multi-body Dynamics 216 (K) (2002) 73–85.
[24] G. Tuda, O. Mizuguchi, Arm with gravity-balancing function, Patent US4383455, May 17, 1983.
[25] M. Matthijsse, Device having a balanced pivotable arm, Patent US4296906, October 27, 1981.
[26] R.H. Nathan, A constant force generation mechanism, Transactions. Journal of Mechanisms, Transmissions and Automation in

Design (107) (1985) 508–512.
[27] I. Simionescu, L. Ciupitu, The static balancing of the industrial arms. Part I: Discrete balancing, Mechanism and Machine Theory

(35) (2000) 1287–1298.
[28] V.I. Kolotenkov, Balanced mechanism, Patent SU1114829, September 23, 1984.
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