A DESIGN AND CONTROL METHODOLOGY FOR
HUMAN EXOSKELETONS

by
John Ryan Steger
B.S. (Rice University) 2001
M.S. (University of California, Berkeley) 2003

A dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
n
Mechanical Engineering
in the
GRADUATE DIVISION
of the
UNIVERSITY OF CALIFORNIA, BERKELEY
Committee in charge:

Professor H. Kazerooni, Chair

Professor Paul K. Wright
Professor Sara Beckman

Spring 2006



UMI Number: 3228499

Copyright 2006 by
Steger, John Ryan

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 3228499
Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346



A DESIGN AND CONTROL METHODOLOGY FOR
HUMAN EXOSKELETONS

Copyright © 2006
by

John Ryan Steger



Abstract

A Design and Control Methodology for
Human Exoskeletons
by

John Ryan Steger

Doctor of Philosophy in Mechanical Engineering
University of California, Berkeley

Professor H. Kazerooni, Chair

Carrying a payload directly on the body is an unavoidable aspect of human life.
Human bipedal locomotion knows no equal: people travel on foot to virtually every
comner of the globe. Despite the efficiency and convenience of wheeled apparatus, uneven
terrain, enclosed environments and accessibility limits require virtually every transportation
task to include a phase in which material goods must be physically carried by a person. As
of today, no artificial intelligence or programmed behavior has been able to match a
human’s ability to balance and maneuver in unstructured real-world environments.

The Berkeley Lower Extremity Exoskeleton solves the problem of supporting and
carrying heavy loads on the body and allows a person to navigate unencumbered by the
weight of the payload they are carrying. The Berkeley Lower Extremity Exoskeleton is an
anthropomorphic and energetically autonomous robotic device comprised of two legs, a
backpack, a harness system and a control computer that provides a wearable load support

platform.



This thesis presents a control scheme called Sensitivity Amplification Control that
enables an exoskeleton to support a payload and shadow the movement of the wearer in
an intuitive and unobtrusive manner. The control algorithm developed here increases the
closed-loop system sensitivity to its wearer’s forces and torques without any measurement
from the wearer. This strategy requires an accurate dynamic model of the system but does
not require direct measurements from the human. The trade-off between not having
sensors to measure human action and the sacrificed robustness due to model parameter
variation is described. A modification to the controller is also explored that partially

circumvents this limitation.

Professor Hami Kazeroom

Dissertation Committee Chair



This thesis is dedicated to Rachel.
I could not have done this without your love

and support. I thank you with all of my heart.



Contents

Chapter 1: Introduction........coooiiiiiieinn 1
1 N U 113 L OO ORI PPPPPRRTPP 1
1.2 MOVAON ..ceiiiiiieeee ettt e e e et e e et e s s e e s 6
1.3 Thesis CONEIDULIONS ....v.veeeeeeeeeeeeemeesstesessaessssesessesesessesteesessmsesemeassssessssssnsesees 12
1.4 Thesis contents (OUtHNE) .....ccooriiiiiiiiiiiiiii e 13
Chapter 2: Human Biomechanics ........cccoocoieeiiiinnnnn 15
2.1  Human anatomy and physiology ........cccorimiiniiiniiiii 15
2.2 The @At CYClE wouieiiiiiiiiiei et 19
2.3 Joint MOtion and ENEIZETICS. ..c.eiieruerriiiirese et 22

Chapter 3: Exoskeleton Design and the BLEEX project... 30

3.1 History of load carrying exXoskeletons ..........ccoeireiininiiniini 30
3.2 The Berkeley Lower Extremity Exoskeleton (BLEEX)........ccoccociiiiniinnninins 34
3.3 Design of BLEEX ..ottt 35
Chapter 4: Sensitivity Amplification Control (SAC)......... 45
4.1  Simple 1 DOF system model........cccooviiiiiniininiiii s 47
4.2  Controller develOpment ........occiiiiiiiiiiiiieciee e 48
4.3 Robustness to model parameter UNCErtainty .....ccceeeviereiiceiniiiienninneiinieeeans 54
4.4 Pilot AYNQAIMCS .eoveeeereiiiier ittt 56
4.5 The Effect of pilot dynamics on closed loop stability ........c.cooenieiiiniinn 57

]



Chapter 5: Application of SAC Scheme on BLEEX......... 61

5.2  BLEEX dynamicC €qUations .........ccceeriuiiiiriunereeniteeeieeeesstesisesssescessineee e 63
5.3 Implementation of the SAC on the exoskeleton ........cooveeeiieiiininincnnnn 73
5.4 Performance analysis of the SAC .......cccoiriiiiiiiii s 84
Chapter 6: Conclusion..........ccccceiiiiiiiiniiiiieicieiiiceeee s 96
6.1  Sensitivity Amplification Control: A New Paradigm ......cooovveemiviininnni, 96
6.2 Lessons learned from powered exoskeletons ..., 97
6.3 Reducing complexity......ccooviiiiiiiiiiiiic e 97
6.4 Reducing power CONSUMPLIOI .....cociruiiiriiiuiireriieeeeirteeerreseibte s eeiae e 98
6.5 Improving pilot COMEOIt ......cccoiiiiiiiiiiii i 98
6.6  Extension to activities outside of walking .........cccoocviiiiiiiiiiiiniines 99
6.7 The future of human exoskeletons ..........ccccveiiiviiiiiiiniiiii e 100
Appendix A: BLEEX Control Software ......................... 109
Appendix B: BLEEX Proposed Testing Protocol........... 230

i1



List of Figures

Fig. 1-1 Illustration of the Berkeley Lower Extremity Exoskeleton (BLEEX) from the 2004 New York Times:

Year in 1deas [1] ..oeeveereeeeie ettt e 1
Fig. 1-2 Ant (Formicidae) SEM image showing an insect exoskeleton [3]. ..o 3
Fig. 1-3 The Berkeley Lower Extremity Exoskeleton (BLEEX) and pilot Ryan Steger.......c.cccevveiriennncnnnces 5
Fig. 1-4 Loads carried by various infa‘ntry units through history (adapted from [12]).....ccoccvvvrnininnnnnne 9

Fig. 1-5 Additional gear being added to U.S. soldier’s basic combat gear for fighting in urban environments

1. OO SO OO U OO U U TP PO Y SO PTSU P PP POPPSPO 9
Fig. 2-1 Body planes with human shown in the anatomical PosSition. ........cocoevereniiiiiii 16
Fig. 2-2 Limb segment and joint motion terminolOZY. .....coovveriiriirieiieiirei e s 16

Fig. 2-3 The distinction between the HAT and locomotor portion of the body is shown. Also, the location
of the load line for static standing is indicated. In the sagittal plane, the load line passes through the inner ear,
HAT CG, slightly posterior to the hip, anterior to the knee, and anterior to the ankle. The dimensions

given for the HAT CG position [25] and foot orientation [26] are based on a 50" percentile male. ............ 18

Fig. 2-4 Walking gait cycle. The time distribution (given as percentages) varies to some degree with the
walking velocity. The percentages shown represent an average walking speed of 1.3 m/s [29]. Also

indicated is the HAT CG path in the sagittal plane [28].........ccocoiiiiiiic s 20
Fig. 2-5 CGA sign conventions (adapted from [31].) coooooiriiiii e 22
Fig. 2-6 CGA data of ankle angle, torque, and power during a single gait cycle (data sources as indicted)...24
Fig. 2-7 CGA data of knee angle, torque, and power during a single gait cycle (data sources as indicted)....26

Fig. 2-8 CGA data of hip angle, torque, and power during a single gait cycle (data sources as indicted).....28

iv



Fig. 3-1 “Hardiman” exoskeleton built by G.E. in the 19607s {42]. «.cceooorermiiiiiiiiiii 30

Fig. 3-2 HAL-3 exoskeleton from the Univ. of Tsukuba [52] ..o 31
Fig. 3-3 “Human extender” upper body strength amplifier [60] ......cecorrmiiiininiiin 33
Fig. 3-4 BLEEX 3D CAD model and “as built” system cOmpOnents. ..........ocevvvermmneniiiminccines 35

Fig. 3-5 BLEEX degrees of freedom and actuation (an equivalent mass used in development is visible in

place of the backpack POWET SUPPIY)....oieriiiiriiiiet et 36
Fig. 3-6 Compliant BLEEX upper body harmess. ........ccoccretrmimiiiinciieii 37
Fig. 3-7 BLEEX o0t Zround COMEACt SENSOT. ....viuiririresiiritatestest ittt sttt 38

Fig. 3-8 Rigid attachment between human boot (left) and BLEEX foot via a quick-release cleat and binding

ITIECHIATIISITL, o oeeeeeeeeeeeeeee e e e e e ettt eere et e et bsaa s s s e e e atan steesaansssnseaassaantnan e st aessbbes sa s e st banbs nteasbs b estreb bt e aanasrnaans 39

Fig. 3-9 Global view of EXOLINK networked control system and the external GUI debug terminal

AdAPted FIOM [75]. oecierieieiice ettt bbb e b s 42

Fig. 3-10 EXOLINK RIOM photo and schematic. Each RIOM provides for 3 analog inputs (AIN), 1
analog output (AOUT), 6 digital inputs (DIG IN), 1 quadrature encoder input (ENC IN), and 2 network
communication ports (UP and DWN). Two integrated circuits handle processing (an FPGA from Xilinx
Inc.) and network communication (a transceiver from Cypress Semiconductor Inc.) respectively. The

corresponding sensors connected to the RIOM are indicated on the schematic representation. .................. 43

Fig. 4-1 Simple 1 DOF representation of an exoskeleton leg interacting with the pilotleg. ..o 48

Fig. 4-2 Block diagram showing the exoskeleton angular velocity as a function of the input to the actuators

and the torques imposed by the pilot onto the exoskeleton.........oooiiiii 48

Fig. 4-3 Negative feedback loop added to the block diagram of Fig. 4-2. C is the controller operating only

ON the eXOSKElEtOn SLAtE VAIIADIES. «ooveeeee i eeeeeetetiieeeisrieeeeeeeecvreeasaeeretasisaeeeeeanbaesostesnnresstesbnarirssenransnassnssnanes 52



Fig. 4-4 Block diagram of exoskeleton with positive feedback 100p. ....oorieceiiiiiiiiiii 53

Fig. 4-5 Block diagram representing the overall behavior of the exoskeleton. The upper feedback loop
shows how the pilot moves the exoskeleton through applied forces. The lower feedback loop shows how

the controller drives the eXOSKEIETOM. cooviiviiiiiieiiieii it ee e 56

Fig. 5-1 BLEEX Sensitivity Amplification Controller expanded to show inverse dynamics, sensitivity

amplification gain, and local control loop around an aCtUatOr. ........eoieeiiiiiniin 61
Fig. 5-2 Control loop showing major components as implemented in BLEEX Software. .........cccccceunnnn. 62
Fig. 5-3 Simplified gait cycle used as a basis for BLEEX dynamic equations........c.ocoocoinviniiininiinininiens 63

Fig. 5-4 Sagittal plane representation of BLEEX in the single support swing phase. The “torso” in the figure

includes the combined exoskeleton torso, payload, control computer, and power source...........ceevervnrcenn 67

Fig. 5-5 Partitioning of double stance BLEEX at the torso. The torso mass is split into left (772, ) and right

(Mg ) components. Also, the horizontal distances of the half torso CGs from the ankle joint are indicated.71

Fig. 5-6 Sagittal plane representation of BLEEX in the double support (left) and double support with one

redundancy (right) CONfIGUIAIONS. ..c..veuiririiuiniciee ettt et bbbttt 73

Fig. 5-7 Two possibilities for toe torque from the dynamic equations: A) shows the positive torque specified
by the dynamic equations and the ground reaction force that balances it, B) shows the case of a negative
torque at the toe, indicating that the exoskeleton is tipping forwards. Small values of negative toe torque can

be compensated for by muscles in the human toe, which generate Fiuman- . orevreirieiioiiiiiiniiiiins 76

Fig. 5-8 Bode plot and step response for second order low-pass filters used to smooth model transitions..... 81

Fig. 5-9 BLEEX hydraulic actuation SYSIEIML..........eeimimiiiiiieieet it 82

Fig. 5-10 Comparison of simulated (A) and actual (B) tracking performance. (A) is simulation data from [20]

and (B) is the tracking on the actual BLEEX hardware after tuning the MSS controller..........c.cocoeinins 84



Fig. 5-11 Comparison of walking between human CGA data and the BLEEX experimental data for the
ankle, knee, and hip joints. Plots of torque as a function of angle include push and pull actuator saturation

IS £OT T O EIICE «nnnnereeereeeeeeeeeeeesee e s e e seessssssseesieassesraseerenesaaessasaessassssaen saes naasaenaseaeeenaeaaerarsaessasaannaasneennnns 88

Fig. 5-12 Bode plot showing tracking performance of MSS controller...........cooviiniii 90

Fig. 5-13 Shows the position control block diagram used for the joints of the stance leg (ankle, knee, and

hip) when the exoskeleton is in hybrid BLEEX control mode. .....cocvveoiiniiiniiniiiiictecceis 94

Fig. 6-1 Second generation BLEEX system currently under development. .......cooviiiiniinniinea 101

vii



List of Tables

Table 2-1 Gait cycle (GC) with phases and corresponding function (percent of GC from [25] is indicated for

EACH PRIASE.) w.vurumrenere sttt e e r ettt ea e bbbt b L e 21

TaBLE ST et eeeeeeeerereeesesessesassasaaase s e ansntastessse s s nnnnsaeaeasaassssseeeeeeeae s ea bt ante s bR R R asae e e e s R b bnnbneaaeseennras 81

viii



Acknowledgments

I would like to thank my advisor, Professor Hami Kazerooni, for his vision and

determination in bringing the exoskeleton project to the Berkeley, for assembling
such an incredible team of dedicated engineers, and for inspiring each of us to dig
deep into engineering and tackle the hard problems. Your patience, support, and

guidance over the past five years have made me a better engineer.

Thanks to all of the members of the Berkeley Robotics and Human Engineering
Laboratory. Without your brilliance, dedication and teamwork none of this would
have been possible. Special thanks to Jean-Louis Racine for laying the groundwork
for almost every aspect of the exoskeleton project. Thanks to Andrew Chu and
Adam Zoss for transforming the concept of a human exoskeleton into a physical
reality. Thanks to Sung Hoon (Sunny) Kim, George Anwar, and Mamuda Abatcha
for designing the electronics and communication that brought the exoskeleton to
life. Thanks to Lihua Huang for her help with the control of the exoskeleton.
And, special thanks to all of the other incredible people that have taken part in

making this project a success.

ix



Chapter 1

Introduction

1.1 Thesis

This thesis develops the control and design techniques needed to
create a robotic device, called a human exoskeleton, which reduces
or eliminates the burden of carrying load on the body. The human
body and human bipedal motion provide an unsurpassed load
support and transportation platform in terms of versatility and

maneuverability in environments that are otherwise inaccessible to

wheeled transportation. Supporting a payload on the body is a

universal component of human life. For some soldiers, firefighters, Fig. 1-1 llustration of

the Berkeley Lower
and disaster recovery workers, payloads are a significant fraction of  Extremity Exoskeleton

(BLEEX) from the

one’s body weight and carrying them is both unavoidable and
2004 New York Times:

essential to their duties. Unfortunately, carrying heavy loads is not Year in Ideas [1]

only fatiguing, but also a potentially hazardous distraction and injurious activity.

A human exoskeleton is worn by a person and carries payload, such as a heavy
backpack, that would have otherwise been supported by the person’s own musculoskeletal
system (Fig. 1-1). To accomplish this, the exoskeleton must act so that it does not impede
the person’s behavior (e.g. standing, sitting, walking, running, etc.) and yet also act to
ensure that forces associated with the payload always travel through the exoskeleton
structure and not through the human body. An exoskeleton has the benefit of reducing

the fatigue associated with load carriage, allowing a person to carry greater loads over

1



longer time periods and distances. Additionally, a person wearing a load carrying
exoskeleton is less prone to develop injuries from stress to nerves, muscles, bones, and
joints that would be caused by carrying a heavy load unassisted [2]. These benefits come at
the cost of having a physical device in close proximity to the body that could require a
power source that needs replenishing, can physically malfunction and stop carrying load,
or inhibit the person in some situations or maneuvers. The goals of this thesis are as

follows:

1) Build a framework for controlling a lower extremity human exoskeleton that

ensures that it always carries the payload and never impedes the motion of the

human.

2) Demonstrate how this control strategy is applied to a real exoskeleton robot and
verify its performance and limitations both mathematically and through

experimentation with the real system.

3) Develop guidelines for designing the hardware and control of lower extremity
exoskeletons that strike a balance between robustness and performance by

incorporating control directly into the hardware design of the device.

In this thesis I develop and explore a control algorithm that assumes a preexisting
robotic system configuration: an assembly of links connected together by joints, acted
upon by force/torque actuators such as hydraulic cylinders or electric motors, and
outfitted with sensors that can feed information about the kinematic and dynamic state of
the robot back to a computer running the control algorithm. The control framework
provides the process for interpreting the information from the sensors and determining the

. <

appropriate commands for actuators.



What is a human exoskeleton?

In scientific terms, an exoskeleton refers to an insect
or crustacean’s hard outer structure (Fig. 1-2) that
protects it from the environment and provides structural

support for the organism [4]. We borrow from this

biological definition and classify a robot that is worn Fig. 1-2 Ant (Formicida¢) SEM”*

externally by a person and that acts to carry a payload image showing an insect

exoskeleton [3].
and/or provide structural support for the person, as a
human exoskeleton. While the 1* and 2" generations of exoskeletons developed in our
research group and discussed in this thesis were not designed to provide armor or

environmental protection for the wearer, future versions currently being designed are

incorporating these insect exoskeleton benefits.

Unlike unrealistic fantasy-type concepts fueled by movie makers and science fiction
writers, the lower-extremity exoskeleton conceived at Berkeley (Fig. 1-3) is a practical
load-carrying platform that, in operation, should be transparent to the user. It is not
intended to impart super-human strength or speed. The reasons for this are: 1) eliminating
the burden of load carriage solves a real and current source of injury and fatigue in a wide
variety of applications; 2) a device capable of augmenting human strength implies that the
person wearing the exoskeleton could be put situations that would cause bodily harm if
the exoskeleton were to fail and stop supporting the load; 3) an exoskeleton intended to
enhance speed would necessarily force the human musculoskeletal system to move at

speeds the body was not designed to handle.

* Scanning Electron Microscope (SEM)



Exoskeleton control framework

The control framework developed in this thesis is called Sensitivity Amplification
Control (SAC) and is designed to ensure that the exoskeleton moves in response to forces
and torques applied by the user. At the same time, the SAC scheme seeks to maintain a
comfortably low interaction force between the user and the exoskeleton. This control
framework does not rely on any force sensing at human-machine interface points. The
result is that with the controller operating, the exoskeleton seems to “shadow” human
movement without the user having to make a conscious effort to control it (no joystick,
steering wheel, etc.). The SAC scheme is unique in that it relies on human’s own closed
loop motor control (muscles, nervous system, brain, and kinesthetic feedback) to stabilize

the combined human-machine system.



Fig. 1-3 The Berkeley Lower Extremity Exoskeleton (BLEEX) and pilot Ryan Steger.

5



Application of control framework on exoskeleton hardware

This thesis demonstrates the application of the SAC scheme on exoskeleton hardware
developed in the Berkeley Robotics and Human Engineering Laboratory between 2001
and 2005. The process of applying the SAC scheme to a multi-degree-of-freedom system
is covered and experimental results are presented in which the SAC scheme allows a

person wearing the exoskeleton to maneuver freely while it supports a heavy payload.

Incorporating controls knowledge into hardware design

Simplification and robustness became primary goals for the exoskeleton project once
the overall concept of payload support via a powered robotic suit had been successfully
demonstrated. To this end, the design goals for the exoskeleton shifted to favor fewer
actuators, less power consumption, and fewer sensors and control electronics. By
combining observations from the biomechanics of human motion and walking with the
ability to experimentally program the actuators of the exoskeleton hardware to simulate
alternate mechanical behaviors and impedances, it was possible to create new mechanical
designs for the exoskeleton with the behavior of the SAC scheme implicitly embedded in
the mechanical hardware. A case study of this process is presented in which a passive (un-

powered) exoskeleton ankle is designed and experimentally tested.

1.2 Motivation

Many tasks require transporting a load in situations where a wheeled vehicle or
external apparatus (e.g. a sled or cart) is cumbersome or simply not feasible. These
situations sometimes require that a person’s hands be free to carry other gear or to perform
a task. These situations range from everyday tasks such as navigating inside buildings that

include stairs and narrow passages, to more extreme environments such a those faced by a



soldier in combat on uneven difficult terrain. In each of these situations a person typically
carries gear attached to the body with a harness in the case of a backpack, through a waist
belt pack, or some other system that secures load to the body. Designing robotic systems
that combine the flexibility of having a payload attached closely and unobtrusively on the
body with the ability to reduce or eliminate the physical exertion and energy expenditure
required to support the load is the focus of the human exoskeleton research in the

Berkeley Robotics and Human Engineering Laboratory.

Since the late 1960’s load-carrying, and in some cases strength-enhancing, human
exoskeleton devices have been studied with limited success [5]. For each attempt, which
will be discussed in greater detail in Chapter 3, technological limitations prevented the
integration of sensing, control, and actuation into a practical, safe, and autonomous
system. Advances in computing, sensing, and power supply technology lead our group to
re-examine the idea of creating a human exoskeleton in late 2000. By mid 2003 the first
generation prototype of the Berkeley Lower Extremity Exoskeleton (BLEEX) had been
completed and included the necessary high performance computing, sensing, actuation,
and energetically autonomous operation to make a practical human exoskeleton.
Controlling this robot such that it moved in concert with the human, did not impede the
human’s motion, and still supported the payload was the focus of my research that led to

the development of the Sensitivity Amplification Control scheme.

Classical control theory employs feedback of information about the state (current, past,
and/or predicted output) of a given plant in order to choose control commands that cause
the plant to behave in a specific manner (such as track a desired parameter like force,

position, or temperature). In practice this translates to decreasing the sensitivity of the



output of a plant to external disturbances such a noise, friction, or un-modeled dynamics
on the system. This classical theory has been successfully applied to commercial robotic
systems worldwide because it allows them to perform repetitive tasks with precision and
accuracy over long periods of time. This is a result of the controller’s feedback mechanism
making the robot insensitive to variations in its environment, mechanical performance or

task at hand.

In contrast, a human exoskeleton has goals that are quite different from classical
control. Because the Berkeley exoskeleton was designed without sensors attached directly
to the human, the controller must make the exoskeleton very sensitive to disturbances
caused by motion of the user. In other words, the exoskeleton controller needs to amplify
sensitivity to the wearer’s motion. Achieving this sensitivity amplification without causing
controller instability required considering the role of both the feedback loop formed by
the exoskeleton controller and the feedback loop through the human’s own nervous
system. While there are significant costs related to modeling and model parameter
robustness associated with this approach (discussed in Chapter 4), the Sensitivity
Amplification Control scheme represents a new approach to the control of human-

machine systems.

Soldier load carriage

The lower extremity exoskeleton project at U.C. Berkeley was funded primarily
through a grant from the Defense Advanced Research Projects Agency (DARPA), which
is a research funding organization under the U.S. Department of Defense. A U.S. Aﬁny
infantry soldier was the “customer” for the exoskeleton and the target as far as design
parameters were concerned. Soldiers routinely carry heavy loads over long distances and

numerous publications exist linking heavy load carriage directly to military losses, poor

8



performance and unnecessary deaths [6-9]. =
g =
Army guidelines suggest a maximum 5= 2§ _E
223 ¢
rucksack payload for combat of 22kg and gn g § g EE & E g
2 3 ~ & £ EE % § £ 5
for an approach march of 33kg [10]. s g 2 g = g B =92 g% o D e
FTOEBE g g.éggég:) D
However, the real average loads measured = T2 gL F T A
I3 Esez20
P 9 N ] (%)
on soldiers in the field were 40kg and g {5 & & EO 43
i
. 10
73kg, respectively [10]. Based on 50®
0

percentile U.S. soldier body mass [8], these

Fig. 1-4 Loads carried by various infantry units
measured values represent carrying 55- through history (adapted from [12}).
100% of body weight as additional payload. As a reference point, accepted “safe” backpack
loads are considered to be 33-40% of body weight [11]. The loads carried by soldiers are

not only fatiguing, but represent a real threat to long term health. The need for a device

or method that reduces the load on a soldier is overwhelmingly clear.

Fig. 1-5 Additional gear.b‘eing added to U.S. soldier’s basic

combat gear for fighting in urban environments [13].



Fig. 1-4 shows a chronological history of loads carried by various infantry units
throughout history. Despite significant advances in lightweight materials technology over
the past 100 years, the total weight carried has continued to rise. Even as far back as
World War I, soldiers were carrying over 85% of their body weight on their backs [9].
According to [13], recent changes in the nature of combat from large battles with
mechanized rolling equipment to urban door-to-door cémbat is leading to even higher
payloads. Fig. 1-5 depicts gear for urban combat that is currently being added to the U.S.

soldier’s basic combat load, indicating that the load carriage problem is worsening still.

Non-military applications

Exoskeletons have numerous applications that extend beyond soldier load carriage. It
can provide disaster relief workers the ability to carry tools, food, and medical supplies
into areas no longer accessible to vehicles. The enhanced load carrying ability could allow
medical and aid workers to carry injured people from disaster sites, enabling them to be
one-person ambulances. Similarly, an exoskeleton could allow firefighters to carry
breathing apparatus and life-support equipment with less fatigue and for longer periods of
time. Simplified versions could even one day offload the weight carried by recreational

backpackers and hikers.

From an industrial perspective, an exoskeleton could be employed in almost any
scenario where heavy parts, packages or containers need to be carried between
workstations, loaded on and off vehicles or delivered to various locations. One could
imagine mail carriers using an exoskeleton on routes that require hand delivery and door-
to-door service. Commercial and residential movers could use exoskeletons to reduce the

load and consequent injury in their spine, hips, and legs.

10



Movie and TV film crews could make use of an exoskeleton to provide a stable, yet
mobile platform for heavy camera, video, and microphone equipment. As a consumer
product, a simple exoskeleton might even be worn by parents to allow them to carry their
children on their back without feeling the weight. Provided the exoskeleton is properly
designed and does not encumber a person’s normal actions, any scenario in which weight
must be physically transported could potentially be made less injurious and less difficult

through the use of a human exoskeleton.

Orthotic and prosthetic applications

At this point only applications of an exoskeleton to healthy individuals as a means of
augmenting their ability has been explored. It is also conceivable that an exoskeleton
could be used as an orthotic device. An orthotic is a device designed to support, correct,
or align abnormal or weakened joints and limbs [14]. The exoskeleton’s rigid structure
could serve as a platform for adding orthotic support to the lower limbs or back. While it
would require significant modification, the exoskeleton could also be used as a prosthetic
device for individuals who are missing portions of a limb or have lost components of
lower limb function. The changes that would need to take place to create a prosthetic
exoskeleton would include altering the connection between the human and the
exoskeleton such that, rather than support a payload, the exoskeleton actually supports a
portion of the person’s own body weight. Additionally, the control scheme would have to
be altered because the SAC architecture assumes that the person has voluntary control of
each joint. Possibilities for controlling a prosthetic exoskeleton include using feedback
from an opposite sound limb (“echoing” or mirroring the behavior of the sound limb
with the appropriate phase offset), measuring residual nerve activity, or using muscle

activity of another portion of the body to control the exoskeleton leg. These control

11



techniques have been successfully applied in various research and commercial prosthetic

devices [15-19].

1.3 Thesis contributions

The development of BLEEX and subsequent generations of exoskeletons in the
Berkeley Robotics and Human Engineering Laboratory has been a large undertaking
involving many stakeholders. Graduate students, my advisor Prof. Hami Kazerooni, staff
engineers, undergraduate assistants, and outside consultants have all contributed to various
aspects of the project. I became involved in an auxiliary role on the project at its
beginning in 2001 while completing my Master of Science thesis project on the design
and control of a haptic feedback device in the same lab. In 2003 I began this thesis work
when I took over as lead of the control portion of the Berkeley Lower Extremity

Exoskeleton project.

When I began work on control, the basic mechanical design of BLEEX as seen in Fig.
1-3 had been completed and implementation of an early version of the exoskeleton
control and interface software (developed by a previous Ph.D. student, Jean-Louis Racine

[20]) had begun.

My contribution to this portion of the project was to complete the testing and
debugging of the software and bring the exoskeleton to the state that it could safely and
reliably be coupled with a human operator. Once this was complete, BLEEX became the
platform on which I developed and tested the Sensitivity Amplification Control scheme
that, for the first time, enabled a person to wear the exoskeleton and walk freely while it
supported the payload. Near the end of my graduate studies I began work as part of a team

designing a significantly lighter, more capable, and less power intensive 2™ generation

12



BLEEX. As part of this work, I have applied my experience with BLEEX control as a

design guideline and I am responsible for the passive foot-ankle-shank component of the

current 2 generation BLEEX.

1.4

Thesis contents (outline)

A short description of each chapter is given below:

Chapter 2 gives an overview of human biomechanics. In particular, this chapter
focuses on the kinematics and dynamics of human walking as they apply to

exoskeleton design and the biomechanics of load carriage.

Chapter 3 provides a history of exoskeleton research, related robotics projects, and
the Berkeley Lower Extremity Exoskeleton project. A categorization that
demonstrates how these projects fit into the larger field of robotics research is
presented. Also, control strategies used for previous exoskeleton related research

are discussed.

Chapter 4 develops the Sensitivity Amplification Control scheme by examining a
simple one-degree-of-freedom model of an exoskeleton leg. The role of the
human’s dynamics are then added to the analysis and the overall stability of the

controller is discussed.

Chapter 5 covers the implementation of the SAC scheme on the actual multi-
degree-of-freedom BLEEX hardware. Results from experiments with the
exoskeleton on a test-stand and in actual walking situations are discussed. A
modification to the control is presented which circumvents some of the issues of

parameter robustness issues described in chapter 4.

13



e Chapter 6 concludes with a discussion of the results and offers direction for future

investigation.

14



Chapter 2

Human Biomechanics

Before discussing designing a robot that can walk with a person, it is important to
understand how a human walks unassisted by an exoskeleton. How do the limbs move?
How does we progress forward while walking? How do we transfer load between our
feet? How much do we alter our behavior when carrying a heavy load? “Walking” implies
a continuous motion, but questions of how we initiate motion, how we come to a stop,
how we ascend and descend stairs and ramps, and perform other maneuvers is also
important to take into account if an exoskeleton is to do these same things while
connected to our body. Nonetheless, “walking” is still the baseline performance test we
have used for designing exoskeletons and the terminology, biomechanics and energetics of

walking will all apply to these other cases.

2.1 Human anatomy and physiology

Biomechanics literature uses a common terminology to describe the morphology of
the body. All terms reference the body when it is in the orthograde or “anatomical position:”
standing erect, arms at the sides, facing forward [21]. The body is divided into a set of
three orthogonal planes: frontal (or coronal), transverse, and sagittal (Fig. 2-1). The mid-sagittal
plane is also referred to as the median plane. Superior refers to the direction towards the
head (up) and inferior refers to the direction towards the feet (down). Anterior refers to the
front of the body and posterior refers to the back. Medial is the direction pointing toward
the midline of the body (the intersection of the mid-sagittal and frontal planes), and lateral

points away from the midline. Proximal indicates the region of a body part closest to the

15



trunk and distal indicates the opposite direction, away from the trunk.

MID-SAGITTAL

SUPERIOR ASPECT FRONTAL (CORONAL)

{ | TRANSVERSE
! PLANE

POSTERIOR

INFERIOR ASPECT
Fig. 2-1 Body planes with human shown in the anatomical position.

HIP
HIP

EXTENSION
FLEXION
KINEE
FLEXION
ANKLE

DORSI-FLEXION

ANKLE
PLANTAR-FLEXION
Fig. 2-2 Limb segment and joint motion terminology.

16



For the purpose of this thesis, imb segments, joints, and directions will be referred by
the terminology in Fig. 2-2. Other joint motions not indicated in the figure include
medial and lateral rotation of the foot, ankle, shank, thigh and hip in the transverse plane.
Also, ankle and hip rotation in the frontal plane (about axes that intersects the
flexion/extension axes) is called abduction when the foot or leg is swinging away from the
mid-sagittal plane and adduction when the foot or leg is swinging toward the mid-sagittal

plane.

The joint degrees of freedom shown in Fig. 2-2 represent a small subset of the actual
degrees of freedom found in the human body. However, they are sufficient to understand
the basic mechanics of human walking. When necessary, detail about specific additional
degrees of freedom will be provided. Thorough reviews of human physiology and

degrees-of freedom can be found in [22, 23] and [24].

17



HAT center of gravity and the body weight vector or “load-line”

STANDING v WALKING

HEAD
ANDTORSO

(HAT)

LOAD LINE
Fig. 2-3 The distinction between the HAT and locomotor portion of the body is shown. Also, the location

of the load line for static standing is indicated. In the sagittal plane, the load line passes through the inner ear,
HAT CG, slightly posterior to the hip, anterior to the knee, and anterior to the ankle. The dimensions

given for the HAT CG position [25] and foot orientation [26] are based on a 50% percentile male.

Because this thesis deals primarily with the mechanics of walking, the convention from
locomotion biomechanics of treating the upper body as a lumped mass is used [25]. The
body is divided into two sections: the locomotor, which includes the legs and feet, and the
HAT, which stands for Head And Torso. The HAT refers to this upper body lumped
mass and also includes the neck, pelvis, arms, and hands. The HAT makes up
approximately 70% of body mass [27]. When standing still, the sagittal plane location of
the HAT center of gravity (CG) is in the superior half of the body, approximately 1/3* of

the distance between the hip joint and the top of the head [25].

An important concept illustrated in Fig. 2-3 is the body weight vector or load line.

18



The load line is the vector from the HAT CG down through the floor and in line with
the equal and opposite vector of the ground’s reaction force. The position of the load line
in the sagittal plane relative to the body determines whether the person is balanced (the
load line must pass through the ground contact patch), what magnitude of torques are
necessary at each joint to support the body, and whether a joint is in a self-locking or
“over-center” configuration. The over-center condition typically refers to the knee joint.
If the load line passes anterior to the knee joint in the sagittal plane, the effect of the body
weight is to straighten the leg into a locked position. This is advantageous in many
scenarios because no muscle torque (i.e. energy) is needed to maintain knee angle and the
knee is self-stabilizing. In the transverse plane for the static standing case, the feet are
typically separated slightly and angled outwards (for a 50" percentile male, the separation is
approximately 9 cm and the outward angle or toe-out is 7° [25].) The load line would pass

halfway between the feet in the transverse plane.

2.2 The gait cycle

Walking, or more generally, locomotion, is composed of a repetitive sequence of limb
movements. Forward movement is accomplished by shifting the weight onto one foot,
swinging the opposite leg through the air and striking the ground ahead of the body,
transferring the weight to the foot that was swinging, and then reversing the roles. This
sequence is called a gait cycle (GC) and walking is composed of a smoothly connected series
of gait cycles. Most biomechanics literature identifies the moment one foot strikes the
ground as the “start” of the gait cycle, in large part because this impact is a readily
measured data point in the laboratory [25, 28]. The impact is typically on the heel of the
foot and this point in the gait cycle will be referred to as heel strike in this thesis. Some

individuals strike the ground either flat footed or with the toe first. For this reason, some

19



biomechanics texts may refer to the beginning of the gait cycle by the more general term
initial contact [25]. One full gait cycle refers to the interval between two successive heel-
strikes on the same foot. The term stride is also used in some sources to indicate the
period between two successive heel-strikes. A step refers to the transition from one foot

heel-strike to the other foot heel-strike (there are two steps in each stride).

The gait cycle is divided into functionally distinct sections referred to as phases. The
most basic division is between the stance phase when a leg is on the ground, and the
swing phase when it is in the air. Because the gait cycle is a full step by both the right and
left legs, there are two stance and two swing phases in each gait cycle. For normal

individuals, the gait cycle is symmetric for the left and right legs. The gross normal

distribution for timing of the phases is 60% stance and 40% swing [25].

10% 10%
40% 40%
DOUBLE DOUBLE
STANCE SINGLE LIMB STANCE STANCE SWING

Fig. 2-4 Walking gait cycle. The time distribution (given as percentages) varies to some degree with the
walking velocity. The percentages shown represent an average walking speed of 1.3 m/s {29].
Also indicated is the HAT CG path in the sagittal plane [28].

The stance phase of the gait cycle is further subdivided into two double stance phases
(initial double stance and terminal double stance), and a single foot stance phase while the
opposite leg is in swing. Double stance refers to the period when both feet are touching

the ground. The timing distribution for the stance phases is 10% each for the two double

20



stance phases where both feet are on
the ground and 40% for the single
stance where only one foot is on the
ground. During the double stance
phases, the body weight is transferred
from one leg to another. The terms
initial and terminal refer only to the
position in the overall gait cycle as
each phase looks identical except for

the change of foot.

During the single limb stance
phase, the HAT CG moves up and
over the stance foot. The knee fully
extends to a locked over-center
configuration during this period.
Raising the HAT CG due to the
extending and locking knee is
energetically expensive, so hips rotate
in the frontal plane to partially
compensate for this rise. The cost of
raising the CG 1is justified by the

overall energy savings that come from

Table 2-1
Gait cycle (GC) with phases and corresponding function

(percent of GC from [25] is indicated for each phase.)

13% Midswing

13% Terminal Swing

putting the knee in a stable configuration that does not require additional muscle force to

maintain. Additionally, the forward momentum of the body is used to carry the HAT CG

21



up and over the locked stance leg. During this phase, the alternate leg is in the swing

phase.

In the terminal double stance phase the stance leg is unloaded as the weight shifts to
the alternate leg. As the weight is transferred, the knee buckles to prepare the foot to clear
the ground during swing. This, coupled with the heel-strike of the alternate leg in front of

the HAT CG causes the CG to descend slightly.

The swing phase has three main components, each lasting approximately 1/3 of the
total swing phase [25]. During the initial portion after the foot leaves the ground and
before the leg crosses over the opposite stance leg, the leg muscles rapidly accelerate the
leg. During mid-swing the leg continues forward and the knee extends to prepare for
heel-strike. During terminal phase of swing the leg muscles actively decelerate the leg to
reduce the impact at heel-strike. Table 2-1 combines a temporal and functional
representation of the various phases of the gait cycle. The timing for Table 2-1 was

derived from [25] and [30}].

2.3 Joint motion and energetics
The gait cycle establishes the mechanical

conditions that must be met for each phase of

walking. In order to create an exoskeleton that also
follows the phases of the gait cycle and offers similar
strength to a human, it is necessary to determine the

exact motion and torques needed for each joint. From

these values, the required power for each joint can

Fig. 2-5 CGA sign conventions
(adapted from [31].)

then be derived and used to choose the appropriate

22



actuators and a power supply. Clinical Gate Analysis (CGA) is the field of biomechanics
that focuses on obtaining experimental measurements of body dimension and inertia,
joint motion, joint torques, and other metrics associated with locomotion. The design of
the first generation BLEEX made extensive use of published standardized CGA data from
[32-34]. Details of the data analysis and application in the BLEEX design process can be
found in [31, 35]. Fig. 2-5 shows the sign conventions used in the CGA data. Each joint is
measured as the positive counterclockwise rotation of the distal link from the proximal
link. The anatomical position corresponds to the zero angle for each joint. Torque is

considered positive when acting counterclockwise on the distal link.

Ankle angle CGA data

CGA joint data from the University of Dundee [33], Hong Kong University [34], and
Winter [32] is compiled for the ankle in Fig. 2-6. The gait cycle begins with heel-strike at
time t =0. For each plot, the stance phase occurs between =0 and t=0 . The swing
phase occurs between =6 and =0 . The data are normalized for a 75 kg person
walking at 1.3 m/s. The dataset from [32] is one of the most commonly used reference
sets from biomechanics literature, however other sources have been included to show

variability in studies.

23



Fig. 2-6-A shows the time history
of the ankle angle. The GC begins with
a dorsi-flexion of 10-15° during the
stance phase as the HAT CG travels up
and over the stance leg. The ankle then
planter-flexes 15-20° in terminal stance
as the foot extends to propel the body
forward. At toe-off the ankle dorsi-
flexes to the neutral position to ensure
the toe clears the ground during swing
and then plantar-flexes at the very end
of terminal swing to prepare for shock
absorption at heel-strike. The ankle
range of motion required for walking is
small in comparison to the full range of
motion (-38° to +35° [22]), however to
accommodate maneuvers such as
squatting, a much larger range of
motion was designed into the

exoskeleton ankles (see Chapter 3 for

exoskeleton range of motion).

Ankle torque CGA data

The ankle torque plot in Fig. 2-6-B

200

Torque (Ib-in)

|
o]
el
(=]

-1000¢}

-1200

0.4
0.35;
<03 ¢

Py

T 0.25}
-
=0.2 |

2 0.1
(@]
A 0.1

0.05}

0.0

-0.05

-0.1

Fig.

A) CGA Ankle Angle vs. Time

escee an]ey
—— \)Y/inter
mmm | inskell

0.4 0.6 0.8

Time (sec)

0 0.2

B) CGA Ankle Torque vs. Time

essee Kirtley
s \X/inter
mmw  Linskell

0.4 0.6 0.8

Time (sec)

0 0.2

C) C GA Ankle Power vs. Time

weoae ](irdey
w—— \X/inter
muw Linskell

5k

W VVIVIOPVPTVIIVOVOD

0.8

0.6
Time (sec)
2-6 CGA data of ankle angle, torque, and power

0 0.2

during a single gait cycle (data sources as indicted).

24



contains some interesting characteristics. Peak positive torque is reached immediately
following heel-strike. The ankle torque during this brief peak prevents the foot from
slapping the floor as weight is added to the foot. During the stance phase the ankle
provides and almost linearly increasing negative torque up to approximately 50% of the
GC. The torque is negative which indicates that it is counteracting the tendency of the
body to fall forward over the feet. The period from when the ankle torque begins
increasing from the most negative point to where it levels off at toe-off (1 = 0.6) generates
the forward propulsion of the body during walking. For the remainder of swing, the ankle
provides almost zero torque. In terms of exoskeleton design, Fig. 2-6-B shows that an
actuator at the ankle only need to apply torque in one direction and it does not need to
provide any torque during swing. This characteristic can be exploited in the mechanical

design to conserve power and size.

Ankle power CGA data

The third important data set that can be derived from biomechanics is the
instantaneous power that is consumed by each joint. Periods of negative power
correspond to energy absorption while periods of positive power correspond to energy
production. For an exoskeleton, positive power mean actuation is required while negative
power means power can either be dissipated (wasteful, though difficult to avoid for
mechanical systems) or the energy can be captured and stored for later use. Instantaneous
power is calculated by taking the time derivative of the angle and multiplying by the

instantaneous torque as shown in Eq.

d
f,joint = Tjoim ) E (ajoim ) (2'1)

Fig. 2-6-C shows the time history of the ankle instantaneous power. The single large

25



positive power spike corresponds to the
forward propulsion provided by the
ankle at the end of stance. It is also
important to note that the area above
the curve (energy) in the small but
steady negative power region that
occurs for most of stance is similar in
magnitude to the area under the
positive power spike before toe-off. For
exoskeleton design, this implies that a
scheme in which energy is stored
during stance and released at the end
could be a feasible and not interfere

with the human’s motion.

Co-contraction and human power
consumption

It is important to note that the
power plot does not correspond exactly
to power generated or dissipated by the
human. 'In the human body muscles
provide only one direction of force
(through contraction). Consequently
each joint contains many pairs of

muscles arranged in an opposing

A) CGA Knee Angle vs. Time

-50 ]

ewes Kirtley
-60 w—— \Winter ’I

mwm  Tinskell
70t inske! \-,
-80 L s N N

0 0.2 0.4 0.6 0.8 1
Time(sec)

B) CGA Knee Torque vs. Time

LY

,a 500 , ‘ ssew Kirt]ey
;g 400 r \ v \X/inter
= 300 \\ VLN Bl Linskell

400 : - . ;
0 0.2 0.4 0.6 0.8 1
Time (sec)
C) CGA Knee Power vs. Time
0.1
average
__0.05
-y
0.0
=
o -0.05
2
& -0.1
-0.15 eses Kirtley
mowen \X/ inter
-0.2 mmm Linskell
-0.25 - - - -
0 0.2 0.4 0.6 0.8 1

Time (sec)
Fig. 2-7 CGA data of knee angle, torque, and power

during a single gait cycle (data sources as indicted).

26



configuration: one group of muscles contract to cause extension while another group
contract to cause flexion. In practice, the nervous system does what is called co-
contraction (or co-activation) [36]. Both muscle groups exert force and the resultant
external torque seen at the joint is the difference between the forces from the co-
contracting muscle groups. Through co-contraction both the torque and the stiffness of
the joint can be controlled independently [37, 38]. This also means that any amount of
power up to the full output of the muscles associated with a joint can be dissipated
without exerting a visible external torque [39, 40}. Some researchers have created robotic
systems that employ co-contraction [41]. This type of system was evaluated at the
beginning of the exoskeleton project but the high power cost associated with controlling
stiffness through co-contraciton was prevented us from choosing a truly anthropomorphic
actuator for the exoskeleton. Instead, Chapter 4 will discuss how this benefit of stiffness

control can be added in the control software.

Knee angle CGA data

Fig. 2-7-A shows the knee angle in the GC as a function of time. The knee buckles
approximately 10-20° during early stance as the HAT CG travels over the stance foot.
This helps to minimize the rise in the HAT CG and conserve power. Just prior to swing
the knee begins a long smooth period of flexion to clear the foot as it swings forward. At
the end of swing the knee slightly hyper-extends (positive angle) to ensure that the knee is
in an over-center position at heel-strike. In this over-center configuration, the knee will
mechanically stabilize to a straight locked position at heel-strike without the need for
significant ankle torque. Maintaining this condition in the exoskeleton requires careful
sizing such that the exoskeleton leg is fully extended and over-center at heel-strike. As will

be shown in Chapter 5, in many experiments the exoskeleton legs were too long for the

27



wearer, meaning they were in a flexed A) CGA Hip Angle vs. Time

40
state at heel-strike. This caused the leg to ceee Kird
30 fmwmy Y amals
~ s ¥/ inter s
buckle unexpectedly on the user, leading _ 20 mmm Linskell
3
to discomfort. bYe 10}
b
g
Knee torque and power CGA data -10}
: 20 S *
Fig. 2-7-B shows the knee torque asa V7 *eee’
. _30 2 A N N
function of time. Of note is the fact that 0 0.2 0.4 0.6 0.8 1

Time (sec)
the knee requires large torques in both

B) CGA Hip Torque vs. Time

directions. Fig. 2-7-C indicates that the

knee requires multiple regions of both ~ _
=
i
actuation and dissipation throughout the =
=
gait cycle. The average power for the g‘"
. . = _400 I, esee Kirtley
knee (dotted lines in figures represent w—W/inter
-600 mmm Iinskell
power averages over the complete gait 800 . . . .
0 0.2 0.4 0.6 0.8 1
cycle) offers the potential of employing an Time (sec)

C) CGA Hip Power vs. Time

entirely dissipative mechanism at the knee

0.15

) . /.
which could lead to substantial power / ‘\
average 1\
. . . _ ~ 0.1 power Y
savings. Choosing an entirely passive o ]
-~ 0.05 I’\ !
design for an exoskeleton knee, while o o :
3 ‘ {=1-1-3-1-] QO0OVODOCO O PQOCOGD [-1-1 -] O
Q? 0.0 U AARRALS T IITIVOUY l"vvvvvvvv
sufficient for level ground walking, would p) ! -
’ L X 2 2] 1 ey
) -0.05 g — Winter
be inadequate for other maneuvers such as \_:1 mwm inskell
. . . _0' 1 : ' ' *
squatting or ascending slopes and stairs. 0 0.2 0.4 0.6 0.8 1

Time (sec)
For this reason passive knee actuation was  Fig. 2.8 CGA data of hip angle, torque, and power

during a single gait cycle (data sources as indicted)..

28



not employed on BLEEX. In the current generations of the exoskeleton we have

reconsidered a passive knee design in order to reduce system power consumption.

Hip angle, torque, and power CGA data

The hip motion during walking is an almost sinusoidal oscillation from 20° to -20°.
The joint torques for the hip follow a similar pattern, oscillating almost symmetrically
between large positive and large negative torques. Though the average hip power is
slightly positive indicating actuation is necessary, the oscillation between power absorption
and power generation is relatively slow. For exoskeleton design, this could accomplished

by a small actuator and a compliant energy storage and release system like a spring.

29



Chapter 3

Exoskeleton Design
and the BLEEX Project

3.1 History of load carrying exoskeletons

In the early 1960s, the Defense Department expressed interest in the development of a
man-amplifier, a "powered suit of armor" which would augment soldiers' lifting and
carrying capabilities [5]. In 1962, the Air Force had the Cornell Aeronautical Laboratory
study the feasibility of using a master-slave robotic system as a man-amplifier. In later
work, Cornell determined that an exoskeleton, an external structure in the shape of the
human body which has far fewer degrees of
freedom than a human, could accomplish most
desired tasks [43]. From 1960 to 1971, General
Electric developed and tested a prototype man-
amplifier, a master-slave system called the
Hardiman [42, 44-46]. The Hardiman was a set of
overlapping exoskeletons worn by a human
operator. The outer exoskeleton (the slave)
followed the motions of the inner exoskeleton

(the master), which followed the motions of the

human operator. These studies found that

Fig. 3-1 “Hardiman” exoskeleton built by
duplicating all human motions and using master- G.E. in the 1960’s [42].

30



slave systems were not practical. Additionally, difficulties in human sensing and system
complexity kept the Hardiman from walking or even being run with human operator

inside the machine.

Several exoskeletons were developed at the University of Belgrade in the 60’s and 70’s
to aid people with paraplegia resulting from spinal cord injury ([47-50]). Although these
early devices were limited to predefined motions and had limited success, balancing
algorithms developed for them are still used in many bipedal robots like the Honda

Corporations “ASIMO” robot [51].

Current commercially

available rehabilitation devices Controller

- PC(Linux)

- Motor Driver

- Measuring Unit

13 ?»”
such as the “Locomat” use a Power Saply Circuit

similar pre-defined motion

Rotary Encoder

strategy to train muscles and Ao - Drive Gear {
- DC Servo Motor

nerve pathways for patients

Floor Reaction
. . . . Force Sensor
with locomotion impatrment

[53]. The RoboKnee” is a Fig. 3-2 HAL-3 exoskeleton from the Univ. of Tsukuba [52].

powered knee brace

developed by MIT that functions in parallel to the wearer’s knee and transfers load to the
wearer’s ankle (not to the ground) [54]. Though actually more of 2 muscle augmentation
device than a load supporting exoskeleton, the Roboknee uses an interesting force
generator called a series elastic actuator [55, 56]. Series elastic actuators provide an
inexpensive and robust way to create a high force, variable impedance actuator by

coupling the actuator to a low stiffness force sensor and using closed loop feedback from

31



the force sensors to create compliance in the system. Though it is a common procedure in
robotics to use force sensors and feedback to create compliant actuators, the force sensors
used typically have a very high stiffness (e.g. a strain gauge measuring micro-strain
magnitude compression of a metal link). This stiffness results in high frequency dynamics
that can be excited by high control loop gains and cause chattering and instability in the
actuation. Also, robust force sensors are typically very expensive (force sensors used on the
BLEEX actuators cost approximately $400 each). The series elastic actuator measures the
compression of inexpensive low stiffness springs placed in series with the actuator and
relates this through Hooke’s law to the force being applied. The effect of the low stiffness
spring is to add a mechanical low-pass filter to the feedback loop. A penalty is
consequently paid in the overall bandwidth of the closed loop system. Reported
performance (565N, 7.5Hz, 28cm/sec, [54]) would be currently insufficient for BLEEX,
however the benefits of low cost and simple actuator-level force control might make these

a viable alternative in the future.

“HAL,” which stands for Hybrid Assistive Leg, (actually, HAL 1 through 5 as of 2006)
began as a lower extremity assistive orthotic and has evolved in a full body exoskeleton.
Developed by the University of Tsukuba in Japan, HAL is connected to the patient’s
thighs and shanks and moves the patient’s legs as a function of the EMGT signals measured
from the wearer [52, 57, 58]. EMG signal based actuation was considered in the concept
development phase of the BLEEX project as a way of determining human intent to move.
Unfortunately, current EMG technology provides very low resolution data for muscle
activation level (typically on, off, and one two three levels in between) [59]. In addition,

for BLEEX the goal was to have very high sensitivity to human movement so this path

+ Electromyogram: a measure of the minute actions potentials (voltages) generated on the surface of the skin when a muscle is activated.

32



was not followed. The EMG electrodes used to sense muscle action potentials on the skin
must be carefully applied which would be impractical for a soldier load assist device that

needs to be rapidly donned and doffed.

Previous exoskeleton related work at U.C. Berkeley

In our research work at Berkeley, we have separated the technology associated with
human power augmentation into lower extremity exoskeletons and upper extremity
exoskeletons. The reason for this was two-fold; firstly, we could envision a great many
applications for either a stand-alone lower or upper extremity exoskeleton in the
immediate future. Secondly, and more importantly for the division is that the exoskeletons
are in their early stages, and further research still needs to be conducted to ensure that the
upper extremity exoskeleton and lower extremity exoskeleton can function well
independently before we can venture an attempt to integrate them. With this in mind, we
proceeded with the designs of the lower and upper extremity exoskeleton separately, with
little concern for the development of an integrated exoskeleton. I will first give a summary
of the upper extremity exoskeleton efforts at Berkeley and then we will proceed with the

description of the BLEEX project.

In the mid-1980s, my research group
initiated several research projects on upper
extremity exoskeleton systems, billed as
“human extenders” [61-63]. The main

function of an upper extremity exoskeleton

is human power augmentation for

Fig. 3-3 “Human extender” upper

body strength amplifier [60] manipulation of heavy and bulky objects.

These systems, which are also known as assist devices or human power extenders, can

33



simulate forces on a worker’s arms and torso. These forces differ from, and are usually
much less than the forces needed to maneuver a load. When a worker uses an upper
extremity exoskeleton to move a load, the device bears the bulk of the weight by itself,
while transferring to the user as a natural feedback a scaled-down value of the load's actual
weight. For example, for a 20 kg (44 Ibs) object, a worker might support only 2 kg (4.4
1bs) while the device supports the remaining 18 kg (39.6 Ibs). In this fashion, the worker
can still sense the load’s weight and judge her movements accordingly, but the force she
feels is much smaller than what she would feel without the device. In another example,
suppose the worker uses the device to maneuver a large, rigid, and bulky object, such as
an exhaust pipe in an automotive assembly line. The device will convey the force to the
worker as if it was a light, single-point mass. This limits the cross-coupled and centrifugal
forces that increase the difficulty of maneuvering a rigid body and can sometimes produce
injurious forces on the wrist. In a third example, suppose a worker uses the device to
handle a powered torque wrench. The device will decrease and filter the forces transferred
from the wrench to the worker’s arm so the worker feels the low-frequency components
of the wrench's vibratory forces instead of the high-frequency components that produce

fatigue.

3.2 The Berkeley Lower Extremity Exoskeleton (BLEEX)

The Berkeley Lower Extremity Exoskeleton (BLEEX) is not an orthotic or a brace;
unlike the above systems it is designed to carry a heavy load by transferring the load
weight to the ground (not to the wearer). BLEEX has four new features. First, a novel
control architecture called Sensitivity Amplification Control was developed that controls
the exoskeleton through measurements on the exoskeleton structure rather than between

the exoskeleton and the human [64-67]. This eliminates problematic human induced

34



instability due to sensing the human force [68]. Second, a series of high specific power and
specific energy power supplies were developed that were small enough to make BLEEX a
true field-operational system [69-71]. Third, a body LAN (Local Area Network) with a
special communication protocol and hardware were developed to simplify and reduce the
cabling task for all the sensors and actuators needed for exoskeleton control [72] and [73].
Finally, a flexible and versatile mechanical architecture was chosen to decrease complexity

and power consumption [35, 74].

3.3 Design of BLEEX

CAD MODEL Power AS BUILT

/_ Supply —\

Spine

Control
Computer

Hip Joint

4 AN - 3
1 >——— Hydraulic Servovalve ‘_';‘ --
RIOM :
Thigh

Knee Joint

Hydraulic servovalve
Shank
RIOM

Ankle Joint

Foot Sole

Fig. 3-4 BLEEX 3D CAD model and “as built” system components.
For BLEEX, a pseudo-anthropomorphic design was chosen to keep the device

compact, ensure that the exoskeleton can access the same environments as a human, and

to allow literature on human biomechanics to be applied as a model for the exoskeleton

35



kinematics and dynamics. The exoskeleton has a rigid spine that serves as a payload
attachment point and an exoskeleton-to-human attachment point through a compliant
harness. Three-segment legs, analogous to the human’s thigh, shank, and foot, run parallel
to the human’s leg segments when the device is worn. Single DOF revolute joints
connect each leg segment and connect between the thigh and spine on each side. A servo-
valve-controlled hydraulic cylinder spans each segment pair to provide an active torque

source at the hip (flexion and abduction), knee, and, ankle of each exoskeleton leg.

+  Torso Rotation
with respect to
BLEEX Spine

1 (an-powered)

Compliant vest
attached to rigid
BLEEX spine

Hip
3_ Abduction/

Adduction
(powered)
Hip Flexion/
* Extension
(powered)
Toe ; '
Plantarflexion/ 3 @ Knee Flexion/
. . ; ~ Extension
Dorsiflexion (powered)

{un-powered) Eﬁ
v ¢

b - Ankle
- j . Plantarflexion/

» DO .ﬂ .
Ankle Abduction/ rsifexon
Adduction (powered)
{un-powered)
Ankle Rotation
{un-powered)

BLEEX degrees of freedom

Fig. 3-5 BLEEX degrees of freedom and actuation (an equivalent mass

used in development is visible in place of the backpack power supply).

As shown in Fig. 3-5, additional un-powered passive degrees of freedom exist at the
hip and ankle and include experimentally chosen passive impedances (created by steel
springs and elastomers). These additional degrees of freedom were added to allow the

exoskeleton to better approximate the DOF found in the human body. They increase

36



comfort for maneuvers that require motion outside of the sagittal plane such as turning,

stepping side-to-side, and squatting.

BLEEX is considered pseudo-anthropomorphic because we have not included every
human degree of freedom or attempted to match the joint behavior of the human exactly
(e.g. the human knee uses a combination of rotation and sliding but the exoskeleton has a
pure rotary joint). We determined, through extensive testing of un-powered mockups
both in our lab and independently at the U.S. Army Natick Soldier Testing Center, that
the kinematics of the configuration shown in Fig. 3-5 allow for unrestricted walking,

running, kneeling, and crawling and therefore is sufficient for this design.

Connections between BLEEX and the human

The pilot and BLEEX have a
mechanical connections at the torso

and the feet; everywhere else the pilot

and BLEEX have compliant or

Fig. 3-6 Compliant BLEEX upper body harness. periodic contact (Fig. 3-6, Fig. 3-8).

The connection at the torso is made using a custom vest. One of the essential objectives in
the design of these custom vests was to allow the distribution of the forces between
BLEEX and the pilot, thereby preventing abrasion. The vest is made of several hard
surfaces that are compliantly connected to each other using thick fabric. The adjustment

mechanisms in the vest allow for a snug fit to the pilot. The vest includes rigid plates (with

hole patterns) on the back for connection to the BLEEX torso [31].

The pilot’s shoes or boots (Fig. 3-8) attach to the BLEEX feet using a modified quick-

release binding mechanism similar to snowboard bindings. A plate with the quick-release

37



mechanism is attached to the rigid heel section of the BLEEX foot. Early versions of the
BLEEX system had the pilot wearing a standard U.S. Army issue boot that has had a
mating binding cleat secured to the heel. The cleat on the modified pilot boot cioes not
interfere with normal wear when the pilot is unclipped froﬁn BLEEX. Later modifications
to this binding allowed an un-modified boot to be securely strapped to the exoskeleton

foot.

The BLEEX foot is composed of the rigid heel section with the binding mechanism
and a compliant, but load bearing, toe section that begins at midfoot and extends to the
toe. The BLEEX foot has a compressible rubber sole with a tread pattern that provides
both shock absorption and traction while walking. The rubber sole of the BLEEX foot
contains embedded sensors, as shown in Fig. 3-7, that detect the trajectory of the BLEEX-

ground reaction force starting from heel-strike to toe-off.

The sensors are constructed in the

laboratory by sandwiching a conductive

rubber sheet between to thin metal

TOE BALL MIDFOOT S HEEL

lect . Th fr ig. 3-7 i
electrodes e sensor from Fig. 3-7 is Fig. 3-7 BLEEX foot ground contact sensor.
placed in 2 mold and cast in urethane rubber to make the BLEEX foot as shown in the
right half of Fig. 3-8. Pressure on the sensor changes the resistance between the plates and
circuitry in the BLEEX electronics converts this into digital (on/off) data for each segment

of the foot. This information is used in the BLEEX controller to identify the BLEEX foot

configuration relative to the ground.

38



Because the
exoskeleton kinematics
are close to human

kinematics, appropriate

ranges of motion for each

Fig. 3-8 Rigid attachment between human boot (left) and BLEEX foot via degree of freedom could

a quick-release cleat and binding mechanism.
be approximated from

human physiological data [35]. Slight human-machine kinematic differences are tolerated
for design simplicity. These differences are not uncomfortable for the human because the
human and machine are only rigidly connected at the extremities of the exoskeleton (feet
and torso). Any other rigid connections would lead to large forces imposed on the
operator due to the kinematic differences. However, compliant connections along the leg
are tolerable as long as they allow relative motion between the human and machine.
Because the inertias and masses of the exoskeleton leg segments were similar to the
corresponding human limbs, the desired joint torques for the exoskeleton could be

estimated using human Clinical Gait Analysis (CGA) data from [32-34].

BLEEX sensors

The Sensitivity Control Scheme developed in this thesis is based on an accurate
inverse dynamics model of the exoskeleton dynamics. The accuracy of this model is
dependant upon the static model parameters (i.e. the mass, length, inertia, and CG
location of each component), and the state variables input into the system. The static
model parameters can be carefully calculated, modeled, or measured during the design
process. The state variables must be measured and calculated using appropriately chosen

sensors. The state variables for the BLEEX dynamic model are the angle (&), angular

39



velocity (@), and angular acceleration (0) of each joint. Also, the torque at each joint 1s

needed for the local joint torque controllers discussed in Chapter 5.

Details of the selection process for each sensor are covered in [20]. The joint angles are
measured using rotary optical quadrature encoders. These sensors only give relative joint
angle information (i.e. the angle between successive joints), so a digital inclinometer is
added to the torso to give an absolute reference to ground. The joint encoder provides a
resolution of 40,960 counts/rev after decoding in the control electronics. The clock rate
of the control electronics (20Mhz) sets the upper limit of measurable joint velocity to be
less than 3,068 rad/sec based on the minimum measurable increment of time used in the
differentiation. This is well within the maximum human joint angular velocity of
approximately 10 rad/sec from biomechanics data [23]. The clock rate also determines the
slowest measurable angular velocity to be 1.83e-4 rad/sec based on the maximum
measurable time increment. The joint angular velocity is determined by differentiating the

angle from the encoder.

The joint angular acceleration is measured using pairs of linear accelerometers placed
on either end of each BLEEX limb segment and oriented to sense acceleration tangential
to the rotation of the limb. The angular acceleration of the limb is the difference in these
two measured linear accelerations divided by the distance between the sensors. Maximum
linear acceleration of human limb segments during walking is approximately 3g (where g
is acceleration due to gravity) so 4g rated accelerometers were selected. The accelerometer
bandwidth is rated at 400Hz, which is within the 10X control system bandwidth rule-of-

thumb bandwidth needed to prevent phase lag problems.

The torque about each joint is measured by a force sensor placed in-line with the

40



hydraulic actuator spanning each joint. The geometry of the actuator, joint, and the joint
angle can be used to obtain the joint moment arm and consequently, the joint torque.
The maximum measurable joint torque on BLEEX is 170 Nm (with a safety factor of 1.5).
The maximum torque from walking CGA data is approximately 135 Nm. The precision
of the torque measurement is a function of the angle error used to determine the moment
arm and the force sensor precision and is approximately 0.1% in the combined system

[20].

BLEEX control electronics

Realization of the BLEEX control scheme requires a high-performance physical
control architecture. Traditional centralized control architectures where a supervisory
controller directly interfaces in a point-to-point fashion with all sensors and actuators in
the system have been successfully implemented in the past [30, 51, 61]. They are generally
feasible when a controller interfaces with small number of sensors and actuators and
requires short wiring to them. Larger sophisticated multi-degree-of-freedom systems
frequently require the control network to be compact, easily reconfigurable, expandable,
and maintainable. Hence, a networked control system (NCS) was used on BLEEX as an
alternative to the conventional centralized control system because of its advantages in
flexibility, volume of wiring and capacity of distribution. The exoskeleton electronics
system, called EXOLINK, was designed to simplify and reduce the cabling task for all of
the sensors and actuators needed for exoskeleton control. The EXOLINK system
represents the thesis work presented in [72] and is represented schematically in Fig. 3-9.
The EXOLINK control network guarantees strict determinism, optimized data transfer for

small data sizes, and flexibility in configuration.

41



CLEFT LEG
RIOM

GUl COMPUTER

Fig. 3-9 Global view of EXOLINK networked control system and

RIONM

3N

the external GUI debug terminal adapted from [75].
The EXOLINK “body” local area network

EXOLINK relies on a high-speed synchronous ring network topology where several
electronic networked data aggregation nodes called Remote Input Output Modules
(RIOM) reside in a ring (Fig. 3-10). Each RIOM is in communication with several
sensors and one actuator in close proximity. RIOMs include eight sixteen-bit Analog-to-
Digital Converters (ADC), two quadrature counters, eight bits of digital input and output,
two Digital-to-Analogue converters (DAC) and analog filters for each sensor connection.
Each RIOM also includes localized power regulation and isolation to minimize signal
noise and system ground loops. A built-in Field Programmable Gate Array (FPGA)
manages all RIOM data transaction and filtering. The distribution and location of RIOMs
is generally chosen to achieve a minimum volume of wiring and a reasonable and
convenient allocation of sensors and actuators to each RIOM. The data gathered by each
module is encoded and transmitted digitally to a central computer through the ring

network.

42



EXOLINK RIOM

Comm. to SIOM
Comm. to next RIOM [k

A_]oint an ‘ e
encoder
Fig. 3-10 EXOLINK RIOM photo and schematic. Each RIOM provides for 3 analog inputs (AIN), 1

analog output (AOUT), 6 digital inputs (DIG IN), 1 quadrature encoder input (ENC IN), and 2 network

communication ports (UP and DWN). Two integrated circuits handle processing (an FPGA from Xilinx
Inc.) and network communication (a transceiver from Cypress Semiconductor Inc.) respectively. The

corresponding sensors connected to the RIOM are indicated on the schematic representation.

EXOLINK has four rings, two of which are associated with the two legs, each of
which includes three Remote Input Output Modules. A third ring is connected to a
Graphical User Interface for debugging and data acquisition, and a fourth ring is used to
accommodate other electronic and communication gears that are not related to the
exoskeleton, but which the pilot must carry. Each ring can accommodate up to eight

RIOMs.

The EXOLINK includes a central microcomputer and a Supervisor IO Module
(SIOM). The SIOM includes a FPGA programmed to serve as the communication hub
for all four rings. A transceiver chip residing in the SIOM and all the RIOM:s allows for
data transfer at a rate of 1500 Mb/s. Currently, a 650 MHz Pentium PC-104 form factor
microcomputer is used to implement the control algorithm, and the current Exoskeleton

utilizes 75% of the I/O capability of the EXOLINK. The use of a high-speed synchronous

43



network in place of the traditional parallel method enables the exoskeleton to reduce the
over 200 sensor and actuator wires to only 24 communication and power wires. More
importantly, only a single six conductor cable spans each joint of BLEEX, virtually

eliminating the presence of unwanted joint torque due to cables being flexed.

The BLEEX sensors are read at the rate of 10 KHz and the control loop repeats at a
fixed 2 KHz rate (control sampling time is 500 psec). Testing of EXOLINK on BLEEX
has shown that the network update time for a ten RIOM network, passing 140 bytes of
data (all data needed by the controller), requires less than 20 psec. This leaves 480 psec out
of the 500 psec control loop to perform the control algorithm calculations on the
ExoCPU. More details on the communication implementation can be found in [72] and

[73].

44



Chapter 4

Sensitivity Amplification Control (SAC)
for Powered Exoskeletons

The effectiveness of the lower extremity exoskeleton stems from the combined benefit
of the human intellect provided by the pilot and the strength advantage offered by the
exoskeleton; in other words, the human provides an intelligent control system for the
exoskeleton while the exoskeleton actuators provide most of the strength necessary for
walking. The control algorithm must ensure that the exoskeleton moves in concert with

the pilot with minimal interaction force between the two.

The Sensitivity Amplification Control scheme that will be developed in this chapter
needs no direct measurements from the pilot or the human-machine interface (e.g. no
force sensors between the two); instead, the controller estimates, based on measurements
from the exoskeleton only, how to move so that the pilot feels very little force. This
control scheme, which has never before been applied to any robotic system, is an effective
method of generating locomotion when the contact location between the pilot and the
exoskeleton is unknown and unpredictable (i.e. the exoskeleton and the pilot are in
contact in variety of places). This control method differs from compliance control
methods employed for upper extremity exoskeletons [76], [62], and [63], and haptic
systems [77], and [68] because it requires no force sensor between the wearer and the

exoskeleton.

The basic principle for the control of BLEEX rests on the notion that the exoskeleton

needs to shadow the wearer’s voluntary and involuntary movements quickly, and without

45



delay. This requires a high level of sensitivity in response to all forces and torques on the
exoskeleton, particularly the forces imposed by the pilot. Addressing this need involves a
direct conflict with control science’s goal of minimizing system sensitivity in the design of a
closed loop feedback system. If fitted with a low sensitivity, the exoskeleton would not
move in concert with its wearer. However, maximizing system sensitivity to external
forces and torques leads to a loss of robustness in the system, so the trade-off must be

evaluated.

Taking into account this new approach, the goal is to develop a control system for
BLEEX with high sensitivity. This presents two realistic concerns. First, an exoskeleton
with high sensitivity to external forces and torques would respond to external forces not
initiated by its pilot. For example, if someone or something pushed against an exoskeleton
that had high sensitivity, the exoskeleton would respond in the same manner that it would

to forces from its pilot.

The fact that the exoskeleton does not stabilize its behavior on its own in response to
other forces may sound like a serious problem. If it did attempt to stabilize itself (e.g. using
a gyroscope and feedback loop), the pilot would receive motion from the exoskeleton
unexpectedly and would have to struggle with it to avoid unwanted movement. The key
to stabilizing the exoskeleton and preventing the pilot and exoskeleton from falling in
response to external forces is the pilot’s ability to move quickly (e.g. step back or sideways)
to create a stable situation for herself and the exoskeleton. For this to occur, a very wide
control bandwidth is needed so the exoskeleton can respond to both pilot’s voluntary and

involuntary movements (i.e. reflexes).

The second concern is that systems with high sensitivity to external forces and torques

46



are not robust to variations in the model parameters and therefore the precision of the
system performance will be proportional to the precision of the exoskeleton dynamic
model. Although this is a serious drawback, it is accepted as unavoidable for the time
being. Chapter 5 will return to this issue after analyzing the performance of the SAC
scheme on the exoskeleton hardware and a partial solution to this problem will be
presented. Nevertheless, experimental systems in our laboratory have proved the overall

effectiveness of the SAC method in unobtrusively shadowing the pilot’s movement.

4.1 Simple 1 DOF system model

The development of the exoskeleton control is motivated here through use of the
simple 1 DOF example shown in Fig. 4-1. This figure schematically depicts a human leg
attached to and interacting with a 1 DOF exoskeleton leg in a configuration similar to the
swing phase of the walking gait cycle (no interaction with the ground). For simplicity, the
exoskeleton leg is shown as a rigid link pivoting about the hip joint. A linear actuator that
can provide a torque about the joint is shown connected between ground and the
exoskeleton leg. This setup also assumes that the upper body can react off of the fixed
ground reference to generate forces and torques on the exoskeleton. Kinematic mismatch
between the exoskeleton is not considered as the figure is intended only as a framework

for understanding the control.

47



Human Leg

Actuator

Fig. 4-1 Simple 1 DOF representation of an exoskeleton leg interacting with the pilot leg.

Although the pilot is attached securely to the exoskeleton at the foot, other parts of
the pilot leg, such as the shanks and thighs, can contact the exoskeleton and impose forces
and torques on the exoskeleton leg. The location of the contacts and the direction of the
contact forces (and sometimes contact torques) vary and are therefore considered
unknown values in this analysis. In fact, one of the primary objectives in designing
BLEEX was to ensure a pilot’s unrestricted interaction with BLEEX. The equivalent
torque on the exoskeleton leg, resulting from the pilot’s applied forces and torques, s

represented by d .

4.2 Controller development

Fig. 4-2 Block diagram showing the exoskeleton angular velocity as a function of the input to the actuators

and the torques imposed by the pilot onto the exoskeleton.

In the absence of gravity, the block diagram of Fig. 4-2 and equation (4.1) represent

48



the dynamic behavior of the exoskeleton leg regardless of any kind of internal feedback

the actuator may have.
v=Gr+Sd (4.1)

Where G represents the transfer function from the actuator input, r, to the exoskeleton
angular velocity, v (actuator dynamics are included G ). In the case where multiple
actuators produce controlled torques on the system, 7 is the vector of torques imposed on
the exoskeleton by the actuators. The form of G and the type of internal feedback for the
actuator is immaterial to the discussion here. Also bear in mind the omission of the

Laplace operator in all equations for the sake of compactness.

The exoskeleton velocity, as shown by (4.1), is affected by forces and torques from its
pilot. The sensitivity transfer function S, represents how the equivalent human torque
affects the exoskeleton angular velocity. S maps the equivalent pilot torque, d, onto the
exoskeleton velocity, v. If the actuator already has some sort of primary stabilizing
controller, the magnitude of S will be small and the exoskeleton will only have a small
response to the imposed forces and torques from the pilot or any other source. For
example, a high gain velocity controller in the actuator results in small S, and
consequently a small exoskeleton response to forces and torques. Also, non-backdrivable
actuators (e.g. large transmission ratios or servo-valves with overlapping spools) result in a

small S which leads to a correspondingly small response to pilot forces and torques.

Note that d (resulting torque from pilot on the exoskeleton) is not an exogenous
input; it is a function of the pilot dynamics and variables such as position and velocity of
the pilot and the exoskeleton legs. These dynamics change from person-to-person, and
within a person as a function of time and posture. These dynamics will be added to the

49



analysis in later paragraphs, but it is unrelated to the purpose of current discussion. The
assumption is also made that d is only from the pilot and does not include any other

external forces and torques.

The objective of exoskeleton control is to increase exoskeleton sensitivity to pilot
forces and torques through feedback, but without measuring d . In other words, we are
interested in creating a system that allows the pilot to swing the exoskeleton leg easily.
Measuring d to create such systems develops several hard, but ultimately solvable
problems in the control of a lower extremity exoskeleton. Some of those problems are

briefly described below:

1) Depending on the architecture and the design of the exoskeleton, one needs to
install several force and torque sensors to measure all forces from the pilot on the
exoskeleton because the pilot is in contact with the exoskeleton at several locations. While
the example in Fig. 4-1 indicates a single attachment between human foot and
exoskeleton foot, the real device is designed to closely follow the contours of the leg in
order to keep the overall profile as small as possible. This can result in intermittent and
unpredictable contact along the entire length of the structure. These contact locations are
typically not known in advance. For example, we have found that some pilots are
interested in having compliant braces or straps connecting BLEEX and the human at the
shanks, while others prefer having them on the thighs. Inclusion of sensors on a leg to
measure all possible human forces and torques may result in a system suitable for a
laboratory setting, but the complexity and the need to carefully fit each individual such

that all sensors are properly aligned would result in a device not robust enough to be

deployed in the field.

50



2) If the BLEEX design is such that the forces and torques applied by the pilot on the
exoskeleton are limited to a specified location, (e.g., the pilot foot), the sensor that
measures the pilot forces and torques will also inadvertently measure other forces and
torques that are not intended for locomotion. This is a major difference between
measuring forces from, for example, the human hands, and measuring forces from the
human lower limbs. Using our hands, we are able to impose controlled forces and torques
on upper extremity exoskeletons and haptic systems with very few uncertainties [78-80}.
However, our lower limbs have other primary and non-voluntary functions like load
support that take priority over locomotion. To give an example, if force sensors were
placed along the length of the leg in order to capture data from many possible contact
points, some would inadvertently pick up the persistent small oscillatory balance
movements made unconsciously by the CNSt in the lower body [30]. Differentiating

between these movements and user locomotion could become problematic.

3) One option we have experimented with is the installation of sensing devices for
forces on the bottom of the pilot’s boots, where they are connected to BLEEX. Since the
force on the bottom of the pilot’s boot travels from heel to toe during normal walking,
several sensors are required to measure the pilot force. Ideally, we would have a matrix of
force sensors between the pilot and exoskeleton feet to measure the pilot forces at all
locations and at all directions, though in practice, only a few sensors could be
accommodated in our testing: at the toe, ball, midfoot, and the heel. Still, this option leads
to thick and bulky soles. Other research groups have also pursed force sensor systems for
the shoe though none have created a device compact and robust enough for use on

BLEEX [81, 82].

1 Cental Nervous System
51



4) The bottoms of the human boots experience cyclic forces and torques during
normal walking that lead to fatigue and eventual sensor failure if the sensor is not designed

and isolated properly.

For the above reasons and the collective experience of the research group in the design
of various lower extremity exoskeletons, it became evident that the existing state of
technology in force sensing could not provide robust and repeatable measurement of the
human lower limb force on the exoskeleton. The goal then shifted to developing an
exoskeleton with a large sensitivity to forces and torques from the operator using
measurements only from the exoskeleton (i.e. no sensors on the pilot or the exoskeleton
interface with the pilot). Creating a feedback loop from the exoskeleton variables only, as

shown in Fig. 4, the new closed-loop sensitivity transfer function is presented in (4.2).

—= (4.2)

v

Fig. 4-3 Negative feedback loop added to the block diagram of Fig. 4-2. C is the controller operating only

on the exoskeleton state variables.

Observation of (4.2) reveals that Sy, <S, and therefore any negative feedback from

the exoskeleton, leads to an even smaller sensitivity transfer function. With respect to (4.2)
the exoskeleton design goal is to create a controller for a given S and G such that the
closed loop response from d to v (the new sensitivity function as given by (4.2)) is
greater than the open loop sensitivity transfer function (i.e. S') within some bounded
frequency range. This design specification can be written in the form of inequality (4.3).

52



|Sxew|> IS Vo e(0,w,) (4.3)
or alternately: 1+GC|<1 Voe(0,0, (4.4)
1+GC| (0,0,)

where @, is the exoskeleton maneuvering bandwidth.

In classical and modern control theory, every effort is made to minimize the sensitivity
transfer function of a system to external forces and torques. But for exoskeleton control,
one requires a totally opposite goal: maximize the sensitivity of the closed loop system to forces
and torques. In classical servo problems, negative feedback loops with large gains generally
lead to small sensitivity within a bandwidth, which means that they reject forces and
torques (usually called disturbances). However, the above analysis states that the
exoskeleton controller needs a large sensitivity to forces and torques. From the perspective
of the pilot, this has the effect making the exoskeleton feel and behave like a very small

mass when the sensitivity of the closed loop system to forces and torques is high.

To achieve a large sensitivity function, we use the inverse of the exoskeleton dynamics

as a positive feedback controller so that the loop gain for the exoskeleton approaches unity

v

— ]

(slightly less than 1).

Fig. 4-4 Block diagram of exoskeleton with positive feedback loop.

Assuming positive feedback as shown in Fig. 4-4, the sensitivity transfer function from

(4.2) can be written as

=" (4.5)



If C is chosen to be the inverse of the plant dynamics multiplied by gain slightly less
than 1, for example C =0.9G™, then the new sensitivity transfer function is S,, =10S

(ten times the force amplification). This positive feedback controller can be written more

explicitly as
C=(1-a7)G™. (4.6)

where a is an amplification factor greater than unity (for the above example, a =10 led

to the choice of C =0.9G™"). Equation (4.6) simply states that a positive feedback

controller needs to be chosen as the inverse dynamics of the system dynamics scaled down

by (l —a']) . Note that (4.6) prescribes the controller in the absence of un-modeled high-

frequency exoskeleton dynamics. In practice, C also includes a unity gain low pass filter

to attenuate the un-modeled high-frequency exoskeleton dynamics.

The above method works well if the system model (i.e. G) is well-known to the
designer. If the model is not well known, then the system performance will differ greatly
from the one predicted by (4.5), and in some cases instability will occur. The above simple
solution comes with an expensive price: robustness to parameter variations. In order to get
the above method working, one needs to know the dynamics of the system well. The

next section discusses this tradeoff.

4.3 Robustness to model parameter uncertainty

Taking variations of the new sensitivity transfer function when positive feedback is

used gives

ASuy _AS, GC AG

= 4.7)
Sew S 1-GC G

54



If GC is close to unity (when the force amplification number, &, is large) any
parameter variation on modeling will be amplified as well. For example if the parameter

uncertainty in the system 1s 10%, 1.e.:

l% =0.10 and l%': 0, then (4.7) results in

[ASNEW

-0.10. 4.8
< (4.8)

=| GC |
1-GC|

Now assume C is chosen such that C =0.9G™". Substituting into (4.8) results in

IM =0.90. (4.9)

Equation (4.9) indicates that any parameter variation directly affects the system
behavior. In the above example, a 10% error in model parameters results in nine times the
variation in the sensitivity function. This is why model accuracy is crucial to exoskeleton

control.

To get the above method working properly, one needs to understand the dynamics of
the exoskeleton quite well, as the controller is heavily model based. This problem can be
seen as a tradeoff: the design approach described above requires no sensor (e.g. force or
EMG) in the interface between the pilot and the exoskeleton; one can push and pull
against the exoskeleton in any direction and at any location without measuring any
variables on the interface. However, the control method requires a very good model of
the system. Experiments with the actual BLEEX hardware have shown that this control
scheme—which does not stabilize BLEEX—forces the exoskeleton to follow wide-

bandwidth human maneuvers while carrying heavy loads. .

55



4.4 Pilot dynamics

There are two approaches to human muscle modeling. One is based on the
investigation of the molecular or fiber range of the muscle [83, 84], while the second is
based on the relationship between the input and output properties of the muscle [85]. The
second approach has been used previously in the design of upper extremity human power

amplifier systems in [61, 76, 86].

In the Sensitivity Amplification Control scheme however, there is no need to include
the internal components of the pilot limb model; the detailed dynamics of nerve
conduction, muscle contraction and CNS processing are explicitly accounted for in
constructing dynamic models of the pilot limbs. The pilot force on the exoskeleton, d, is
a function of both the pilot dynamics, H , and the kinematics of the pilot limb (e.g.,
velocity, position or a combination thereof). In general, H is determined primarily by the
physical properties of the human dynamics. Here H is assumed to be some nonlinear

operator representing the pilot impedance as a function of the pilot kinematics.
d=-H(v) (4.10)

The specific form of H is not known other than that it results in the human muscle

force on the exoskeleton.

v

g

Fig. 4-5 Block diagram representing the overall behavior of the exoskeleton. The upper feedback loop

shows how the pilot moves the exoskeleton through applied forces. The lower feedback loop shows how

the controller drives the exoskeleton.

56



Fig. 4-5 represents the closed loop system behavior when pilot dynamics is added to
the block diagram of Fig. 4-4. Examining Fig. 4-5 reveals that (4.5), representing the new
exoskeleton sensitivity function from output d to input v, is not affected by the feedback

loop containing H .

Fig. 4-5 shows an important characteristic for exoskeleton control. One can observe
two feedback loops in the system. The upper feedback loop represents how forces and
torques from the pilot affect the exoskeleton. The lower loop shows how the controlled
feedback loop affects the exoskeleton. While the lower feedback loop is positive
(potentially destabilizing), the upper feedback loop stabilizes the overall system of pilot and

exoskeleton taken as a whole.

4.5 The Effect of pilot dynamics on closed loop stability

How does the pilot dynamic behavior affect the exoskeleton behavior? In order to get
an understanding of the system behavior in the presence of pilot dynamics return to the 1
DOF system from Fig. 4-1 and assume H is a linear transfer function. The stability of the

system shown in Fig. 4-5 is decided by the closed-loop characteristic equation:
1+SH-GC=0. (4.11)

In the absence of a feedback controller, the pilot carries the entire load (payload plus
the weight of the exoskeleton torso). The stability in this case is decided by the

characteristic equation:
1+SH =0 (4.12)
Characteristic equation (4.12) is always stable since it represents the coupled pilot and

exoskeleton behavior without any controller (i.e., when GC =0). When feedback a loop

57



with controller C is added, the closed loop characteristic equation changes from (4.12) to

(4.11), and the closed loop stability is guaranteed as long as inequality (4.13) is satisfied.

|GC| <1+ SH| Vo e(0,w,) (4.13)

According to (4.6), C is chosen such that IGC | <1 and therefore in the absence of

uncertainties, (4.13) is guaranteed as long as 1< |1 +SH | Unlike control methods utilized

in the control of the upper extremity exoskeletons [62, 68] and [63], the human dynamics
in the control method described here has little potential to destabilize the system. Even
though the feedback loop containing C is positive, the feedback loop containing H

stabilizes the overall system of pilot and exoskeleton.

The following example is put forward to illustrate this concept. For the 1 DOF system
of Fig. 4-1, assume the human and machine leg have equivalent masses and inertias. The

human sensitivity transfer function and the exoskeleton leg dynamics would both be the
inertial effects of a simple rotating mass, S=G = %s , where J is the inertia and s is the
Laplace operator. For this example, assume the human impedance, H is modeled as a
series connection of a spring and a damper, H = M, s+C,, , where M, is a positive
damping and C,, is a positive spring rate. If the exoskeleton sensitivity amplification factor

is & =10 and consequently the controller is chosen from (4.6) as C =0.9Js, the new
closed loop sensitivity transfer function with a positive feedback loop around the

exoskeleton variables is

v S
Sygy =—=——=108. 4.14
NV d 1-GC #149

The system characteristic equation when C =0 (no control running) is given by

58



(4.15) and always results in a stable system because the roots of the characteristic equation

will always be in the left half of the s-plane.

1+SH=(J+MH)S+CH
Js

(4.15)

When a positive feedback loop with the controller C = 0.9Js is added, characteristic

equation (4.16) of the overall system is still stable.

(0.1J+MH)s+CH
Js

1+SH-GC = (4.16)

Even if a is chosen as a very large number, the system in the absence of parameter
uncertainties, is stable. Now suppose uncertainty is added to the model inertia,

Y oo, e B2
J S G

=20% . The variation in new sensitivity function is,

Ay _AS | GC AG _ 5600 (4.17)

Sew S 1-GC G

! -O.9Js=2, S=

In this case, GC =
0.8Js 8 0.8Js

, and the closed-loop characteristic

polynomial is represented by

(10M, - J)s+10C,
8Js '

14+SH -GC = (4.18)

Equation (4.18) states that the system is unstable if J >10M, . In an intuitive sense,

this is saying that the system inertia is so great that the human is unable to provide enough
damping, then the system would become unstable. Thus, with the Sensitivity
Amplification Control scheme the system is vulnerable to model parameter uncertainties

and the controller discussed here is stable when womn by the pilot as long as parameter

59



uncertainties are kept to a minimum. The definition of minimum for the parameter
uncertainty is dependant on the unknown human dynamics. In practice, the controller can
be run with the sensitivity amplification gain set to zero (with the operator supporting the
weight of the system). The gain can then be increased gradually until the system feels
comfortable and responsive to the wearer. Adding a safety overhead to the sensitivity
amplification factor can be used to prevent the operator from running a marginally stable
state. If the gain is set too high the exoskeleton joints can begin to vibrate from high
frequency oscillations of the unstable system and the system can be temporarily disabled. If
a lower than optimal value is chosen for the sensitivity amplification factor, the operator
perceives proportionally more weight and inertia from the exoskeleton and payload.
Choosing the sensitivity amplification factor in an automated fashion is a potential

opportunity for future work.

60



Chapter 5
Application of SAC on BLEEX

Chapter 4 motivated the Sensitivity Amplification Control scheme using a 1 DOF
system. BLEEX, as shown in Fig. 3-5, is a system with many degrees of freedom and

therefore implementation of the SAC scheme on BLEEX needs further attention.

Fig. 5-1 BLEEX Sens1t1v1ty Amplification Controller expanded to show inverse dynamlcs sensitivity

amplification gain, and local control loop around an actuator.

Fig. 5-1 expands the controller block of Fig. 4-5 to show the three major internal

components of C needed to implement the SAC scheme. The G~ block represents the
full inverse dynamics of the multi-DOF BLEEX robot. These equations take the
instantaneous values of the state variables of the exoskeleton (position, velocity, and
acceleration of each joint) as an input and output a vector of torques produced at each
joint by the dynamics of the exoskeleton and the payload. The K, block is the sensitivity

amplification gain applied to the output of the dynamic equations. The K, block

contains a local non-linear control loop that is applied to each individual actuator. The

61



SAC scheme generates a desired force or torque command and assumes the actuator can
be simply commanded to produce the required force or torque. However, BLEEX uses
linear hydraulic cylinders for actuation in which a servo valve controls the flow of fluid in
and out of the cylinder. Therefore, a non-linear multiple sliding surface (MSS) feedback
loop through local cylinder pressure is added to each actuator allowing it to be treated as a
force generator. This local joint control was proposed and simulated in [20]. Results from
the implementation and tuning of this controller on the actual BLEEX hardware will be

briefly discussed.

The BLEEX controller structure

BLEEX
CONTROLLER
STRUCTURE

Fig. 5-2 Control loop showing major components as implemented in BLEEX Software.

Fig. 5-2 shows a graphical view of the structure of the SAC scheme as it has been
implemented in the BLEEX software. The loop executes at a fixed 2kHz rate. The

following steps are performed sequentially: 1) collect and scale data from all sensors to get
values for the instantaneous 8, 9,9 at each joint, 2) calculate the full BLEEX inverse
dynamics using 6, 6,0 , 3) calculate using the SAC scheme the required torque to apply at
each joint, 4) filter the command signals to eliminate high frequency effects of un-

62



modeled dynamics, and 5) finally send the desired joint torques to the local non-linear
MSS controller that causes the hydraulic actuator to behave as a linear torque source.
Additional components not shown include error checking and safety interlocks to ensure
that BLEEX safely shuts down in the event of a sensor or hardware failure. Also, during
each control loop cycle, the computer communicates with an optional Graphical User
Interface (GUI) if it is present in the system (the GUI can be plugged into and removed

from the controller while it is running without affecting performance) [73].

5.2 BLEEX dynamic equations
For simplicity in control BLEEX is considered to have three distinct phases in the gait

cycle, (Fig. 5-3), which manifest to three different dynamic models:
Single support: one leg is in the stance phase while the other leg is in swing.
Double support: both legs are in the stance phase and situated flat on the ground.

Double support with one redundancy: both legs are in stance phase, but one foot is

situated flat on the ground while the other one is not.

SINGLE DOUBLE DOUBLE SINGLE
SUPPORT SUPPORT SUPPORT SUPPORT
WITH ONE
REDUNDANCY

Fig. 5-3 Simplified gait cycle used as a basis for BLEEX dynamic equations

Using the information from the sensors in the foot sole discussed in chapter 3, the

controller determines in which phase BLEEX is operating and which of the three dynamic

63



models apply. |

Redundant double support stance phase

The double support with one redundancy phase refers to the redundant degree of
freedom created when the exoskeleton foot is touching at the toe or heel. This distinction
has implications in terms of the kinematic description of the system. The dynamic models
for each phase of the gait cycle are based on a two dimensional sagittal plane only
representation of the exoskeleton. The model of BLEEX is simplified to a series of rigid
limb segments (foot, shank, thigh, torso) connected together by simple revolute joints.
The dynamic equations for each model are a function of the number of segments

connected together.

When the foot is flat on the ground its velocity and acceleration are both zero and
consequently it can be dropped from the equations of motion. This creates a system with
five segments and six degrees of freedom. When the foot is touching at the toe or heel, it
can pivot with respect to ground. This results in a system with six segments and seven
degrees of freedom. The two phases were separated into distinct models (rather than just
model both as double support with one redundancy and let the terms multiplied by zero
drop out in the math) because it was important to reduce the mathematical overhead for

the embedded control computer whenever possible.

When one foot is touching the ground at the toe and another at the heel, BLEEX 1s
considered to be in double support-one redundancy mode and the foot touching only on
the heel is assumed to be flat on the ground. A fourth type of double support exists, which
was discussed in the original presentation of the dynamics from [20] but not implemented

with in the Sensitivity Amplification Controller for reliability and safety reasons: double

64



support with double redundancy. This is the case with both feet touching on the toe or
both on the heel. For these cases, the two extra degrees of freedom added in the feet and
the lack of any source of actuation between the toe and ground make it impossible to
control the torque between BLEEX and the ground. When either of these cases is
detected via the foot sensors, the exoskeleton uses double support model. This allows the
human to stand on the toes or heels by applying the necessary additional torque at the

ankle through her own muscles.

Abduction-adduction control

In the initial experiments with BLEEX, the control of the non-sagittal plane
abduction-adduction DOF at the hip was decoupled from the control of joints in the
sagittal plane. This was done to simplify the initial control task and was based on the
observation through measurements that the abduction-adduction movements during
normal walking (less than 0.9 m/s or 2 mph) are rather sloW in comparison with the
movements in the sagittal plane. The abduction-adduction movements are considered
quasi-static maneuvers with little dynamic affects on the rest of system. This indicates that
the exoskeleton dynamics in the sagittal plane are affected only by the abduction-
adduction angle and not by the abduction-adduction dynamics. The following sections
describe the control method in the sagittal plane for a given set of abduction-adduction
angles. Performance of BLEEX with the addition of actively controlled abduction-

adduction has been presented in [74].

Partitioned dynamic model of the BLEEX
The BLEEX inverse dynamics model was developed in the thesis of [20] and will be
covered here briefly to establish the procedure for applying the Sensitivity Amplification

Control technique. The dynamic model for walking is partitioned according to the

65



ground contact conditions shown in Fig. 5-3. Beginning with the swing state, the
exoskeleton is supported by a single leg which can be represented as a seven DOF serial

chain of links. The dynamics can be written in the form

M(©)8+C(0,0)0+P@B)=T+d (5.1)
where 6=[6, 6, ...97]T and T=[0 T} T, ...TG]T.

M isa 7x7 inertia matrix and is a function of 8, C(6,0) isa 7x7 centripetal and

Coriolis matrix and is a function of # and 6, and P isa 7x1 vector of gravitational
torques and is a function of 6 only. T is the 7x1 actuator torque vector with its first
element set to zero since there is no actuator associated with joint angle €, (i.e. angle
between the BLEEX foot and the ground). d is the effective 7x1 torque vector imposed

by the pilot on BLEEX at various locations.

66



Fig. 5-4 Sagittal plane representation of BLEEX in the single support swing phase. The “torso” in the figure

includes the combined exoskeleton torso, payload, control computer, and power source.

Lagrangian derivation of inverse dynamics

The equations are developed via Lagrange’s method. Each limb segment has the

following properties: mass m, , inertia I, , length L, distance to link CG along the
segment from the its distal joint L, , and distance to the segment CG perpendicular to the

length of the segment A, . ne€ (0...7) and represents the numbered limb segments.

Reference coordinate frames are first established on each limb segment and are of the form

€, = [éﬂ €, 5,3] for the i™ coordinate frame starting with in inertial coordinate frame

i =0, affixed to the ground.

Rotation matrices can then be written for each joint angle, 6, =[6, ...8,], to convert

between reference frames and are of the form:

67



cosd —sinéi 0
Qi =| sin6, cosd, 0 (5.2)
0 0 1
A vector from frame €, can be written in frame é(i_l) as E(H) = Q(i—l)i €,. Furthermore,
rotation matrices can be combined to write vector €, in the inertial frame as
€m = 01902 Din-1ynn - (5.3)

The unit vectors are written as €;,, where i is the source frame, j is the unit vector,
and k is the frame the unit vector is being written with respect to.

Lagrange’s method requires writing the kinetic and potential energy for the system and
then combining them using the Lagrange equation to produce the final set of inverse

dynamic equations. The kinetic energy for BLEEX can be written as
KE=KE +KE, +...+KE,. (5.4)

And each individual imb segment kinetic energy can be written as

KEn = l’nnl;;Gn/O.I-/‘Gn/O +%In(on0 .a)nO ’ (55)
S

where V., ; is the velocity of the CG of segment n written in inertial frame 0 and @, is

the angular velocity 8, of each segment with respect to the inertial frame. @,, can be

found from

Do = O gy F Oy pyingy T oot Bpyyg- (5.6)

Limb segment CG velocities V., can be found from

68



Vinio =Vaio F Bno X oG » (5.7)

where ¥, is the velocity of the joint prior to the CG on the same limb segment. 7, is

the vector from the inertial frame to the CG of limb segment 7.
The potential energy for the system can be written as

PE=PE +PE,+...+PE, (5.8)

And the potential energy of each segment can be written as
PE, =m,g Ty Z5) (5.9)

Where g is acceleration due to gravity and the dot product of the vector from the inertial
frame to the limb CG with the inertial frame unit vector in the vertical direction gives the
vertical height of the limb CG with respect to the inertial frame.

The Lagrangian is defined as

L=KE-PE (5.10)

And the Lagrangian equation can now be used to assemble the complete dynamic

equations for each joint i.

Where 7, is the i joint torque and d; is the unknown torque that is applied by the

human. Equation (5.11) can then be calculated for each joint in BLEEX. The
combination of the rotation matrix, the vector cross product for velocity, and the partial
derivatives taken in the Lagrangian equation causes the dynamic terms to be become

extremely large as 7 gets larger than 2 or 3 limb segments. In practice, these terms are

69



almost never expanded by hand for complex systems and the process is usually automated
with a symbolic mathematical solver program such as Matlab* or Mathematica’. The full
dynamic equations and Matlab scripts for generating them have been published in [20].

The result of the expanded Lagrange equation can be re-arranged in the form of (5.1),

which is repeated for reference: M) +C(#, 00+ PO =T+ d.

Dynamic equations for the double support phases

The above derivation was for the single support phase where only one foot is touching
the ground. The equations for this, though tedious, are straightforward to implement
because each limb segment is connected in series. For the double support cases where both
feet are flat on the ground (double support) and when one foot is flat on the ground and
one is touching by only the toe or heel (double support with one redundancy), the
exoskeleton becomes a parallel kinematic linkage with a closed kinematic chain. Closed
kinematic chains pose a challenge. The additional constraint created when a linkage is
connected to a reference point in multiple locations means that in the dynamic equations
there will be one more unknown variable than the number of independent equations.
There are several techniques for solving the inverse dynamics of parallel kinematic chains:
obtain a measure of the force or torque associated with the additional constraint using a
additional sensors, solve the complete system explicitly using Newton’s method with an
added geometry based constraint equation [87-89], or partition the system and make an
assumption about the behavior of the partitioned system [90]. We chose the latter
technique for reasons that will be discussed shortly. Adding an additional sensor to the
exoskeleton was not pursued due to the added complexity and the desire for the project as

a whole to minimize complexity. The second technique was not pursued both because of

4 Matab® is a scientific computing software package from The MathWorks Corporation. http://www.mathworks.com/
5 Mathematica is a scientific computing software package from Wolfram Research Inc. hutp://www.wolfram.com/

70



the extremely complicated derivation that would result (which would be more prone to
contain errors) and because this technique assumes the kinematic chain is permanently
affixed to the base frame (which is true for typical parallel robot). Though BLEEX is
standing on the ground, there is a potential that the feet could slip and so a geometry
constraint equation could produce unreliable results. In addition, there are other more
advanced techniques discussed in the literature that were not pursued. These include
recursive techniques [91], the method of virtual work [92-94], and other techniques {95-

98].

Partition torso into...

XTR
Fig. 5-5 Partitioning of double stance BLEEX at the torso. The torso mass is split into left (772;; ) and right

(M) components. Also, the horizontal distances of the half torso CGs from the ankle joint are indicated.
The partitioning approach divides the double stance configuration of the exoskeleton
at the torso into a left half and a right half as shown in Fig. 5-5. The dynamic equations
are then formulated independently for each half of the exoskeleton in the same manner as
for the stance configuration. The difference is that now, each half-body dynamic model is
only composed of four segments: foot, shank, thigh, and half-torso. The only additional

step is to distribute the torso mass between the two halves of the system. The

71



contributions of the torso mass, m, on each leg (i.e., m; and my,) are chosen as

functions of the location of the torso center of mass relative to the locations of the

exoskeleton ankles such that:

my, =my + My (5.12)
My _*n (5.13)
Mg Xrg

x;; and X, are the horizontal distances in the sagittal plane between the torso CG and

the left and right BLEEX ankles respectively. This distribution causes the stance leg at
heel-strike to gradually accept the load of the torso as the CG moves forward over it. At
the same time, the load is transitioned off of the opposite leg at the end of stance in a

smooth manner, allowing the person to toe-off into swing phase without resistance.

(5.13) is valid only for quasi-static conditions, where the accelerations and velocities
are small. This is in fact the case, since in the double support phase, both legs are on the
ground and BLEEXs angular acceleration and velocities are small in comparison to those
seen in swing. Creating a load distribution scheme that factored in dynamic effects was
discussed in [20]. A proportional gain term related to the net force on the upper body was
added to a variation of (5.13) such that the leg with the greatest mechanical leverage
would receive a larger portion of the partitioned upper body mass. This was implemented
on BLEEX and tested while walking at moderate speeds (0.1-1.3 m/s). The dynamic term
caused an uncomfortable sensation for the operator in which rapid movement would cause
the exoskeleton to shift its load distribution between the left and right legs. The load

distribution scheme was then simplified to (5.13).

72



Fig. 5-6 Sagittal plane representation of BLEEX in the double support (left) and double support with one

redundancy (right) configurations.

Following the same Lagrangian procedure from single stance, the dynamic equations

for the two halves of the partitioned model can be written as,

M, (mTL’gL)éL +C, (mn’éL’eL)éL +P, (my,,6,)= T,+4d, (5.14)
M (13,04 ) 0 + Cr (11064562 ) 6y + Py (i, 6,) = Ty + (5.15)

Where 6, =[6,, 6, 9L3]T and 6, =[6,, g, 9R3]T. T, and T, are the actuator

torques associated with the joints on the left and right legs of the exoskeleton. d , and c?R

are the unknown torques applied by the human to left and right leg joints.

5.3 Implementation of the SAC on the exoskeleton

The dynamic equations for the model of each gait phase form the G™' block from Fig.
4-5. For each joint, the measured angle, angular velocity, and angular acceleration are fed
into appropriate joint equation to calculate the torque at the joint produced by the weight
of the exo, payload, and the dynamic torques resulting from their motion. The control

law then directs the actuators to apply an appropriate torque to cancel out the load

73



induced torques. The result is that the exoskeleton responds to any additional torques
generated by the human as if it had very little mass and inertia — in other words, it feels to

the pilot that the exo follows her motion with very minimal interaction torques.

Swing phase SAC

According to (4.6), the controller is chosen to be the inverse of the BLEEX dynamics

scaled by (l -a” ) , where « is the sensitivity amplification factor.
T =P@)+U-a™)| M85 +C(8,6)6 ] (5.16)

C (6, 9) , 13(9), and M (60) are the estimates of the Coriolis matrix, gravity induced

torque vector, and the inertia matrix respectively for the system as shown in Fig. 5-4.
Equation (5.16) results in a 7x1 actuator torque. Since there is no toe actuator between

the BLEEX foot and the ground for the first link in the chain, the torque prescribed by

the first element of T must be provided externally (by the operator).

Toe torque specified by the dynamic equations

In reality two possibilities exist. If the toe torque is positive, it is counteracted by the
presence of the ground under the foot. If the toe torque is negative, it indicates that the
exoskeleton is in an unstable configuration and is trying to tip forward over the toe.
Experience testing this condition in the laboratory has shown that the operator can readily
detect the sensation that the load is tipping forward using the same unconscious balance
mechanisms of the CNS that allow a person to maintain posture when not attached to an
exoskeleton. As the operator leans forward into a configuration where the weight begins
to tip the exoskeleton forward (and a negative torque is generated by the dynamic

equations for the toe) the operator gets the sensation that the exoskeleton is lifting up on

74



the bottom of her foot. It is then very easy to correct the unbalance by straightening or
leaning back slightly. The compliance of the exoskeleton foot and the large contact patch
created by the compliance when the operator is standing on her toes provides the
explanation for the separation between the time when the operator first feels the sensation
of the exoskeleton tipping forward and the point at which the load line of the exoskeleton

is in front of the feet and a fall is unavoidable.

Fig. 5-7 attempts to illustrate these two possibilities for handling the toe torque. In Fig.
5-7-A, the torque specified by the dynamic equations for the toe is positive (note that
there is no actuator at the toe to provide this torque). The positive torque is balanced by
the reaction force from the ground and the moment arm created by the length of the foot.
In Fig. 5-7-B, the torque specified by the dynamic equations is positive, indicating that
the exoskeleton is tipping forward due to the location of its CG or its current dynamic
state. The exoskeleton does not immediately force the human to fall forward when this
torque becomes negative because the compliance of the BLEEX foot creates a large toe
contact patch with the ground. This allows the human to exert a balancing force using the

toe muscles in the same way that a human balances when not wearing an exoskeleton.

75



FOOT

Fground

Fig. 5-7 Two possibilities for toe torque from the dynamic equations: A) shows the positive torque specified
by the dynamic equations and the ground reaction force that balances it, B) shows the case of a negative
torque at the toe, indicating that the exoskeleton is tipping forwards. Small values of negative toe torque can

be compensated for by muscles in the human toe, which generate Fhunen.

The magnitude of the torque the human can generate is small, though the sensation of
having to apply this torque to keep from falling provides the proprioceptive feedback to
maintain the overall balance of herself and the exoskeleton. As a safety precaution, the
actuator torques in the other exoskeleton joints are reduced when the torque crosses a
negative threshold to provide a clear indicator to the human that she is in an unstable
position. Experiments in the laboratory have shown that a threshold of -5 Nm at the toe
provides adequate proprioceptive feedback for balance without jeopardizing the safety of

the operator.
Result of Sensitivity Amplification Controller feedback — single support
Substituting T from (5.16) into (5.1) yields,

M©)d+C(0,00+ P©O) = PO)+(1-a ) MO +C(6,6)0]+d  (5.17)

In the limit when M(8) = M(8), C(6,6)=C(6,6), P(6)=P(§), and « is

sufficiently large, the torques between the human and the exoskeleton, d will approach
zero, meaning the pilot can walk as if BLEEX did not exist. However, it can be seen from

(5.17) that the force felt by the pilot is a function of @ and the accuracy of the estimates

76



é(6’, 9), ]3(19), and M(@) As was shown in chapter 4, small errors in the dynamic

model can lead to large errors and instability in the controller. In general, the more

accurately the system is modeled, the less the force between the human and exoskeleton,

d , will be. In the presence of variations in abduction-adduction angles, only P(6) in

equations (5.1) and (5.16) needs to be modified.

Result of Sensitivity Amplification Controller feedback — double support

Similar to the single stance phase, the controllers are chosen such that,
— _ A _1 A .. A o .
T, =B (my, .0, )+(1-a )[ML(mTL,HL) b, +CL(mTL,9L,0L)eL] (5.18)

= 5 i -1 ~ . A
T = Py, 0p )+ (1-a )[MR(mTR,HR)9R+CR( O 0p)0p } (5.19)

Substituting 7, from (5.18) into (5.14) yields

ML(mTL’eL)éL+C ( myp0159; )HL L(mTL’eL)

- . (5.20)
=Py mpy 0y )+ (- )[ML(’"TL 0,)6, +C(mp;.0,.0))0 } L
Substituting T, from (5.19) into (5.15) yields
MR(mTR>9R)éR+CR (mTRaéRaeR)éR'*'PR(mTR’eR) (5.21)

~ _] ~ . - . . >
= Pplmpp,0p )+ (1- & )[MR(mTR’HR)gR * CR(mTR’gk’GR)HR]_‘_dR

As with the single stance phase, in the limit when M (€)= M @), C(6,6)= é( 0,0),
P)= ﬁ(@) , and « is sufficiently large, the torques between the human and the

exoskeleton, d will approach zero.

77



Choosing the sensitivity amplification factor

As was discussed in Chapter 4, the sensitivity amplification factor, & , determines the
proportionality between the human input forces and torques and the response of the
exoskeleton to these torques. For example, a choice of & =10 would mean that BLEEX
would respond to an input human torque of 1 Nm as if the human had just applied 10 Nm.
In application on the exo, it was discovered through testing to be advantageous to split o
into independent amplification gains for the static and dynamic components of the
BLEEX equations of motion. This allowed a portion of the static gravity load of the
exoskeleton to be intentionally applied to the person’s body. For example, the wearer
could be made to feel 5 kg out of the total 75 kg weight of the exo and payload. Applying
a portion of the static exo load intentionally to the wearer’s body (through the compliant
upper body vest) provides the wearer with a comfortable level of proprioceptive feedback
about the movement of BLEEX and the location of the BLEEX CG without adding
undue strain to the wearer. All pilots who tested BLEEX in the laboratory indicated that
having this feedback about the static load of BLEEX made the sensation of walking with
BLEEX significantly more comfortable. In terms of the control law, this would modify

(5.16) to be,
T=(1-a")P@)+(1-a,") [ M(6)6 + C(6.6)8]. (5.22)

In equation (5.22), &, is the sensitivity amplification gain associated with the static gravity
induced forces and torques generated by BLEEX. a, is the sensitivity amplification gain

associated with the dynamic forces and torques generated by the acceleration and velocity

of the BLEEX and the payload. While the controller was stable for @, set infinitely large

78



(i.e. the term (l —al_l) =1), @, was typically chosen to be 10~20, resulting in 5~10 kg of

the static weight of BLEEX being supported by the wearer. The magnitude of the

dynamic terms component of the sensitivity amplification gain, &, , was limited by the
ability of the damping in the human feedback loop to stabilize the overall human-machine

system. Through experimentation in the laboratory, a value of 3 <@, <10 provided a safe

margin of stability given the accuracy of the dynamic model while still feeling responsive

and non-fatiguing to the wearer when walking at a moderate pace of 1.3 m/sec.

Dynamic model transitions

The BLEEX control software monitors the status of the foot sensors, chooses the
appropriate dynamic model, and calculates the desired actuator torque commands in each
iteration of the control loop. The control loop runs at 2KHz, therefore the controller can
adapt to a change in the gait phase every 500usec. No constraint is placed on the dynamic

models to force the commanded torque outputs for each joint to align between transitions.

For example, if a person wearing the exo is standing with both feet side-by-side, the
controller would use the double support equations and divide the weight of the BLEEX
payload and structure evenly between both feet. If the human suddenly lifts one foot, the
controller would switch to using the single support equations and the command torque
would change dramatically. The joints of the leg in air, which now only needs to supply
enough torque to support the weight of the BLEEX leg, would decrease. The other stance
leg would suddenly have to begin supporting the full weight of the payload and its torques

would double.

The controller is designed to adapt to sudden changes provided they occur within the

human motion bandwidth, which is typically up to a maximum of 10Hz for fast reflex

79



actions (due to human limb inertia, lower limb reflexes movement is on the order of 2-
5Hz) [30]. Relatively little information on the model transition problem for human
exoskeletons is available in the literature. In the field of bipedal robots (no humans), there
are many theories for handling the transition between multiple dynamic models and a
review can found in [99] and [100]. A second order low-pass filter has been added to the
command torques to attenuate frequencies above this range. In the continuous time

domain, the filter is of the form:

T 1

output

Towe  (1+5B)

(5.23)

This has been implemented in discrete time on the BLEEX control software as in
Direct Form II Transposed filter implementation using an infinite impulse response

difference equation of the form:

Tosput = 01 Tetereany b, Thtereanny T 23Ty +a, T, ta, T, (5.24)

The coefficients for the filter were chosen using the Matlab Filter Design Toolbox and
are given in Table 5-1 for a selection of the cutoff frequencies that felt comfortable for
different individuals during testing. In terms of the actual feel of the device for the
operator, lower cut-off frequencies add a slight sensation of sluggishness to movement
while walking. Higher cut-off frequencies cause the exo to feel very responsive and
effortless to move in at the cost of the sensation of a brief (10~20 msec) high frequency
vibration at each gait phase transition. The frequencies in Table 5-1 represent a

compromise that felt comfortable to most operators.

80



Table 5-1

Low-pass Coefficients for Low-Pass Filter in Equation (5.24)
Cutoff
Frequency 4 a, a, b, b,
10 Hz 2.4135e-4 4.8271e-4 2.4413e-4 -1.95557 9.5654¢-1
20 Hz 9.4469e-4 1.8893e-3 9.4469e-4 -1.91119 9.1497e-1
50 Hz 5.5427e-3 1.1085e-3 5.5427e-3 -1.77863 8.0080e-1
80 Hz 1.3359%¢-3 2.6718e-2 1.3359¢-2 -1.64748 7.0089%¢-1
o . Filter Magnitude (dB) and Phase R;sponses o ‘4 Fi‘lter Resplonse toa Unit Sttzp Input '
~_ | ol '
'_%\'50 S3-40 {5
gﬂ-mo -80 \‘g g_o 8
2_150 o ':E < 0.6
. RPN
0.4
- leu 0=
B (;.1 (Ir.z 53 0.4 <‘\,5 4.‘=,r» «;.7 UK Gy [ “% Dz rim .06 0.08 oy

Frequency {kHz) Time (secs)

Fig. 5-8 Bode plot and step response for second order low-pass filters used to smooth model transitions.
Local torque control of the hydraulic actuators

As was mentioned in the introduction to this chapter, the SAC scheme calculates a
desired actuator torque command each cycle through the control loop. The last stage of

the control block in Fig. 5-1 is the non-linear actuator controller, labeled K, that was

developed in [20] and subsequently tuned as part of this thesis work to achieve acceptable
performance on the BLEEX hardware. This controller runs independently (though
synchronously) from the SAC scheme and it allows the hydraulic actuator (an inherently
flow controlled device) to be treated as a linear torque source with unity gain. The SAC
controller can output an arbitrary torque command within the capabilities of the BLEEX
hardware and power supply, and the non-linear joint controller ensures that this torque is

applied to the joint within the bandwidth of human motion.

81



The actuators used on BLEEX are Bi-Directional
Hydraulic Cylinder

double acting hydraulic cylinders (fluid can

be added to either side of the piston) that are 3 y,¢ Closed Center T
Hydraulic Servovalve

coupled to high precision aerospace 3-way

servo valves with carefully ground non- Hydraulic High

Pressure Source

overlapping spools that offer high bandwidth

Reservoir -+

Fig. 5-9 BLEEX hydraulic actuation system.

flow control of the pressurized hydraulic

fluid. The detailed analysis and selection of

hydraulic components is covered in [31]. The command voltage sent to the servo valve
from the BLEEX control computer varies the cross sectional area of a set of flow
restriction orifices in the servo valve. This allows pressurized hydraulic fluid to flow in one
side of the cylinder and out of the other to a low pressure reservoir. By applying an
opposite polarity of voltage to the servo valve, the pressurized hydraulic fluid can be made
to flow into the opposite side of the cylinder, reversing the supply and exhaust ports. The
result is that the actuator can apply a bi-directional force. The linkage connecting it across

a joint in the BLEEX converts this force into a torque at the joint.

The controller used for the joint was a multiple sliding surface non-linear controller.
In [20], many options for achieving high-bandwidth force control of the hydraulic
cylinders were analyzed, including linear control, feedback linearization, linear control
with a servo valve spool observer, sliding mode control, multiple sliding surface control
and adaptive multiple sliding surface control. The multiple sliding surface controller was
selected and the simulated performance tracking performance in Fig. 5-10-A was

presented.

82



Multiple Sliding Surface (MSS) control is an extension of sliding mode control (also
known as variable structure control) that was first proposed by [101] and is a form of high
speed switching control. Conceptually, 2 mathematical surface is defined such that, when
the chosen system variables are on the surface, the system behaves as one would desire. A
discontinuous switching law forces the system to move back towards the surface when the
system parameters move outside a specified error bound. With proper choice of the
surface definition and with an infinitely fast control loop, [101, 102] proved that perfect
tracking can be achieved in spite of the system nonlinearities. In essence, this control
strategy replaces the difficult to control non-linear dynamics of a system with a simple
control law and relatively simple dynamics. MSS is an extension to sliding mode control

to deal with systems with mismatched uncertainties and difficult to differentiate terms.

As part of my thesis work, the gains for the multiple sliding surfaces were
experimentally tuned to achieve performance similar to the simulation presented in [20].
The result of this tuning is shown in the torque tracking results recorded on the actual
BLEEX hardware (Fig. 5-10-B). The performance of the MSS controller has been
sufficient to enable the tacking of high bandwidth (3-10Hz) torque commands necessary

for the successful implementation of the global SAC scheme.

83



Actual Force and Desired Force (simulation) Actual Torque and Desired Torque (on BLEEX)

TN 7
0.0

Z -
v i
5
ﬂ-'m LS AR W\ i

jai gos 01 015 02 025 03 03B 04 D45 45

‘x‘jg" Input u

2

8

v 6 51 0% 07 0% D3 0% 04 04 05
10 MSS Skding Surface 5,=xy - Xyd

Y

200 J—
e ¢ Tonsired

RET | WON  WIN WG KX RINV KTIO NI KD RIN KM
Time (msec)

; . L : . R R . s
0 905 01 015 D2 02 03 0% 04 D45 05
Tune (s¢c)

Fig. 5-10 Comparison of simulated (A) and actual (B) tracking performance. (A) is simulation data from [20]
and (B) is the tracking on the actual BLEEX hardware after tuning the MSS controller.

5.4 Performance analysis of the SAC

Unlike traditional robotics projects in which a device can be built and characterized in
a structured environment free of human intervention, BLEEX must be attached to a
person in order to function. In fact, the controller mandates that the human be part of the
control loop in order to ensure that the overall system is stable. The most straightforward
performance measure for the system was the overall comfort and sensation as reported by
the operator while wearing the device. Though subjective, this form of testing was well

suited to evaluating subtle changes to the parameters of the control software.

Because the device was designed never to exceed the human range of motion, force,
or natural limb velocity, it was also relatively safe to make changes to the control system
and test them directly as the operator. One of the major difficulties of this process was
getting the test subject to recognize and accurately describe the sensations of walking in
the device. Often the most reliable way to get feedback on a particular change to the

controller was to act as both programmer and test subject in BLEEX. Later in the project,

84



a formal test protocol was developed and submitted for approval to the U.C. Berkeley
panel on human testing (see Appendix B). As of this time, this testing has been transferred
to an independent testing laboratory at the U.S. Army Natick Soldier Training Center in
Natick, MD and trials have been deferred in order to test a second generation of the

exoskeleton hardware currently in development.

BLEEX Testing Setup

Testing of the 1% generation BLEEX shown in Fig. 1-3, was performed both in the
Berkeley Robotics and Human Engineering laboratory in Etcheverry Hall on the U.C.
Berkeley campus. Walking and other maneuverability testing was performed on a
treadmill that offers programmable speed, and inclination as well as in the open floor space
of the laboratory. In this location, BLEEX was powered by a DC motor version of the
backpack hydraulic power supply connected via a power tether to the building’s 240V
mains. An overhead safety tether was attached to BLEEX at all times to ensure that the
operator could never fall to the ground. The safety tether was a lightweight nylon strap
(similar to seatbelt material) that was attached to a set of overhead rails with ball-bearing
trucks, allowing it to be maneuvered with little force anywhere in an approximately 4.5m
square area of the laboratory. The cable was kept sufficiently loose during testing such that
it did not impart any measurable forces on the operator and was set to a length that

allowed the operator to bend over and squat without obstruction.

Additionally, testing was performed using an autonomous gasoline IC engine based
hydraulic power supply in a remote facility that offers a large unobstructed covered
concrete area (10m x 12m) for untethered walking and unstructured maneuvers. Again,
an overhead safety tether on a movable rail was used to ensure that the operator could not

fall and hit the ground in the event of a loss of balance or a failure on the exoskeleton

85



BLEEX has been tested with up to 35kg of payload, however for the full energetically
autonomous tests, the backpack power supply accounted for 25kg of the total payload. At
35kg, BLEEX performance is limited by the flow and pressure capability of its backpack
power supply. Preliminary results of an advanced version of the power supply under
development in this research group have been reported in [70]. This improved design

would occupy less volume than the current design and could increase the payload to 50kg.

Continuous level-ground walking

Overall, the SAC scheme provided the first stable and comfortable level ground
walking in the Berkeley Lower extremity exoskeleton. The smoothness and responsiveness
of the SAC scheme, for the first time, allowed the operator to balance naturally without
the need for hand support and without feeling the weight of the payload. Also, the SAC
scheme allowed the operator to turn, squat, start and stop motion, and balance
comfortably with up to 35kg of payload and without the need for any external support or
balance assist devices. A maximum walking speed of 1.4 m/sec was achieved. Walking
speed was limited by the maximum hydraulic flow rate of the backpack power supply
[70]. For maneuvers such as squatting, the required torques were beyond the actuator
limits for the knee, causing the wearer to have to provide additional torque to stand from

a squatting position.

Deviations between predicted and measures torques

BLEEX was designed under the assumption that a device with similar mass and inertia
parameters to a human, moving with the same motion (the walking gait cycle), should
experience similar joint dynamics (velocity, acceleration, and torque). This allowed the
biomechanics CGA data to be used as templates for the BLEEX motion and actuation

requirements. To test this assumption, representative data from an operator walking

86



continuously at a moderate pace (1.3 m/s) on a treadmill are presented along with joint
CGA data from [32] (Winter), [34] (Kirtley), and [33] (Linskell) taken at approximately
the same speed. The BLEEX data was recorded with the controller’s sensitivity
amplification gain tuned to feel comfortable to the operator with 25kg of payload. The
operator described the sensation of walking as “feeling a light [torso] load of 5-10 Ibs and a
slight heaviness in the feet immediately after toe-off.” This was considered an acceptable

level of performance at the time of the data collection.

Because the human and exo limbs are coupled together and move in synchrony, time
has been eliminated in Fig. 5-11 by plotting joint torque as a function of angle. The area
inside the loops on the plots represents the work done by the actuator. The actuator
saturation limits have been included for each plot to verify that the commanded torques
are within the BLEEX limits (i.e. the controller is not saturating). Also, the BLEEX plots
include both the desired torque for the joint calculated via the Sensitivity Amplification
Control scheme and the actual measured torque at the joint. These two curves, in
comparison to each other, show the tracking performance of the local non-linear joint
torque controller. In comparison with the curves of the human CGA plots, they can help

evaluate the appropriateness of the initial design assumption that human CGA data can be

used as a model for BLEEX walking.

87



C GA Human Joint Torques and

Actuator Torques vs. Angle for Ankle

BLEEX Joint Torques and

Actuator Torques vs. Angle for Ankle

1500 y——y— r ——————r 1500 — v, s—
M‘. 3 ]
1000 } - =e+ Kirdey 4 1000} ;
.“‘,.u." - W inter
gt wwm Linckell
500 ¢ = pull actuator limit < 500 P b
. ¢ push actuator limit R Desired 1.9mph
=] ot E =] ok |=— Actual 1.9mph o
,6 _6 » pull actuator limit
= QO = o push actawr limit
» -500 % 4 -500p 4
& ‘- 2
LTS ‘! o
&-1000 %00y - 4 5-1000} J
= 000
o0 =
1500 el - 1500} 1
004006000000400000900°°
2000 5=36""30 ETET) 10 20 30 40 50 2000 T 30 20 10 0 10 20 30 40 50
Angle (deg) Angle (deg)
C GA Human Joint Torques and BLEEX Joint Torques and
Actuator Torques vs. Angle for Knee Actuator Torques vs. Angle for Knee
1500 r v r r r r v 1500 r T r ' T r
ese Kirtley = Desired 1.9mph
mussns Y/ inter wmnem Actual 1.9mph
| | == Linskell J > pull actuator limit i
1000 «  pull actuator Limit 1000 F e push actuator limit /—\
o h ac tuator limit
pus ac’o T \
— 500 } R 4 500 } E
(= K )
g R .8
&
2 o 2
— °0 r ~—
o OF E o OF p
o 3]
Frosoor .“\/ [ .
100 S 120 -100 0 60 40 20 ) 20 1000 5 120 -100 .80 -60 -40 -20 0
Angle (deg) Angle (deg)
C GA Human Joint Torques and BLEEX Joint Torques and
Actuator Torques vs. Angle for Hip Actuator Torques vs. Angle for Hip
1500 v v v y v v * 1500 v v v r v v
ews Kirtley wnem Desired 1.9mph
— VW inter = Actual 1.9mph
1000 p wme Linskell k 1000 p « pull actuator limit
» pull actuator limit ¢ push actuator limit
# push actuator limit
500 o 500 b -
'&.' .
= | =
=} ok - e op -
& g £
N .9. S’
o ° - v g -
2 -500 p o g-soo
= i =
Q o [=}
= -1000 b ‘.,o’ L —-1000 p E
M”a.’w“
1500 0 20 40 60 80 100 120 -1500,5 120

Angle (deg)

Angle (deg)
Fig. 5-11 Comparison of walking between human CGA data and the BLEEX experimental data for the

ankle, knee, and hip joints. Plots of torque as a function of angle include push and pull actuator saturation

limits for reference.

88



There are very noticeable differences between curves for each joint in Fig. 5-11,
however the overall shape and the location in the torque-angle plane is similar. This
suggests, at least to a first approximation, that the dynamic model is performing properly
and generating estimated joint torques similar to those that occur in the human body
during walking. For the ankle, little positive torque is required for the human (as seen in
the left hand CGA plot). The BLEEX curve for the desired ankle torque exhibits the same
characteristic. The maximum BLEEX extension torque (negative torque) is approximately
half the magnitude of the maximum human extension torque. One explanation for this
difference could be the difference in the posture between the two plots. The combined
human and BLEEX CG is shifted posterior to the unassisted (no exoskeleton) human CG.
When walking without BLEEX, the ankle extension torque becomes large to prevent the
human from moving forward too fast during the swing phase. The addition of the BLEEX
mass to the human, though not borne by the human directly, does act as a counterbalance

to the human CG and might account for the decreased ankle torque.

The measured torque at the ankle shows significant tracking error (up to 40%) and a
large positive torque overshoot (300 in-Ib). The poor tracking performance is most likely
due to problems getting the local joint MSS controller to behave well. After tuning the
controller, torque tracking was typically within 5% of the desired torque, however this
performance was affected by changes in operator and day-to-day variation in experiments.
Torque tracking was not as large of a problem for the knee and hip joints. Alternatives to
the non-linear joint controller are discussed in [20] and are analyzed in simulation. Future
work could include implementing these alternate strategies on the BLEEX hardware in
order to create a more robust local torque control loop. Improving local joint torque

control for the hydraulic actuators is an important direction for future work.

89



__________ (g S 0 ey 0 A U 0
! I [ I “\\\H 1 [ + T [N
e e ST S s et e e O 1 S R R B AN - T T T T TN
R e e e e R — b -k it H
b o oy Lo
o e it R Yl Al At A ia e it Bl IR A ST-rrTan
1 ] Lt | 3 \}\\"\‘ ‘\\ \E ' [ R
o Cor \/\L_x—r—ﬁﬂ\\l ﬁ Rl o
10 [ B el g petli ‘31 _p MHE -t -t
2 = \L_:tz_v_' Srofrrcan
[ TR A BT T IZCitoo
I + =4 t+tHHR—= =4+ 4+ it + -+ 4=
| et i Ml Sl e e ol & el B \_(‘?‘HH““‘_T'_?‘Y*’*‘ + = =
1 Il L1 Lbild | L [ L L Ll L T
10" 10’ 10' 10° 10°
200 T y
o R |
o [N I
R REI L |
LU e e e e e e A Tr it Tt I
o o I
o R f»r |
0———x"\’\—\—\‘rrﬂ—-—‘r"§mw
[N Ry |
[N o I
AR -100F - — - = -1 b s = i A S HH - -
IR RN I
1 ] BN ] 1 e 1
200 Y ||1>m° Lo 1|um1 |
130" 10 10
L]

Fig. 5-12 Bode plot showing tracking performance of MSS controller.

Figure Fig. 5-12 shows an experimentally obtained Bode plot of the local MSS
actuator controller. The bode plot was obtained by tracking a sinusoidal input signal and
sweeping the sine wave frequency from 0 Hz to 100 Hz. The amplitude is flat out to
approximately 2 Hz. Beyond 10 Hz the controller does not track well. Nonetheless, the
bode plot indicates that the controller bandwidth should be sufficient for tracking the
motion of human walking. Future work to improve the robustness of the controller and

to automate tuning process for the MSS control gains could still be beneficial.

The knee plots from Fig. 5-11 show similar trends between human CGA data and
BLEEX. The magnitude of the BLEEX torques during walking is greater than the human
knee torques, however this is most likely due to the geometric sizing of BLEEX to the
human operator’s body. BLEEX legs were typically sized to be slightly longer than the
human’s legs. This ensured that BLEEX could still exert an upward force on the spine and
payload when the human is standing up straight. The consequence of the longer BLEEX
legs is that they cannot take advantage of the over-center characteristic of the human

knee. An over-center configuration, which refers to the position of the load line in the

90



sagittal plane anterior to the joint, causes the knee to remain stably in a locked position
under load without the need to apply torque. Second and third generations of BLEEX
currently in development have been designed to be over-center during stance. Also, the
next generation current exoskeleton fitting policy is to set the length of the legs to be as

close to the length of the human legs as possible.

The BLEEX hip torque most closely matched the human walking CGA data.
Additionally, tracking of the hip torque was the best of the three joints. In Chapter 2 it
was noted that the torque for the hip was a smoothly varying almost sinusoidal signal. A
sinusoidal input signal is what is used during the tuning process for the MSS controller so

it stands to reason that this joint would have good tracking behavior.

Sensor data accuracy

The joint angle data was verified via measurement of limb segment absolute angles
using a digital protractor from Cole-Parmer (model PRO360 950-317) that provided 0.1
deg accuracy. Force sensors used on each actuator were calibrated on an external load cell
and a linear curve fit was created for data points sampled at 100 b intervals throughout the
full range of the sensors. During periodic repairs of the exoskeleton where the force
sensors were removed, they were re-tested on the load cell and typically were within 1%
of the original calibration data points, even after extensive use. Unfortunately, the linear
accelerometers used to calculate the joint angular velocity proved to be very problematic.
Fach was calibrated to remove the static offset due to gravity. During operation, high
frequency vibrations in the exoskeleton due to the internal combustion engine on the
backpack power supply and due to shock created at heel-strike when the exoskeleton foot
strikes the ground, showed up on the accelerometer output. This resulted in high-

frequency oscillation of the calculated joint angular acceleration for each joint. These

91



oscillations frequently had amplitudes of up to 20% of the estimated joint angular
acceleration amplitude that would be seen during walking. To mitigate this problem,
aggressive low-pass filtering was applied to the incoming accelerometer data. Cutoff
frequencies between 5 Hz and 10 Hz produced acceptable behavior during normal
walking. Unfortunately, this prevented the sensitivity amplification controller from
responding to high frequency human motions such as reflexes. For rapid reflex-like
motion, the wearer typically complained that of a heavy or non-responsive sensation from
BLEEX. Reducing the vibrations due to the internal combustion engine used in the
backpack power supply would probably have eliminated most of the problems with the
accelerometers. Because the control is based on an accurate model of the system and
accurate data about the motion of each joint on BLEEX, finding a more reliable sensor for
measuring the joint angular acceleration would contribute significantly to the overall

performance of the Sensitivity Amplification Controller.

Model parameter refinement

Chapter 4 stressed the direct connection between the performance of the Sensitivity
Amplification Control scheme and the accuracy of the dynamic model. During the
experimental testing phase of the BLEEX project, much work was done to improve the
accuracy of the model parameters for the link CG location, link mass, and link length. In
some cases this meant adding detail to the CAD solid models used to calculate the CG
location and link mass. The mass of each leg segment of BLEEX was experimentally
verified and the wiring, electronics, and anything else attached to BLEEX (e.g. cable tie
downs) was carefully weighed and incorporated into the inverse dynamics software. In an
attempt to at least partially circumvent this time consuming task, one researcher in our

group pursued an off-line system identification program [103]. This allowed the system

92



parameters to be found experimentally in an automated process; however the algorithm
required the exoskeleton to be placed on a test stand separate from the human. One
avenue for future study would be to create a system identification system that could refine

the inverse dynamics model parameters as the system is running.

One of the most significant shortcomings of the Sensitivity Amplification Control
scheme is the need for an accurate model of the BLEEX torso, because the torso model
includes the mass and CG location of the payload being carried. The payload is inherently
a dynamic variable in the system as the operator can add or remove items being carried at
any time. This can cause both the mass and CG location of the torso to change
significantly. In addition, the fuel being consumed by the backpack power supply causes
the torso mass and CG to shift as a function of time. In practice, this limitation did not
prevent successful demonstration of walking with BLEEX because the operator was given
manual control of the torso mass and CG location model parameters in the control
software via the BLEEX GUI The operator could start BLEEX and then adjust these
variables gradually until the backpack load was fully supported by BLEEX. Setting the
torso mass or CG location variable too large would cause BLEEX to over actuate each
joint, resulting in the actuator extending each joint against its hard stop. This would leave
the wearer standing up straight, unable to bend or otherwise buckle the legs. This
situation had to be carefully avoided by increasing the torso mass variable slowly, stopping
the adjustment as soon as the load felt comfortably balanced by the BLEEX actuators. In a
real world application however, this strategy would not be practical. One alternative
explored to circumvent the problem of an unknown and varying torso mass and CG was
to add a six-axis force sensor at the attachment point between the compliant human

harness and the exoskeleton spine. This would have allowed the controller to estimate the

93



mass and CG of the torso, however because of time constraints on the project, this

functionality was not fully implemented in the BLEEX control code.

An alternative BLEEX control scheme was explored by Huang [66] which eliminated
the problem created by an unknown and varying torso mass by combining the Sensitivity
Amplification Control scheme and a master-slave style of position control. This new
control scheme, called hybrid BLEEX control, divides the walking gait cycle into stance
control and swing control phases. Traditional master-slave style position control is used for
the BLEEX stance leg (including torso and backpack) and the sensitivity amplification
controller is used for the swing leg. The hybrid controller is designed to smoothly
transitions between these two schemes as the person walks. For the stance leg (i.e. the leg
that is on ground), position control is used to servo BLEEX joint angles to track the
human’s joint angles. Since the BLEEX torso weight is carried by the stance leg, there is
no need to know the mass and center of gravity (CG) properties of the torso. As a
tradeoff, the position control used in this method requires the human to wear seven
inclinometers on the human body to measure human limb and torso angles. These
additional sensors require careful design to securely fasten them to the human and increase

the time to don (and doff) BLEEX.

Thm i

T .
%h ¢ acn BLEEX i» |‘egoi

u; =kp’.(6hi ~0oi) stance joint
Tgi

Fig. 5-13 Shows the position control block diagram used for the joints of the stance leg (ankle, knee, and

hip) when the exoskeleton is in hybrid BLEEX control mode.

The position controller is implemented as a proportional controller that servoes the

BLEEX joint angle to match the joint angle measured on the human body. Because this

94



control scheme is based on the assumption that the human can move while attached to
BLEEX such that a joint angle difference is created between the human and exoskeleton
joint angles, it is necessary to modify the connection between the person and BLEEX to
have additional compliance. This additional compliance caused the human to have less
proprioceptive feedback from the exoskeleton, making balancing difficult for the hybrid
control scheme. In laboratory experiments with hybrid BLEEX control, a person could
walk while steadying herself using a handrail, but could not walk unassisted. This was
primarily due to the balance problem caused by the added compliance at the human-

exoskeleton connection points (i.e. the shoe and the vest attachment).

Position-control worked adequately for the stance leg where, for normal walking,
motion is relatively small. For the swing leg, the position-controller bandwidth did not
allow the exoskeleton to accurately track the rapid natural movement of human leg. For
this reason, the Sensitivity Amplification Control scheme was activated for the leg in
swing as soon as the controller detected that the foot had left the ground. With hybrid
BLEEX control, a person could walk in BLEEX at a maximum speed of 0.5 m/sec with a
maximum payload of 18 kg (40 lbs)—tested in a laboratory setting on treadmill. Asa
downside, this control scheme required the attachment of sensors on the human body and
required power and data cables to be run between each of these sensors and the
exoskeleton control computer. Attaching these sensors to the body and connecting each of
the sensor cables added significant time to the exoskeleton donning and doffing
procedures. The tradeoff for this additional complexity is robustness of the controller to
the exoskeleton payload. Future research that explored ways to increase the performance
of the hybrid scheme could be very beneficial. In particular, research should focus on

solving the balance problem created in the current implementation of hybrid control.

95



Chapter 6

Conclusion

While there is still significant work left before the Berkeley Human Exoskeleton
project is complete, BLEEX has successfully walked, carrying its own weight and
producing its own power. This makes it the first lower extremity exoskeleton capable of
carrying a payload and being energetically autonomous. Currently BLEEX has been
demonstrated to support up to 50 kg (exoskeleton weight + payload), walk at speeds up to
1.3 m/s, and shadow the operator through most maneuvers without any human sensing or

pre-programmed motions.

BLEEX was proven to work not just in highly controlled experimental setting, but
also during free unstructured walking and with complete freedom of the operator to move
as he or she pleases. The BLEEX controller never overrides human intent, allowing a
person to turn, squat, start and stop walking at any time, and change walking pace at any

time.

6.1 Sensitivity Amplification Control: A New Paradigm

BLEEX is not a typical servo-mechanism. While providing disturbance rejection along
some axes preventing motion in response to gravitational forces, BLEEX actually
encourages motion along other axes in response to pilot interface forces. This
characteristic requires large sensitivity to pilot forces which invalidates certain assumptions

of the standard control design methodologies, and thus requires a new design approach.

The controller described here uses the inverse dynamics of the exoskeleton as a

96



positive feedback controller so that the loop gain for the exoskeleton approaches unity
(slightly less than 1). Experiments with BLEEX have shown that this control scheme has
two superior characteristics: 1) it allows for the same wide bandwidth maneuvers a human
is capable of performing; 2) it is unaffected by changing human dynamics (i.e. no changes
to the controller are required when pilots are switched). The trade off is that it requires a

relatively accurate model of the system.

6.2 Lessons learned from powered exoskeletons

The BLEEX project successfully tackled the one hurdle that has stalled almost every
attempt to create a human exoskeleton over the past 50 years: integration. Despite the
complexity in terms of the number of actuated degrees of freedom, the number of sensors
and wires, the control software, and the portable hydraulic power supply, all components
were successfully integrated in the final design without the need for any power or data
tethers. What’s more, a person can put on the exoskeleton and walk while carrying a load

without any specific training and without the need to make any changes to the controller.

The mantra that came out of the experience of designing and testing BLEEX in order

of priority was:
1) Reduce Complexity
2) Reduce Power

3) Improve Operator Comfort.

6.3 Reducing complexity
In reality, this complexity did cause an almost endless headache for the engineers

involved on the project. From intermittent contact inside of electrical connectors to

97



hydraulic leaks, to fatigue failures in the compliant foot components, there was a constant
queue of issues to be resolved to keep the exoskeletons (we built two BLEEX models)

running.

6.4 Reducing power consumption

The issue of power consumption became a large roadblock late in the project. The IC
engine based power supplies developed for BLEEX were only marginally adequate in
terms of power output. Increasing the engine power came at the price of additional
weight. Though the operator didn’t feel the weight of the power supply, its does reduce
the total amount of payload that BLEEX can carry. Our team explored every feasible
portable technology we could locate from fuel cells to advanced batteries like lithium-
polymer and zinc-air, monopropellant engines. At the time, only a gasoline based IC
engine could provide the needed power density and reliability to make BLEEX fully
autonomous. Still, the IC engine was unattractive due to its loud operation noise, high
operating temperature, need for active cooling, and the inability to safely operate it
indoors. Though new power technologies may one day emerge that can make the power
supply problem for mobile robotics irrelevant, for the foreseeable future the only solution
is to reduce the overall system power requirements. Moving forward, current exoskeleton
development in our lab is incorporating passive impedance control (e.g. damping) rather
than active control for some or all of the joints of the exoskeleton depending on the

specific application.

6.5 Improving pilot comfort
Finally, pilot comfort still needs significant improvement before BLEEX can be said to

be truly transparent to the operator. Additional compliance needs to be added for non

98



sagittal plane motions in order to accommodate a wider range of movement in the
exoskeleton. The BLEEX spine, which is currently rigid, needs to have compliance added
to allow the operator to more naturally twist side to side and bend over. The harness also
needs improvement to allow for easier donning and doffing and to improve long term
comfort. Currently, a compliant attachment strap is used to connect the human shanks to
the exoskeleton shanks. The ergonomics of this location as a connection point have not
yet been evaluated and some users complain that this connection is uncomfortable when

the BLEEX is worn for long periods of time.

6.6 Extension to activities outside of walking

Currently, BLEEX has been tested walking at arbitrary speeds self-selected by the
wearer in unstructured environments. The wearer is free to turn, start, and stop motion at
will without any explicit commands or changes to the BLEEX controller. In addition,
BLEEX has been demonstrated with the user squatting and balancing on one leg while
carrying a payload of up to 35 kg. Further work needs to be done to improve the power
supply, actuation capability, and the local joint torque control algorithm such that high
speed maneuvers (i.e. jogging and running) can be tested. Stair and ramp descent and
ascent have only been tested in limited scenarios (short flights of one to three steps and
shallow ramps of 6-15 deg) and have been shown to work with the current Sensitivity
Amplification Control scheme. However, more extensive testing needs to be done. In
particular, the current implementation of the control scheme begins to transfer weight to
the forward stance leg too early for stair and ramp descent and ascent. This is because the
weight distribution scheme for the double stance case does not take into account the
vertical position of the foot in the sagittal plane (only the horizontal position is

considered). Other activities that have not been explored include sitting in a chair or seat,

99



kneeling, lying prone on the ground, crawling and standing up from a prone or kneeling
position. Many of these will require modifications to the control and some, such as
crawling or kneeling, may require additional sensors to detect the ground contact of other

parts of the exoskeleton structure.

6.7 The future of human exoskeletons

Human exoskeletons are truly in their infancy. Despite 50 years of design progress,
only a handful of working prototypes have successfully been developed. Only within the
last five years has computing and control technology made the success of an autonomous
load-carrying human exoskeleton a possibility. Nevertheless, the same problems of weight,
energetic efficiency, and power consumption that derailed human exoskeleton projects as
far back as the original General Electric “Hardiman” project, threaten the practicality of
even the most advanced concepts currently under development. Science fiction often
portrays soldiers of the future fighting epic battles as super-human exoskeleton-enhanced
warriors. A far more likely future will see the fundamental technologies behind
exoskeletons slowly creep into markets such as orthotics, prosthetics, sports equipment,
body armor support, and other even more mundane applications. Many of these
applications will require little or no control or actuation. However, the experience gained
from creating robotic systems that are intimately interconnected with the human body,
both in form and operation, will be what enables the progress of exoskeleton design and

control in these new directions.

The second and third generations of BLEEX currently under development in the
Berkeley Robotics and Human Engineering Laboratory is following one of these pathways

that is leading towards an exoskeleton that requires no external power supply at all.

100



Instead, it will harness energy for the moving mass of the human body and payload to
control the stiffness and damping of its joints as a function of joint angle and phase in the
gait cycle. A tradeoff is made for this system in that it can no longer inject power in a
joint, meaning the energy needed for climbing stairs and ascending ramps will have to be
supplied by the wearer. Additionally, these new systems will not be able to compensate for

the dynamic forces and torques generated when moving the mass of the exoskeleton and

payload. At this time, our research group believes that the benefits of having a lighter
system (no internal combustion engine power supply), a longer runtime (unlimited
runtime for some of our newest energy harvesting and purely mechanical designs), and a
simpler more robust system (fewer sensors, cables, actuators, and failure modes) combine
to more than outweigh the downsides of this approach.
Fig. 6-1 Second generation BLEEX system currently under development.

As a comparison, the one of the second generation BLEEX designs (Fig. 6-1), which

incorporates passive knee joints with controlled damping and passive hip and ankle joints

with angle modulated stiffness, has a total system weight of 14 kg (compared to nearly 70

101



kg for the first generation BLEEX). This second generation design runs hydraulic control
valves, sensors, and a control computer for up to 96 hours on approximately 0.6 kg of
lithium-polymer batteries (compared to a 3 hour runtime with a 23 kg power supply for
the first generation BLEEX). This new system no longer suffers from the power supply
flow rate and torque tracking limitations of the first generation BLEEX. It has allowed a
person to run at up to 5.3 m/sec while carrying payloads of up to 50 kg (compared to 1.4

m/sec with a 15 kg payload for the first generation of BLEEX).

The future of human exoskeletons is beginning to take shape; hopefully the work of
this thesis will provide one more stepping stone to help drive this progress forward. It is
now conceivable that the problem of load carriage on the human body and the associated

physical cost may one day become a forgotten memory.

102



References

[1]

[2]

[3]

(4]

[5]

[6]

(%]

[10]

[11]

[12]

N. Shachtman, "The 4th annual: Year In Ideas; Exoskeleton Strength," in The New
York Times, vol. 6. New York, NY, pp. 68, 2004.

J. J. Knapick, K. L. Reynolds, and E. Harman, "Load carriage using packs: A review
of physiological, biomechanical, and medical aspects,” Applied Ergonomics, vol. 27
(3), pp- 207-216, 1996.

Rippel E. M. Facility, Dartmouth University, "Formicidae SEM image," [Online
Document], 2004, [cited Mar. 3, 2006], Available HTTP:
http://remf.dartmouth.edu/images/insectPart3SEM/source/31.html

"Exoskeleton," in The American Heritage Dictionary of the English Language, 4th ed:
Houghton Mifflin Company, 2004.

General Electric Co., "Exoskeleton Prototype Project, Final Report of Phase 1,"
Schenectady, NY, pp., 1966.

E. T. Carre, "Historical review of the load of the foot-soldier," United States Army
Quartermaster Research and Development Center, Natck, MA, vol. 8, Tentage and
Equipage Series Report, 1952.

J. G. Donald, "March fractures: A study with special reference to etiological factors,"
J. Bone Joint Surg., vol. 29, pp. 297-300, 1947.

J.J. Knapick, K. L. Reynolds, and E. Harman, "Soldier load carriage: historical,
physiological, biomechanical, and medical aspects," Mil. Med., vol. 169 (1), pp. 45-
56, 2004.

E. T. Renbourn, "The knapsack and pack; an historical and physiological survey
with particular reference to the British soldier," J. R. Army Med. Corp, vol. 100, pp.
1-15,77-88,193-200, 1954.

W. H. Harper and J. J. Knapick, "Investigation of Female Load Carrying
Performance," U.S. Army Research Laboratory Human Research and Engineering
Directorate Annual Report, Aberdeen Proving Ground, MD, vol. 95MM5589, pp. 1-48,
1995.

M. F. Haisman, "Determinants of load carrying ability," Applied Ergonomics, vol. 19
(2), pp. 111-121, 1988.

J.J. Knapick, "Physiological, Biomechanical and Medical Aspects of Soldier Load
103



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Carriage," NATO Res. and Tech. Org. Human Factors and Medicine Panel,
Kingston, Canada, pp. 34-52, 2000.

S. Clifford and K. Kingsbury, "Otfitting a Soldier," in Life, pp. 5, Dec. 3, 2004.

"Orthotic," in The American Heritage Stedman's Medical Dictionary, 2nd ed: Houghton
Mifflin Company, 2002.

S. E. Itby, K. R. Kaufman, J. W. Mathewson, and D. H. Sutherland, "Automatic
Control Design for a Dynamic Knee-Brace System," IEEE Trans. on Rehab. Eng.,
vol. 7 (2), pp. 135-139, 1999.

K. Nagai and I. Nakanishi, "Power assisting control of robotic orthoses considering
human characteristics on assisted motions," Proc. of the 1999 IEEE Intl. workshop
on Robotics and Human Interaction, Pisa, Italy, pp. 1-6, 1999.

J. A. Doubler and D. S. Childress, "Design and evaluation of a prosthesis control
system based on the concept of extended physiological proprioception,” J. Rehabil.
Res. Dev., vol. 21 (1), pp. 19-31, 1984.

A. Bar, G. Ishai, P. Meretsky, and Y. Koren, "Adaptive microcomputer control of
an artificial knee in level walking," J. Biomedical Eng., vol. 5 (2), pp. 145-150, 1983.

L. Peeraer, K. Tilley, and G. V. d. Perre, "A computer-controlled knee prosthesis: a
preliminary report," J. Med. Eng. Technol. , vol. 13 (1-2), pp. 134-135, 1989.

J.-L. Racine, "Control of a Lower Extremity Exoskeleton for Human Performance
Augmentation,” in Ph.D. Thesis, Mechanical Engineering. Berkeley, CA: U.C.
Berkeley, 2003.

"Planes," in Taber's Cyclopedic Medical Dictionary, D. Venes, Ed., 20th ed.
Philadelphia, PA: F.A. Davis Company, 2005.

W. Woodson, B. Tillman, and P. Tillman, Human Factors Handbook. New York,
NY: McGraw-Hill, 1992.

D. A. Winter, Biomechanics and motor control of human movement. New York, NY:

Wiley, 1990.
S. 1. Fox, Human Physiology. Boston, MA: McGraw-Hill, 2004.

J. Perry, Gait Analysis. Thorofare, NJ: SLACK Incorporated, 1992.

104



[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

M. P. Murray, A. B. Drought, and R.. C. Kory, "Walking patterns of normal men,"
J. Bone Joint Surg., vol. 46A (2), pp. 335-360, 1964.

W. T. Dempster, "Space requireinents of the seated operator," Wright-Patterson Air
Force Base, Dayton, OH WADCTR55-159, 1955.

J. Rose and J. G. Gamble, Human Walking, 2nd ed. Baltimore, MD: Williams &
Wilkins, 1994.

P.-O. Astrand, K. Rodahl, H. A. Dahl, and S. Stromme, Textbook of Work
Physiology, 4th ed. Champaign, IL: Human Kinetics, 2003.

D. Popovic and T. Sinkjaer, Control of Movement for the Physically Disabled. London,
England: Springer, 2000.

A. Chu, "Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)," in Ph.D.
Thesis, Dept. Mechanical Engineering. Berkeley, CA: U.C. Berkeley, 2005.

A. Winter,International Society of Biomechanics, Biomechanical Data Resources,
"Gait Data," [Online Document], [cited 2004], Available HTTP:
http://www.isbweb.org/data/

J. Linskell, CGA Normative Gait Database, "Limb Fitting Centre, Dundee, Scotland,
Young Adult," [Online Document], [cited 2004], Available HTTP:
http://guardian.curtin.edu.au/cga/data/

H. Kirtley, CGA Normative Gait Database, "10 Young Adults," [Online
Document], [cited 2004], Available HT'TP: http://guardian.curtin.edu.au/cga/data/

A. Chu, H. Kazerooni, and A. Zoss, "On the Biomimetic Design of the Berkeley
Lower Extremity Exoskeleton," IEEE International Conf. on Robotics and
Automation, Barcelona, Spain, 2005.

Y. Yamazaki, T. Ohkuwa, H. Itoh, and M. Suzuki, "Reciprocal activation and
coactivation in antagonistic muscles during rapid goal-directed movements," Brain
Research Bulletin, vol. 34 (6), pp. 587-593, 1994.

D. ]. Bennett, "Torques generated at the human elbow joint in response to constant

position errors imposed during voluntary movements," Exp. Brain Research, vol. 95
(3), pp. 488-498, 1993.

N. Hogan, "Adaptive Control of Mechanical Impedance by Coactivation of
Antagonist Muscles," IEEE Trans. on Automatic Control, vol. 29 (8), pp. 681-690,

105



[39]

[40}

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

1984.

S. J. DeSerres and T. E. Milner, "Wrist muscle activation patterns and stiffness
associated with stable and unstable mechanical loads," Exp. Brain Research, vol. 86
(2), pp- 451-458, 1991.

T. E. Milner and C. Cloutier, "Damping of the wrist joint during voluntary
movement," Exp. Brain Research, vol. 122 (3), pp. 309-317, 1998.

R. Q. V. d. Linde, "Design, Analysis, and Control of a Low Power Joint for
Walking Robots, by Phasic Activation of McKibben Muscles," IEEE Trans. on
Robotics and Automation, vol. 15 (4), pp. 599-604, 1999.

"Hardiman I Prototype Project, Special Interim Study," N. Schenectady, General
Electric Report S-68-1060, pp., 1968.

N. J. Mizen,"Preliminary Design for the Shoulders and Arms of a Powered,
Exoskeletal Structure," VO-1692-V-4, pp., 1965.

P. F. Groshaw,"Hardiman I Arm Test, Hardiman I Prototype," General Electric
Co., N. Schenectady, Report S-70-1019, pp., 1969.

B. J. Makinson,"Research and Development Prototype for Machine Augmentation
of Human Strength and Endurance, Hardiman I Project," General Electric Co., N.
Schenectady, General Electric Report S-71-1056, pp., 1971.

R. S. Mosher, "Force-Reflecting Electrohydraulic manipulator," Electro-Technology,
vol. Dec., 1960.

M. Vukobratovic, D. Hristic, and Z. Stojiljkovic, "Developement of active
anthropomorphic exoskeleton," Medical and Biological Engineering, vol. 12 (January),
pp- 66-80, 1973.

M. Vukobratovic, V. Ciric, and D. Hristic, "Contribution to the Study of Active
Exoskeletons," Proc. of the 5th IFAC Congress, PAns, 1972.

M. Vukobratovic and Y. Stepanenko, "On the stability of anthropomorphic
systems," Mathematical Biosciences, vol. 15 (1), 1972.

M. Vukobratovic, "How to control the artificial anthropomorphic systems," IEEE
Trans. Syst., Man, Cybernetics, vol. SMC-3, pp. 497, 1973.

K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, "The development of Honda

106



humanoid robot," Proc. of the 1998 IEEE International Conference on Robotics &
Automation, Leuven, Belgium, pp. 1321-1326, 1998.

[52] H. Kawamoto and Y. Sankai, "Power Assist System HAL-3 for gait Disorder
Person," International Conference on Computers for Handicapped Persons, Linz,

Austria, pp. 196-203, 2002.

[53] G. Colombo, M. Jorg, and V. Dietz, "Driven Gait Orthosis to do Locomotor
Training of Paraplegic Patients,” 22nd Annual International Conf. of the IEEE -
EMBS, Chicago, IL, pp. 3159-3163, 2000.

[54] ]J. Pratt, B. Krupp, C. Morse, and S. Collins, "The RoboKnee: An Exoskeleton for
Enhancing Strength and Endurance During Walking," IEEE Intl. Conf. on
Robotics and Automation, New Orleans, LA, pp. 2430-2435, 2004.

[55] G. Pratt and M. Williamson, "Series elastic actuators," IEEE International Conf. on
Intelligent Robots and Systems, Pittsburgh, PA, pp. 399-406, 1995.

[56] J. Pratt, B. Krupp, and C. Morse, "Series elastic actuators for high fidelity force
control," Industrial Robot: An Interational Journal, vol. 29 (3), pp. 234-241, 2002.

[57) H. Kawamoto, S. Kanbe, and Y. Sankai, "Power Assist Method for HAL-3
Estimating Operator’s Intention Based on Motion Information,” Proc. of 2003 IEEE
Workshop on Robot and Human Interactive Communication, Millbrae, CA, pp.
pp. 67-72, 2003.

[58] S.Lee and Y. Sankai, "Power assist control for walking aid with HAL-3 based on
EMG and impedance adjustment around knee joint," IEEE International Conf. on
Intelligent Robots and Systems, Lausanne, Switzerland, pp. 1499-1504, 2002.

[59] M. DiCicco, L. Lucas, and Y. Matsuoka, "Comparison of Control Strategies for an
' EMG Controlled Orthotic Exoskeleton for the Hand," IEEE Iternational
Conference on Robotics & Automation, New Orleans, LA, pp. 1622-1627, 2004.

[60] J. F. Jansen, "Apparatus and Methods for a Human Extender," Patent No.
6,272,924, Lockheed Martin Energy Research Corporation, USA, 2001.

[61] H. Kazerooni, "The Human Power Amplifier Technology at the University of
California, Berkeley," Journal of Robotics and Autonomous Systems, vol. 19, pp. 179-
187, 1996.

[62] H. Kazerooni, "Human-Robot Interaction via the Transfer of Power and
Information Signals," IEEE Trans. on Systems, Man, and Cybemetics, vol. 20 (2), pp-
450-463, 1990.

107



[66]

[67]

[68]

[70]

[71]

[72]

(73]

[74])

H. Kazerooni and J. Guo, "Human Extenders," ASME Journal of Dynamic Systems,
Measurements, and Control, vol. 115 (2B), pp. 281-289, 1993.

H. Kazerooni and R. Steger, "The Berkeley Lower Extremity Exoskeleton," Journal
of Dynamic Systems, Measurement, and Control, vol. 128 (1), pp. 14-25, 2005.

H. Kazerooni, J.-L. Racine, L. Huang, and R.. Steger, "On the Control of the
Berkeley Lower Extremity Exoskeleton (BLEEX)," IEEE International Conf. on
Robotics and Automation, Barcelona, Spain, pp. 4353-4360, 2005.

L. Huang, R. Steger, and H. Kazerooni, "Hybrid control of the Berkeley Lower
Extremity Exoskeleton (BLEEX)," 2005 ASME International Mechanical
Engineering Congress and Exposition, Orlando, FL, 2005.

H. Kazerooni, R. Steger, and L. Huang, "Hybrid Control of the Berkeley Lower
Extremity Exoskeleton," The International Journal of Robotics Research, vol. 25 (5),
2006.

H. Kazerooni and T. Snyder, "A Case Study on Dynamics of Haptic Devices:
Human Induced Instability in Powered Hand Controllers," Journal of Guidance,
Control, and Dynamics, vol. 18 (1), pp. 108-113, 1995.

T. McGee, J. Raade, and H. Kazerooni, "Monopropellant-Driven Free Piston
Hydraulic Pump for Mobile Robotic Systems," Journal of Dynamic Systems,
Measurement and Control, vol. 126, pp. 75-81, 2004.

K. Amundsen, J. Raade, N. Harding, and H. Kazerooni, "Hybrid Hydraulic-Electric
Power Unit for Field and Service Robots," IEEE Int. Conf. on Intelligent Robots
and Systems, Edmunton, Canada, Aug. 2005.

J. Raade and H. Kazerooni, "Analysis and Design of a Novel Power Supply for
Mobile Robots," IEEE. Trans. Autom. Sci. Eng., vol. 2 (3), pp. 226-232, 2004.

S. Kim, G. Anwar, and H. Kazerooni, "High-speed Communication Network for
Controls with Application on the Exoskeleton," American Control Conference,
Boston, MA, pp. 355-360, 2004.

S. Kim and H. Kazerooni, "High Speed Ring-based distributed Networked control
system For Real-Time Multivariable Applications,” ASME International Mechanical
Engineering Congress and Exposition, Anaheim, CA, 2004.

A. Zoss, "On the Mechanical Design of the Berkeley Lower Extemity Exoskeleton,"
IEEE International Conf. of Intelligent Robots and Systems, Edmunton, Canada,
2005.

108



[75] R. Steger, S. Kim, and H. Kazerooni, "Control Scheme and Networked Control
Architecture for the Berkeley Lower Extremity Exoskeleton (BLEEX)," IEEE
International Conf. on Robotics and Automation, Orlando, FL, pp. (in pub), 2006.

[76] H. Kazerooni and S. Mahoney, "Dynamics and Control of Robotic Systems Worn
By Humans," ASME Journal of Dynamic Systems, Measurements, and Control, vol. 113
(3), pp- 379-387, 1991.

[77] H. Kazerooni and M. Her, "The Dynamics and Control of a Haptic Interface
Device," IEEE Trans. on Robotics and Automation, vol. 10 (4), pp. 453-464, 1994.

[78] K. Nagai, . Nakanishi, and H. Hanafusa, "Development of an 8 DOF robotic
orthosis for assisting human upper limb motion," IEEE International Conf. on
Robotics and Automation, Leuven, Belgium, pp. 3486-3491, May 1998.

[79] K. Kiguchi, T. Tanaka, K. Watanabe, and T. Fukuda, "Exoskeletons for human
upper-limb motion support,” IEEE International Conf. on Robotics and
Automation, Taipei, Taiwan, pp. 2206-2211, 2003.

[80] K. Kiguchi and T. Fukuda, "A 3DOF Exoskeleton for Upper-Limb Motion Assist-
Consideration of the Effect of Bi-Articular Muscles," IEEE International Conf. on
Robotics and Automation, New Orleans, LA, pp. 2424-2429, 2004.

[81] K. Nishiwaki, Y. Murakami, S. Kagami, Y. Kuniyoshi, M. Inaba, and H. Inoue, "A
Six-axis Force Sensor with Parallel Support Mechanism to Measure the Ground
Reaction Force of Humanoid Robot," IEEE International Conf. on Robotics and
Automation, Washington, DC, pp. 2277-2282, May 2002.

[82] F. Pin and R. Lind,Oakridge National Laboratory Fact Sheet, "Foot force-torque
sensors," [Online Document], 2005, [cited February, 2005], Available HTTP:
http://www.ornl.gov/sci/engineering_science_technology/roboticsenergetics/huma
namplifying.htm

[83] A. V. Hill, "The abrupt transition from rest to activity in muscle," Proc. of the Royal
Society of London, Series B, vol. 136 (884), pp. 399-420, 1949.

[84] D.R. Wilkie, "The relation between force and velocity in human muscle,” J.
Physiology, vol. K110, pp. 248-280, 1950.

[85] J. M. Winters and L. Stark, "Analysis of fundamental human movement patterns
through the use on in-depth antagonistic muscle models," IEEE Trans. on Biomedical
Engineering, vol. BME32 (10), pp. 826-839, 1985.

[86] H. Kazerooni, "The extender technology at the University of California, Berkeley,"

109



[87]

[88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

Joummal of the Society of Instrument and Control Engineers in Japan, vol. 34 (4), pp. 291-
298, 1995.

W. Q. D. Do and D. C. H. Yang, "Inverse Dynamic Analysis and Simulation of a
Platform Type of Robot," J. Robotic Systems, vol. 5 (53), pp. 209-227, 1988.

K. Y. Tsai and D. Kohli, "Modified Newton-Euler Computational Scheme for
Dynamic Analysis and Simulation of Parallel Manipulators with Applications to
Configuration based on R-L Actuators," Proceedings of the 1990 ASME Design
Engineering Technical Conferences, pp. 111-117, 1990.

P. Guglielmetti and R. Longchamp, "A Closed Form Inverse Dynamics Model of
the Delta Parallel Robot," Proceedings of the 1994 International Federation of
Automatic Control Conference on Robot Control, pp. 39-44, 1994.

R. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic Manipulation.
Boca Raton, FL: CRC Press, 1994.

W. A. Khan, V. N. Krovi, S. K. Saha, and J. Angeles, "Recursive Kinematics and
Inverse Dynamics for a Planar 3R Parallel Manipulator," ASME J. of Dynamic
Systems, Measurement, and Control, vol. 127 (DEC), pp. 529-536, 2005.

L.-W. Tsai, "Solving the Inverse Dynamics of a Stewart-Gough Manipulator by the
Principle of Virtual Work," ASME J. of Mechanical Design, vol. 122 (1), pp. 3-9,
2000.

C. D. Zhang and S. M. Song, "An Efficient Method for Inverse Dynamics of
Manipulators Based on the Virtual Work Principle," J. Robotic Systems, vol. 5, pp.
605-627, 1993.

K. Miller, "Experimental Verification of Modeling of Delta Robot Dynamics by
Application of Hamilton’s Principle," IEEE International Conf. on Robotics and
Automation, pp. 532-537, 1995.

J. J. Murray and G. H. Lovell, "Dynamic Modeling of Closed-Chain Robotic
Manipulators and Implications for Trajectory Control," IEEE Transactions on Robotics
and Automation, vol. 5, pp. 522-528, 1989.

K. Sugimoto, "Kinematic and Dynamic Analysis of Parallel Manipulators by Means
of Motor Algebra," ASME Journal of Mechanisms, Transmissions, and Automation in
Design, vol. 109 (1), pp. 3-5, 1987.

J.Y.S.Luh and Y. F. Zheng, "Computation of Input Generalized Forces for
Robots with Closed Kinematic Chain Mechanisms," IEEE Journal of Robotics and

110



Automation, vol. RA-1, pp. 95-103, 1985.

[98] J. Wang and C. M. Gosselin, "A New Approach for the Dynamic Analysis of
Parallel Manipulators," Multibody System Dynamics, vol. 2, pp. 317-334, 1998.

[99] ]. W. Grizzle, G. Abba, and F. Plestan, "Asymptotically stable walking for biped
robots: Analysis via systems with impulse effects," IEEE Trans. on Automatic Control,
vol. 46, pp. 51-64, 2001.

[100] E. R. Westervelt, J. W. Grizzle, and C. Canudas, "Switching and PI control of
walking motions of planar biped walkers," IEEE Transactions on Automatic Control,
vol. 48 (2), pp. 308-312, 2003.

[101]]. Green and J. K. Hedrick, "Nonlinear Speed Control for Automotive Engines,"
Proc. 1990 American Control Conference, San Diego, CA, pp. 2891-2898, 1990.

[102] J. K. Hedrick and P. P. Yip, "Multiple Sliding Surface Control: Theory and
Application," Journal of Dynamic Systems, Measurement, and Control, vol. 122 (4), pp.
586-593, 2000.

[103] J. Ghan and H. Kazerooni, "System Identification for the Berkeley Lower Extremity
Exoskeleton (BLEEX)," IEEE International Conf. on Robotics and Automation,
Orlando, FL, pp. (in pub.), 2006.

111



Appendix A
BLEEX Control Software

The BLEEX control software is written is ANSI standard C and was compiled using
the GCC compiler for x86 processor platforms. The code is designed to run as a
standalone executable in DOS and it interfaces with the custom BLEEX electronics
hardware attached to the BLEEX control computer. The control software is divided into
multiple pairs of text files of the form “name.c” and “name.h”. The “name.c” file contains
functions and program code and the corresponding “name.h” file contains function

declarations and variable definitions.

The following files comprise the BLEEX control firmware (for each .c file, a

corresponding .h file exists with function declarations and defined variables):

Defines.h Contains all model parameters and controller variables
ExoMain.c Main routine
Sensors.c Functions to read in, scale, and apply calibration curves to all

exoskeleton sensors except the linear acceleroomters (see Accel.c /

Accel.h)

Accel.c Functions to read in, scale, and apply calibration curves to all
exoskeleton linear accelerometers as well as calculate joint angular

acceleration

112



JointCtl.c

Fhm.c

Jump.c

SSup.c

1Red.c

DSup.c

Filters.c

PCl.c

Record.c

Local non-linear joint torque controller

Sensitivity Amplification Control scheme is implemented here
Inverse dynamics for a 3-link chain (leg swinging in the air)
Inverse dynamics for a 7-link chain (one foot on the ground)
Inverse dynamics for two 3-link chains (both feet flat on ground)
Inverse dynamics for two 3-link and one 4-link chain

Generic second-order Butterworth lowpass filter

Functions to communicate with the external BLEEX LabView

based GUI

Functions to allow for real-time data-logging while BLEEX is

running.

113



Appendix A.1 — Defines.h

#define
#def ine
#define

THM_ERROR_CONTROL
FREQ
T8

//#define FREQ
//#define TS

#define

GUI_DATA_ARRAY_SIZE

086-16-2684

#define

RECORDED_DATA_FREQ

added by JRS, 86-18-2004

#define MAX_RECORED_DATA_POINTS

added by RS, 06-18-2884

#define

#define
#define
#define

NUM_RECORDED_FILES

HEEL _ANKLE_TOE_ANGLE
ANKLE_TOE_HEEL_ANGLE
ACC_THI GH_ANGLE

#define KF

#define
#define
#define
#define
#define
closed

#define
#define
#define
#define

DEFAULT_DYNDISTFACTOR
DEFALLT_VALVE_IN
DEFALLT_MANUAL_TORQUE
DEFALLT_THM_STATUS
VALVE_OFF SET_CURRENT

MAX_VOLTAGE
MIN_YOLTAGE
A(1,3)

Pi

#define g
equation, lat=37.871 deg N, elev=12132cm

#define
#define
#define

D_TO_A_CONVERSION
A_TO_D_CONVERSION
RADIANS_PER_COUNT

corrected by JRS 2004-07-68

#define

#define UCLOCKS PER_MICROSECOND (1193188/10880688)

MINIMUM_ANKLE_TORQUE

2008

8.08805

1406
7.14285714286e-4

// sampling frequency (Hz), 2kHz default

// sampling time (sec), SBGus default

// sampling frequency (Hz), 1400Hz

// ssmpling time (sec), 714,286us

// number of variables being passed to GUI in packet, added by RS,

// Hz, frequency at which you want to log data locally on the exo,

366

568

10668

7

1.176 /7
B, 9%4 /7
8.726646e-3

8 7
8.B88333

8 27
8 7
1 7
8 7
4,8

-4,8

(*(ar(1)n+(3)))
3.141592653589793

9,81 /7

6553.6
1.5258789%e-4
1.5787963e-4

// Useful Substitutions, added by 3RS

#def ine
#define
#define
#define
#def ine
#define
#define
#define
#define
#define

// Control modes, added by JRS

#define
#define
#def ine
#define
#define
#define
#define

#define

FALSE
TRUE
OFF

ON

IDLE
RUNNING
ZERQ
LEFT
NONE
RIGHT

STOP

YALVE_CTL
MANUAL_TOROUE_CTL
AUTO_TORQUE_CTL
POSITION_CTL

EXIT

KNEEE_L OCK_POSTTION_CTL

DEFAULT_CTRL_MODE

// FHM Gains, added by JRS

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

SWING_L ANKLE_KPFHM
SWING_LKNEE_KPFHM
SWING_LHIP_KPFHM

SWING_RANKLE_KPFHM
SWING_RKNEE_KPFHM
SNING_RHIP_KPFHM

DSTANCE_L ANKLE_KPFHM
DSTANCE_LKNEE_KPFHM
DSTANCE_LHIP_KPFHM

DSTANCE_RANKLE_KPFHM
DSTANCE_RKNEE_KPFHM
DSTANCE_RHIP_KPFHM

PO OHKOE DO

oo @
[LRT NG

DD @
oo

-
@

oo
~

//08.5 // 18/21/83,
/76,6 // 18/13/03,
/78.7

//8.5 // 18/21/03,
//0.6 // 18/13/83,
//8.7
//6/6 // 18/14/63
/8.7
//8.4
//8.8

//8.7
//8.4

// EXOSKELETON MASS AND GEOMETRY PROPERTIES
/7 MD  04/13/84 Entered values for EX02 from excel spreadsheet
// IRS 85/13/84 -- EX02 weighed with HPLUE and harness = 58.666

// dkg unaccounted for in code,

#define
#define
#define
#define
#define

#define
#define
#def ine
#define

HEEL_LENGTH

HEEL_LCG

HEEL_HCG
HEEL_MASS
HEEL_INERTIA

FOOT_MASS
FOOT_INERTIA
FOOT_LENGTH
FOOT_LCG

+ve Angle between the heel and dorsal foot segments
+ve Angle between the dorsal foot end sole segments

// number of data points that will be logged to flash disk on exo,

(rad)
{rad)

double support distribution factor

default valve input voltage at initialization
default value for manual torque at initialization
default status of accelerometer gains, B=OFF, 1=ON

valve offset voltage = V_offset / (Rseries + Rcoil)

s. k. valve is

// maximum valve voltage before saturation

// minimum valve voltage
// used in MatVectMult
// mysterious engineering constant?

gravity censtant

// 16 bit DAC value to
// input voltage from ADC = 16 bit ADC value x A_TO_D_CONVERSION
// 2#P1/488B8 converks an encoder counter value to an angle (rads),

// default is -5.
/7 = 1.16318 since UCLOCKS_PER_SEC = 1,193,180 uclock ticks/second

increased from 8

reduced from 6.7

increased from 8.

reduced from 8.7

efore saturation

in Berkeley, CA is actually = 9.7994 via Helmert's

post = Desiredvoltage x D_TO_A_CONVERSION

8 Nm

4 b.c ankle feels "sluggish”
b/c

/c knee always locking in sstance/dstance

c ankle feels "sluggish®

b.
¢ knee always locking in sstance/dstance

4
b/

distributed to foot, shank, thigh, torso as 16%, 25%, 25%, 46%
8.154 / NOT USED

1 // NOT USED

1 // NOT USED

2,752 // NOT USED

8.819743 // NOT USED

(2.752+8.2)
8.81924

0.234
8,8561848

/78,85

//6.0819743

/7 foot mass properties exclude ankle bearing or actuator
// Marco

// solidworks

2 // dist from ankle to foot CG

114



#define FOOT_HCG
#def ine SHANK_MASS

actuator

#define SHANK_INERTIA
#def ine SHANK_LENGTH
#define SHANK_LCG
#def ine SHANK_HCG
#def ine THIGH MASS
hip actuators,
#define THIGH_INERTIA
bearings.

#define THIGH_LENGTH
#def ine THIGH_LCG
#def ine THIGH HCG

#def ine UPPERBODY_MASS

// 21.271kg (28.39%kg w/o accum.

#def ine UPPERBODY_INERTIA

HPU (used as a dummy load while
#def ine UPPERBODY_LENGTH

#def ine UPPERBODY_LCG

#def ine UPPERBODY_HCG

#define TORSOSENSOR_L
#define TORSOSENSOR_H

#define HEEL_DIST
#define MIDF 0OT_DIST
#define BALL_DIST
#define TOE_DIST

// SENSOR OFFSETS AND GAINS

//
’/
/
12

-8,1815 //Marce //-8.1 // dist from ankle to foot CG
(3,157864+0, 5) //Marco //3.33 // shank mass properties inciudes ankle bearings and
8.0843217 //Marco //8.835207586 // solidworks but excludes knee bearings and actuator

(0, 4888256 + B8.8127 » 5) //Marco //8. 446126
SHANK_LENGTH - B8.23970234) //Marco //G.232560886775767
0.01829816 //Marco //-0,80343616931618

(4.852727+6.5) //Marco //5.12 // thigh mass properties includes knee bearings, knee and

0.885376 //Marco //6.6847828 // solidworks thigh actuator, but excludes hip
(8. 4062476 + B8.06127 % 5) //Marco B.444348
(THIGH_LENGTH - 6.28745784} //Marco 6.18589698678168

-B.B83298952 //Marco //8,88241894204148

(33+1.6); // Soumma prefers 22kg, Adam prefers 21kg //27.625=HPLE // 28.399kg=HPU1

) = upper body properties excludes hip bearings and actuators

.38 //8.4648 // HPUE (estimated - not exact) // 8.38 = Erik Vaaler first gen

JLR was testing exo)
// irrelevant, not used

8. 216 /78,198 // HWPLE (estimated - not exact) // 6.216

-8.24 //-8,27 // HPLE (estimated - not exact) // -8.,24

8, 3815187 // vertical distance of ATI F/T sensor from hip axis
-8.1396746 // horizonta) distance ...

6.068 7/ distance spanned by each footswitch along the sole (meters)
B.86

9.88

6.88

Inclinometer gains and offsets
changed 2883-11-17 for RIOM#18 ADC1
checked 28083-11-28 values are accurate
changed 2884-81-23 for RIOM#24 ADC1

// changed 2804-84-87 for RIOM#24 ADC1 Serial #1426
// changed 28084-85-84 for RIOMFZ4 ADCL Serial #1443, changed by JRS, B85-84-2884

#define TORSO_INCL_SLOPE
#define TORSO_INCL_OFFSET

// Encoder gains and offsets
#define LANKLE_ENC_OFFSET
#define LKNEE_ENC_OFFSET
#define LHIP_ENC_OFFSET
#define LHIP_ROT_ENC OFFSET
#define LHIP_ABD_ENC_OFFSET

#define
#define
#define
#define
#define

RANKLE_ENC_OFFSET
RKNEE_ENC_OFFSET
RHIP_ENC_OFFSET
RHIP_ROT_ENC_OFF SET
RHIP_ABD_ENC_OFFSET

#define FT_VIN

1.614127
(-B.031681712-Pi)

(-8, 240686984)
(8. 9955358044)
(-8.322813251)
{8)
(8)

(8.158999494)
(6.808791291)
(-0.658163659)
(@)

(8)

5 // F/T backpack sensor excitation voltage (V)

// Accelerometer gains and offsets

#def ine LFOOT_ACC_GAINL
foot

#define LFOOT_ACC_OFFSET1
Teft foot

#define LFOOT_ACC_GAINZ
#define LFOOT_ACC_OFFSET2

#define
#define
#define
#define

L SHANK_ACC_GAINL
LSHANK_ACC_QFFSET1
LSHANK_ACC_GAIN2
LSHANK_ACC_OFFSET2

#define
#define
#define
#define

LTHIGH_ACC_GAIN1
LTHIGH_ACC_OFFSET1
LTHIGH_ACC_GAIN2
LTHIGH_ACC_OFFSET2

#define
#define
#define
#define

RFOOT_ACC_GAIN1
RFOOT_ACC_OFFSET1
RFOOT_ACC_GAIN2
RF OOT_ACC_OFFSETZ

#define
#define
#def ine
#define

RSHANK_ACC_GATN1

#define
#define
#define
#define

RTHIGH_ACC_GAIN1
RTHIGH_ACC_OFFSET1
RTHIGH_ACC_GAIN2
RTHIGH_ACC_OFFSET2

#define
#define
#define
#def ine

UPPERBODY_ACC_GAINL
UPPERBODVY_ACC_OFFSET1
UPPERBODY_ACC_GAINZ
UPPERBODY_ACC_OFFSET2

// Force sensor gains (N/V} and

8 //-13.273720088 //19.47342 // 28.77075355 // -13.27372688 // acc 1 (top) GAIN on left

8 //8.645202098 //-1.3285%9 // -1,921738811 // -8.817557893 // ace 1 (top) OFFSET on

6 //-12.99639
8 //0.82843

/7 13.92141659 // -13.25782341
// B.B7617763 // 6.816324531

//12.86893526
//-8.0888829123
//12,71297371
//8.822634644

13. 82338359
6. 8822625

12, 84220722
6.828934818

5.156823125 //5.215242957
8.0669413845 //-8.628138544

12.8691386  //12.96252416
-8, 604863989 //-8,08192680856

-13.32914653 //13.B89396865
8.82356288 //-B, 6846432238

-13.52444538 //13.22833281
-8.865975934 //-8.0627544142

// acc 1 (top) GAIN on right foot
// acc 1 (top) OFFSET on right foot

12.86881188 //12.82398203
-8.86644532 //-8. 081453414

13.88988944 //12,97864312
-8, 864428743 //-8.858337783

5.292352947 //S.238549419
-8.152364823 //-8.124433419

13.28474856 //13.21278576
-8.847426344 //-8.837502237

c] //-5.814855712
8 //-6.8685

8 //-5. 886855069
[} //-8.1685

offset (N} {includes effects of ADCL)

115



// using 4.448 N/1b
// updated for EX02 by JRS, 04-06-20084

// Left Ankle -- Serial # 912874
#define LANKLE_FSENSOR_GAIN
#define LANKLE_FSENSOR_OFFSET
// Left Knee -- Serial # 912682
#define LKNEE_FSENSOR_GAIN

446, 1968837

#define LKNEE_FSENSOR_OFFSET

// Left Hip -- Serial # 912878
#define LHIP_FSENSOR_GAIN
#define LHIP_FSENSOR_OFFSET

// Right Ankle -- Serial # 911379
#define RANKLE_FSENSOR_GAIN
RIOM 28

#define RANKLE_FSENSOR_OFFSET
RICHM 28

// Right Knee -- Serial # 913386
#define RKNEE_FSENSOR_GAIN
#define RKNEE_FSENSOR_OFFSET

// Right Hip -- Serial # 913398
#define RHIP_FSENSOR_GAIN
#define RHIP_FSENSOR_OFFSET

//-452, 8614633
//-8.348880157

-448, 5328354
(14.189683611-68.1)

-485. 6384651 //-411.872 //change new force sensor 818503 by Lihua //old one-

(-26.74457988+176.1) //-22,8352 //change new force sensor 818583 by Lihua 5.987991154
//-469.894

//-8.8515

-441, 2164321
(-11,65476604-15.2)
//-457.7128385  //-447.2173965 // RIOM 21 //-447,5595674 //

//-38.69173895-57.98 //1.248369596 // RIOM 21 //1.869284135 //

-453, 5430341
-39. 96462659

//-455,1577775 //-450,522834
-2.311331839-19.6+2. 4 //-1B. 49434899

-458, 3560874
-43. 8342688 /7

//-483, 8268834 //-396.7892063
//-22,19428661+3.5+1.5 //

-488. 6957159
-28.50864459

// DAC GAINS AND OFFSETS // RICM #

// updated 20B3-NOV-13

/7 NOTES: 1) ankle RICMs and knee RIOMs were switched 2883-DEC-1
/7 2) RHIP RIOM 2 has no footswitch connector, 2684-87-28
#def ine LANKLE_DAC_GAIN 1.8128 // RICM 14

#define LKNEE_DAC_GAIN 1.8817 // RIOM 7

#define LHIP_DAC_GAIN 1.8124 // RICHM 28

1.8165 // RIOM 6, swapped with RHIP RIOM 2 on 2884-87-28
1.8195 // RICM 16
8.9999 // RIOM 2, swapped with RANKLE RIOM 2 on 2884-87-28

#def ine RANKLE_DAC_GAIN
#define RKNEE_DAC_GAIN
#define RHIP_DAC_GAIN

6.08138 // RICM 14
6.8188 // RICM 7
-8.08248 // RIOM 20

#define LANKLE_DAC_OFFSET
#define LKNEE_DAC_OFFSET
#define LHIP_DAC_OFFSET

#define RANKLE_DAC_OFFSET
#define RKNEE_DAC_OFFSET
#define RHIP_DAC_OFFSET

-8.8342 // RICM 6
8.0288 // RIMM 16
B.8391 // RIM 2

/7 walve offsets (V) to center spool and get zero flow

#define LANKLE_VALYE_OFFSET 8. 8054583336 // 0.8858

#define LKNEE_VALVE_OFFSET -6. 68228 // -B.082106

#define LHIP_VALVE_OFFSET 0.0622 // 0.8522

#define RANKLE_VALVE_OFFSET -8, 821425

#def ine RKNEE_VALVE_OFFSET -8, 042625

#def ine RHIP_VALVE_OFFSET 8. 8375

// JOINT STIFFNESS SLOPES AND OFFSET

#define ANKLE_STIFFNESS_SLOPE_SLOPE B.B8528 // the siope of the ankle stiffness velocity slope
#define ANKLE_STIFFNESS_SLOPE_OFFSET 1, 3498 // the offset of the ankle stiffness velocity slope
#define ANKLE_STIFFNESS_OFF SET_POS_VEL -1.55 // the slope of the ankle stiffness offset when vel > 8

#define ANKLE_STIFFNESS_OFFSET_NEG_VEL

#define KNEE_STIFFNESS_SLOPE_SLOPE
angle < 1.5 rad
#define KNEE_STIFFNESS_SLOPE_OFFSET

< 1.5

#define KNEE_STIFFNESS_OFFSET_SLOPE
angle < 1.5

#define KNEE_STIFFNESS_OFFSET_OFFSET
1.5

#define KNEE_STIFFNESS_SLOPE_AZ
when angle > 1.5

#define KNEE_STIFFNESS_SLOPE_AL
#define KNEE_STIFFNESS_SLOPE_AB
#define KNEE_STIFFNESS_OFFSET_A2
when angle > 1,§

#define KNEE_STIFFNESS_OFFSET_AL
#define KNEE_STIFFNESS_OFFSET_A8
#define HIP_STIFFNESS_SLOPE_SLOPE

#define HIP_STIFFNESS_SLOPE_OFFSET

#define HIP_STIFFNESS_OFFSET_SLOPE_POS_VEL
#define HIP_STIFFNESS_OFFSET_OFFSET_POS_VEL
#define HIP_STIFFNESS_OFFSET_SLOPE_NEG_VEL
#define HIP_STIFFNESS_OFFSET_OFFSET_NEG_VEL

// MAX DATA VALUES, USED FOR ERROR CHECKING

-2.5 // the offset of the ankle stiffness offset when vel < 8

-8.3148 // the slope of the knee stiffness velocity slope when

8.3798 // the offset of the knee stiffness velocity slope when angle

-8. 5546 // the slope of the knee stiffness velocity offset when

1.3869 // the offset of the knee stiffness velocity offset when angle <

18,932 /7 welocity polyn coeffs of knee stiffness vs. angle slope

/¢ velocity polyn coeffs of knee stiffness vs. angle offset

-2.8494
3.4218
-6.5887
1.7528
-2,171%
-8, 3958

// the slope of the hip stiffness velocity slope
// the offset of the hip stiffness velocity slope

7/ the slope of the hip stiffness velocity offset for vel>®
// the offset of the hip stiffness velocity offset for vel>8

// the slope of the hip stiffness velocity of fset for vel<8
// the offset of the hip stiffness velocity offset for vel<d

#define ANKLE_MIN -8.88 // -8,7853982 /# joint limits in rad »/
#define ANKLE_MAX 8.78 // 8.7853982

#define KNEE_MIN 6.16 // 8.088726646

#define KNEE_MAX 2.199115

#define HIP_MIN -2.68 // -2.6887129

#define HIP_MAX 8.35 7/ 8.1745328

#define HIP_ABD_MIN -3.14  // temp

#def ine HIP_ABD_MAX 3.14 /4 temp

#define HIP_ROT_MIN -3.14  // temp

116



#def ine HIP_ROT_MAX

#define
#define

TORSO_MIN
TORSO_MAX

#define
#define

MAX_VELOCITY_SAT
MIN_VELOCITY_SAT

// Define min/max offsets for
#define ANKLE_MIN_SOFT_OFFSET
#define ANKLE_MAX_SOFT_OFFSET

#define
#define

KNEE_MIN_SOFT_OFFSET
KNEE_MAX_SOFT_OFFSET

#define
#define

HIP_MIN_SOFT_OFFSET
HIP_MAX_SOFT_OFFSET

#define
#define
#define
#define
#define
#define
#define

#def ine
#define

LONG_PISTON_POS_MIN
LONG_PISTON_POS_MAX

SHORT_PISTON_POS_MIN
SHORT_P 1STON_POS_MAX

ANKLE_MOMENT_ARM_MIN
ANKLE_MOMENT_ARM_MAX

KNEE_MOMENT_ARM_MIN
KNEE_MOME NT_ARM_MAX

#define
#define

#define
#define

#define
#define

#define
#define

HIP_MOMENT_ARM_MIN
HIP_MOMENT_ARM_MAX

FOQT_DISTANCE_MAX
SGMAX

THERM_MAX
THERMMIN

QROTO

#define
#define
#define
#define

#define
#define OQROT1

#define
#define

KROT_OFFSET
KROT_SLOPE

#define LABD
#define DGUB

// DEFINE INDICES
#define JUMP

#define SSTANCE
#define DSTANCE 2
#def ine ONE_REDUNDANCY 3
#def ine TWO_REDUNDANCY 4

#define
#define
#define
#define
#define
#define

LANKLE_T
LKNEE_T
LHIP_T 2
RANKLE_T 3
RKNEE_T 4
RHIP_T S

#define
#def ine
#define

ANKLE_T 2}
KNEE_T 1
HIP_T 2

#define
#define
#define

TORSO_FX 8
TORSO_FY i
TORSO_T 2

c]

LTOE
LANKLE 1
LKNEE 2
LHIP 3
RTOE 4
RANKLE 5
RKNEE 6
RHIP 7
LHIP_ROT 8
LHIP_ABD L
1
1

#define
#define
#def ine
#define
#define
#define
#define
#define
#define
#define
#define
#define

RHIP_ROT 8
RHIP_ABD 1
LFOOT
LSHANK
LTHIGH
RFOOT 3
RSHANK

RTHIGH
UPPERBODY 6

#define
#define
#define
#define
#def ine
#define
#define

AL N

3.14 /7 temp
-3.141593 // torso tilt angle limit in rad
3.141593
30.88 // velocity is saturated at this value in sof tware
-30.06
soft stops
8.189193 // result = -35deg
8.169165 // result = +35deg
0.8745329 // result = +18deg
8.279254 // result = +11Bdeg

B.429204 // result = -S0deg
8 // result = +28deg

1888 // max joint velocity rad/s

18668 // max joint acceleration rad/s2

2388 7/ max actuator force N (1779.289 N = 488 1b; 2888 N = 4581b )

1858 // max force used to decide when to stop integrating force error in JointCtl.c
495 // max torso sensor x-force
165 // max torso sensor y-force

15 // max torso sensor torque

-8.85044584189365 // min and max piston positions for the ankie and hip actuators {m)
6, 87655415818635

-0,84835667351492 // min and max piston positions for the knee actuator (m)}
8. 86124332648508

6. 84518862746326
8. 69646879619931

-0.04786871462969
-8.88182785957733

8.81876198253385
8.863686282513989

1.5 // max foot distance from CG in the transverse plane (m)
4 // max straingauge ouktput (¥)
4 // max thermister output value
4 // max thermister output value

6,78 // absolute angle difference
/7 horizontal force factor
8.52 // Absolute angle difference
/7 horizontal force factor

between the two hip rotations at which rotation
is zero

between the two hip rotations at which rotation
starts to decrease

2.99
(-3.8197) // = 1/{QROT1-0ROTB)

8.1397 // (m) lateral distance from hip flexion/rotation axis to hip abduction axis
8.1816 // (m) lateral distance from hip abduction axis to upper body CG

8 // define dynanmic mode {i.e. state) indices
1

8 // actuator torgque indices
1

// kinematic data array indices

8 // define body segment array indices

117



#define TIP 8 // define footswitch array indices
#define TOE
#define BALL
#define MIDFOOT 3
#def ine HEEL 4

~N

#define DL 8 // define load distribution data array indices
#define DR 1
#define HIP_ROTATION_FACTOR 2
#def ine WETGHT_DISTR_FACTOR 3

// DEFINE INDICES FOR TRIG ARRAY
#define C2 8 // non-redundant leg trig array indices
#define S2 1
#define €23 2
#define S23 3
#define €234 4
#define S234 S
#define C3 6
#define S3 7
#define C4 8
#define S4 9
/

#define CiRD B // redundant leg trig array indices
#define SIRD 1

#define C12RD 2
#define S12RD 3
#define C123RD
#define S123RD
#define C1234RD 6
#define S1234RD 7
#define C2RD 8
#define S3RD 9
#define C23RD 18
#define C3RD 11
#define C4RD 12
#define S4RD 13

Ul

#define FOOT_ACC_DIST_INV §.544 // (new rotation foot, 81-27-84) 6.85 {eld foot) // inverse of the distance between
accelerometers on each body segment

#define SHANK_ACC DIST_INV 4.46 // (4/m)

#define THIGH_ACC_DIST_INY 4,61

#define UPPERBODY_ACC_DIST_INY 4,63

// DEFINE INDICES FOR HYDRAULIC PARAMETER ARRAY

#define Xv¥ 8
#define H2 1
#define 02 2
#define P2 3
// DEFINE ARRAY INDEICES FOR filtercoeffs.
#define At <]
#define A2 1
#define A3 2
#define B2 3
#define B3 4

// DEFINE PHYSICAL CONSTANTS
// see hydraulicParameters.m
//

#define Apl 2.8502e-4 // cylinder bore area (m2)

#define Ap2 2.1377e-4 // EX02, modified 2884-81-87 for 3/8" rod, old value 2.3554e-4, cylinder rod area (m2)
#define LA_ANKLE 8.31777863914252 7/ LA = sqrt(ar2 + bA2), geometric parameters for cylinder

#define LA_KNEE 8. 31044301899146

#define LA_HIP 8. 074389685527978

#define LB_2_ANKLE 8.08922587723853 // LBA2 = cA2 + dA2

#define LB_2_KNEE 8. 80483376549374
#define LA_2_HIP 8. 685533731584

#define M_ANKLE -8.11828367581517 /7 M = -LAAZ - LBA2
#def ine M_KNEE -0.1608408863753427

#define M_HIP -8.12533624472366

#define N_ANKLE -B.86184453345237 //N=-2tALB
#define N_KNEE -8.83943369131414

#define N_HIP -8, 85149582299157

#define LC_ANKLE -8.891751928536811 // LC = LBAZ - LAM2
#define LC_KNEE -B.09234109854686

#define LC_HIP 8.11426878163262

#define PHIA_ANKLE ©.261184460834168 // PHIA = atan a/b

#define PHIA_KNEE 8.13418383184850

#define PHIA_HIP 8. 8736880685483296

#define PHIB_ANKLE 1.21552387644741 // PHIB = atan d/c

#def ine PHIB_KNEE 9.78539816339745

#define PHRIB_HIP 8,14729987726891

#define VO_ANKLE 1,55133923734484e-5 //EX02, rod dia change, chamber volume when areas on both sides of the piston are

egual {m3)

#def ine VO_KNEE 1.24187138987523e-5 //EX02, rod dia change,

#define VB_HIP 1.55133923734404e-5 //EX02, rod dia change,

#define IMAX 25e-3 // max input current to valve (A}

#define LMAX 4.5 // max input voltage to the valve (V) note: max possible is 5v
#define)XVMAX 328.5e-6 // 219e-6 for 3V; 328.5e-6 with 4.5; 3732-6 for S5Y; max spool travel on one
side (m

a‘dt]afir)m R_VYALYE 208 // valve coil + series resistance on RIOM (2x68ohms on RIOM + 88ohms on
valve

#define PS 6, 8948e6 // supply pressure (Pa) = 1888 PSI

//#define PS 6,5560e6 // supply pressure (Pa) = 958 PS1 (never tested)

//#define PS 6.2B853e6 7/ supply pressure {Pa) = 988 PSI {never tested)

118



//#define PS 5. 86066 7/ supply pressure {(Pa) = 858 PSI (never tested)

//#define PS 5.5158e6 /7 supply pressure (Pa) = 868 PSI (never tested)

//#define b)’S 5.1712e6 /7 supply pressure (Pa) = 758 PSI (walking ok/sluggish, but knee forces are close to
saturakion

//#define PS 4,8263e6 // supply pressure (Pa) = 70@ PSI (never tested)

//#define PS 4. 4816e6 // supply pressure (Pa) = 658 PSI (never tested)

//#define PS 4,1369¢6 // supply pressure (Pa) = 688 PSI (never tested)

//#define PS 3.7921e6 // supply pressure (Pa) = 556 PSI (never tested)

//#define PS 3. 4474¢e6 // supply pressure (Pa} = 568 PSI (valves saturate for knee and hip every step, exo cannot
support its own weight, walking does not feel significantly better than unpowered)

//#define PS 1.7237%e6 7/ supply pressure (Pa) = 258 PS! (never tested)

#define BETA 6.9e8 /7 old beta was 1,517e9 // effective fluid bulk modulus (Pa) (other sources: meritt 6.9e8

,1e9, 1,517e9 Pa)
// smaller BETA gives better tracking at high amplitude (1e8 works well w/ smaller lambde

in FLin)
#define TAU 8. 8815 // valve mechanical time constant (sec)
#define KS 8, 6146 // valve DC gain (m/A)
#define KS_INY 68. 493 /¢ 1/KS  (A/m)
#define G3 9.7333 /f KS / TAU
#define G3_INY 8.18274 /7 1/6G3
#define F3 -666, 67 // - 1/ TAU
#define GAMMA {2.16282e-4+BETA) /7 with old beta was 327981 // Cd W Beta /sqrt(RO)
// ¢d = valve discharge coefficient
// W = valve orifice area gradient (m)
// RO = fluid density (kg/m2)
#define SI (4e-14+BETA) // value with old Beta 6.868e-5 // 2 Beta Ct
// Ct = cylinder leakage coefficient ( m3/sec/Pa)

#define LB_PLUS_XPB_ANKLE 8.32981537832788 // (m)
#define LB_PLUS_XP8_KNEE 8.292922608266168 // %P8 = piston position when area on both sides is equal (m)
#define LB_PLUS_XPB_HIP 8,32981537832708 // L8 = cylinder dead length (m)

// define maximum additive and multiplicative uncertainty parameters for robust valve controliers
#define G2_TILDA_MIN 8

#define GZ_TILDA_MAX 1.2

#define DELTA_BETA_MAX (8. 2»BETA)
#define DELTA_SI_MAX (8.2+81)
#define G3_TILDAMIN 8.8

#define G3_TILDA_MAX 1.2
#define G3_TILDAMAX_INY 6.83333 // 1/G3_TILDAMAX
#define DELTA_F3_MAX (-8, 1xF3)

// define weight, mass and geometry of hudraulic components
#def ine W_ANKLE_ACT_SENSOR 14,1264 /3 =M act g (N)
#define W_KNEE_ACT_SENSOR 22.7592

#define W_HIP_ACT_SENSOR 6,867

#def ine RCG_ANKLE 8.239595

#define RCG_KNEE 0, 241548

#def ine RCG_MHIP B, 19605

// define torso F/T sensor constants

#define CFT11 134,1971323 // sensor calibration matrix
#define CFT12 -4, 888547243 // Fz row

#define CFT13 135. 3817459

#define CFT14 -1.568794287

#define CFT1S 136. 2343685

#define CFT16 -3.581443361

#define CFT21 -0.568199187 // Fx row

#define CFT22 -8. 986865476

#define CFT23 1.231591581

#define CFT24 -B6.98476572

#define CFT25 -2.549988326

#define CFT26 85. 88848683

#define CFT31 5.399278947 // Ty row

#define CFT32 -8.163992174

#define CFT33 -2.71626536

#define CFT34 1.8790820@558

#define CFT35 -2.648369989

#define CFT36 -8.939413716

#defi?; BTt 8.13 // temperature compensated FT sensor voltage bias value vector (B x ¥in in ATI
manua

#define BT2 -8,165

#define BT3 B.387

#define BT4 B.1875

#define BTS 8.25

#define BT6 0.537

#define CT 5. 781661486 // FT sensor thermister value at calibration (v, Amplified) twe. xIs
#define GS 8. 0824382645 // FT sensor thermister gain slope (1/V, fmplified) twe.xls

119



Appendix A.2 — ExoMain.h

/» STRUCTURE DEFINITIONS »/

typedef ztruct {

ouble mass; /% kg »/

double inertia; /= about segment CG - kg.m2 »/

double length; /xm o/

double Lcg; /» axial distance from distal joint to segment CG - m »/

double hcg; /» perpendicular distance from distal joint to segment CG - m »/

} SegmentDataT;

typedef struct {
SegmentDataT heel;
SegmentDataT fook;
SegmentDataT shank;
SegmentDataT thigh;
SegmentDataT upperBody;

double torsoSensor_L; // distance along upperbody to torsc sensor

double torsoSensor_h; // distance orthogonal to upper body to torso sensor
} BodyDataT;
typedef struct {

double sensorForce; /» Cylinder force sensor reading - N »/

double position; /% rad =/

double velocity; /» rad/s »/

double acceleration; /» rad/sz »/
deouble momentArm; /¢ m

double pistonPosition; // piston distance from xp8 reference position (m)
double pistonvelocity; // m/s

double Lorque; // actuator torque N.m =/

double Tdes; /= Desired Joint Torque vecktor =/

double Thm; // Joint Torque of human on machine (N.mj

double Tg; /7 Joint Torque needed to compensate gravity (N.m)

double Tcc; // Joint torque needed to cumgensete centrifugal and coriolis forces (N.m)
double Tf; 7/ Joint friction torque - includes hosing and cable stiffness (N.m)
double Tlin; // Linearizing torque Tlin = Tg + Tec + Tf (N.m)

double Tinertial; // Torque due to inertial forces, JRS, 2084-86-24

double Tvguard; /» ¥irtual ?uard torgue #/

double Tvlimit; /» virtual limit torgque »/

double valvevoltage; /» input voltage on the valve »/

double indexPulse; // encoder index pulse

int againstStop;
} lointDataT;

typedef struck { // unactuated joint angles
double R_abduction;
double L_abduction;
double R_rotation;
double L_rotation;
double R_abduction_indexP; // index Pulse
double L_abduction_indexP;
double R_rotation_indexP;
double L_rotation_indexP;
} HipDataT;

typedef struck{
double angular_accel; // ang acge]eration of body

double lin_accell; / 1in accelerometer 1 data

double lin_accel2; // lin accelerometer 2 data

double offseti; // tin accel 1 offset

double offset2; /7 Vin accel 2 offset

double gaini; // Vin accel 1 gain

double gain2; // lin accel 2 gain
}BodyAccelT;

typedef struckt{

int Mode; /» 8:jump; 1:sgl sup; 2:dbl sup; 3: dbl sup sgl redundancy; 4:dbl sup bl red =/

int redundantlLeg;

int prevRedundantlLeg;

int groundedLeg;

int prevGroundedieg;

int leftHeelContack;

int rightHeelConkact;

int LstanceSwingTransition; // 1 if transitioning left leg from stance to swing

int RstanceSwingTransitien; // 1 if transitioning right leg from stance to swing

int LstateTransition; // 1 if left leg is transitioning b/w states

int RstateTransition; // 1 if right leg is transitioning b/w states

int prevDynMode;

int prevLeftLegStance;

int pravRi?htLegstance;

int prevteftkneeControlType; // 8:STOP; 1:manual voltage; 2:manual torque; 3:auto torque (MSS); 4:position
control; S:ERROR

int prevRightKneeControlType; // B:STOP; 1:manual voltage; 2:manual torque; 3:auto torgue (MSS); 4:position
control; S:ERROR

int TockingKnee;
} DynamicModeT;

typedef struck{
double SG6[6]; // torso F/T sensor straingauge outputs (V)
double SGt[6]; // torso F/T sensor temperature-compensated straingauge outputs (V)
double thermister; // thermister output (¥Y)
double Fx; // horizontal force {N)
double Fy; // vertical force (N)
double T; // sagittal plane moment (N.m)

120



double SGt_bias[6]; // temperature compensated skraingauge bias (V)
} TorsoforceT;

typedef struct{
double LankleDistance; // transvers plane distance from CG to ankles
double RankleDistance;
double weightDistrFactor; // force factor due to gravity (alpha)

double filteredBetaFg[4]; // last 4 elements of the filtered load distribution factor Beta (A[B] = most recent)

double unfilteredBetaFg[4]; /7 ... unfiltered ....
double filteredBetaFHM{4];
double unfilteredBetaFHM[4];
double filteredkrot[4]; // last 4 elements of filtered horizontal force hip rotation factor Krot
double unfilteredkrot[4]; // «.. unfiltered ...
} ForceDistribukionT;

typedef struct {

JointDataT jeintData[8]; /+ arrays are as follows: [Ltoe Lankle Lknee Lhip Rtoe Rankle Rknee Rhip ] »/
HipDataT hipData;
BodyAccelT bodyAccell[7]; // [ LFOOT LSHANK LTHIGH RFOOT RSHANK RTHIGH UPPERBOLY]

DynamicModeT dynamicMode;
TorsoForceT torsoForce; // torso force sensor data
ForceDistributionT forceDistribution;

double TorsoTilt; /*» rad »/

double torsovelocity;

double virtualGuardFx; // horizontal force caused by virtual guard at upper body CG
double virtualGuardT; // hip moment cause by virtua?Guarde

double lockingKneeDesiredPosition;

int Rfootswitch{5]; /% 8: off; 1: on »/

int Lfootswitch[5];

int error; // error = 1: an incoming OMNIBUS sensor signel is out of range; error = 8: no error
int lostCommunication; // number of times communication with PCl was lost

int loopPeriod; // Supervisor loop period

int GUIping; // &I ping response
int calibrationFlag; // indicates current controller state of accelerometer calibration
unsigned long int CounterTicks; // 32bit counter used to send time stamp to GUI

} SensorDataT;

typedef struct {

int virtualGuard; // toggle the virtual guard

int virtualLimits; // toggle the virtual Timits

int conkrolFHM; // toggle the human-machine force control
} TorqueControlT;

typedef struct{

int OperationMode; // B:idle; 1:on

int jointControlType; // B:manual voltage, 1:position control, 2:manual torque control (MSS), 3:velocity
control, 4:VFC

ink prevlointControiType; // 8:manual voltage, 1:position control, 2:manual terque control (MsS), 3:velocity
control, 4:VFC

double kp; // proportional gain

double kv; // derivative gain

double lambdai; // joint controller gains

double Tambda2;

double Ci; // Force tracking error integrator gain
double CiSwitch;

double etai; // sliding surface robustness parameters
double etaz;

double phi1_invy; /7 1/{sliding surface boundary layers)
double phi2_iny;

double roi; // Lyapunov function gains

double ro2_inv; // 1/ro2

double manualTorque; // User-specified joint torques when the controller is on Manual Torque Control

double menualvalvelnput; // User-specified valve input voltage when the controller is on Valve Input Control
double desiredvelocity; /7 (rad/sg used in velocity control for friction calibration
double desiredPosition; // {rad) used in position control for friction, stiffness and mass calibration

double frequency; /¢ frequency for manual torque, valve input and desired velocity sinusoidal signals
double amplitude; // amplitude for manual torgue, valve input and desired velocity sinusoidal signals
double kpFHM; // human-machine force amplification gain

} leintControlT;

typedef struckt {
double activation;
double position; /# horizontal position of the VGuard's activation zone »/
double saturation; /» max force »/
double stiffness;
double damping;
} VvirtualGuardT;

typedef struck{
int GUIflag; // indicates currenk GUI skate of accelerometer calibration
int selection[71; // binary values to select accelerometers to be calibrated
/ [ LFOOT LSHANK LTHIGH RFOOT RSHANK RTHIGH UPPERBODY]
} CalibrationT;

typedef struct{
inkt activateAnkleSpring;
double springRate;
double centerAngle;
int ackivateKneeDamper;
double flexionDampingCoeff;
double extensionDampingCoeff;
int  test3;
int test4;

} DebuggingControlsT;

typedef struct {

121



TorqueControlT torqueControl;

JointControlT jointControl[6]; /» [ankleL kneeL hipL ankleR kneeR hipR] =/
virtualGuardT virtualGuard;

virtualGuardT virtualLimit;

calibrationT calibration;

double DynDistributionFactor; // load distribution factor for double support

double ditherAmplitude; // amplitude of valve dither voltage (V)

int mainOperationMode; /» B:stop; t:valve control; 2:manual torque control; 3:auto torque control; 4:
vel. control »/

int GUIping; // ping signal from GUI

ink ditherFrequency; // valve dither frequency (Hz)

ink recordflag;

int resetTimer;

DebuggingControlsT debuggingControls;
} SysPropertiesT;

typedef struct{

JointDataT jointData[8];
JointControlT jointControl[6];
unsigned long int CounterTicks;
Dynami cModeT dynami chode;
double TorsoTilt; // rad
int Rfootswitch[S]); // 8=OFF, 1=ON
int Lfootswitch[5};
} RecordedDataArrayT;
/»
= FUNCTION PROTOTYPES /
L

/# Function: InitBodyData

» This function intializes the bodyData structure (body length and mass properties). These values cannot be
* modified by the GUI.

L3
void InitBodyData(BodyDataT »bodyData);

/» Function: InitSysProps

» This function intializes the sysProperties structure. These values can be modified in the GUI.
*
void InitSysProps{SysPropertiesT *sysProperties);

/» Function: InitSensorData

» This function intializes the sensorData structure. Most of these values are displayed in the GUI.
*,
void InitSensorData{SensorDataT ssensorData);

/= Function: Supervisor
L]
* Main system controller. Collects sensor data and implements the control of all machine joints according
+ to the main operation mode (B:stop; i:valve control; 2: manual torque control; 3: auto torque control).
w/
void Supervisor(long bufaddr,

BodyDataT wbodyData,

SysPropertiesT »sysProperties,

SensorDataT ssensorData);

/» Function: PositionControl

*

= Apply joint torque control for position contrel. Position for each joint is given in sysProperties
» Required torque is obtained with proportional control and stored in 'desiredtorques’

»

void PositionControl(double desiredPosition,
SensorDataT »sensorData,
const SysPropertiesT =sysProperties,
int i);

/» Function: SysTorqueController

» Apply joint torque control for human-machine force control, Virtual guard and virtual limit stop modes.

» desiredTorques is a pointer to the 6 element array [Lankle Lknee Lhip Rankle Rknee Rhip] containing
» the resulting desired control torgues.

»/

void SysTorqueController(double *desiredTorque,
const BodyDataT »bodyData,
SensorDataT ssensorData,

SysPropertiesT ssysProperkties);
/» Function: GetvGuardForces

» Computes the required machine operational force to produce the virtusl guard potential field. This potential field
» will redirect the machine outside of the virtual guard activation region and will prevent 2 possible

» loss of stability.
.
o

void GetvGuardForces(SensorDataT s=sensorData,
const BodyDataT »bodyData,
const VirtualGuardT vguard,

const double xR,
const double xL,
const double c1234,
const double 51234);

/= Function: GetvlLimitsTorques

122



Computes the required machine torgues to produce the virtual joint limit stops. The virtual joint limit
stop is a potential field which is activated when the machine enters a predefined region near the hardware
stops. The potential field is produced by a virtual spring-damper system and will prevent the joints from
reaching their physical Timits.

O % % % % % %
~

void GetViimitsTorques(const SysPropertiesT »sysProperties,

SensorDataT =sensorData);
/* Function: GetDynMode
*
* Establishes the d?namic mode of the machine according to footswitch data.
* Mode accepts the following values:
» - jump mode:
» - single support: 1
* - double support: 2
- - double support single redundancy: 3
* - double support double redundancy: 4
» LeftIsGrounded is & or 1
* LeftIsRedundant is & or 1
» LeftHeelContack is B or 1
» RightHeelContact is 0 or 1
»/
//void GetDynMode({SensorDataT »sensorData};
void GetDynMode(SensorDataT =sensorData,

const SysPropertiesT =sysProperties); //note: added sysProperties 88-13-83

/* Function: GetFootStatus
*

» Returns the foot status according the footswitch readings.

» The returned value is as follows: no contact:8; heel contack:1l; toe contackt:2; flat:3;
w/

int GetFootStatus{const int sfootswitch);

/» Function: SinusoidalSignal

N
» Makes a sinusoidal signal out of a nominal data, and offset, an amplitude and a frequency.

*/

double SinusoidalSignal{double nomina'lsi?nal,
JoinkControlT jointControl,
int i)

123



Appendix A.3 — ExoMain.c

#ifndef DIGPP
#def ine UCLOCKS_PER_SEC
#define uclock_t clock_t
#define uclock clock
#endif

1 // visual C does not define this value
// ¥Yisual € does not support uclock_t
// ¥isual C does not support uclock(}

//#include <iostream, h>
#include <math. h>
#include <time. h>
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>

#include "ExoMain.h"
#include "Defines.h”
#include "FHM.h"
#include "Sensors.h”
#include "JointCti.h*®
#include "PCI. h"
#include "DSup.h”
#include "Record.h”
#include "Filters.h”

// change filter coefficients based on control loop update

//#include "Filtik.h" // 1.8 kHz

//#include "Filti. 4k, h" /1.4 ktz

#include "Filk2k.h" /! 2.8 kHz

//#incliude “FiltSk.h" // 5.8 kHz

//#include "Fitti8k.h" // 18.8 kHz

Jong loopCter = 0; // keep track of number of Supervisor task runs

int” counterResetFlag = FALSE; // indicates when the counter is reset

int recordedDataLoopCounter = 1; // indicates when to record data on exo cpu by counting loop cycles, added by
JRS, 2004-066-16

int totalRecordedDataPoints = 8; // keeps track of the number of data points recorded locally on exo cpu, added by
JRS, 20884-06-10

int  numPointswrittenTof 1ash

int recordedDataLoopCounterRolliover
int recordDoneMessageDisplayed

FILE »FileArray[NUM_RECORDED_FILES];

/» Function: main
* -

= 8; // used in Yoop to write data to compact flash, added b
= 8; // used to set freguency for recording data locally, ad
= FALSE; // added by JRS, 2884-86-18

// currently = 7, JRS, 2884-16-28

w/
int main({void){

uclock_t startT;

uclock_t startTcounter;
BodyDataT bodyData;
SysPropertiesT sysProperties;
SensorDataT sensorData;

int swikch_drequestDone;
unsigned int bus = 8; // constants for PCI communication
unsigned int devfun = 8;
unsigned int vendor_id =-9;
unsigned int device_id = 8;

int iobase = 8;
short loopPeriod = 8;

long buf addr = 0

int stopProgram = B;
short shortCounter = B8;

int tocalCount = B;
RecordedDataArrayT srecordedDataArray;

e

JRS, 26084-86-18
d by IRS, 2804-86-18

recordedDataArray = (RecordedDataArrayT ») calloc(MAX_RECORED_DATA_POINTS, sizeof(RecordedDatadrrayT));
printf("\n\nSize of RecordedDataArray in bytes = %d\n\n", sizeof (RecordedDataArrayT});

recordedDataloopCounterRolover = {int) {FREQ/RECORDED_DATA FREQ);
printf{*\nrecordedDataloopCounterRoltover = %d\n\n”,recordedDatatoopCounterRollover);

InitBodyData(&bodybData); // initialize bodyData structure
InitSysProps{&sysProperties); // initialize sysProperties structure
InitSensorData(&sensorData); // initialize sensorData structure

iobase = InitComm(&bufaddr, &sensorData); // wait for PCI communication to inikialize and send address and size
informatien
// = -1 if no PCI device was found

startT = uclock(); // ¥isual C uses "clock” and DIGPP uses "uclock”
startTcounter = uclock(); // this counter is used for measuring the loop time (should = 56Bus)

174 printf{"\nBegin test loop...\n");
174 while( tkbhit{) /=stopProgram »/){

/Y // do something here...

/ }

/7 printf(*\nTest lToop completed.\n"};

7 SUPERVISOR LOOP STARTS HERE

while{ tkbhit{) /astopProgram »/}{ // start the GUI communication loop

startT = uclock();

counterResetFlag = FALSE; // following 4 ines are done for the SinusoidalSignal function,
if( loopCter == 18606 ){ // when count gets high

124



loopCter = 8; // resst counter to avoid rollover
counterResetFlag = TRUE; // flag to indicate that the counter was reset

if (sysProperties.resetTimer == TRUE){
sensorData. CounterTicks = 8; // reset data recording timer

// Wait for communication flag to run loop, this flag comes from the Supervisor 1/¢ board
if (WaitForCounterUpdate{bufaddr, &sensorData)}{
sensorData. CounterTicks++; :
) Supervisor(bufaddr, &bodyData, &sysProperties, &sensorData); // Run the system supervisor controiler
else{
sysProperties.mainOperationMode = 99; // stop program if communication has been tost

loopCter++; // update counter

// local dasta recording b? exo cpu, added by JRS, B6-18-2064
if (sysProperties.recordFlag == TRUE) {
if ({recordedDatalLoopCounter >= recordedDatal.oopCounterRollover) && (totalRecordedDataPoints <=
MAX_RE CORED_DATA_POINTS) ){
RecordDataToMem(&recordedDataArray[ totalRecordedDataPoints], &sysProperties, &sensorData, &bodyData);
recordedDataloopCounter = 1;
totalRecordedDataPoinks++;

}
recordedDataloopCounter++;

if (totalRecordedDataPoints »= MAX_RECORED_DATA_POINTS}{
if (sysProperties.recordflag == TRUE &% !recordDoneMessageDisplayed){
recordDoneMessageDisplayed = TRUE;
printf{"\n\nRECORDING DONE I\n\n"};

sysProperties.recordFlag = FALSE; // use this line ko record for a fixed time ?eriod and then stop
/3tota RecordedDataPoints = 8; // uncomment this line to keep recording over old array values - stop rec. with
GUI button

}

shortCounter++; // use this code to display loop period at program exit
if{shortCounter == 16866){
ToopPeriod = (short) ({(double) (uctock{) - startTcounter)})/11931,8); //{1B8B8»UCLOCKS_PER MICROSECOND)); //
for some reason it doesn't work with the #define'd values
shortCounter = 8;
startTcounter = uclock();

fflush{stdout);

// communicate to debug port GUI via PCI (receive commands and send displey vairables)
switch_drequestDone = GUlcommunication{bufaddr, &sysProperties, &sensorData, toopPeriod, &bodyData);

UpdateRegControl{bufaddr, sysProperties.calibration.GUIflag, switch_drequestDone);
stopProgram = (sysProperties.mainOperationMode == 99);
} //while tkbhit{} loop

// Yocal dats recording by exo cpu, added by JRS, 2004-86-18
printf(“*\n\nloopPeriod: %3, uclocks per second: %d4”, loopPeriod, UCLOCKS_PER_SEC);
printf {"\n\ntotalRecordedDataPoints = %d\n", totalRecordedDataPoints);
printf ("\n\nBEGINING WRITING DATA TO DISK (BE PATIENT, THIS TAKES 2-18 MINUTES)\n\n");
localCount = B;
InitRecordDataToMem(FileArray);
for{numPointswrittenToF lash=8; numPointswrittenToFlash<totalRecordedDataPoints; numPointswrittenToFlash++){
wr i teDataToF 1ash(&recordedDataArrayf numPointswrittenToF1ash], FileArray);
if (localCount == 108){
printf{"%d \n", numPointswrittenToFlash);
fflush{ stdout };
localCount = 1;

else
localCount++;

}

printf{"\n\nALL DATA LOGGED TO DISK\n\n"};
CloseFiles(FileArray);
StopPCleommunication(bufaddr);

free{recordedDataArray); //free memory allocated for dataArray at end of program

return 1;

/= Function; Supervisor

K mceemm—mc——mmmmmmmmmmmmmm————m oo U SOOI

+ Main system controller. Collects sensor data and implements the control of all machine joints according
» to the main operation mode (B:stop; 1:valve control; 2: manuel torgue control; 3: auto torque control;

* 4: position control, S: exit).

»/

void Supervisor{long bufaddr,
BodyDataT =bodyData,

SysPropertiesT »sysProperties,
SensorDataT ssensorData){

int supervisorState;

int i

double d’esiredTor‘ques[6] = {0,8,6,0,0,0}; // desired torque on each actuated joint [Lankle Lknee Lhip Rankle Rknee
Rhip]

125



double desiredPositionf6] = {8,8,8,8,8,6}; // desired torque on each actuated joint [Lankle Lknee Lhip Rankle Rknee
Rhip]

double desiredTorques_dot[6] = {8,6,8,6,8,8}; // derivatives of desired torque on each actuated joint

double amplitude_deg = B;

double kneeDesiredPosition = G;

//set upper body mass = dither amplitude
bodyData->upperBody. mass = sysProperties->ditherAmplitude; // 2083-18-16 by JRS

if (GetSensorData(bufaddr, sensorData) == 8){ // Read sensor data and update sensorData structure
//sysProperties->mainOperationMode = 8; // if FPGA data is zero twice in a row, try to warn user and go on stop
mode

sensorData->error = 1160;

7/ if{sensorData->error 1= 8 ){ // if a signal is out of range, set supervisor state to stop
if(8){ // if a signal is out of range, set supervisor state ko stop

superyisorState = B;
}else{

supervisorState = sysProperties->mainOperationMode; // Find current state from sensor data, GUI

// get the VFC torques as long as the exo isn't in STOP mode
if {supervisorState == VALVE_CTL ||

supervisorState == MANUAL_TORQUE_CTL ||

supervisorState == AUTO_TORQUE_CTL ||

supervisorState == POSITION CTL){

for (i=B8; 1<6; i++){
sysProperties->jointControl[i]. previointControlType = sysProperties->jointControl[i]. joinktControlType; //
record previous
}

SysTorqueController(desiredTorques, bodyData, sensorData, sysProperties); // Update desired torgues

// loop through each joint and apply the appropriate torque controller.
for {i=8; j<6; i++}{

if (sysProperties->jointControl[il. jointControlType == AUTO_TORQUE_CTL){
JointController{desiredTorques[i], 8, 8, sensorData, sysProperties, i); //Generate torques at joints

}else if (sysProperties->jointControl[i}. jointControlType MANUAL_TORQUE_CTL ){
desiredTorques[i] = SinusoidaiSignal(sysProperties->jointControl[i].manuaiTorque, sysProperties-
>jointControl[i], 1);
JointController(desiredTorques[i], 8, B, sensorData, sysProperties, i); //Generate torques at joints

lelse if (sysProperties->jointControl[i]. jointControlType =a POSITION_CTL)}{
arrplituge_deg = sgsPr’operties->jointControl[i].u'np'fitude; // get amplitude from GUI command
sysProperties->jointControl[i]. amplitude = amplitude_deg » P1/188; // converk to rads
desiredPosition[i] = SinusoidalSignal(sysProperties->jointControl[i].desiredPosition, sysProperties-
>jointControlfil, 1);
PositionControl{desiredPosition[i], sensorData, sysProperties, i);
//sysProperties->jointControl[i]. amplitude = amplitude_deg;

}else if (sysProperties->jointControl[i]. jointControlType == KNEEE_LOCK_POSITION_CTL){
PositionControl (sensorData->lockingKneeDesiredPosition, sensorData, sysProperties, sensorData-
>dynamicMode. Tockingknee);

}else if (sysProperties->jointControi{i].jointControlType == YALVE_CTL){
if (i == LANKLE_T) . .
sensorData->jointData[LANKLE]. valvevoltage = SinusoidalSignal(sysProperties-
>jointControl [LANKLE_T].manualvalvelnput, sysProperties->jointControl {LANKLE_T], LANKLE_T);
else if (i == LKNEE_T)
sensorData->jointData[LKNEE]. valvevyoltage = SinusoidalSignal{sysPro erties-
>jointControl [LKNEE_T]).manualvalvelnput, sysProperties->jointControl [LKNEE_T), LKNEE_T);
else if (i == LHIP_T
sensorData->jointData[LHIP].valvevoltage = SinusoidalSignal(sysProperties-
>jointControl [LHIP_T].manual¥alvelnput, sysProperties->jointControt[LHIP_T], LHIP_T);
else if (i == RANKLE_T)
sensorData->jointData[RANKLE]. valvevol tage = SinusoidalSignal(sysProperties-
>jointControl [RANKLE_T].manualValvelnput, sysProperties—>jointControl[RANKLE_T], RANKLE_T);
else if (i == RKNEE_T)
sensorData->jointData[RKNEE]. vaivevoltage = SinusoidalSi nal (sysProperties-
>jointControl [RKNEE_T].manualvalvelnput, sgsProperI:ies->jothontrol[RKI\EE_T? ;
else if (i == RHIP_T)
sensorData->jointData[RHIP]. valvevoltage = SinusoidalSignal(sysProperties-
>jointControt [RHIP_T].manualvalvelnput, sysProperties->jointControl{RHIP_T], RHIP_T);
}

, ET);

}
Jelse {
for (1=8; i<8; i++){
sensorData->jointData[i]. valvevoltage = DEFALLT_VALVE_IN; // Set the valve input to the the default values
(i.e. cl;sed valves)

for (i=0; i<6; i++}{
sysProperties->jointControl[i}.Ci = 8; // zerc all integral gains to avoid error accumdlation

}
if (s sProperties-xalibretion‘GUIfla? ==
l'f sysProperties->calibration. GUIflag == 3
!l sysProperties->calibration. GUIflag == 4){ // if user has issued the appropriate calibration request
//CalibrateAcce) (sysProperties, sensorData); // calibrate accelerometers (not tested yet)
if (s sProperties-xalibration.GUIfla? ==
i

|1 sysProperties->calibration.GUIflag == 6
| sysProperties->calibration, GUIflag == 7

126



|| sysProperties->calibration. GUiflag == 8){ // if user has issued the eppropriate calibration request

//CalibrateLoad(bodyData, sysProperties, sensorData); // calibrate load (not tested yet)

if (s sProgerties-M:alibration.GUIflaa == 9){
/7CalibrateFTsensor (sensorData); 7/ F/T backpack sensor bias adjustment
sysProperties->calibration.GUIflag = 8; // reset calibration flag

sensorData->jointData[LANKLE]. Tdes = desiredTorques[LANKLE_TI; // update structure for user display
sensorData->jointData[LKNEE}. Tdes = desiredTorques[LKNEE_T];
sensorData->jointData[LHIP].Tdes = desiredTorques[LHIP_T];
sensorData->jointData[RANKLE]. Tdes = desiredTorques[RANKLE_T];
sensorData->jointData[RKNEE]. Tdes = desiredTorques{RKNEE_T];
sensorData->jointData[RHIP]. Tdes = desiredTorques[RHIP_T];

// display upper body mass as SG[8] toc verify that it is changing
//sensorData->torsoForce. S6[8] = bodyData->upperBody.mass; // 18/16/83 by IRS

UpdateDACs(bufaddr, sysProperties, sensorData); // Set the valve input to the user provided voltage
}

/* Function: PositionControl

. -

» Apply joint torque control for position control. Position for each joint is given in sysProperties
» Required torgque is obtained with proportional control and stored in 'desiredtorgues’

w/

void PositionControl(double desiredPosition,
SensorDataT . ssensorData,
const SysPropertiesT =sysProperties,
int 1')l-il

double kp, q_des, g, dq, ge, dge, u;
int sign = 1; // changed from sign = -1 on 2803-67-29
int valveNumberInlointData;

switch(i){ // change array index number so it matches convention in jointData array

case L _T:
valveNumberinlointData = LANKLE;
break;

case LKNEE_T:
valveNumberInlointData = LKNEE;
break;

case LHIP_T:
valveNumberInJointData = LHIP;
break;

cese RANKLE_T:
valveNumberInlointData = RANKLE;
break;

case RKNEE_T:
valvehNumberInlointData = RKNEE;
break;

case RHIP_T:
valveNumberinlointData = RHIP;
break;

if{i == RKNEE_T || i == LKNEE_T){ // adjust sign for knee (obsolete)
sign = i;

kp = sysProperties->jointControllil.kp; // get latest feedback gains

q.des = desiredPosition; // get desired joint position (rad)

q = sensorData->jointDatafvalveNumberInlointData].position; // get current joint position (rad)
dq = sensorData->jointData[valveNumberInlointData]. velocity; // get current joint velocity (rad/s)
e = q_des - q; // error

ge = -dg; // error time derivative (use in nonlinear controller)

u= sign » kp » qe; // required voltage

sensorData->jointData[valveNumberInJoinktData].valvevoltage = u; // valve input voltage (V)

/» Function: SysTorqueControlier

B e e o e e e T e eSS S S S S s s e s ess e

» Apply joint torque control for human-machine force control, VYirtual guard and virtual limit stop modes.
» desiredTorques is a poinker to the 6 element array [Lankle Lknee Lhip Rankle Rknee Rhip] containing

» the resulting desired control torgues.

w/

void SysTorqueController(double sdesiredTorques,
const BodyDataT xbodyData,
SensorDataT »sensorData,

SysPropertiesT »sysProperties){

double FHMTorques[6] = {6,8,8,8,8,8}; // torques to computed by the human-machine auto-control law
double VGuardTorques[6] = {8,6,8,6,0,6};
double VLimitsTorques[6] = {8,8,8,8,8,8};

GetDynMode (sensorData, sysProperties); // find and update the machine's dynamic mode (Jump, Single Suppork, etc...)

if (s?sProperties—minOperatiorMode == AUTO_TORQUE_CTL){ // if the exo is in Virtual Force Control (aute torque) mode
i (s?sProperties->debuggingControls.test3){ // and if test3 is ON, (i.e turn on "lock-the-knee-at-heel-strike”)
if ((sensorData->dynamicMode.prevDynMode == SSTANCE) // and if the previous mode was single stance
&& ((sensorData->dynamicMode.Mode == DSTANCE) // and the current mode is double stance
|1 {sensorData->dynamicMode.Mode == ONE_REDUNDANCY))){ // or the current mode is one redundancy

127



if ({sensorData->dynamicMode. groundedLeg == LEFT){ // and if the left leg is striking the ground
sysProperties->jointControl [LKNEE_T]. jointControlType = KNEEE_LOCK_POSITION CTL; 3/10ck the left
knee in its current position
sensorData->dynamicMode. lockingknee = LKNEE_T;
sensorData->lockingkneeDesiredPosition = sensorData->jointData[LKNEE]. posikion;
Yelse if (sensorData->dgnmidﬂode.?roundedLeg == RIGHT){ // else if the right is striking the ground
sysProperties->jointContro [RKNEE_T]. jointControlType = KNEEE_LOCKCPOSITION_CTL; *// lock the right
knee in its current position
sensorData->dynamicMode. lockingknee = RKNEE_T;
sensorData->lockingkneeDesiredPosition = sensorData->jointData[RKNEE]. position;

}

7/ untock the knee when the other leg (in swing) strikes the ground
if ((sgsPrnperties—>jnintControl[LKI\EE_T].prevJointControngpc == KNEEE_LOCK_POSITION_CTL) // if the left knee
was previously locked
8& (sysProperties->jointControl [RKNEE_T]. prevlointControlType == AUTO_TORQUE_CTL) // and the right leg wes
previously free to swing
&8 (snfsProperties—>jointConI:ro][RKNEE_T].juintControngpe == KNEEE_LOCK_POSITION_CTL)){ // and now the
right teg has become Tocked

sgsProperties->jointContr-ol[LIOVEE_T]._juintCantrongpe = AUTO_TORGUE_CTL; // then unlock the left knee

}else if ((sysPro erties->jointControl [RKNEE_T].previointControlType == KNEEE_LOCK_POSITION.CTL) // if the
right knee was previously locke
&8 (sysProperties->jointControl [LKNEE_T]. prevlointControlType == AUTO_TORQUE_CTL) // and the left leg was
previously free to swing
&8 (sysProperties->jointControl [LKNEE_T]. jointControlType == KNEEE_LOCK_POSITIONLCTL)){ // and now the left
leg has become Jocked

sysProperties->jointContro) [RKNEE_T]. jointControlType = AUTO_TORQUE_CTL; // then unlock the right knee

}else if ((sysProperties->jointControl [RKNEE_T].prevlointControliType == KNEEE_LOCK_POSITION_CTL) // else, if the
knee-lock is disabled and either knee was ?reviousl in a locked state
Il (sysProperties->joinkControl [LKNEE_T].prevJointControlType == KNEEE_LOCK_POSITION_CTL)){ // make sure knee
is back in auto torque mode
sysProperties->jointControl [RKNEE_T]. jointControlType = AUTO_TORQUE_CTL;
sysProperties->jointControl [LKNEE_T]. jointControlType = AUTO_TORQUE_CTL;

3

// enable wirtual limits

//if (sysProperties->virtuslLimit.activation){ // if the virtual limits have been enabled
/7 GetvL imitsTorques(sysProperties, sensorData); // compute the Virtual Limits torques
//Yyelse{ // stored in sensorData->jointData[i].Tvlimit

/ for (i=8; i<6; i++) sensorData->jointData{i}.Tvlimit = 8;

/7Y

GetFHMcontrolTorques (FHMTorques, bodyData, sensorData, sysProperties); // compute the required joint torques
// in FH¥conkrol.c

// Compute total desired torque

desiredTorques[LANKLE_T] = FHMTorques[LANKLE_T] /#+ YGuardTorques[i] + sensorData->jointData[LANKLE]. Tvlimits/ ;
desiredTorques{LKNEE_T] FHMTorques{LKNEE_T] /»+ YGuardTorques[i] + sensorData->jointData[LKNEE]. Tvlimits/;
desiredTorques{LHIP_T] FHMTorques{LHIP_T]  /»+ VGuardTorgues[i] + sensorData->jointData{LHIP]. Tvlimits/ ;
desiredTorques[RANKLE_T] = FHMTorques[RANKLE_T] /*+ vGuardTorques[i] + sensorData->jointData[RANKLE]. Tvlimits/ ;
desiredTorques[RKNEE_T] FHMTorques[RKNEE_T] /»+ VGuardTorgques[i] + sensorData->jointData[RKNEE]. Tylimits/;
desiredTorques[RHIP_T] FHMTorques[RHIP_T]  /»+ VGuardTorgues[i] + sensorData->jointData[RHIP}. Tvlimits/ ;

/» Function: GetYGuardForces

»
» Corr?utes the required machine operational force to produce the virtual guard potential field. This potential field
» will redirect the machine outside of the virtual guard activation region and will prevent a possibie

» loss of stability.

w/

void GetYGuardForces(SensorDataT ssensorData,
const BodyDataT »bodyData,
const VirtualGuardT vguard,

const double xR,
const double xkL,
const double 1234,
const double s1234){

double x; // distance to back foot (m}
double vGuardForce; // resistive force producd by the virtual guard (N)

if (vguard.activation){ // If virtual guard control has been enabled

if (x > B &% (-x) < wguard.position){ // Only apply vguard if
/7 1. €G is in front of back fook; if CG in already behind
1/ the back foot the vguard will be useless and the exo will fall backwards
// 2. CG is within Vguard actuatiopn zone

vGuardForce = {vguard.position + x) * vguard.stiffness;
// saturate the force

if {vGuardForce > vguard.saturation}{
vGuardForce = vguard.saturation;

// horizontal force caused by virtual guard

128



sensorData-»virtualGuardFx = vGuardForce;

// hip moment caused by vGuard Force at CG
sensorData->virtualGuardT = - vGuardForce » (bodyData->upperBody.Lcgec1234 - bodyData->upperBody. hcgrs1234);

/» Function: GetvLimiktsTorgues

. - -
» Computes the required machine torques to produce the virtual joint limit stops. The virtual joint Timit

» stop is a potential field which is activated when the machine enters a predefined region near the hardware
» stops. The potential field is produced by a virtual spring-damper system and will prevent the joints from
» reaching their physical limits.

*,
void GetvLimitsTorques(const SysPropertiesT #sysProperties,
SensorDataT »sensorData){

double angles[8], velocities[8], width, Kj, Bj;
int i;

width = sysProperties->virtualLimit.position; // angle width from joint limit to VLimit ackivation zone
Kj = sysProperties->virtualLimit.stiffness; // potential field stiffness
Bj = sysProperties->virtualLimit.damping;  // potential field demping

for (i=0; i<B; 1++}{
an?les[i] ~ sensorData->jointData[i].posiktion; // joint angles [Ltoe Lankle Lknee Lhip Rtoe Rankle Rknee Rhip]
velocities[i] = sensorData->jointData[i].velocity; // joint anquiar velocities

// check for each joint if it is in VLimit zone and compute appropriate torques,
if {angles[LANKLE] < ANKLE_MIN + width ){ // if joint is within YLimit activation zone 1
if{ velocities[LANKLE] > 8) Bj = 8; // don't resist motion when moving away from the stops
sensorData->jointData[LANKLE]. Ty1imit = {{ANKLE_MIN + width) - angles?LME] I*Kj - velocities[LANKLE]#Bj;
}else if ( angles[LANKLE] > ANKLE MAX - width}{ // if joint is within YLimit activation 2one 2
if{ velocities[LANKLE] < 8) Bj = 8;
sensorData->jointData{ LANKLE]. Tylimit = ({ANKLE_MAX - width) - angles[LANKLE] )*Kj - velocities[LANKLE]=Bj;
}else{
sensorData->jointData[LANKLE]. Tvlimit = 8;

Bj = sysProperties->virtualLimit.damping; // reinitialize to original value
if (angles[RANKLE] < ANKLE_MIN + width)%
7/ if( velocities[RANKLE] > B8) B = 8; // don't resist motion when moving away from the stops
sensorData->jointData[RANKLE]. Tvlimit = ((ANKLE_MIN + width) - angles[RANKLE] )#Kj -
velocities[RANKLE Javelocities[RANKLE]sfabs(velocities[RANKLE])»Bj/velocities[RANKLE];
}else if ( angles[RANKLE] > ANKLE_MAX - width){
/7 1f( velocities[RANKLE] < 8) Bj = B;
sensorData->jointData[RANKLE]. Tylimit = ({ANKLE_MAX - width) - angles[RANKLE] oK -
veloci;:iei[RAM(LE]*velucities[RAM(LE]*fabs(ve‘ocities[RM(LE])-rBj/velucities[RAN(LE];
}else.
sensorData->jointData[RANKLE]. Tvlimit = B;

Bj = sysProperties->virtualLimit,damping;
if (angles[LKNEE] < KNEE_MIN + width){

if{ velocities[LKNEE] > 8) Bj = 8;

sensorData->jointData[LKNEE]. Tylimit = {(KNEE_MIN + width) - angles[LKNEE] )»Kj - velocities[LKNEE]»Bj;
Jelse if ( angles[LKhEE] > KNEE_MAX- width){

if{ velocities[LKNEE] < ) Bj = B;
Jol sznsorData—ﬂuintData[LKNEE],TvIimit = ({KNEE_MAX - width) - angles{LKNEE] )»Kj - velocities[LKNEE]+Bj;
else

sensorData->jointData[LKNEE]. Tylimit = B;

Bj = sysProperties->virtualLimit.damping;
if {angles[RKNEE] < KNEE_MIN + width }{
/7 if( velocities[RKNEE] > B) Bj = B;
sensorData->jointData[RKNEE]. Tvlimit = ((KNEE_MIN + width) - angles{RKNEE] )»Kj -
velocities[RKhEE]-velocities[RId\EE]-fabs(ve'locities[RKl\EE])»Bj/ve'locities[RKhEE];
Jelse if ( angles[RKNEE] > KNEE_MAX - width){
17 if( ve?ocities[RKl\EE] < 8) Bj = 6;
sensorData->jointData[RKNEE]. Tvlimit = ((KNEE_MAX - width) - angles[RKNEE] }»Kj -
velo;v’tiei[ME]welocities[RKl\EE]*fabs(velociI:ies[Rld\EE]):Bj/velocities[RKrEE];
else
sensorData->jointData[RKNEE], Tvlimit = 8;

Bj = sysProperties->virtualLimit.damping;
if (angles[LHIP] < HIP_MIN + width)}{

if? velocities[LHIP] > 8) Bj = B;
sensorData->jointDatafLHIP]}. Tvlimit = ((HIP_MIN + width) - angles[LHIP} }»Kj - velocities[LHIP)»Bj;
Yelse if ( angles[LHIP] > HIP_MAX - width){

if( velocities[LHIP] < 8) B} = §;

sensorData->jointData[LHIP]. Tvlimit = {(HIP_MAX - width) - angles[LHIP] I*Kj - velocities[LHIP]«Bj;
Jeise{

sensorData->jointData[LHIP]. Tvlimit = 6;

Bj = sysProperties->virtuallimit,damping;
if (angles[RHIP] < HIP_MIN + width }{
/7 if{ velocities[RHIP] > 8) Bj = B;
sensorData->jointData[RHIP]. Tvlimit = {(HIP_MIN + width) - angles{RHIP] )»Kj -
velocities[RHIP]svelocities[RHIP]»fabs{velocities[RHIP])*Bj/velocities[RHIP];
}else if ( angles[RHIP] > HIP_MAX - width){
7/ if( velocities[RHIP] < 8) Bj = 8;
sensorData->jointData[RHIP]. Tylimit = ((HIP_MAX - width) - angles[RHIP] )»Kj -
velocities[RHIP]-velocities[RJ-iXP]-fabs(velocities[RHIP])*Bj/velucities[RHIP];

129



}else{
sensorData->jointData{RHIP]. Tylimit = ©;

/» Function: GetDynMode
-

Establishes the dynamic mode of the machine according to footswitch data.

N
» Mode accepts the following values:

* - jump mode = 8

* - single support = 1

* - double support = 2

* - double support single redundancy = 3
* - double support double redundancy = 4
» LeftIsGrounded s 8 or 1

» LeftIsRedundant is B or 1

* LeftHeelContact is 6 or 1

» RightHeelContact is 8 or 1

»/

void GetDynMode(SensorDataT ssensorData,

const SysPropertiesT ssysProperties){ //note: added sysProperties 2883-88-13

int RFootStatus, LFootStatus; // no contact:8; heel contact:i; toe contact:2; flat:3;
int Mode;

int leftHeelContact, rightHeelContact;

int groundedieg;

int redundantLeg;

groundedieg = NONE;
redundantLeg = NONE;

leftHeelContact = FALSE;
rightHeeiConkect = FALSE;

sensorData->dynamicMode. LstanceSwingTransition = FALSE; // initialize state transition indicators (used in
GetFHMcontrolTorques)
sensorData->dynamicMode, RstanceSwingTransition = FALSE;

sensorData->dynamicMode. LstateTransition = FALSE;
sensorData->dynamicMode, RstateTransition = FALSE;

// record previous dyn mode data
sensorData->dynami cMode. prevDynMode = sensorData->dynami cMode, Mode;
sensorData->dynami cMode. prevGroundedLeg = sensorData->dynamicMode. groundedLeg;

// Obtain foot status from foot switches:
I no contact =8

7/ heel contact = 1
I toe contact =2
I/ flat =3

RFootStatus = GetFootStatus(sensorData->Rfootswitch);
LFootStatus = GetFootStatus(sensorData->Lfootswitch);

// single support, right leg on ground

if (RFootStatus != 8 &% LFootStatus == B){
Mode = SSTANCE;
groundedLeg = RIGHT;
redundantieg = NONE;

/7 1f({sensorData->dynamicMode,  Mode == SSTANCE && (sensorData->dynamicMode. groundedLeg == LEFT)) // if left leg was
previously on the ground
// || sensorData->dynamicMode,Mode == DSTANCE
IZi || sensorData->dynamicMode.Mode == ONE_REDUNDANCY){
/
/7 sensorData->dynamichode. LstanceSwingTransition = TRUE; // signal transition (used in GetFHMconkroliTorques)
7/ }
}

/7 sin?le support, left leg on ground

else if {LFootStatus != 8 &% RFcotStatus == 8){
Mode = SSTANCE;
groundedLeg = LEFT;
redundantleg = NONE;

/" if((sensorData->dynamicMode, Mode == SSTANCE && (sensorData->dynamichode, groundedLeg == RIGHT))
/7 |} sensorData->dynamicMode. Mode == DSTANCE
I || sensorData->dynamicMode.Mode == ONE_REDUNDANCY)}{ // if right leg was previously on the ground
//
14 sensorData->dynamicMode. RstanceSwingTransition = TRUE; // signal transition (used in GetFHMcontrolTorques)
7 }
}

// right foot is flat
else if (RFootStatus == 3){
rightHeelContact = TRUE;

// teft foot is flat

// double support

if {(LFootStatus == 3}{
Mode = DSTANCE;
redundantieg = NONE;

) leftHeelContact = TRLE;

// left foot is in heel contact
// double support single redundancy
else if (LFootStatus == 1}{

//Mode = ONE_REDUNDANCY;

130



//redundantLeg = LEFT;

Mode = DSTANCE; // 2883-86-19
redundantLeg = NONE; // 2083-86-19
leftHeelContact = TRUE;

}

// left foot is in toe contact
// double support single redundancy
else if (LFootStatus == 2)}{
Mode = ONE_RE H
//Mode = SSTANCE; // test for 2884-18-84, knee locking out seems to happen only for sstance->ired->dstance

transition

}

groundedLeg = RIGHT;

redundantleg = LEFT;

//1eftIsGrounded = 8; // test for 2884-18-B4, this line added to mimic sstance, right leg gnd case
//1eftisRedundant = 8; // test for 2B84-18-84, changed to 8 from i

lef tHeelContact = FALSE;

77 left foot is fiat (right foot must be redundant)
else if (LFootStatus == 3){

redundantLeg = RIGHT;
TeftHeelContact = TRLE;

// right foot is in heel contact

// double support single redundancy

if (RFootStatus == 1)%
//Mode = ONE_REDUNDANCY;
//redundantLeg = RIGHT;
Mode = DSTANCE; // 86 19 83
redundantLeg = NONE; // 2083-86-19
rightHeelContact = TRUE;

}

// right foot is in toe conkact
// double support single redundancy
else if (RFootStatus == 2){
Mode = ONE_REDUNDANCY;
//Mode = SSTANCE; // test for 2804-18-84, knee locking out seems ko happen only for sstance->ired->dstance

transition

}

groundedieg = LEFT;
redundantLeg = RIGHT;
rightHeelContack = FALSE;

// left foot is in heel contact
/¢ double support double redundancy {unstable)
else if (LFootStatus == 1){

leftHeelContact = TRUE;

// right foot is in heel contact
// double support (use this instead of [unstable] 2Red -86 82 83)
if (RFootStatus == 1){
//Mode = TWO_REDUNDANCY;
Mode = DSTANCE; // commented 2884-89-22
redundantleg = NONE;
//Mode = ONE_REDUNDANCY;
//redundantLeg = RIGHT;
) rightHeeiContact = TRUE;

// right foot is in toe contact
// double support single redundsncy w left red {use this instead of unstable 2Red 26803-06-82)
else{
//Mode = TWO_REDUNDANCY;
Mode = ONE_REDUNDANCY;
//Mode = SSTANCE; // test for 2084-18-B4, knee locking out seems to happen only for sstance->1ired->dstance

transition

}

groundedLeg = LEFT;
redundantLeg = RIGHT;
rightHeelContact = FALSE;

// right foot is in heel contact (left is toe contact)
// double support single redundancy w left red (use this instead of unstable 2Red 2683-86-02)
else if {RFootStatus == 1)}{

//Mode = TWO_REDUNDANCY;
Mode = ONE_REDUNDANCY;
//Mode = SSTANCE; // test for 2604-18-84, knee locking out seems to happen only for sstance->ired->dstance

transition

}

groundedLeg = RIGHT;
redundantLeg = LEFT;
//1eftIsRedundant = 1;
rightHee]lContact = TRUE;
leftHeelContact = FALSE;

// left and right feet are in toe contact
// double support (use this instead of [unstable] 2Red 2BB3-86-62)
else if (LFootStatus == 2 &B& RFootStatus 2){

/Mode = TWO_REDUNDANCY; // Double support double redundancy (unstabte)
Mode = DSTANCE;

redundantLeg = NONE; // arbitrary?

rightHeelContact = 8;

teftHeelContact = B;

131



/7 jump mode
else if (LFootStatus == B &% RFootStatus == 8){
Mode = JUMP;
//Mode = sensorData->dynamicMode.Mode; // set dynamic mode to previous mode
//groundedLeg = sensorData->dynamicMode. groundedLeg; // set grounded leg to previous grounded leg
rightHeelContact = B;
leftHeelContact = 0;
groundedieg = NONE;
redundantleg = NONE;

// record sstance-to-swing transitions if they occur, alsc note which leg is transitionin
if{sensorData->dynamicMode. Mode == SSTANCE && (Mode == DSTANCE || Mode == OE_REDUDANCY)?{
if(sensorData->dynamicMode. groundedLeg == LEFT){ // if left leg was qreviouslg stance leg
sensorData->dynamicMode. RstanceSwingTransition = TRUE; // signal transition (used in GetFHMcontrolTorques)
sensorData->dynamicMode. LstanceSwingTransition = FALSE; // signal trensition {used in GetFHMcontrolTorques)
}else if(sensorData->dynamicMode.groundedieg == RIGHT){ // if rigEt leg was previously stance leg
sensorData->dynamicMode, LstanceSwingTransition = TRUE; // signal transition (use in GetFHMcontrolTorques)
sensorData->dynamicMode. RskanceSwingTransition = FALSE; // signal transition (used in GetFHMconkrolTorques)

}

// record dstance-to-ired transitions if they occur, also note which leg is transitioning
if(sensorData->dynamicMode. Mode == DSTANCE &k Mode == ONE_REDUNDANCY){
if{redundantteg == LEFT){
sensorData->dynamicMode. LskateTransition = TRUE; // signal transition (used in GetFHMcontrolTorques)
sensorData->dynamicMode. RstateTransition = FALSE; // signal transition (used in GetFrMcontrolTorques)
}else if(redundantiLeg == RIGHT){
sensorData->dynamicMode. RstateTransition = TRUE; // signal transition (used in GetFHMcontrolTorques)
sensorData->dynamicMode, LstateTransition = FALSE; // signal transition (used in GetFHMcontrol Torques)

// record ired-to-dstance transitions if they occur, also note which leg is transitioning
}else if(sensorData->dynamicMode.Mode == ONE_REDUNDANCY &% Mode == DSTANCE ) {
if(sensor‘Data-n:gnunicMode.redundant\.eg == LEFT){
sensorData->dynamichode. LstateTransition = TRUE; // signal transition (used in GetFHMcontrolTorgues)
sensorData->dynamicMode. RstateTransition = FALSE; // signal transition (used in GetFHAcontrolTorques)
}else if (sensorData->dynamicMode. redundantieg == RIGHT){
sensorData->dynamicMode. RstateTransition = TRUE; // signa} transition (used in GetFHMcontrolTorques})
sensorData->dynamicMode. LstateTransition = FALSE; // signal transition {used in GetFHMcontrolTorques)

}

sensorData->dynamicMode. Mode = Mode; // update values in original data structure
sensorData->dynamicMode. groundedLeg = groundedLeg;

sensorData->dynamicMode. redundantieg = redundantlLeg;

sensorData->dynamicMode. 1eftHeelContact = leftHeelContact;

sensorData->dynamicMode, rightHeelContact = rightHeelContact;

/» Function: GetFootStatus

LR 2R BE SR BN B 2

*
~

Returns the foot status according the footswitch readings.
The returned value is as follows:

no contact =0
heel contact = 1
toe contact = 2
flat =3

int GetFootStatus{const int »fookswitch){

int sw[5]; // switch array: [TIP TOE BALL MIDFOOT HEEL]
int 1;

// copy fookswitch data to new array
for (i=5; i; i-—-){
sw[i-1] = footswitch[i-1];

// use swiktch states to give foot orientation wrt ground

if ({sw[HEEL] g (swIMIDFOOT] |} swiBALL] || sw[TOE]) )} // if heel and {anything else}
11 ( swMIDFOOT]  && (sw[BALL] || sw[T0E])} ) // or (if midfoot and (ball or toe)}
il sw{MIDFOOT]){ // or (if just the midfoot)
return 3; // flat foot

}else if {swlHEEL])} { // heel contact
return 1;

}else if (swiBALL] || sw[TOE]) { // toe contact
return 2;

}elise{
return 8; // no contact

/= Function: SinusoidalSignal

-
+ Makes a sinusoidal signal out of a nominal data, an offset, an amplitude and a frequency.

»
double SinusoidalSignal(double nominalsi?nal,

JointControlT jointContro
inkt i

132



double signal, wt;
double x; // temporary variable
static double phase ="8; // phase induced from resetting counter

wt = 2#PixjointControl. frequency=loopCtersTS;

if (i == 8 && counterResetFlag == 1){ // if counter has been reset {do only once, not & times -for each joint)
x = (wt + phase)/(2»Pi}; // see counterReset.m file

iF{ x<B ){

X = =X}
Jot phase = (wt + phase) + floor{x)*2+Pi; // compute the new phase
else{

phase = (wt + phase) - floor(x)#2+Pi; // compute the new phase

wk = 6; // reset time
}
signal = nominalSignal + jointControl.amplitude = sin{wt + phase);

return signal;

/» Function: InitBodyData
»
» This function intializes the bodyData structure (body length and mass properties}. These values cannot be
» modified by the GUI.

*
void InitBodyData(BodyDataT »bodyData){

// Define these values as constants in define.h for improved speed

bodybata->heel. ength = HEEL_LENGTH; // heel mass properties exclude ankle bearing or actuator
bodyData->heel.Lcg = HEEL_LCG; // dist from heel to foot CG

bodyData->heel. heg = HEEL_HCG; // dist from heel to foot CG

bodyData->heel.mass = HEEL_MASS;

bodyData->heel. inertia = HEEL_INERTIA;

bodyData->foot.mass = FOOT_MASS; // foot mass properties exclude ankle bearing or actuator
bodyData->foot, inertia = FOOT_INERTIA;

bodyData->foot. tength = FOOT_LENGTH;

bodybata->foot.Lcg = FOOT_LCG; // dist from ankle to foot CG

bodyData->foot. heg = FOOT_HCG; // dist from ankle to foot CG

bodyData->shank,mass = SHANK_MASS; // shank mass properties includes ankle bearings and actuator
bodyData->shank, inertia = SHANK_INERT1A; // but excludes knee bearings and actuator
bodyData->shank. length = SHANK_LENGTH;

bodyData->shank. Lcg = SHANK_LCG;

bodyData->shank. hcg = SHANK_HCG ;

bodyData->thigh, mass = THIGHMASS; // thigh mass properties includes knee bearings, knee and hip actuators,
bodyData->thigh, inertia = THIGH_INERT1A; // thigh actuator, but excludes hip bearings.
bodyData->thigh. length = THIGH_LENGTH;

bodyData->thigh. Lcg = THIGH_LCG;

bodyData->thigh. hcg = THIGH_HCG;

bodyData->upperBody. mass
bodyData->upperBody. inertia
bodyData->upperBody. length
bodyData->upperBody. Leg
bodyData->upperBody. hcg

UPPERBODY_MASS; // upper body properties excludes hip bearings and actuators
UPPERBODY_IMNERTIA;

1; // irrelevant

UPPERBODY_LCG;

UPPERBODY_HCG;

bodybata->torsoSensor_L = TORSOSENSOR_L; // vertical distance of ATI F/T sensor from hip axis
bodyData->torsoSensor_h = TORSOSENSOR_H; // horizontal distance ...

/» Function: InitSysProps

»
» This function initializes the sysProperties structure. These values can be modified in the GUI.
»/
void InitSysProps{SysPropertiesT »sysProperkties){
int i

sysProperties->mainOperationMode = DEFAULT_CTRL_MODE; // @:stop; 1:valve control; 2: manual torgque control; 3:
auto torque control; 4: velocity control;

sysProperties->torqueControl. controlFHY = DEFAULT_THY STATUS; // default set in defines.h, toggle the human-machine
force control (i.e. turn on/off acceleromters)

sysProperties->DynDistributionFactor = DEFAULT_DYNDISTFACTOR; // default=6.88333, load distribution factor for
double support (use 8.88333 )

for (i=8; i<6; i++) {
sysProperties->jointControl[i]. Operationitode = RUNNING; // B:idle; 1: on
sysProperties->jeintConkral[i]. jointControlType = 8; // 6:STOP 1:manual voltage, 2:manual torque, 3:auto torque
(MSS), 4:position control, S5:ERROR
sysProperties->jointControl{i]. prevlointControlType = 8; // 8:STOP 1:manual voltage, 2:manual torque, 3:auto torgue
{MsS), 4:position control, 5:ERROR

sysProperties->jointControl[i].kp = 8; // joint centroller gains

sysProperties->jointControl[i].ky = B;

sysProperties->jointControl[i]. lambdal = 0; // hydraulic joint controller gains
sysProperties->jointControl[i]. 1ambda2 = B8;

sysProperties->jointControlfi].Ci = 0;

sysProperties->jointControlfi]. CiSwitch = 1; // maltiplier for Ci, used to turn Ci on/off, 1=ON, 8=OFF
sysProperties->jointControl[i].etat =1;

sysProperties->jointControl[i].eta2 = 8.881;

sysProperties->jointControl[i].phil_inv = 0;

133



sysProperties->jointControl[i]. phi2_inv = B.681;

sgsPropertjes—>jointContro'I[i].roi = B8.661;
sysProperties->jointControl[i].roz_iny = 8,081;
sysProperties->jointControl[i}.manualTorque = DEFALLT_MANUAL_TORQUE; // joint torques when the controller is on

Manual Torgue Control, B8.8Nm

sysProperties->jointControl[i].manualvalveInput = DEFAULT_VALVE_IN; // valve input voltage when the controller is

on Valve Input Control, 6.8Y

sysProperties->jointControl[i].desiredvelocity = 8; // (rad/s) used in velocity control for frickion calibration
sysProperties->jointControlfi].desiredPosition = 8; // (rad) used in position control for friction calibration
sysProperties->jointControl{i]. frequency = 8; // frequency for manual torque, valve input and desired

velocity sinusoidal signals

sysProperties->jointControl[i]. amplitude = 8; // amplitude for menual torque, valve input and desired

velocity sinusoidal signals

3RS,

sysProperties->jointControl[i]. kpFHM = B8; // human-machine force amplification gain

sysProperties->jointConkro] [LANKLE_T]. 1ambda2 = 488; // LEFT ANKLE joint controlier gains
sysProperties->jointControl [LKNEE_T). lambda2 = 488; // LEFT KNEE joint controller gains
sysProperties->jointControl[LHIP_T]. lambda2 = 1888; // LEFT HIP joint controller gains

sysProperties->jointControl [RANKLE_T]. 1ambda2 = 486; // RIGHT ANKLE joint controller gains
sysProperties->jointControl [RKNEE_T]. lambdaz = 488; // RIGHT KNEE joint controller gains
sysProperties->jointControl [RHIP_T], Jambda2 = 1688; // RIGHT HIP joint controller gains

sysProperties->virtualGuard, activation
sysProperties->virtualGuard. position
sysProperties->virtualGuard. saturation
sysProperties->virtualGuard. stiffness
sysProperties->virtualGuard. damping
sysProperties->virtualLimit, activation
sysProperties->virtuallimit,. position
sysProperties->virtuallimit. saturation
sysProperties->virtualLimit.stiffness
sysProperties->virtuallimit. damping

8; // toggle the virtual guard
8; // horizontal position of the YGuard's activation zone
8; // max force of virtual guard

; /7 toggle the virtual limits
8.26; // angular position of the joint's Vlimit activation zone {rad)
8; // max force of virtual limit

for(i=8; i<7; i++){
sysProperties-xalibration.selection[i] = B;
/7 binary values to select accelerometers to be calibrated
/7 [ LFOOT LSHANK LTHIGH RFOOT RSHANK RTHIGH LPPERBODY]

sysProperties->GUlping = 8; // ping signal from GUI  -- NOT USED

sysProperties->calibration.GUIflag = FALSE; // indicate current state of accelerometer calibration
sysProperties->ditherAmplitude = 8; // amplitude of valve dither voltage (V)

sysProperties->ditherFrequency =0 // walve dither frequency (Hz)

sysProperties->recordFlag = FALSE; // signal form GUI to start recording data locally on exo cpu, added by
06-18-26684

sysProperties->resetTimer = FALSE;

sysProperties->debuggingControls. activateAnkleSpring = FALSE;
sysProperties->debuggingControls. springRate = B;

sysProperties->debuggingControls. centerangle = 0;
sysProperties->debuggingControls. activatekneeDamper = FALSE;
sysProperties->debuggingControls. extensionDampingCoeff = B;
sysProperties->debuggingControls. flexionDampingCoeff = 8;
sysProperties->debuggingControls. test3 = FALSE;
sysProperties->debuggingControls. test4 = FALSE;

/#» Function: 1nitSensorData

-

» This function initializes the sensorData structure. Most of these values are displayed in the GUI.

*
void InitSensorData(SensorDataT »sensorData){

dbt

red

red

int i;

segsormta-ﬁgnmicmde.mde JuMP; /7 @:jump; 1:sgl sup; 2:dbl sup; 3: dbl sup sg) red; 4:dbl sup
re

sensorData->dynamicMode. lef tHeelContact = FALSE; // 1 if the left heel is in contact with the ground
sensorData->dynamicMode. rightHeelContact FALSE; 7/ 1 if the right heel is in contact with the ground
sensorData->dynamicMode. LstanceSwingTransition = FALSE; // 1 if transitioning left leg from stance ko swing
sensorData->dynamicMode. RstanceSwingTransition = FALSE; 7/ 1 if transitioning right leg from stance to swing
sensorData->dynamicMode, LstateTransition FALSE; /7 1 if left leg transitioning b/w states
sensorData->dynamicMode, RstateTransition FALSE; // 1 if right leg transitioning E/w states
sensorData->dynamicMode. groundedLeg = NONE;

sensorData->dynamicMode. redundantLeg = NONE;

sensorData->dynamicMode. prevGroundedLeg = NONE;

sensorData->dynamicMode, prevRedundantLeg = NONE;

sensorData->dynamicMode. prevDynMode =8;

sensorData->dynamicMode, previeftiegStance = 8; // B=jump; 1:sgl sup; 2:dbl sup; 3: dbl sup sgl red; 4:dbl sup dbt
sensorData->dynamicMode. prevRightLegStance = 0; // ®=jump; 1:sgl sup; 2:dbl sup; 3: db) sup sgl red; 4:dbl sup dbl

sensorData->dynamicMode, prevLeftkneeControlType = 8; // 8:STOP; 1:manual voltage; 2:manual torque; 3:auto torque

(MSS); 4:position control; S:ERROR

sensorData->dynamicMode. prevRightKneeContrelType = 8; // 8:STOP; 1:manual voltage; 2:manual torque; 3:auto torque

(MSS); 4:position control; S:ERROR

for (i=8; i<8; i++) {
// Define these values as constants in define.h for improved speed

Rhip ]

sensorData->jointData[i]. sensorForce = 8; // Cylinder force sensor reading (N}
sensorData->jointData[i].position = 8; // arrays are as follows: [Ltoe Lankle Lknee Lhip Rtoe Rankle Rknee
sensorData->jointDatali]. velocity =8 // m/s

sensorData->jointDatafi]. acceleration = 8; // m/s/s

sensorData->jointData[i]. momentArm =1; fM/m

134



(N.m)
(N.m)

sensorData->jointData[i]. pistonPosition = 8; // piston distance from xp@ reference position (m)
sensorData->jointData[i]. pistonvelocity = 8; // m/s
sensorData->jointData[i]. torque = 0; // torque caused by actuator of distal on proximal segment{N.m)
sensorData->jointData[i]. Thm = @; // Joint Torque of human on machine (N.m)
sensorData->jointData[i). Tg = 8; // Joint Torque needed to compensate gravity (N.m)
sensorData->jointData[i]. Tdes = 8; // Desired Joint Torque vector
sensorData->3jointDatali].Tcc = 8; // Joint torque needed to compensate centrifugal and coriolis forces
sensorData->jointData[i]. Tf = @; // Joint friction torque - includes hosing and cable stiffness
sensorData->jointData[i].Tlin = 9; // Linearizing torque Tlin = Tg + Tcc + Tf (N.m)
sensorData->jointData[i}. Tinerkial = 8; // Torque due to inertial forces, JRS, 2884-06-24
sensorData->jointDatali]. Tvguard = @; // ¥irtual guard torque
sensorData->jointDatali]. Tvlimit = 8; // Virtual ?imit torque
sensorData->jointDatali].valveVoltage = DEFAULT_VALVE_IN; // input voltage on the valve, B.8Y
sensorData->jointDatafi]. indexPulse = @; // encoder index pulse

) sensorData->jointData[i]. againstStop = FALSE; // FALSE=0, TRUE=1;

for (i=0; i<5; i++) {
sensorData->Lfootswitch[i] = 8; // footswitch binary value
) sensorData->Rfootswitch[i] = B;

7/ Define these values as constants in define h for improved speed
for (i=8; i<7; i++) { // bodyAccel[ LFOOT LSHANK LTHIGH RFOOT RSHANK RTHIGH UPPERBODY]

sensorData->bodyAccel[i]. angular_accel = B;
sensorData->bodyAccel[i]. lin_accell = B; // linear sccelerometer cutputs
sensorData->bodyAccel[i]. lin_accel2 = B;
sensorData->bodydccel[i]. offsetd = 8; // linear accelerometer offsets
sensorData->bodydecel[i]. of fset2 = 8;
sensorData->bodyAccel[i]. gaini = 1; // linear accelerometer gains

) sensorData->bodyAccel[i].gain2 =1;

sensorData->TorsoTilt = 0; // torso inertial sensor output.

sensorData->torsovelocity = 8;

for (i=0; i<6; i++){
sensorData->torsoForce.SG[i] = 8; // torso FT sensor strain gauge outputs
sensorData->torsoForce. SGt[i] 3 // temperature-compensated strain gauge outputs

sensorData->torsoForce. thermister = 8;
sensorData->torsoforce, Fx = 8; // torso FT sensor strain gauge outputs
sensorData->torsoForce.Fy =8
sensorData->torsoForce. T =8

sensorData->torsoForce, SGt_bias[B] = BT1; // temperature compensated straingauge bias (V)

sensorData->torsoForce. SGt_bias[1] = BT2;
sensorData->torsoforce. S6t_bias{2] = BT3;
sensorData->torsoForce. SGt_bias[3] = BT4;
sensorData->torsoForce. S6t_bias[4] = BTS;
sensorData->torsoForce. SGk_bias[5] = BT6;
sensorData->hipData.R_abduction = 0; // unactuated hip joint angles
sensorData->hipData.R_abduction_indexP = 8; // index pulse
sensorData->hipData.R_rotation = 8;
sensorData->hipData, R_rotation_indexP = 8;
sensorData->hipData. L_abduction = 8;
sensorData->hipData, L_abduction_indexP = 8;
sensorData->hipData.L_rotation = 8;

sensorData->hipData.L_rotation_indexP = B;
sensorData->forceDistribution. LankeDistance 8; // transvers plane distance from CG to ankles
sensorData->forceDistribution, RankleDistance

sensorData->forceDistribution.weightDistrFactor

B:S; // force factor due to gravity (alpha)

for (i1=8; i<d; i++) {
sensorData->forceDistribution. filteredBetaFg[i] = 8.5; // last 4 elements of the filtered load distribution

factor Beta {A[B] = most recent)

sensorData->forceDistribution.unfilteredBetaFg{il = 8.5; // ... unfiltered ...
sensorData->forceDistribution. filteredBetaFHM[ 1] = 8.5;
sensorData->forceDistribution, unfilteredbetaFM[i] = 8.5;
sensorData->forceDistribution. filteredkrot[i] = 1; // filtered horiz. force factor due to hip rotation
sensorData->forceDistribution. unfilteredkrot[il = 1;

}

sensorData->error = 8; // set to 'no error’ as default

sensorData->lostCommunication = 8; // number of times communication with PCI was lost

sensorData->1oopPeriod = @; // Supervisor loop period (usec)

sensorData->GUIping = 0; // GUI ping response (NOT USED)

®; // indicates current controller state of accelerometer calibration
8; // horizontal force caused by virtual guard at upper body CG

8; // hip moment cause by virtualGuardfFx

@; // JRS, 2804-06-28

sensorData->calibrationFlag
sensorData->virtualGuardFx
sensorData->virtualGuardT
sensorData->CounterTicks

135



Appendix A.4 — Sensors.h

/» Function: GetSensorData

.
» Reads data from the sensors and the FPGA and updates the variables of sensorData. _

+ The data from the sensors and the FPGA is read from input pins and consists of : joink angles, joint
» velocities, joint accelerations, actuator pressures, footswitch data, actuator force, torso Lilt,

*

int GetSensorData(long bufaddr, SensorDataT ssensorData);

/* Function: GetTorsoForce

» Reads the torso interaction forces from the backpack sensors and updates the sensorData structure.
»/
void GetTorsoForce(short sdataArray, SensorDataT »sensorData);

/* Function: GetTorsoTilt
*

» Reads the torso tilt angle from the Intersense sensor and updates the sensorData structure.
»/

void GetTorsoTilt({short *dataArray, SensorDataT »sensorData};
/» Function: GetlointAngles

Reads angle data from the FPGA and updates the sensorData structure.
Angles are for the proximal segment relative to the distal segment.

*
*
»
»
L]
*
L
*
» proximal Ng——me .
* segment A\
» {e.g. thigh) A
"
-
*
*
*
*
*
¥o

distal segment (e.g. shank)

-

/
id GetlointAngles(short »dataArray, SensorDataT ssensorDats);

/» Function: GetEncoderIndexPulses
*

» Reads encoder index pulse data and updates the sensorData structure.
»/
void GetEncoder IndexPulses(short sdataArray, SensorDataT ssensorData);

/» Function: GetlointVelocities
»
» Reads angular velocity data from the FPGA and updates the sensorData structure.
+ Angular velocities are for the proximal segment relative to the distal segment.

w/
void Getlointvelocities(short sdataArray, SensorDataT sensorData);

/» Function: GetSensorForces

»

» Read cylinder force sensors.

*

void GetSensorForces(short sdataArray, SensorDataT ssensorData);

/» Function: ActuatorKinematics

*
» compute kinematic actuator variables needed in the nonlinear control laws:
»
- L : eylinder length (m)
- b : cylinder moment arm (m)
» xp : cylinder posikion {m)
a/ xp_dot ™ : cylinder velocity (m/s)
*

void ActuatorKinematics{SensorDataT *sensorData );

/#» Function: GetTorques
x -
+ Computes joint torques from pressure and angle data.

*/
void GetTorques(SensorDataT »sensorData);

/= Function: GetFootSwitches
. -
» Resds footswitch data and updates the sensorDate structure.

w/
void GetFootSwitches(short sdatadrray, SensorDataT ssensorData);

/* Function: GetEncoderIndexPulses
»*

* Reads encoder index pulse data and updates the sensorData structure,
*

void GetEncoderIndexPulses(short sdataArray, SensorDataT ssensorData);
/» Function: DetectErrors

*
» Set sensorData.error to 1 if a signal is out-of-range

»
void DetectErrors( SensorDataT =sensorData);

136



Appendix A.5 — Sensors.c

#include <math. h>
#include <skdio.h>

#include "ExoMain.h”
#include "Defines.h"”
#include "Filters.h”
#include "Sensors.h”
#include "Accel.h”
#include “DSup.h”
#include "PCIL.h"

extern double filterCoeffsOFF[5];

extern double filterCoeffsistB25[5], filterCoeffsistd85[5], filterCoeffsisti[5], filterCoeffsist2[5],
filterCoeffsist5[5], filterCoeffsistiB[5], filterCoeffsist28[5], filterCoeffsist56[5],
filterCoeffsist88[5], filterCoeffsist18B[5], filterCoeffsist128[5], filterCoeffsisti48[S],
filterCoeffsist168[5], filterCoeffsist180{5], filterCoeffsist208{5];

extern double filterCoeffs2nd®25[5], filterCoeffs2ndes[5], filterCoeffs2ndi[5], filterCoeffs2nd2[5],
filterCoeffs2ndS{5], filterCoeffs2ndiB{S],

filtercoeffs2nd28[5], filterCoeffs2ndS8[5], filterCoeffs2ndse[S], filterCoeffs2ndiBB8[5],
filterCoeffs2nd128[5], filterCoeffs2ndi48{5],

filterCoeffs2ndi68[5], filterCoeffs2ndi88[5], filterCoeffs2nd208[5], filterCoeffs2nd258[5],
filterCoeffs2nd3868[5]), filterCoeffs2nd356[5],

filterCoeffs2nd4e8[5]), filterCoeffs2ndSBB[5],

filterCoeffs2nd168B8[5];

extern double DfilterCoeffsi[7], DfilterCoeffs2[7],
DfilterCoeffs28[7), DfilterCoeffs58[7]
Df i 1terCoeffs288{7], DfilterCoeffs258[7
Df i 1terCoeffsS8B[7];

DfilterCoeffs5[7], DfilterCoeffsiB[?],
gi TterCoeffs188{7], DfilterCoeffsid0[7], DfilterCoeffsi68[7],

'], ilterCoeffs388[7], DfilterCoeffs356[7], DfilterCoeffsdds[7],

/» Function: GetSensorData

»
» Reads data from the sensors and the FPGA and updates the variables of sensorData.
» The data from the sensors and the FPGA is read from input pins and consists of: joint angles, joint
» velocities, joint accelerations, actuator pressures, footswitch data, actuator force, torso tilt.
w/
int GetSensorData(long bufaddr,

SensorDataT ssensorData){

ink status = 3;

short dataArray[84]; // stores read data from the PCl bus
static int missedFPGAlonLastRun = B;

static int missedFPGA2onLastRun = 8;

status = UpdateDataArray(bufaddr, dataArray);

if (status != -1){ // if either FPGA is communicating

GetTorsoTilt(dataArray, sensorData); /7 torso tilt: from FAS-G orientakion sensor
GetlointAngles(dataArray, sensorData); // encoders

Getlointvelocities(dataArray, sensorData); // differentiate encoders
GetBodyAccelerations{dataArray, sensorData); // ...from accelerometers
GetlointAccelerations{sensorData); // use accelerometer pairs
//GetlointAccelerationsveloci tyBased(sensorData); // use double differentiated encoders for angular acceleration
GetSensorForces{dataArray, sensorData); // actuator force sensors
GetTorsoForce(dataArray, sensorData); // backpack six axis force sensor
ActuatorKinematics(sensorData); // piston position, velocity, actuater moment arm
GetTorques(sensorData); // joint torques

GetFootSwikches(dataArray, sensorData); // foot switches

GetEncoderIndexPulses{dataArray, sensorData); /7 index pulses

DetectErrors(sensorData); // find out-of-range sensor errors

} elsed // send an error message to the GUI that FPGA sensor dats was not ready
/7

return 1;

/» Function: GetTorsoTilt

A mmm———— - - ——

+ Reads the torso tilt angle from the Intersense sensor and updates the sensorData structure.

w/
void GetTorsoTilt(short xdatadrray,
SensorDataT »sensorData){

static double unfilteredanglefd] = {6,8,0,8}; // Current A[B] and Previous values
static double filteredAngle[d] = {9,8,6,8}; // used in lowpass filter

sensorData->TorsoTilt = dataArray[27]+A_TO_D_CONVERSIONsTORSO_INCL_SLOPE + TORSO_INCL_OFFSET;

// filter angle
LowpassFilter (unfilteredAngle, filteredAngle, gsensorData->TorsoTilt, filterCoeffs2ndiB); // 16 Hz filter (SHz)

/» Function: GetJointAngles
*

Reads angle data from the FPGA and updates the sensorData structure.
angles are for the proximal segment relative to the distal segment.

* F R R E R

137



* \ angle
» proximal Ng~mcmm ,
= segment \ .
* (e.g. thigh) N
» \

* |

* | distal segment (e.g. shank)
» |

b |

b I
~/

void GetJointAngles(short »dataArray, SensorDataT *sensorData){

sensorData->jointData[LANKLE]. position = -dataArray[S4] » RADIANS_PER_COUNT + LANKLE_ENC_OFFSET;
sensorData->jointData[LKNEE]. position = -dataArrayf48] » RADIANS_PER_COUNT + LKNEE_ENC_OFF SET;
sensorData->jointDatafLHIP].position = -dataArray[42] + RADIANS_PER_COUNT + LHIP_ENC_OFFSET;
sensorData->jointData[LTOE]}. position = sensorData->TorseTilt
- sensorData->jointData[LHIP].position
- sensorData->jointData[LKNEE]. position
- sensorData->jointData[LANKLE]. position;
lsensorData->hipData.L_rutation = 8; // dataArray[68]+RADIANS_PER_COUNT + LHIP_ROT_ENC_OFFSET; // hip unactuated joint
angles
9 sensorData->hipData.L_abduction = 8; // -dataArray[66]+RADIANS_PER_COUNT + LHIP_ABD_ENC_OFFSET;

sensorData->jointData[RANKLE]. posikion = dataArray[12] » RADIANS_PER_COUNT + RANKLE_ENC_OFFSET;
sensorData->jointData[RKNEE]. position = dataArray[6] » RADIANS_PER_COUNT + RKNEE_ENC_OFFSET;
sensorData->jointDatafRHIP]. position = dataArray[8] » RADIANS_PER_COUNT + RHIP_ENC_OFFSET;
sensorData->jointData[RTOE]. position = sensorData->TorsoTilt

- sensorData->jointData[RHIP].position

- sensorData->jointData[RKNEE]. position

- sensorData->jointData[RANKLE]. position;
]sensorDate->hipData,Lrotation = 8; // dataArray[18]1*RADIANS_PER_COUNT + RHIP_ROT_ENC_OFFSET; // hip unactuated joint

angles

sensorData->hipData.R_abduction = 8; // -dataArray[24]»RADIANS_PER_COUNT + RHIP_ABD_ENC_OFFSET;

/= Function: GetJointvelocities
»
» Reads angular velocity data from the FPGA and updates the sensorData structure.
» Angular velocities are for the proximal segment relative to the distal segment.
» velocity saturated at +/- 38 rad/sec =

*
void GetJointvelocities(short =dataArray,
SensorDataT ssensorData)}{
int i, J, signBit;
int arraylndex[7] = {25,55,49,43,13,7,1}; // array of velocity index numbers in dataArray
ink velocityArray[7] = {6,8,8,8,6,8,8}; // {torso, lankle, lknee, 1 ip,rankle, rknee,rhip}
short tempvel2, tempvell;

ink tempvel3;
static double unfilteredvel{7][4] = {{6,8, 8,8}, {8, 8, 8, 8}, {3, 8, 8, 0}, {6, 8, 8, 8}, {8, 8,8, 0}, {8, 8, 8,8}, {8, 8, 8,8}}; // Current
A[B] and Previous values

static double filteredvel[7][4] - {{B,9,9,9},{8,E,B,B},{B,B,G,G},{B,B,B,B},{B,B,B,G),{G,B,B,B},{B,G,B,B}}; /7 used in
lowpass filter

static double torsoTiltPrevious = 8;

for(j=8; j<7; j++){
i = arraylndex[j];
signBit = (dataArray[i] & 6x6888)>>15; // Bit 15 is 1 for -ve; G=+ve
tempvell = dataﬁrrag?i] & Bx7FFF; // get rid of the sign bit
// tempvel2 = datadrrayli+4] & BxFF8O; // get rest of velocity bits in footswitch value
/¢ velocityArray[j] = “(tempvel2 >> 7) A (tempvell << 9); // bits 7-15 are velocity bits

tempvel2 = dataArray[i+d];
tempvel3 = tempvel2;
v:locitgl\rr‘ag[j] = {(tempvel3 & BxFF88) >> 7) A (tempvell << 9); /7 bits 7-15 are velocity bits
if (signBit == 1)
) velocityArray[j] = -velocityArray[jl; // adjust the sign

#/ the time between counts is given in units of 26MHz

sensorData->torsovelocity = (sensorData->TorsoTilt - torsoTiltPrevicus)sFREQ; // Upper body
torsoTiltPrevious = sensorData->TorsoTilt;

sensorData->jointData[LANKLE]. velocity
sensorData->jointData[LKNEE]. velocity
sensorData->jointData[LHIP]. velocity
sensorData->)jointData[LTOE]. velocity

-28e6 » RADIANS_PER_COUNT/velocityArray[l
-2Be6 » RADIANS_PER_COUNT/velocityarray[2
-2Be6 * RADIANS_PER_COUNT/velocityArray[3
sensorData->torsovelocity - sensorData->jointData[LHIP].velocity
- sensorData->jointData[LKNEE].velocity
- sensorDate->jointData[LANKLE]. velocity;

sensorData->jointData[RANKLE]. velocity
sensorData->jointData[RKNEE]. velocity
sensorData->jointData[RHIP]. velocity
sensorData->jointData[RTOE]. velocity

2Be6 » RADIANS_PER_COUNT/velocityArray[4];
28e6 » RADIANS_PER_COUNT/velocityArray[S];
2Be6 + RADIANS_PER_COUNT/velocityaArray[él;
sensorData->torsovelocity - sensorData->jointData[RHIP]. velocity
- sensorData->jointData[RKNEE]. velocity
- sensorData->jointData[RANKLE]. velociky;

// saturate velocities in case values are of f due to FPGA or communication errors
for{j=8; j<8; j++){
if{sensorData->jointData[ j].velocity > MAX_YELOCITY_SAT){ // default max is 30 rad/s
sensorData->jointDatal3]. velocity = MAX_VELOCITY_SAT;
}else if(sensorData->jointData[j].velocity < MINVELOCITY_SAT){ // default min is -38 rad/s
sensorData->jointData[ j}.velocity = -MIN_VELOCITY_SAT;

138



// filter velocities

LowpassFilter(unfilteredvel{@], filteredvel[B], gsensorData->joinkData[LANKLE]. velocity, filterCoeffs2ndiee); //
default = 1B8Hz

LowpassFilter{unfilteredvel[1], filtersdvel[1], asensorData->jointData{LKNEE]. velocity, filterCoeffs2nding); //
default = 1BHz to test velocity damping on knee

¢ Lc‘mpassFi]ter(unfi]teredVel[Z], fifteredvel[2], &sensorData->jointData[LHIP].velocity, filterCoeffs2ndiB®); /7

default = 1B88Hz

LowpassFilter(unfilteredvel[3], filteredvel[3], asensorData->jointData[RANKLE]. velocity, filterCoeffs2ndieg); //
default = 186Hz

LowpassFilter(unfilteredvel[4], filteredvel[d], #sensorData->jointData[RKNEE]. velocity, filterCoeffs2nd188); //
default = 18Hz to test ve'locittf damping on knee

LowpassFilter{unfilteredvel[5], filteredvel[S], asensorData->jointData[RHIP]. velocity, filterCoeffs2ndi8B); /7
default = 186Hz

LowpassFilter{unfilteredvel[6], filteredvel[é], asensorData->torsovelocity, filterCoeffs2nd28); /7
default = 26Hz
}

/» Function: GetSensorforces

*
» Read cylinder force sensors. Force should be positive when sensor is in tension.

»
void GetSensorForces(short =dataArray,
SensorbDataT »sensorData?{

static double unfilteredForce[7][4] = {{®, 8,8, 8}, {8, 8, 8,8}, {8, 8, 8, 8}, {6, B, 8,08}, {6, 8,¢,8},{6,8,8, 8}, {e,9,8,83}}; //
current A[B] and Previous values

static double filteredForce[7][4] = {{8,8,8,8},1{8,8,8,8},{8,8,8,0},18,8,86,6},{6,6,9,8},{8,8,8,8},{6,8,8,8}}; // used
in lowpass filter

sensorData->jointData[LANKLE]. sensorForce = (dataArray[57] » A_TO_D_CONVERSION) = LANKLE_FSENSOR_GAIN +
LANKLE_FSENSOR_OFF SET;

sensorData->jointData[LKNEE]. sensorForce = (dataArray{51] » A_TO_D_CONYERSION) » LKNEE_FSENSOR_GAIN +
LKNEE_FSENSOR_OFF SET;

sensorData->jointData[LHIP].sensorForce = (dataArray[d5] » A_TO_D_CONYERSION) » LHIP_FSENSOR GAIN  +
LHIP_FSENSOR_OFFSET;

sensorData->jointData[RANKLE]. sensorForce = (dataArray[15] » A_TO_D_CONVERSION} » RANKLE_FSENSOR_GAIN +
RANKLE_FSENSOR_OFFSET;

sensorData->jointData[RKNEE]. sensorforce = (dataArray[9] »* A_TO_D_CONYERSION) s RKNEE_FSENSOR_GAIN +
RKNEE_F SENSOR_OFF SET;

sensorData->jointData[RRIP]. sensorForce = (dataArray[3] # A_TO_D_CONVERSION) » RHIP_FSENSOR_GAIN  +
RHIP_FSENSOR_OFFSET;

/7 LowpassFilter(unfilteredForce[LANKLE_T], filteredForce[LANKLE_T], &sensorData->jointData[LANKLE], sensorForce

filterCoeffs2nd28); // do not do this. This introduces phase lag that leads to instability very quickly!!

1/ LowpassFilter{unfilteredForce[LKNEE_T], filteredForce[LKNEE_T], &sensorData->jointData[LKNEE]. sensorForce

filterCosffs2nd28); // do not do this. This introduces phase lag that leads to instability very quicklytl!
LowpassFilter{unfilteredForce[LHIP_T], filteredForce[LHIP_T], gsensorData->jointData[LHIP]. sensorForce

filterCoeffs2nd208); // do not do this. This introduces phase lag that leads to instability very quickly!!
LowpassFilter{unfilteredForce[RANKLE_T], fil teredForce[RANKLE_T], &sensorData->jointData[RANKLE]. sensorForce

filtercoeffs2nd28); // do not do this. This introduces phase lag that leads to instability very quickly!!

77 LowpassFilter(unfilteredForce[RKNEE_T], filteredForce[RINEE_T], asensorData->jointData[RKNEE]. sensorForce

filterCoeffsznd28); // do not do this. This introduces phase lag that leads to instability very quicklyl!

/7 LowpassFilter(unfiiteredForce[RHIP_T], filteredForce[RHIP_T], &sensorDaka->jointDatafRHIP], sensorForce

gi]terCoeffSanZB); 7/ do not do this. This introduces phase lag that leads to instability very quickly!!

- ~ - - ~

™~
*

Function: GetTorsoForce

Reads the torsc interaction forces from the backpack sensors straingauges and computes the equivalent forces and
torque using the calibration matrix, offset vector and temperature compensation. Filters the results and
updates the sensorData structure.

% force = horizontal in the sagittal plane, pointing forward.

2 force = vertical in the sagittal plane, pointing upward.

Moment acts in the sagittal plane.

IR EEEER]
~

*,
void GetTorsoForce(short sdataArray,
SensorDataT *sensorData){

double C[3][6] = {{CFT14, CFTi2, CFT13, CFT14, CFT1S5, CFT163},
{CFT21, CFT22, CFT23, CFT24, CFT25, CFT26},
{CFT31, CFT32, CFT33, CFT34, CFT35, CFT36}}; // adjusted calibration matrix = C / Vin
double Bt[6]); // temperature adjusted bias value vector (V)
double FT[3]; // force/torque vector [Fx Fy Tz}
double SGt_minus_BL[6], one_minus_GS_x_thermister_minus_Ct;// intermediate variables
int i; //counter

// Read straingauge and thermister data

sensorData->torsoforce. SG[B] = dataArray[62] » A_TO_D_CONVERSION;
sensorData-»torsoForce.SG[1] = dataArray[63] » A_TO_D_CONYERSION;
sensorData->torsoForce. SG[2] = dataArray[64] » A_TO_D_CONVERSION;
sensorData->torsoForce. SG[3] = dataArray{68] » A_TO_D_CONVERSION;
sensorData->torsoForce. SG[ 4] = dataArray[69] » A_TO_D_CONVERSION;
sensorData->torsoForce. SG{5] = dataArray[78] » A_TO_D_CONVERSION;

sensorData->torsoForce, thermister = dataArray[28] * A_TO_D_CONVERSION + 4.96; // add 4.96Y because of analog circuit
design

// compute intermediate variables
//CT = thermister value at calibration {from TWE.xls) , GS = thermister gain slope
one_minus_GS_x_thermister_minus_Ct = 1 - GSs(sensorData->torsoForce. thermister - CT);

// apply offset and temperature compensation on straingauge signals
for (i=8; i<b; i++){ // for each straingauge
Bt[i] = sensorData->torsoForce.SGt_bias[i];// get bias value
// Apply temperature compensation
sensorData->torsoForce. SGE[i] = sensorData->torsoForce. SG[ 1 ]/one_minus_GS_x_thermister_minus_Ct;
S6t_minus_Bt[i] = sensorData->torscForce.SGE[i] - Bt[i]; // subtract adjusted bias from straingauge data

139



}

// Apply AT1 F/T sensor's transformation matrix
MatVectMUlE(FT, &C[B][6], SGt_minus_Bt, 3, 6);

// torso force sensor outputs
sensorData->torsoForce,Fx = -FT[B]; // torso operstional force vector
sensorData->torsoForce. Fy = -FT[1]; // i.e. forces acting on the machine torso

sensorData->torsoforce. T -FT[2];
/5 // FILTER DEBUGGING CODE use with second_O_filter_zch.m in MATLAB
/
/Y if (k==8){
/7 if((fpRead =fopen("inputDataFile, txt","r")) == NULL}{
/7 printf("Cannot open input file.\n");
/7
Iz if((fpwrite =fopen(”outputDataFile.txk", "w"}) == NULL){
I printf(“Cannot open output file.\n");
// }
14 }
/4
1/ k+4;
/5 fscanf(fpRead, "%f \n", &sensorData->torsoforce.T);
/
/7 // insert lowpass filter here
/7
x LowpassFilternew(unfilteredT, filteredT, &senscrData->torsoForce.T, filterCoeffs2nds);
/7 fprintf(fpwrite, "%f \n", sensorData->torsoForce.T);
/7
/7 if (k==18808){
/7 fclose(fpRead);
/7 fclose(fpwrite);
// }
}
/* Function: ActuatorKinematics
B o e e e e mm o S S o e e m e e
» compute kinematic actuator variables needed in the nonlinear control laws:
»”
» L : cylinder length {(m)
* h : cylinder moment arm (m)
» xp : cylinder position (m)
» xp_dot™: cylinder velocity (m/s)
* see hydraulicParameters.m
w/

void ActuatorKinematics(SensorDataT ssensorData }{

double N, M, LA, LC, PHIA, PHIB, L, q, dq, LB_PLUS_XPB;
int i; // valve number

for (i=B; i1<8; i++)}{ // compute for each joint

g = sensorData->jointDatali]. position;
q = sensorData->jointData[i].velocity;

// actuator in front
if (i == LANKLE }| i == RANKLE){
N = N_ANKLE;

U

M = M_ANKLE;

LA = LA_ANKLE;
LC = LC_ANKLE;
PHIA = PHIA_ANKLE;
PHIB = PHIB_ANKLE;

LB_PLUS_XPB® = LB_PLUS_XPB_ANKLE;

L = sqrt{N+cos(-PHIA-PHIB+q-Pi)-M}; // cylinder length (m);

sensorData->jointData[i]. momentArm = LAssin{acos{ (LC-LsL)/{-2»LsLA) }); // cylinder moment arm (m)

sensorData->jointDatali].pistonPosition = L-LB_PLUS_XP8; // piston position from xp8 ref. {(m)

sensorData->jointDatafi]. pistonvelocity = -Nedgesin(-PHIA-PHIB+q-Pi)/(2*sqrt(Necos({-PHIA-PHIB+q-Pi1)-M}}; //
piston velocity (m/s)

g/ actuator behind (this is taken into account in the computation and sign of the variables: moment arm should be
negative
} else if {i == LKNEE || 1 == RKNEE) {

. N

= N_KNEE;
M = M_KNEE;
LA = LA_KNEE;
LC = LC_KNEE;
PHIA = PHIA_KNEE;
PHIB = PHIB_KNEE;

LB_PLUS_XP8 = LEB_PLUS_XPG_KNEE;

L = sgrt{N«cos(-PHIA-PHIB+Pi-q)-M); // cytinder length (m);

sensorData->joinkData[i]. momentArm = -Lassin(acos((LC-LxL)/(-2%LxLA)}); // cylinder moment arm (m)

sensorData->jointData[i].pistonPosition = L-LB_PLUS_XP8; // piston position from xpB ref. (m

sensorData->jointData[i].pistonvelocity = Nedgssin{-PHIA-PHIB+Pi-q)/(2+sqrt{Nscos(-PHIA-PHIB+Pi-q)-M}}; //
piston velocity (m/s)

// actuator in fronkt
} else if (i == LHIP || i == RHIP) {
N = N_HIP;
M = M_HIP;
LA = LA_HIP;
LC = LC_HIP;
PHIA = PHIA_HIP;
PHIB = PHIB_HIP;
LO_PLUS_XPB® = LB_PLUS_XPG_HIP;
L = sqrt{N+cos({-PHIA-PHIB+q-Pi)-M); // cylinder length (m};
sensorData->jointData[i].momentArm = LAxsin{acos((LC-LaL)}/{-2»L4LA)}); // cylinder moment arm (m)

140



sensorData->jointData[i}.pistonPosition = L-L8_PLUS_XPB; // piston osition from xpB ref,
. sensorData->jointData[i]. pistonvelocity = -Na-dq*sin(—PHM-PHIB&q—Pig
piston v;locitg (m/s)

}

/= Function: GetTorques
*

» Compuktes joint torques from rod force sensor data. Joint torque is of distal segment on proximal
» segment in the direction of eB3. Includes the torque due to actuator weight component
» perpendicular to actuator axis.

x
void GetTorques(SensorDataT »sensorData}{

double cyiLength_2{6]; // [Lankle, Lknee, Lhip Rankle Rknee Rhip] cyl tength*z  (m*2)
double cylLength{6]; // [Lankle, Lknee, Lhip Rankie Rknee Rhip] cyl length (m)
double Rs[61; *// actuator sensor joint reaction forces
// perpendicular to sensor axis. (N)
double h[6]; // moments arms of Rs with joint. (m)
double Tsgn[6] = {1,1,1,1,1,1}; // sign of the torque due to the actuator reaction force
double qaf6l; // actuator angle with respect to gravity (rad)
I
// actuator orientations {rad)
qa[LHIP_T] = sensorData->TorsoTilt - sensorData->jointData[LHIP].position;
qa[LKNEE_T] qa[LHIP_T} - sensorData->jointData[LKNEE]. position;
qa[LANKLE_T] = qa[LKNEE_T] - sensorData—>jointData[LN\lKLE?.position;
qa[RHIP_T] sensorData->TorsoTilt - sensorData->jointData[RHIP].position;
qa[RKNEE_T] qa[RHIP_T] - sensorData->jointData[RKNEE]. position;
qa[RANKLE_T] = qa[RKNEE_T] - sensorData->jointData[RANKLE ]. position;

// cylinder lengths
cyltength[LANKLE_T]
cylLength[LKNEE_T]
cylLength[LHIP_T]
cylLength[RANKLE_T]
cylLength[RKNEE_T]
cyltength[RHIP_T]

sensorData->jointData[LANKLE]. pistonPosition + LO_PLUS _XPB_ANKLE;
sensorData->jointData[LKNEE]. pistonPosition + LB_PLUS_XP8_KNEE;
sensorData->jointData[LHIP]. pistonPosition + LB_PLUS_XPG_HIP;
sensorData->)ointData{RANKLE]. pistonPosition + LB_PLUS_XPG_ANKLE;
sensorData->jointData[RKNEE]. pistonPosition + LO_PLUS_XPB_KNEE;
sensorData->jointData[RHIP]. pistonPosition + LG_PLUS_XP8_HIP;

// reaction forces

Rs[LANKLE_T] = (RCG_ANKLE + sensorDaka->jointData[LANKLE].pistonPosition ) » W_ANKLE_ACT_SENSOR »

cyllength[ LANKLE_T]; // W_ANKLE_ACT_SENSOR = mo *

g
Rs{LKNEE_T] = (RCG_KNEE + sensorData->jointData[LKNEE]. pistonPosition ) * W_KNEE_ACT_SENSOR =

cylLength[LKNEE_T];

]
Rs[LHIP_T] - (RCG_HIP + sensorData->jointData[LHIP].pistonPosition ) = W_HIP_ACT_SENSOR =

cglLen?th[LHIP_T];
Rs | RANKL

E_T] = (RCG_ANKLE + sensorData->jointData[RANKLE].pistonPosition ) » W_ANKLE_ACT_SENSOR »

cyliength[RANKLE_T];

Rs[RKNEE_T] = (RCG_KNEE + sensorData->jointData{RKNEE].pistonPosition )  » W.KNEE_ACT_SENSOR =
cylLength[RKNEE_T];

Rs[RHIP_T] = (RCG_HIP + sensorData->jointData[RHIP].pistonPosition } » W_HIP_ACT_SENSOR »
cylLength{RHIP_T];

// reaction force moment arms
hILANKLE_T]} = sqrt(LB_2_ANKLE - sensorData->jointData[ LANKLE]. momentArm
h[LKNEE_T] = sqrt(LB_2 KNEE - sensorData->jointData[ LKNEE ]. momentarm
= sqrt(LA_2_HIP - sensorData->jointData[LHIP].momentArm

= sqrt{LB_2_ANKLE - sensorData->jointData[RANKLE].momentArm
h{RKNEE_T] = sqrt(LB_2_KNEE - sensorData->jointData[RKNEE].momentArm
h[RHIP_T} = sqrt{LA_2_HIP - sensorData->jointData[RHIP].momentArm

[ 2R K B K SR 3

// eylinder lengthsA2

cylLength_2[LANKLE_T] = cyliength[LANKLE_T] =* cyllength[LANKLE_T]; // ankle cylinder length#2 (m)
cylLength_2[LKNEE_T] = cyliength[LKNEE_T] = cylLength[LKNEE_TI; // knee cylinder lengthA2 (m)
cylLength_2[LHIP_T] = cylLength{LHIP_T] =» cylLength[LHIP_T];  // hi cylinder lengthAz (m)
cylLength_2[RANKLE_T] = cylLength[RANKLE_T] = cylLength[RANKLE_T); // ankle cylinder length#2 {m)
cyliength_2[RKNEE_T] = cylLength[RKNEE_T] » cylLength[RKNEE_T1; // knee cylinder length*2 (m)
cylLength_2[RHIP_T] = cylLength{RHIP_T] = cyltength[RHIP_T]; /7 hip  cylinder TengthA2 (m)

// reaction force torque directions
if(cyltength_2[LANKLE_T] > -LC_ANKLE)
Tsgn[LANKLE_T) = -1; // LC = LBAZ - LA*2
if(cyllength_2[LKNEE_T] > -LC_KNEE)
Tsgn[LKNEE_T] = -1;
if(cyllength_2[LHIP_T} > LC_HIP)
Tsgn[LHIP_T] = -1;
if(cyllength_2[RANKLE_T] > -LC_ANKLE)
Tsgn[RANKLE_T] = -4;
if(cyllength_2[RKNEE_T] > -LC_KNEE)
Tsgn[RKNEE_T] = -1;
if(cyllength_2[RHIP_T} > LC_HIP)
Tsgn[RHIP_T] = -1;

*/

sensorData->jointData[LANKLE], torque = -sensorData->jointDeta[LANKLE]. sensorForce + sensorData-
>jointData[LANKLE]. momentArm; // + Tsgn[LANKLE_T] » h[LANKLE_T] = Rs[LANKLE_T]; // this causes Torque
sometimes (?)

sensorData->jointData[LKNEE]. torque = -sensorData->jointData[LKNEE]. sensorfForce = sensorData-
>jointData[LKNEE].momentArm; // + Tsgn[LKNEE_T)} » h[LKNEE_T] = Rs[LKNEE_T];

sensorData->jointData[LHIP]. torque = -senserData->jointData[LHIP].sensorforce sensorData-
>jointData[LHIP]. momentArm; 2{/ + Tsgn[LHIP_T) = h[LHIP_T] = Rs[LHIP_T];

sensorData->jointDatal E].torque = -sensorData->jointData[RANKLE]. sensorForce » sensorData-
>jointData[RANKLE]. momentArm; // + Tsgn[RANKLE_T] » h[RANKLE_T] » RS[RANKLE_T};

sensorData->jointData[RKNEE]. torque = -sensorData->jointData[RKNEE].sensorForce » sensorData-
>jointData[RKNEE]. momentArm; // + Tsgn[RKNEE_T] » h{RKNEE_T] =+ Rs[RKNEE_T];

sensorData->jointData[RHIP]. torque = -sensorData->jointData[RHIP].sensorforce  » sensorData-
;jointData[RHIP].ma‘nentAm,’ // + Tsgn[RHIP_T] » h[RHIP_T] * Rs[RHIP_T];

141

/(2»sqrt(Nxcos{-PHIA-PHIB+q-Pi)-M)};

(m)

sin{qa[LANKLE_T])
sin{qa[LKNEE_T])
sin{qa[LHIP_T1)
sin{qa[RANKLE_T])
sin{ga[RKNEE_T])
sin{qalRHIP_T])

sensorData->jointDatalLANKLE ]. momentArm);
sensorData->jointData[ LKNEE]. momentArm);
sensorData->jointDatafLHIP].momentArm);
sensorData->jointData[ RANKLE). momentArm);
sensorData->jointData[RKNEE]. momentArm);
sensorData->jointData[RHIP]. momentArm);

to peak to inf

/7

N Y N NN



/% Function: GetFookSwitches

*

» Reads footswitch data and updates the sensorData structure,

*

void GetFootSwitches(short sdataArray, SensorDataT ssensorData){

static double filteredFoot[1B][4] =
{{s, 8, 8, 8}, {8, 6, 8, 8}, {6, 6, &, 83, {8, 8, 9, B}, {6, 0, 8, 6}, {8, 8, 6, 6}, {6, 8, 8, 8}, {©, 6,,0}, {8, 8,6,0}, {8, 6,9, 8}}; // used in lowpass
filter { Lball Lmidfoot Lheel Rball Rmidfoot Rheel}
static double unfilteredFoot[18][4] =
{{e, 8, 8, 83, {8, 8, 0, 8}, {6, 6, 8, 8}, {8, 8, 8, 8}, {8, B, B, 6}, {8, 6, 8,8}, {8, 8, 6, 8}, {8, 8, 8,8}, {6, 6, 0,08}, {6,6,8,8}}; // Previous values
double Lihuafootswitch[18];
int j;

// switch array: [TIP TOE BALL MIDFOOT HEEL]
// right foot

Lihuafootswitch[B] = (dataArray[17] & 1); /¢ tip
Lihuafootswitch{1] = (dataArray[17] & 2) == 2?21 : 8; // toe
Lihuafootswitch{2] = (dataArray[17] & 4) == 4 71 : 8; // ball
Lihuafootswitch[3] = {dataArray[1?] & 8) == 8 ? 1 : B; // midfoot
Lihuafootswitch[4] = (dataArray[17] & 16) == 16 7 1 : 8; // heel

// left foot

Lihuafootswitch[S] = (dataArray[59] & 1); // tip
Lihuafootswitch[6] = {(dataArray[59] & 2) == 2 71 : 8; // toe
Lihuafootswitch{7] = (dataArrag[59] & 4) == 4 21 : 8; // ball
Lihuafootswitch[8] = (dataArray[S9] & 8) == 8 2 1 : @; // midfoot
Lihuafootswitch[9] = (dataArray[S9] & 18) == 16 7 1 : B; // heel

// filter footswiktches to de-bounce switches
for{j=8; j<18; j++) {
LowpassFilter(unfilteredFoot[j], filteredFoot[j], sl ihuafootswitch[j], filterCoeffsist5); // default = iB8Hz

// apply threshold to convert analog outut of filter to digital value
if (Libuafootswitch{j]>8.5)
Lihuafootswiteh[j] = 1;

else {
Lihuafootswitch[j] = B;

}

// save filter values back into structure

sensorData->Rfootswi tch[TIP] (int) Lihuafootswitch[8];
sensorData->Rf ootswi tch[TOE] {int) Lihuafootswitch{1];
sensorData->Rfootswi tch[BALL] (int) Lihuafootswitchi2];
sensorData->Rfootswi tch[MIDFOOT] = (int) Lihuafootswitch[3];
sensorData->Rfootswi tch{ HEEL ] (int) Lihuafookswitch[4];
sensorData->Lfootswitch{TIP] (int) Lihuafootswitch[5];
sensorData->Lfootswitch[ TOE] {int) Lihuafootswitch[6];
sensorData->Lfootswi tch[BALL] (int) Lihuafootswitch[7];
sensorData->Lfootswi tch[MIDFOOT] (int) Lihuafootswitch[8];
sensorData->Lfootswitch[HEEL] {int) Libuafootswitch{9];

/7 use this section to fix the stance of the exo (eg: for use on stance plate)
//ON =1
// OFF = 8

I // right foot

/7l sensorData->Rfootswitch[TIP] =1; // TIP

/ sensorData->Rfootswikch[TOE] =1; // TOE

/7 sensorData->Rfookswitch{BALL] =1; /7 BALL
/7 sensorData->Rf ootswi tch[MIDFOOT] = 1; // MIDFOOT
/7 sensorData->Rfootswitch[ HEEL] =1; // HEEL
/7 // left foot

// sensorData->Lfootswitch[TIP] = 1; /7 TIP

/7 sensorData->Lfootswitch[TOE] =1; // TOE

/7 sensorData->Lfootswitch[BALL]Y =1; /7 BALL

/7 sensorData->Lfootswitch[MIDFOOT] = 1; // MIDFOOT
/7 sensorData->Lfootswi tch[ HEEL] =1; // HEEL

/* Function: GetEncoderIndexPulses

»
» Reads encoder index pulse data and updates the sensorData structure.

*
void GetEncoderIndexPulses(short sdataArray,
SensorDataT »sensorData){

// encoder pulse is on Bit 6

// ©9x4B = 64 = 18666888 in binary

// & 0x40 means mask all but first bit

7/ shift teft by 6 means pick of the last bit (8 or 1)

sensorData->jointData[LANKLE]. indexPulse = (dataArray{59] & Bx4B) >> 6;
sensorData->jointData[LKNEE]. indexPulse = (dataArray[53] & Bx48) >> 6;
sensorData->jointData[LHIP]. indexPulse = (dataArray[47] & 8x48) >> 6;

sensorData->jointData[RANKLE]. indexPulse = (dataArray[17] & B8x48) >> 6;
sensorData->jointData[RKNEE]. indexPuise = (dataArray[11] & B8x48) >> 6;
sensorData->jointData{RHIP]. indexPulse = (dataArray[S] & Bx4B) >> 6;

sensorData->hipData. R_abduction_indexP
sensorData->hipData. R_rotation_indexP
sensorData->hipData. L_abduction_indexP

(datadrray[29] & Bx48) >> §;
(dataArray[23] & 8x4B) >> 6;
(dataArray[71] & 0x48) >> 6;

142



sensorData->hipData, L_rotatisn_indexP

/» Function: DetectErrors

= (datadrray{65] & Bx48) >> 6;

L

» Set sensorData.error to 1 if a signal is out-of-range

*
void DetectErrors(SensorDataT *sensorData){

// Check if any data is out-of-range

if ( sensorData->TorsoTilt < TORSQ_MIN

else
else

else
else

eise
else

else
eise

else
else

else
else

else
else

else
else

else
else

else
else

else
else

else
else

else
else

else
else

else
else

else
else

else
else

else
else

else
else

else
else

else
eise

else
else

else
else

else
else

else
else

else
else

else
else

else
else

if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if

(
{
{
(
(
€
{
(
(
(
(
(
(
(
{
(
(
(
¢
{
{
(
(
(
{
{
(
(
(
{
€
(
€
(
{
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
{
(
{
¢
(
(

|} sensorData->TorsoTilt > TORSO_MAX) sensorData->error = 126; // torso tiilt

sensorData->jointData[LANKLE]. position < ANKLE_MIN -8.2 ) sensorData->error = 161;// joint positions
sensorData->jointData[LANKLE]. position > ANKLE_MAX +8.2 ) sensorData->error = 181;

sensorData->jointData[LKNEE]. position <« KNEE_MIN -8.2 ) sensorData->error = 162;
sensorData->jointData[LKNEE]. position > KNEE_MAX +8,2 ) sensorData->error = 182;

sensorData->jointData[LHIP].position < HIP_MIN -8.2

sensorData->jointData[LHIP].position > HIP_MAX +8.2 ) sensorData->error

sensorData->jointData[RANKLE]. position < ANKLE_MIN -8.2 ) sensorData->error =
sensorData->jointData[RANKLE]}. position > ANKLE_MAX +B8.2 ) sensorData->error =

) sensorData->error = 183;

183;

187;
187;

sensorData->jointData[RKNEE]. position < KNEE_MIN -B8.2 ) sensorData->error = 1068;
sensorData->jointData[RKNEE], position > KNEE_MAX +8.2 ) sensorData->error = 188

sensorData->jointData[RHIP].position < HIP_MIN -8.2) sensorData->error

= 189;
sensorData->jointData[RHIP).position > HIP_MAX +8.2 ) sensorData->error = 189;

116;
118;

184;
1064;

111;
111;

165;
185;

// joint velocities

sensorData->hipData.R_abduction < HIP_ABD_MIN -8.2) sensorData->error
sensorData->hipData.R_abduction > HIP_ABD_MAX +B8.2 ) sensorData->error
sensorData->hipData.t_abduction < HIP_ABD_MIN -8.2) sensorData->error
sensorData->hipData. L_abduction > HIP_ABD_MAX +8.2 ) sensorData->error
sensorData->hipData.R_rotation < HIP_ROT_MIN -8.2) sensorData->error
sensorData->hipData.R_rotation > HIP_ROT_MAX +8.2 ) sensorData->error
sensorData->hipData.L_rotation < HIP_ROT_MIN -8.2) sensorData->error
sensorData->hipData.L_rotation > HIP_ROT_MAX +8.2 )} sensorData->error
sensorData->jointData[LANKLE]. velocity < -YMAX ) sensorData-»error = 281;

sensorData->jointData[LANKLE]. velocity > VMAX ) sensorData->error = 201;

sensorData->jointData[LKNEE]. velocityc -VMAX ) sensorData-»error = 202;
sensorData->jointData[LKNEE].velocity > WMAX )} sensorData-»error = 202;

sensorData->jointData[LHIP}.velocity < -VMAX )} sensorData->error = 2083;
sensorData->jointData[LHIP]. velocity > WMAX } sensorData->error = 283;

sensorData->jointData[RANKLE]. velocity < -WMAX ) sensorDatas->error = 207;
sensorData->jointDatalRANKLE]. velocity > WMAX ) sensorData-»error = 287;

sensorData->jointData[RKNEE]. velocity < -YMAX ) sensorData->error
sensorData->jointData[RKNEE]. velocity > WMAX } sensorData->error

sensorData->jointData[RHIP].velocity < -WMAX ) sensorData->error =

sensorData->jointData[RHIP].velocity > WMAX

sensorData->bodyaccel [LFOOT]. angular_accel
sensorData->bodyAccel [LFOOT]. angular_accel

sensorData->bodyAcce] [LSHANK]. angular_accel
sensorData->bodyAccel [LSHANK]. angular_accel

sensorData->bodyAccel [LTHIGH]. angular_accel
sensorData->bodyAcce 1 [LTHIGH]. angular_acce!l

sensorData->bodyAccel [RFOOT]. angular_accel
sensorData->bodyAcce [RFOOT]. angular_accel

sensorData->bodyAcce ] [RSHANK]. angular_accel
sensorData->bodyAccel [RSHANK]. angular_accel

sensorData->bodyAcce) [RTHIGH]. angular_accel
sensorData->bodyAcce][RTHIGH]. angular_acce]

<
>

<

<
>

289;

) sensorData->error = 2069;

-AMAX )} sensorData->error
AMAX ) sensorData->error

-AMAX ) sensorData->error
AMAX ) sensorData->error

-#MAX ) sensorData->error
AMAX ) sensorData->error

-AMAY ) sensorData->error
AMaX ) sensorData->error

-AMAX ) sensorData-»error
AMAX ) sensorData->error

-AMAX ) sensorData->error
AMAX ) sensorData->error

= 288;
= 288;

328; // joint accelerations

326;

321;
362;

322;
322;

323;
323;

324;
324;

325;
325;

sensorData->bodyAcce] [ UPPERBODY]. angular_acce] < -AMAX ) sensorData->error = 326;
= 326;

sensorData->bodyAcce 1 [UPPERBODY]. angular_accel > AMAX

sensorData->jointDatafLANKLE ], sensorForce
sensorData->jointData[LANKLE]. sensorForce

sensorData->jointData[LKNEE]. sensorForce
sensorData->jointData[LKNEE]. sensorforce

sensorData->jointData[LHIP]. sensorForce
sensorData->jointData[LHIP]. sensorForce

sensorData->jointData[RANKLE]. sensorForce
sensorData->jointData{RANKLE]. sensorForce

sensorData->jointData[RKNEE]. sensorForce
sensorData->JjointData[RKNEE]. sensorForce

<
>

<
>

<

v

-FMaX ) sensorData->error
FMAX ) sensorData->error

-FMaX )} sensorData->error
FMaX )} sensorData->error

-FMAX ) sensorData->error
FMAX ) sensorData->error

-FMAX } sensorData->error
FMAX ) sensorData->error

} sensorData->error

481;
401;

482;
402;

483;
403;

467;
407;

// actuator sensor forces

< ~-FMAX ) sensorData->error = 488;

FMAX ) sensorData->error

143

408;



else if ( sensorData->jointData[RHIP].sensorForce < -FMAX ) sensorData->error = 409;
else if ( sensorData->jointData[RHIP].sensorForce > FMAX ) sensorData->error = 489;

Fi else if ( sensorData->torsoForce.Fx < -FTXMAX ) sensorData->error = 538; /¢ torso
force sensor
else if { sensorData->torsoForce.Fx > FTXMAX ) sensorData->error = 530;
else if ( sensorData->torsoForce.Fy < -FTY_MAX ) sensorData->error = 531;
else if ( sensorData->torsoForce.Fy > FTY_MAX ) sensorData->error = 531;

else if { sensorData->torsoForce. T < -TMAX ) sensorData->error = 532;
else if ( sensorData->torsoforce.T > TMAX ) sensorData->error = 532;

eise if (sensorData->torsoForce,SG[B] > SGMAX
|} sensorData->torsoForce. SG[8] -SEMAX

|| sensorData->torsoForce,SG[1]
|| sensorData->torsoForce.SG[1]
|| sensorData->torsoForce. SG[2]
|| sensorData->torsoForce.S6[2])
|| sensorData->torsoForce.SG[3]
|1 sensorData->torsoForce, SG[3]
|| sensorData->torsoForce.SG[4]
|| sensorData->torsoForce, SG[4]
}| sensorData->torsoForce.SG[5)
|| sensorData->torsoForce.SG[5]

AVAVAVAVYAVA

-S@MAX ) sensorData->error = 533;

else if (sensorData->torsoForce. thermister > THERM MAX
|1 sensorData->torsoForce, thermister < THERM_MIN ) sensorData->error = 534;

else if ( (sensorData->Rfootswitch[TIP] I= 8 &% sensorData->Rfootswitch[TIP] != 1) ) sensorData->error
= 645 else if { (sensorData->Rfootswitch[TOE] i= @ && sensorData->Rfootswitch[TOE] != 1) } sensorData->error
= 646; // footswitches

else if ( (sensorData->Rfootswitch[BALL] =6 && sensorData->Rfootswitch[BALL] != 1) ) sensorData->error
- 647 eise if { (sensorData->Rfootswitch{MIDFOOT] != 8 B&& sensorData->Rfootswitch[MIDFOOT] I= 1) )} sensorData-
»:::r - 648 else if ( (sensorData->Rfootswitch[HEEL] I= B &% sensorData->Rfootswitch[HEEL] != 1) ) sensorData->error
= i

else if { (sensorData->Lfootswitch[TIP} I= 3 && sensorData->Lfootswitch[TIP] i1= 1) } sensorData-

>error = 643 else if ( (sensorData->Lfootswitch[TOE] I= 8 &% sensorData->Lfootswitch[TOE] I= 1) } sensorData-
Zerror = 641 else if { (sensorData->Lfootswitch[BALL] i=8 &k sensorData->Lfootswitch[BALL] != 1) ) sensorData-

>error = 642;

! else if { {sensorData->Lfootswitch{MIDFOOT] i= 8 && sensorData->Lfootswi tch[MIDFOOT] t= 1) ) sensorData-
>error = 643;

’ else if { (sensorData->ifootswitch[HEEL] l= 8 && sensorData->Lfootswitch[HEEL] t= 1} ) sensorData-
>error = 644;

else if ( sensorData->jointData[LANKLE].pistonPosition < LONG_PISTON_POS_MIN // piston position
|| sensorData->jointData[LANKLE]. pistonPosition > LONG_PISTON_POS_MAX } sensorData->error = 781;
else if { sensorData->jointDatafLKNEE].pistonPosition < SHORT_PISTON_POS _MIN

|| sensorData->jointDatalLKNEE].pistonPosition > SHORT_PISTON_POSMAX ) sensorData->error = 782;
eise if ¢ sensorData->_jointDataFLHlP].pistonPositiun < LONG_PISTON_POS_MIN

| sensorData->jointData[LHIP].pistonPosition > LONG_PISTON_POS_MAX ) sensorData->error = 783;
else if { sensorData->jointData[RANKLE]. pistonPosition < LONG_PISTON_POS_MIN

|| sensorData->jointData[RANKLE].pistonPosition > LONG_PISTON_POS_MAX ) sensorData->error = 767;
else if ( sensorData->jointData[RKNEE]. pistonPosition < SHORT_PISTON_POS_MIN

|| sensorData->jointData[RKNEE].pistonPesition > SHORT_PISTON_POSMAX ) sensorData->error = 788;
eise if ( sensor-Data->jointDataERHIP].pistonPosition < LONG_PISTON_POS_MIN

|| sensorData->jocintData[RHIP].pistonPosition > LONG_PISTON_POS_MAX ) sensorData->error = 789;

else if { sensorData->jointData[LANKLE]. momentArm < ANKLE_MOMENT_ARM_MIN // actuator moment arms
|| sensorData->jointData{LANKLE].momentArm > ANKLE_MCMENT_ARM_MAX ) sensorData->error = 8681;
else if ( sensorData->jointData[LKNEE].momentArm <« KNEE_MOMENT_ARM MIN

|| sensorData->jointData[LKNEE].momentArm > KNEE_MOMENT_ARM MAX ) sensorData->error = 882;
else if { sensorData->jointData[LHIP].momentArm < HIP_MCMENT_ARM_MIN

|| sensorData->jointData[LHIP].momentArm > HIP_MOMENT_ARM_MAX ) sensorData->error = 883;
else if { sensorData—>jointDatalRANKLE].momentArm < ANKLE MOMENT_ARM_MIN

| sensorData->jointData[RAMKLE].momentArm > ANKLE_MCMENT_ARM_MAX )} sensorData->error = 887;
else if ( sensorData->jointData[RKNEE].momentArm < KNEE_MOMENT_ARM_MIN

|| sensorData->jointData[RKNEE].momentArm > KNEE_MOMENT_ARM MAX ) sensorData->error = 868;
else if { sensorData-»jointData[RHIP].momentArm < HIP_MCHMENT_ARM_MIN

|| sensorData->jointData[RHIP].momentArm > HIP_MOMENT_ARM MAX ) sensorData->error = 889;

else if { sensorData->forceDistribution.LlankleDistance > FOOT_DISTANCE_MAX ) sensorData->error = 961;
// transverse plane distance from CG to ankles
else if ( sensorData->forceDistribution.RankleDistance > FOOT_DISTANCE MAX ) sensorData->error = 987;

*/

else (sensorData->error = 8);
}
/» ERROR CODE DEFINITIONS

888 no data

1680 position

260 velocity

388 ang acceleration

488 ackuator force

508 torso force sensor

680 footswitches

708 piston position

868 actuator moment arm

960 ankle distance to CG

1888 communication with FPGA tost ( this is set by the Supervisor 1/0 for the GUI)
1160 FPGA data missed twice in a row

144



WVONIPNHONE@

Ltoe
Lankle
Lknee
Lhip
Lhip abduction
Lhip rotation
Rtoe
Rankle
Rknee
Rhip
Rhip abduction
Rhip rotakion

Lfoot
Lshank
Lthigh
Rfoot
Rshank
Rthigh
Upper body

Fx
Fy
T2
straingage
thermister

Ltip
Ltoe
Lball
Lmidfoot
Lheel
Rtip
Rtoe
Rball
Rmidfoot
Rheel

no specifier

145



Appendix A.6 — Accel.h

/» Function: GetBodyAccelerations
-
» Reads angular acceleration data from the accelerometers and updates the sensorData structure.

*/
void GetBodyAccelerations(short =dataArray, SensorDataT =sensorData);

/» Function: GetJointAccelerations
N

» Computes joint angular acclerations and updates the sensorData structure.
/

»
void GetlointAccelerations(SensorDataT ssensorData);

/» Function: GetlointAccelerationsvelocityBased
.

« Computes joint angular acclerations and updates the sensorData structure.
» Accelerations are for the distal segment relative to the proximal segment

»
void GetlointAccelerationsvelocityBased(SensorDataT »sensorData);

146



Appendix A.7 — Accel.c

<math. h>
<stdio.h>

#inciude
#include

“ExoMain. h”
"Defines.h”
"Filters.h"
“aAccel.h”
"DSup. h”

#include
#include
#include
#include
#inciude

extern double filterCoeffsOFF[5];

extern double filterCoeffsist825[5],
filterCoeffsist5[5],
filterCoeffsist86[S],
filterCoeffsisti68[S],

filterCoeffsist85([5],
filterCoeffsistig[S],
filterCoeffsistign[5],
filterCoeffsist188[5],

extern double filterCoeffs2nd25{5], filterCoeffs2nd85[5],

filterCoeffs2nds[5], filterCoeffs2ndiB{5],
filterCoeffs2nd28[5], filterCoeffs2ndsa(s],

filterCoeffs2ndi268[S], filterCoeffs2nd14B[5],
filterCoeffs2ndi68[5], filterCoeffs2ndi8s[s],

filterCoeffsisti[5],
filterCoeffsist2B8[S],
filterCoeffsist128[5],
filterCoeffsist208{5];
filterCoeffs2ndi[S],
filterCoeffs2nds8B[5],

filterCoeffs2nd288{5],

filtercCoeffsist2[5],
filterCoeffsistS8{5],
filterCoeffsist148[5],
filterCoeffs2nd2[5],
filterCoeffs2ndiBB[5],

filterCoeffs2nd258[5],

filterCoeffs2nd360[5), filterCoeffs2nd358[5],
filterCoeffs2nd48B[5], filterCoeffs2ndS8BI5],
filterCoeffs2nd1888[5];

extern double DfilterCoeffsi[7],  DfilterCoeffs2[7], DfilterCoeffs5[7], DfilterCoeffsiB{7],
DfilterCoeffsz8[7], DfilterCoeffs58[7], OfilterCoeffsi88[7], DfilterCoeffs148[7], DfilterCoeffsi68[7],
DfilterCoeffs268[7), DfilterCoeffs258[7], DfilterCoeffs388[7], DfilterCoeffs358[7], Df i lterCoeffs488[7],
DfilterCoeffs560[7];

/» Function: GetBodyAccelerations
»

» Reads angular acceleration data from the accelerometers and updates the sensorData structure.

-
void GetBodyAccelerations(short sdatadrray,
SensorDataT *sensorData)

double 1ini[7], 1in2[?); // accelerometer output [LFOOT LSHANK LTHIGH RFOOT RSHANK RTHIGH UPPERBODVY]
static int k = 8; // for debugging
static FILE »fpWwrite; // file pointers for debugging

// using two linear accelerometers to find body angular acceleration

//read accelerometers( note: left fook accelerometers are not in the same orientation as the rest)

1in2[LFOOT] = -dataArray[56] » A_TO_D_CONVERSION; // top accelerometer {ADC2)
Tini[LSHANK] = dataArray{Sz] » A_TO_D_CONVERSION;

1int [LTHIGH] = dataArray[46] » A_TO_D CONYERSION;

1in1[RFOOT] = dataArray[16] = A_TO_D_CONYERSION;

Tin1[RSHANK] = dataArray[18] » A_TO_D_CONVERSION;

1int[RTHIGH] = datafrray[4] » A_TO_D_CONVERSION;

Vini[UPPERBODY) = datasrray[28] » A_TO_D_CONVERSION;

11n2{LFOOT]} = -dataArray{56] » A_TO_D_CONVERSION; // bottom accelerometers (ADCB)
1in2[LSHANK] = dataArray[50] * A_TO_D_CONVERSION;

1in2[LTHIGH] = dataArray[44] » A_TO_D_CONVERSION;

1in2[RFOOT] = dataArray[14] » A_TO_D_CONVYERSION;

1in2[RSHANK] = dataArray[8] » A_TO_D_CONVERSION;

1in2[RTHIGH] = dataArray[2] » A_TO_D_CONVERSION;

1in2[UPPERBODY] = dataArray[26] » A_TO_D_CONYERSION;

// USING GAIN FROM SPECS and computed offsets Ap 15

sensorData->bodyAcce 1 [RFOOT]. gaini = RFOOT_ACC_GAINL; //12,85526686; // top R1  RIOM 28
sensorData->bodyAcce ] [RFOOT]. of fsett = RFOOT_ACC_OFFSETL; //-8.B868567933;
sensorData->bodyAcce 1 [RFOOT]. gain2 = RFOOT_ACC_GAINZ; //13,37642633; // bottom

sensorData->bodyAcce 1 [RFOOT]. of fsetz = RFOOT_ACC_OFFSETZ; //-8.868156195;

= RSHANK_ACC_GAINI;
RSHANK_ACC_OFFSET1;

// 13.30074545;
//8.8884839084;

// Using computed gains & offset
c-"xodghccel // top // RICM 13

sensorData RSHANK]. gaini
sensorData->bodyAcce ] [RSHANK]. of fsetl =

sensorData->bodyAcce ] [RSHANK] . gain2 = RSHANK_ACC_GAINZ; //13.378897066; // bottom
sensorData->bodyAcce 1 [RSHANK]. of fset2 = RSHANK_ACC_OFFSETZ; //-8,835178656;
sensorData->bodyAcce | [RTHIGH]. gainl = RTHIGH_ACC_GAIN; //5.876894451; /7 top
sensorData->bodyscce | [RTHIGH]. of fsetl = RTHIGH_ACC_OFFSET1; // B.B4B491186;
sensorData->bodyAcce | [RTHIGH] . gain2 = RTHIGH_ACC_GAINZ; //12.5546848; // bottom
sensorData->bodyAcce | [RTHIGH]. of fsetz = RTHIGH ACC_OFFSETZ; //8.828738499;

= | FOOT_ACC_GAINL;
LFOOT_ACC_OFFSET1;

//-13.61209758;
//-8,882328267;

sensorData->bodyAccel // top // L3 and RIOM#28

LFOOT]. gaini
sensorData->bodyAccel

LFOOT]).of fsetli =

sensorData->bodyAcce[LFOOT]. gainz = LFOOT_ACC_GAINZ; //-13.83991511; // bottom
sensorData->bodyAcce I [LFOOT]. of fset2 = LFOOT_ACC_OFFSETZ; //-96.818183387;
sensorData->bodyacce 1 [LSHANK]. gaint = LSHANK_ACC_GAIN1; //12.99961686; // top
sensorData->bodyAcce | [LSHANK]. of fsetl = LSHANK_ACC_OFFSETY; //-8.832516644;
sensorData->bodyAcce [LSHANK]. gain2 = LSHANK_ACC_GAINZ; //12.95494464; /7 bottom

LSHANK] . of fset2 = LSHANK_ACC_OFFSETZ2;
= LTHIGH_ACC_GAIN1;
LTHIGH_ACC_OFFSET1;
= LTHIGH_ACC_GAINZ;
LTHIGH_ACC_OFFSET2;

sensorData->bodyAccel // -8,832714978;
sensorData->bodyAccel
sensorData->bodyAcce)
sensorData->bodyAccel
sensorData->bodyAcce]

LTHIGH]. gaini
LTHIGH] . of fsetl =
LTHIGH]. gain2
LTHIGH] . of fsetz =

//5.0851387685; // 5.81827332; // top
//-8.0866331814; // -B.056421669;
//12.81899544; //12.71754197; // bottom
//~6,014218852; //-0.688885387;

sensorData->bodyAcce 1 [UPPERBODY]. gaini = UPPERBODY._ACC_GAIN1;  //-5.088841371; // top
sensorData->bodyAcce 1 [UPPERBODVY]. of fsetl = UPPERBODY_ACC_OFFSET1; // -8.852321259;
sensorData->bodyAcce | [UPPERBODY]. gain2 = UPPERBODY_ACC_GAINZ; //-5.128386993; // bottom

147



sensorData—>bodgAcc=l[I.PPERBODY].offsetz = UPPERBODY_ACC_OFFSET2; //-8.054735767;
// calculate linear accelerations

sensorData->bedyAcce 1 [LFOOT]. Tin_accell = (1in1{LFOOT] + sensorData-»bodyAccel[LFOOT]. of fsetl)
» sensorData->bodyAccel [LFOOT]. gaini;

sensorData->bodyAcce] [LSHANK]. 1in_accell = (1ini[LSHANK] + sensorData->bodyAccel{LSHANK]. offsetl)
» sensorData->bodyAccel[LSHANK]. gaini;

sensorData->bodyAccel [LTHIGH]. 1in_accell = (1int[LTHIGH] + sensorData->bodyAcce] [LTHIGH]. of fset1)
* sensorData->bodyAccel [LTHIGH]. gaint ;

sensorData->bodyAcce I [RFOOT]. Tin_accell = (1int[RFOOT] + sensorData->bodyAcce][RFOOT].of fsetl)
» sensorData->bodyAcce] [RFOOT]. gaini;

sensorData->bodyacce} [RSHANK], 1in_accell = (1ini[RSHANK] + sensorData->bodyAcce] [RSHANK]. of fset1)
= sensorData->bodyAccel [RSHANK]. gaini;

sensorData->bodyscce) [RTHIGH]. 1in_accell = {1ini[RTHIGH] + sensorData->bodyAccel[RTHIGH)]. of fsetl)
sensorData->bodyAccel [RTHIGH]. gaini;

*

sensorDaka->bodyAcce | [UPPERBODY]. 1in_accell = {1int[UPPERBODY] + sensorData->bodyAcce] [UPPERBODY]. of fset1)
» sensorData->bodyAccel [UPPERBODY]. gaini;

sensorData—>bodyAcce 1 [LFOOT]. 1in_accel2 = (1in2[LFOOT] + sensorData->bodyAccel [LFOOT], of fset2)
» sensorData->bodyAccel[LFOOT]. gain2;

sensorData->bodyscce 1[LSHANK]. 1in_accel2

(1in2[LSHANK] + sensorData->bodyAccel [LSHANK]. offset2)
» sensorData->bodyAccel [LSHANK]. gain2;

sensorData->bodyAcce 1 [LTHIGH]. Vin_accel2 (1in2[LTHIGH] + sensorData->bodyAccel [LTHIGH]. of fset2)

» sensorData->bodyAccel[LTHIGH]. gain2;

sensorData->bodyaccel [RFOOT]. 1in_accel2 = {1in2[RFOOT] + sensorData->bodyAcce) [RFOOT]. of fset2)
» sensorData->bodyAccel[RFOOT]. gain2;

sensorData->bodyAcce ) [RSHANK]. 1in_accel2 = {1in2[RSHANK] + sensorData->bodyAcce] [RSHANK]. of fset2)
» sensorData->bodyAccel [RSHANK]. gain2;

sensorData->bodyAcce ] [RTHIGH]. 1in_accel2 = {1in2[RTHIGH] + sensorData->bodyAccel{RTHIGH]. offset2)
» sensorData->bodyAccel [RTHIGH]. gain2;

sensorData->bodyAcce 1 [UPPERBODY]. 1in_accel2 = (1in2[UPPERBODY] + sensorData->bodyAcce 1 [UPPERBODY]. of fset2)
» sensorData->bodyAcce] [UPPERBODY]. gain2;

sensorData->bodyAcce 1 [RFOOT]. angular_accel = (sensorData->bodyAccel [RFOOT]. Vin_accel2
- sensorData->bodyAccel [RFOOT]. 1in_accell )
*» FOOT_ACC_DIST_INY;

sensorData->bodyAcce ] [RSHANK]. angular_accel = (sensorData->bodyAccel[RSHANK]. 1in_accel2
sensorData->bodyAcce] [RSHANK]. 1in_accell)
SHANK_ACC_DIST_INY;

sensorData->bodyAcce 1 [RTHIGH]. angular_acce! = {sensorData->bodyAccel [RTHIGH]. lin_accel2
sensorData->bodyaAccel [RTHIGH]. lin_accell)
THIGH_ACC_DIST_INvV;
sensorData->bodyAcce 1 [UPPERBODY]. angular_accel = 8; // add 126563

// sensorData->bodyAcce | [UPPERBODY]. angular_accel = (sensorData->bodyAcce] [UPPERBODY]. tin_accel2

*

*

7/ - sensorData->bodyAccel [UPPERBODY]. lin_accell)
// » UPPERBODY_ACC_DIST_INY;
sensorData->bodyscce 1 [LFOOT]. angutar_accel = {sensorData->bodydccel[LFOOT]. Jin_accel2

- sensorData->bodyAccel [LFOOT]. Tin_accell)
* FOOT_ACC_DIST_INV;

sensorData—->bodyacce 1 [LSHANK]. angular_accel = (sensorData->bodyAccel [LSHANK]. Tin_accel2
- sensorDaka->bodyAccel [LSHANK]. Tin_accel1)
» SHANK_ACC_DIST_INV;

sensorData->bodyAcce 1 [LTHIGH]. angular_accel = (sensorData->bodyAccel[LTHIGH]. 1in_accel2
sensorData->bodyAcce]l [LTHIGH]. 1in_accel1)
THIGH_ACC_DIST_INV;

*

}

/» Function: GetJointAccelerations
*

» Computes joint angular accelerations and updates the sensorData structure.
» Accelerations are for the distal segment relative to the proximal segment
*/

void GetJointAccelerations{SensorDataT ssensorData){

static double unfilteredaccel[8}[4] =
{{e, 8, 8,6}, {8, 8, &, 8, {8, 8,0, 8}, {0, 8, 8, 6}, {8, ©, 6, 8}, {8, 8, 8,8}, {8, 6, 0,8}, {6,8,8,8}}; // Current, Aljl[8] and Previous,
A[j3[1] values

static double filteredaccel[8][4] =
{{s, 8, 8, 8}, {8, 8, 8, 6}, {6, 0, 8, 8}, {6, 8, 8, B}, {8, 8, 8, 6}, {8, 8, 0, 8}, {6, 8, 8,8}, {6,8,8,08}}; // used in lowpass filter

/¢ all body and point linear accelerations, ang acc, ang vel, are wrt Frame B (inertial reference frame)

sensorData->jointData[LTOE]. acceleration = sensorData->bodyéccel [LFOOT], angular_accel; // Ltoe (i.e. Lfookt wrt
ground)

sensorData->jointData[LANKLE]. acceleration = sensorData->bedyAcce][LSHANK]. angular_accel
- sensorData->bodyAccel [LFOOT]. angular_accel; // Lankle (i.e. Lshank wrt
Lfoot)
sensorData->jointData[LKNEE]. acceleration = sensorData->bodyAcce 1 [LTHIGH]. angular_accel

148



hank) - sensorData->bodyAccel [LSHANK]. angular_accel;  // Lknee ({i.e. Lthigh wrt
Lshanl
sensorData->jointData[LHIP]. acceleration = sensorData->bodyfcce]{UPPERBODY]. angular_accel
- sensorData->bodyAccel [LTHIGH), angular_accel;  // Lhip  (i.e. upper body
wrt Lthigh)
ser;sorData->_jointData[RTOE].acceleration = sensorData->bodyAccel [RFOOT]. angular_accel; // Rtoe  (i.e. Rfoot wrt
ground

sensorData->jointData[RANKLE]. acceleration = sensorData->bodyAcce] [RSHANK], angular_accel
- sensorData->bodyAcce1[RFOOT]. angular_accel; // Rankle {i.,e. Rshank
wrt Rfoot)
sensorData->jointData[RKNEE]. acceleration = sensorData->bodyAccel[RTHIGH]. angular_accel
sensorData->bodyAccel [RSHANK]. angular_accel;  // Rknee (i.e. Rthigh wrt

Rshank)
sensorData->jointDatalRHIP]). acceleration = sensorData->bodyAccel[UPPERBODY]. angular_accel
- sensorData->bodyAcce1[RTHIGH]. angular_accel;  // Rhip  (i.e. upper
body wrt Rthigh)

1/ LowpassFilter(unfilteredAccel{LTOE], filteredAccel[LTOE), asensorData->jointData[LTOE]. acceleration ,
filterCoeffsist2); // added by JRS, 2884-86-24, default SHz

/7 LowpassFilter(unfilteredAccel [LANKLE], filteredAccel [LANKLE], fsensorData->jointData[LANKLE]. acceleration,
filterCoeffsist2); // added by JRS, 26804-86-24, defaull SHz

I LowpassFilter{unfilteredAccel [LKNEE], filteredAcce] [LKNEE], &sensorData->jointData[LKNEE]. acceleration,
filtercoeffsist2); // added by IRS, 2864-86-24, default SHz

/7 LowpassFilter(unfilteredaAccel [LHIP], filteredAccel [LHIP],  &sensorData->jointData[LHIP].acceleration,
filterCoeffsist2); // added by IRS, 2884-86-24, default SHz

/7

’/ LowpassFilter(unfilteredAccel [RTOE], filteredAccel [RTOE], &sensorData->jointData[RTOE]. acceleration,
filterCoeffstst2); // added by IRS, 208684-86-24, defaullt SHz

/7 LowpassFilter{unfil teregﬁ.ccel [RANKLE], filteredAccel [RANKLE], &sensorData->jointData[RANKLE].acceleration,
filterCoeffsist2); // added by IRS, 2884-86-24, default SHz

1t LowpassFilter{unfilteredAccel [RKNEE], filteredAccel [RKNEE], &sensorData->jointData[RKNEE]. acceleration,
filterCoeffsist2); // added by IRS, 2884-86-24, default SHz

/7 LowpassFi]ter(unfilteregi\ccel[RHlP], filteredAccel [RHIP], &sensorData->jointData[RHIP]. acceleration,
;ilterCoeffsistZ); // added by JRS, 2884-B6-24, default SHz

Function: GetlointAccelerationsYelocityBased

Computes joint angular accelerations and updates the sensorData structure.
Accelerations are based on differentiating velocity
aAdded by JRS, 2884-87-23

O % % % % & #
~

void GetJointAccelerationsvelocityBased(SensorDataT #sensorData){

static double unfilteredAcceleration[8][4] =
{fe.]?, ?, 9},]{9. 8,8, 8}, {0, 8, 8, 8}, {8, 8, 8, 8), {8, 8, 8, 8}, {8, 8, 8, 8}, {8, 8, 8,6, {8,6,8,8}}; // Current, A[j][B] and Previous,
A[i1[4] values

static double filteredAcceleration[8][4] =
{{s, 5, 8,8},{8, 8, 8,8}, {6, 8,8,08}, {6, 8,8, 8}, {8, 8, 8,8}, {8, 9, ©, 8}, {8, 8,0, 8}, {6,8,8,8}}; // used in lowpass filter

static double unfilteredvelocity[8}[4] =
{'[{9,]9, ?» 9}.] {e, 8, 8,8}, {6, 8, 8,8}, {8, 8,6, 8}, {8, 9, 9, 6}, {8, 6, 8, 8}, {8, 8,8,0},{8,8,8,8}}; // Current, A[j][B] and Previous,
A[j1[1] values

static double filteredvelocity[B8][4] =
{{s, 8, 8, 8}, {8, 8, 6, 83, {8, 8, 8, 8}, {8, 6, 8, 8}, {0, 6, 6, 6}, {8, 8, 8, 8}, {6, 6, 8,8}, {0,0,8,8}}; // used in Towpass fi Tter

LowpassFilter{unfilteredvelocity[LTOE], filteredvelocity[LTOE], asensorData->jointData[LTOE]. acceleration ,
filterCoeffsOFF); // added by JRS, 2884-86-24, default OFF, keep history of old velocities

LowpassFilter(unfilteredvelocity[LANKLE], fil teredveloci tu{LANKLE], “&sensorData->jointData[LANKLE]. acceleration,
filterCoeffsOFF); // added by JRS, 20684-86-24, default OFF, keep history of old velocities

LowpassFilter(unfilteredvelocity[LKNEE], filtersdvelocity[LKNEE], “&sensorData->jointData[LKNEE].acceleration,
filterCoeffsOFF); // added by JRS, 2884-86-24, default OFF, keep history of old velocities

LowpassFilter{unfilteredvelocity[LHIP], filteredvelocity[LHIP], ~&sensorData->jointData[LHIP].acceleration,
filterCoeffsOFF); // added by IRS, 2884-86-24, default OFF, keep history of old velocities

LowpassFilter(unfilteredvelocity[RTOE], filteredvelocity[RTOE], &sensorData->jointData[RTOE], acceleration,
filterCoeffsOFF); // added by JRS, 2884-86-24, default OFF, keep history of old velocities

LowpassFilter(unfilteredvelocity[RANKLE], filteredvelocity[RANKLE], &sensorData->jointData[ RANKLE]. acceleration,
filterCoeffsOFF); // added by JRS, 2864-86-24, default OFF, keep history of old velocities

LowpassFilter{unfilteredveloctty[RKNEE], filteredvelocity[RKNEE], &sensorData->jointDatafRKNEE].acceleration,
filterCoeffsOFF); // added by JRS, 2884-86-24, default OFF, keep history of old velocities

LowpassFilter{unfilteredvelocity[RHIP], filteredvelocity[RHIP], asensorData->jointData[RHIP]. acceleration,
filterCoeffsOFF); // added by JRS, 2884-86-24, default OFF, keep history of old velocities

// a1l body and point linear accelerations, ang acc, ang vel, are wrt Frame 8 (inertial reference frame)

sensorData->jointData[LTOE]. acceleration = (filteredvelocity[LTOE][B] - filteredvelocity[LTOE][1])  « FREQ; 77
Ltoe (i.e. Lfoot wrt ground)

sensorData->jointData[LANKLE]. acceleration = (filteredvelocity[LANKLE][O] - filteredvelocity[LANKLE][1]}) = FREQ; //
Lankle (i.e. Lshank wrt Lfoot)

sensorData->jointDatafLKNEE]. acceleration = (filteredvelocity{LKNEE][G] - filteredvelocity[LKNEEI{1]) = FREQ; //
tknee (i.e. Lthigh wrt Lshank)

sensorData->jointData[LHIP]. acceleration = (filteredvelocity[LHIP][B] - filteredvelocity[LHIP]{1]) = FREQ; //
Lhip  (i.e. upper body wrt Lthigh}

sensorData->jointData[RTOE]. acceleration = (filteredvelocity[RTOEI[8] - filteredvelocity[RTOE][1])} » FREQ; //
Rtoe (i.e. Rfoot wrt ground)

sensorData->jointData[RANKLE]. acceleration = (filteredvelocity[RANKLE][B] - filteredvelocity[RANKLE][1]) » FREQ; //
Rankle (i.e. Rshank wrt Rfoot)

sensorData->jointData[RKNEE]. acceleration = (filteredvelocity[RKNEE][B] - filteredvelocity[RKNEEI[1]) =» FREQ; //
Rknee (i.e. Rthigh wrt Rshank)

149



sensorData->jointData[RHIP]. acceleration = {filteredvelocity[LTOEI[B] - filteredvelocity[LTOEI[1]) =* FREQ; //
Rhip  (i.e. upper body wrt Rthigh)

LowpassFilter{unfilteredAcceleration[LTOE], filteredAcceleration[LTOE], &sensorData->jointData[LTOE]. scceleration ,
filterCoeffsist5); // added by JRS, 2084-86-24, default SHz

LowpassFilter(unfilteredAcceleration[LANKLE], filteredAcceleration[LANKLE], &sensorData-
>jointData[LANKLE]. acceleration, filterCoeffsistS); // added bli; JRS, 2084-B86-24, default SHz

LowpassFilter(unfilteredscceleration{LKNEE], filteredAcce eration[LKNEE], #&sensorData->jointData[LKNEE]. acceleration,
filterCoeffsistS); // added by IRS, 2084-86-24, default 5Hz

LowpassFilter (unfilteredAcceleration[LHIP], filteredAcceleration[LHIP], asensorData->jointData[LHIP]. acceleration,
filterCoeffsist5); // added by IRS, 2884-86-24, default SHz

LowpassFilter{unfilteredAcceleration[RTOE], filteredAcceleration[RTOE], asensorData->jointData[RTOE]. acceleration,
filterCoeffsist5); // added by IRS, 2884-86-24, default SHz

LowpassFilter{unfilteredAcceleration[RANKLE], filteredAcceleration{RANKLE], &sensorData-
>jointData[RANKLE]. acceleration, filterCoeffsistS); // added by IRS, 2884-86-24, default SHz

LowpassFilter(unfilteredAcceleration[RKNEE], fi1teredAcce?eration[RKl\EE], asensorData->joinkData[RKNEE]. acceleration,
filterCoeffsistS); // added by JRS, 2084-B6-24, default SHz

LowpassFilter(unfilteredAcceleration{RHIP], filteredAcceleration[RHIP], &sensorData->jointData[RHIP]). acceleration,
gilterCoeffsistﬂ; // added by IRS, 2084-86-24, default SHz

150



Appendix A.8 - JointCtLh

/» Function: JointController

*
» control the valves using a desired torque

w/

void JointController{const double desiredTorgue,
const double desiredTorque_dot,
const int useDesiredTorque_dot,
SensorDataT »sensorData,
const SysPropertiesT *s?sProperties,
const int valveNumber);

/» Function: ComputeHydraulicParameters
*

* returns some model parameters for valve nonlinear controllers
»

» hydraulicParameters = [ xv h2 02 p2]
*

w/
void ComputeHydraulicParameters{SensorDataT xsensorData,
const int valveNumber,
const int valveNumberInJointData,
double *hydraulicParameters,

const SysPropertiesT »sysProperties);

/» Function: SimpleMSS
]
» Computes and sets the required valve voltage input usmg an Adaptive Multiple Sliding Surface control law.
» valveNumber = [LTOE LANKLE LKNEE LHIP RTOE RANKLE RKNE 1P}
» Agdrautharameters = [xv h2 02 p2]
» ded by IRS, B6-24-2084
)i
double SimpleMSS(const double desiredForce,
const double desiredForce_dot,
const int useDesiredForce_dot,
SensorDataT »sensorData,
const int valveNumber,
const int valveNumberInJointData,
double whydraulicParameters,

const SysPropertiesT »sysProper kies);

/» Function: Dither

*
» Adds dither to the valve voltage. According to Moog, dither peak to peak amplitude should be less than 16% max voltage
» and dither frequency should be 1.5 times the natural frequency of the valve. for the Series 31 valve: wn = 158Hz @ 1888

psi
+ 126Hz @ 588psi.
» Dither is a square wave {according to Meritt signal shape makes no difference)

»/
void Dither{double »voltage,

const int valveNumber,
const SysPropertiesT ssysProperties};

151



Appendix A.9 - JointCtl.c

#include <math. h>
#include <stdio.h>
#include "ExoMain.h®
#include "Defines.h"
#include "Filters.h”
#include “JointCkl.h"
#include "DSup.h”

extern double filterCoeffsOFF[5];

extern double filterCoeffsistB2S[5],
filterCoeffsist5[5],
filterCoeffsist88{5],
filterCoeffsisti68[S],

extern double filterCoeffs2nd825{5],
filterCoeffs2ndiB[5],
filterCoeffs2nd2B8[5],

fil

terCoeffs2ndS[5],

filterCoeffsistB85[5],
filterCoeffsistiB[S],
filterCoeffsistiBB([5],
filterCoef fsist186{5],

filterCoeffs2nde5[5],
filterCoeffs2ndSB[5],

filterCoeffs2nd128{5], filterCoeffs2nd148[5],
filterCoeffs2ndié8[5], filterCoeffs2ndi88[5],
filterCoef fs2nd306[S], filterCoeffs2nd358[5],
filterCoeffs2nd468[5], filterCoeffs2nd566[5],
filterCoeffs2nd1888[5];

extern double DfilterCoeffsi[7],

i
*

DfilterCoeffs28[7],
DfilterCoeffs268[7], DfilterCoeffs258

Df i lterCoeffs2(7],
DfilterCoeffsSG[{],]
71

DfilterCoeffs5e8[7];

Function: JointController

» control the valves using a desired torque

»/

void JointController(const double
const double

~
EIEIE 0 2

*
~

desiredTorque,

Df i 1terCoeffs5{71],
Df i 1terCoeffs386[7],

filterCoeffsiski[5],
filterCoeffsist28[S],
filterCoeffsisti28[5],
filterCoeffsist208[5];
filterCoeffs2ndi[S],
filterCoeffs2nd8B{5],

filterCoeffs2nd208[5],

desiredTorque_dot,

= DEFAULT_VALVE_IN; // default is +/- 4.5 volts

const int useDesiredTorque_dot,
SensorDataT ssensorData,
const SysPropertiesT as?sProper‘ties,
const int valveNumber){
double voltage
double desiredForce;

double
double
int
ink

desiredForce_dot;

useDesiredForce_dot

hydraulicParameters[4] = {8,0,8,8};

= yseDesiredTorgque_dot;

valveNumberinJointDakta;

switch(valvehumber){ // change array index number sc it matches convention in

case LANKLE_T:

valveNumberInlointData = LANKLE;

break;

case LKNEE_T:
valveNumberInlointData
break;

case LHIP_T:
valveNumberInlointData
break;

case RANKLE_T:
valvehumberInlointData
break;

case RKNEE_T:
valveNumberinlointData
break;

case RHIP_T:
valveNumberInlointData
break;

LKNEE;

LHIP;

RANKLE;

RKNEE;

RHIP;

jointData

filterCoeffsist2{S],
filterCoeffsistS8[5],
filterCoeffsist148[5],
filterCoeffs2nd2[5],
filterCoeffs2ndiBB[S],

filterCoeffs2nd256[5],

Df i 1terCoeffsi8[7],
DfilterCoeffs188{7], DfilterCoeffs148[7], DfilterCoeffs168([7],
DfilterCoeffs358[7], DfilterCoeffs488[7],

array

ComputeHydraulicParameters{sensorData, valveNumber, valveNumberInlointData, hydraulicParameters, sysProperties);

desiredForce

= {-1) » desiredTorque

/ sensorData->jointData[valveNumberInJointData], momentArm;

desiredForce_dot = {-1) » desiredTorque_dot / sensorData->jointData{valveNumberInlointData]. momentArm;

voltage =

SimpleMSS(desiredForce,

desiredForce_dot,
useDesiredForce_dot,
sensorData,
valveNumber,
valveNumberInlointData,
hydraulicParameters,
sysProperties); // added by JIRS, 2884-86-25

// Copy required

Function: ComputeHydraulicParameters

returns some model parameters for valve nonlinear controllers

hydraulicParameters = [ xv h2 o2 p2}

152

voltages to sensorData structure which is accessible from the PCI DAC function

sensorData->jointData[valveNumberInJointData]. valvevoltage = voltage; // valve input voltage (V)



void ComputeHydraulicParameters{SensorDataT »sensorData,

const int valveNumber,
const int valveNumberInlointData,
double shydraulicParameters,

const SysPropertiesT »sysProperties)}{

double FL, fx, xv, h2, h2_hat, 02, p2, i, denom_inv, xp, xp_dot, VB, FL_tilda, p2_hat, f4, Ps;
double alphal = 36006; // rknee 3060 tip: tune alphail, ki for s.s. first
double alpha2z = 8; // rknee B.0885; rhip 6.6

double ki = 588; // rknee 5688

double k2 = 0; // rknee B,6881; rhip 6.8
static double FL_hat[6] = {6,6,0,8, B,Gg;
static double FL_hat_dot[é] = {8,86,9,8,8,8};
static double xv_hat[é] = {8,8,6,6,8,8};
static double xv_hat_dot[6) = {8,6,0,6,8,0};

int sign = 1;

if{valveNumberInlointData == RKNEE || valveNumberInJointData == LKNEE ){ // adjust sign for knee valve

sign = -1;
FL = -sensorData->_jointData[valveMmberInJointData].sensorForce;
xp = sensorData->jointData[valveNumberInlointData].pistonPosition;
xp_dot = sensorDeta—>_jointData[va]vel\\mberanoinl:Data],pistonVe'locitg;
i = sensorData->jointData[valveNumberInJointData]. valvevoltage 7 R_YALVE; // valve input current {A)

Ps = PS; // get the supply pressure from the Defines.h file

// get v8 volume according to joint
if {valveNumberlnlointData == LANKLE || valveNumberIn3ointData == RANKLE){
Y8 = VB_ANKLE;

}
else if (valveNumberInJointData == LKNEE || valveNumberInlointData == RKNEE){
V8 = VB_KNEE;

else{
Ve = VB_HIP;
// for spool observer
7/FL_hat[valveNumber] = FL_hat[valveNumber] + FL_hat_dot[valveNumber]+TS; // observer load force
xv_hat[valveNumber] = xv_hat[valveNumber] + xv_hat_dot[valveNumber]sTS; // observer spool position

if(xv_hat[valveNumber] > ¥WMAX)}{ // saturate spool position
xv_hat[valveNumber] = XvMAX;

}
else if(xv_hat[valveNumber] < -XwMAX){
xv_hat[valveNumber] = -XvMAX;

xv = xv_hat[valveNumber]; // use observer valtue of valve spool position (m)

A ——-
// this approximation of the spool position can be used instead of the valve observer
xy = sign » i»KS; // spool position ignoring valve dynamics (m)

if (xv > 8){
fx = Api; // piston area (m2)

}
else if (xv < 8){
fx = Ap2;

else{

fx = 6.5%(Ap1 + Ap2);

denom_iny = 1 /{xp*(Ap1-Ap2)+2»VB);
if (xv==0){
h2 = 2»sqri(2x(Ap1+Ap2)=(fx+Ps))+denom_iny; // flow pressure differential factor

Yelse if{ {xv/fabs(xv)}»FL < fx#Ps){
h2 = 2+sqrt(2+(Apl+Ap2)=(fx»Ps-{xv/fabs{xv))sFL))*denom_inv; // flow pressure differential factor

Jelse{
h2 = 8;
//h2 = 2esqri(2x(Ap1+Ap2)=(fx+Ps))rdenom_inv; // (was h2 = 8 changed on 2883-84-13); flow is saturated

02 = (Ap1+Ap2)#(Ap1+Ap2) » xp_dot = denom_inv; // flow compressibility factor

p2 = (2#FL + Psx(Ap2-Ap1))wdenom_inv; // cylinder leakage factor based on measured force

hydrau)icParameters[XV] = xv; // save computed values to array accessible from calling function
hydraulicParameters[H2] = h2;
hydraulicParameters[02] = 02;
hydraulicParameters[P2] = p2;

7/ use open loop valve spool model without observer gains
xv_hat_dot[valveNumber] = signsG3si + F3xxv_hat[valveNumber]); // spool velocity

/» Function: SimpleMss
B mmmm e s e ——————— .- —-———————— - -——

» Computes and sets the required valve voltage input using an Adaptive Multiple Sliding Surface control Taw.
» valveNumber = [LTOE LANKLE LKNEE LHIP RTOE RANKLE RKNEE RHIP
» hydraulicParameters = [xv h2 o2 p2]

153



» Added by JRS, 06-24-2884

*

double SimpleMSS{const double desiredForce,
const double desiredForce_dot,
const int useDesiredForce_dot,
SensorDataT »sensorData,
const int valveNumber,
const int valveNumberInJointData,
double »hydraulicParameters,

const SysPropertiesT #sysProperties){

double xvd;
double xv;
double h2;
double 02;
double p2;
double FL;
double u=8;
double lambdai, lambda2;
double Fd;
double Fd_dot;
double etaz;
double phi_inv;
double K;

double Fe;
double gamma_hat;
double beta_hat;
double si_hak;
double roi;
double ro2_inv;
double s1, s2;
double xvd_dot;

double i;

double Ci;

ink sign = 1;

int iR

static double xvwd_prev[6] = {8,8,0,08,8,8); // previous value of valve spool position

static double Fd_prev[é] = {6,0,0,0,8,6}; // previous value of desired force Fd

static double Fe_integral[s] = {6,8,8,8,8,8}; // integral of force tracking error (Fe = Fd - FL) over time

static double unfilteredfe_integralls][4] = {{8,0,0,8},{8,8,8,6},{8,6,6,6} {68,0,8,06}, {8, 8,06,8},{6,8,8,8}}; // used to
smooth out sharp changes in fe_integral, seems to eliminate hip jerking

static double filteredFe_integral[6][4] = {{8, 0,8, 8}, {8, 8, 8, 8}, {8, 8, 6, 8}, {8, 8, 6,8}, {8, 8,8, 0}, {8, 8, 8,8}}; //

static double unfilteredFd_dot[6][4] = {{e,8,0,8}, {8, 6, 6,8}, {6, 8, 8,8}, {8,8,8,0},{6,9,8,08},{6,8,8,8}}; // Current
A[8] and Previous values

static double filteredFd_dot{63[4] = {{s,8,8,8}, 48,0, 8,0}, {6,86,0,0), {6,0,6,8}, {8,0,8,0},{8,8,8,8}}; // used in
lowpass filter

static double unfilteredxvd _dot[6][4] = {{8,89,8, 8}, {0, 8,8, 8}, {6, 6, 8, 6}, {6, 6, 6, B}, {8, 8, 8,8}, {6,8,8,8}}; // Current
A[B] and Previous values

static double filteredxvd_dot[5][4] = {{8,0, 8,8}, {6,8,8,8},{89,8,8,8},{8,0,08,8}, {6,6,8,6},{0,8,8,8}}; // used in
Towpass filter

static double unfilteredLambdai[6][4] = {{6,0, 8,8}, {6, 0, 8, 8}, {6, 6, 8, 8}, {8, 6, 8,8}, {6,0, 8,06}, {8,8,6,8}}; // Current
A[8] and Previous values

static double filteredLambdaif6][4] = {{8,8,8,8}, {8, 8,8,0}, {8, 8, 8, 8}, {8, 8, 6,8}, {6,6,6,8},{6,8,8,8}}; // used in

lowpass filter

if(valveNumber == RKNEE_T || valveNumber == LKNEE_T){ // adjust sign of voltage output
sign = -1;

= hydraulicParameters[%v]; // get computed bydraulic medel parameters
= hydraulicParameters{Hz2];
02 = hydraulicParameters[02];
= hydraulicParameters[P2];
FL = -sensorData->jointData[valveNumberInlointData]. sensorforce; //where is the vibration coming from when Fhm is
turned on? Fdesired is now smooth.
Fd = -desiredForce;

// get default or GUI control gains
ambdal = sgsProperties—>jo1ntControl[valveNumber]. Jambdai»18; // gain (7(:![3 irj sim)

lambdaz = sgsProper‘tiesojointControI[va!veMerer].]ambdaZ; // gain (768 in sim)

eta2 = sysProperties->jointControl[valveNumber]. etaZsle-6; // robustness term for spool dyn.(1e-9 in sim)
phi_iny = sysProperties->jointControl[valveNumber].phi2_inv»18; // boundary layer for s2 (1e3 in sim}

roi = sysProperties->jointControl{valveNumber]. rolxle-6; // (1e-8 in sim)

ro2_inv = sysProperties->jointControl[valveNumber].ro2_invsie-6; // (1e-9 in sim)

Ci = sysProperties->jointControlfvalveNumber].Ci; // integral gain for s1 (188 in sim)

Ci = CissysProperties->jointControl[valveNumber]. CiSwitch; // switch to turn Ci onfoff from fhm.c, added by IRS, 2@84-
87-19
sensorData->torsoForce, SGt[valveNumber] = Ci; // output Ci to torso force sensor SGt channels on GUI

// Get optimal gains for each state when in Auto torque Mode
if (sysProperties->debuggingControls. testd){
Jambdai = sysProperties->jointControl[velveNumber]. lambdaisi0; // gain {700 in sim)
Yambdaz = sysProperties->jointControl[valveNumber]. 1ambdaz; // gain (788 in sim)
Jelse{
if (sysProperties->mainOperationMode == AUTO_TORQUE_CTL){

if({(valveNumber == LANKLE_T) || (valveNumber == RANKLE_T)}{
lambdal = 28086;
tambdaz = 488;

Jelse if{(valveNumber == LKNEE_T) || (valveNumber == RKNEE_T)){
ambdal = 588;
Tambdaz = 466;

}else if({valveNumber == LHIP_T) || (valveNumber == RHIP_T)){
lambdal = 16068;
1ambdaz = 1860;

154



4 // Get optimal gains for each state when in Auto torque Mode
174 if(sysProperties->mainOperationMode == AUTO_TORQUE_CTL){ // 3 = auto torque mode
I 7/ this code will reset the ci gain only for the ired case and only for the left teg when it is redundant

/7 ){//if {sensorData->dynamicMode. Mode == ONE_REDUNDANCY && sensorData->dynamicMode. lef EIsRedundant && valveNumber==
LKNEE_T
% ﬁ} Ci = sysProperties->ditherAmplitude; // CAUTION: ditherAmplitude used for torso mass now
I
I /7 left leg
77 if( (sensorData->dynamicMode.Mode == SSTANCE && IsensorData->dynamicMode, lef tIsGrounded)
77 || sensorData->dynamicMode.Mode == JLMP){ /7 left is in swing
Iz 1f(valveNumber == LANKLE_T){
/4 Jambdal = 2608;
7 if(sensorData->jointData[valveNumberInjointData+1], position > 1,4){ // decrease ankle gain when knee
is close to fully flexed
Iz lambdai = 8, 8xlambdal;
/7 }else if (sensorData->jointData[valveNumberInlointData]).position > 8.53){ /7 if ankle is against the
back stop decrease its gain linearly
Tambdat = B8.775s)ambdai;

1A }
/7 lelse if{valveNumber == LKNEE_T}{
/7 lambdal = 589;
/7 }else if(valveNumber == LHIP_T)}{
/7 Jambdal = 1886;
oo
1/ ;}se if (sensorData->dynamicMode.Mode == ONE_REDUNDANCY && sensorData->dynamicMode. leftIsRedundant && valveNumber
== LKNEE_T
I 1ambdai=568;
/7
/7 else{ /7 left is in stance
/7 if(valveNumber == LANKLE_T){
// lambdai = 188;
77 }else if(valveNumber == LKNEE_T){
I lambdal = 58;
/7 }else if{valveNumber == LHIP_T){
24 lambdal = 288;
I
I }
Iz
/7 // right leg
/7 if({ (sensorData->dynamicMode.Mode == SSTANCE &% sensorData->dynamicMode. leftIsGrounded)
/7 || sensorData->dynamicMode.Mode == JUMP){ // right is in swing
2/ 1f(valveNumber == RANKLE_T){
Iz lambdal = 2886; //7868
/7 if(sensorData->jointData[valveNumberInlointData+1].position > 1,4}{ // decrease ankle gain when knee
is close to fully flexed
I jambdai = 6.8+1ambdai;

}else if (sensorData->jointData[valveNumberInlointData].position > 8.53){ // if ankle is against the back
stop decrease its gain linearly
Iz ) lambdai = 8.775»1ambda1;
74
4 }else if(valveMumber == RKNEE_T){
/7 lambdal = 508;
/7 }else if{valyeNumber == RHIP_T){
/ lambdal = 1866;
noooa ]
/7 else if (sensorData->dynamicMode.Mode == ONE_REDUNDANCY && !sensorData->dynamicMode. |eftIsRedundant &&
valveNumber == RKNEE_T){
/7 1 ambdal=568;
// }
/7 else{ // right is in stance
1A if(valveNumber == RANKLE_T}{
24 lambdal = 1066;
/7 }else if(valveNumber == RKNEE_T){
/7 tambdal = 56;
Vea }else if(valveNumber == RHIP_T){
/ Tambdai = 286;
/7
/7 }
Iz

174 // Filter lambdai (when needed) to prevent sudden gain jumps and jerky response

/ ; if(lambdat > filteredLambdaifvalveNumber][8]){ // if the current lambdal is larger than the previous, filter it
(1Hz

/7

/7 // Filters for lambdal during SSTANCE

/7 if( (sensorData->dynamicMode,Mode == SSTANCE) &

/7 ( (valveNumber == LANKLE_T && !sensorData->dynamicMode, leftisGrounded)

7 [] (valveNumber == RANKLE_T &% sensorData->dynamicMode.leftIsGrounded) ))}{ // swing leg, ankle
12

/7 LowpassFilter{unfilteredLambdai{valveNumber], filteredLambdai{valveNumber], &lambdai,
filterCoeffs2nd@25); //ankle, B,25Hz default

174 }

/7 else if{ (sensorData->dynamicMode.Mode == SSTANCE) &&

/7 ( (valveNumber == LKNEE_T && !sensorData->dynamicMode. leftIsGrounded)

5/ | {valveNumber == RKNEE_T &% sensorData->dynamicMode. leftIsGrounded) )){ // swing leg, knee
/

/7 LowpassFilter(unfilteredLambdaivalveNumber], filteredLambdai{valveNumber], &lambdai, filterCoeffs2ndi6);
//knee, 1Hz default (sticky), 1BHz is not sticky but causes knee jerk

/

/7 else if( (sensorData->dynamicMode.Mode == SSTANCE) &&

/7 { (valveNumber == LHIP_T && !sensorData->dynamicMode. leftIsGrounded)

/7 {] {(valveNumber == RHIP_T && sensorData->dynamicMode.leftisGrounded) })}{ // swing leg, hip

7/

155



/7 LowpassFilter(unfilteredLambdai[valveNumber], filteredLambdai[valveNumber], &lambdai, filterCoeffszndiB);
//hip, 1Hz default (sticky), 18Hz is not sticky but causes knee jerk
}

Iz

I

/7 // Filters for Jambdai during ONE_REDUNDANCY

/7 else if( (sensorData->dynamicMode.Mode == ONE_REDUNDANCY) &&

/7 ( (valveNumber == CANKLE_T && sensorData->dynamicMode. leftIsRedundant)

17 || (valveNumber == RANKLE_T && !sensor‘Data—>dgnamicMode.leftIsRedundant) Y){ // redundant leg, ankle

I

/7 LowpassFilter{unfilteredLambdal]valveNumber], filteredLambdat{valveNumber], &lambdai,

fitterCoeffs2ndiB); //ankle, 1BHz default

/7

I else if( (sensorData->dynamicMode.Mode == ONE_REDUNDANCY) &&

/7 ( (valveNumber == LKNEE_T && sensorData->dynamicMode. Tef tIsRedundant)

5/ [| (valveNumber == RKNEE_T && !sensorData->dynamicMode. leftlsRedundant) )){ // redundant leg, knee

/

/7 LowpassFilter(unfilteredLambdai[valveNumber], filteredLambdai[vaiveNumber], &lambdai, filterCoeffs2ndi8);
;/knee, 18Hz default

/

IZ4 else if( (sensorData->dynamicMode.Mode == ONE_REDUNDANCY) &&

/7 { (valveNumber == LHIP_T && sensorData->dynamicMode. TeftIsRedundant)

1 | (valveNumber == RHIP_T && !sensorData->dynamicMode. leftIsRedundant) )}{ // redundant leg, hip

/W

7 LowpassFilter{unfilteredLambdai[valveNumber], filteredLambdai[valveNumber], &lambdai, filterCoeffs2nd18);
//hip, 4BHz default

/7 }

/7

/t else{

1/ LowpassFilter{unfilteredLambdalvalveNumber], filterediambdat[valveNumber], &lambdai, filterCoeffs2ndiB);

//every other ;tate, 1Hz default, test 1BHz=choppy (best out of 1,18,5), and SHz=sluggish and hard to 1ift feet

}
i/ else{
// for(j=8; j<4; j++){ // reinitialize filter
Iz unfilteredLambdai{valveNumber]{j] = lambdai;
/7 ' filteredLambdai[valveNumber][j] = lambdai;
}
/7 } /7 end of "if(sysProperties->mainOperationMode == AUTO_TORQUE_CTL){...."
02 = 8; // tracking works best with this value

if (useDesiredForce_dot)}{ // if the desired force derivative has previously been computed use that value
Fd_dot = desiredForce_dot;

e]seéd_dut = (Fd - Fd_prev[valveNumber])sFREQ; // compute Fd derivative
Fd_previvalveNumber] = Fd; // save current desired force to previous value of next iteration
Fe = FL - Fd; // compute force error
if ((fabs{Ci) < 6.881)
Il (Ci ==8) // if €1 ==90
|| {sensorData->dynamicMode.LstanceSwingTransition || sensorDaka->dynamicMode. LstateTransition) // the following
two lines override the above two cases

|| {sensorData->dynamicMode. RstanceSwingTransition || sensorData->dynamicMode.RstateTransition)
|| (sensorData->jointData[valveNumberInJointData]. againstStop) // added by JRS, 2884-87-20

H
Fe_integral[valveNumber] = 8; // reset integral term

else {
u = sensorData->jointDataf{valveNumberInlointBata]. valvevoltage;

// integrate Fe if voltage and force are not saturated ( max force is 18068 @1B8Bpsi )
PF( (u<iMAX &8 u>-LMAX) && (Fd < FMAXSOFT && Fd > -FMAXSOFT) ){ // changed from || to &&, IRS, 2084-18-27
Fe_integral[velveNumber] = Fe_integral[valveNumber] + FesTS; // compute force tracking error integral

4 // filtering Fe_integral is just a guess as to what might be causing the "jerking” in the knee
I // --testing confirms that increasing filtering reduces jerking in knee/hip
/7 if {sensorData->dynamicMode.Mode == ONE_REDUNDANCY

I &% ((!sensorData->dynamicMode. lef tIsRedundant && valveNumber == RKNEE_T)

17 I} {sensorData->dynamicMode. leftlsRedundant && valveNumber == LKNEE_T W

/7

/7 LowpassFilter{unfilteredFe_integral[valveNumber], filteredFe_integrai[valveNumber], &Fe_integral{valveNumber],

filterCoeffs2ndS8);
/" }

s1 = Fe + CisFe_integral{valveNumber}; // 1st sliding surface

gamma_hat = GAMMA;
beta_hat = BETA;
si_hat = 8I;

// desired spool position {m)
xvd = -(1/(h2wganma_hat))»{1ambdatssi - beta_hat»o2 - si_hatxp2 - Fd_dot + Ci»Fe);

//saturate desired spool position to what is physically possible
if(xvd > XvMAX){

xvd = XYMAX;

156



else if{xvd < -XvMAX){
Xy KYMAX;

>

s2 = xv - xvd; // 2nd sliding surface {spool position error)
xvd_dot = (xvd - xvd_prev[valveNumber1)+FREQ ; // compute desired valve spoc) position (xvd) derivative
xvd_prev[valveNumber] = xvd; // save desired valve position for next iteration

K = (DELTA_F3_MaXsfabs(xv)+(G3_TILDAMAX - 1)xfabs{xvd_dot - F3#xv) + eta2sro2_inv )*G3_TILDA MAX_INV; // compute gain

K
i = sign » GI_INv»{xvd_dot - F3sxv -lambda2ss2 - rolsro2_inv+gamma_hatrh2+s1 - Kes2#phi_inv ); // compute current
u = RYALVE » i; // u = (Rseries + Rcoil) x i
return u;

}

/» Functien: Dither

L

» ?dds dither te the valve voltage. According to Moog, dither peak to peak amplitude should be less than 18% max voltage
5v

» and dither frequency should be 1.5 times the natural frequency of the valve. for the Series 31 valve: wn = 158Hz @ 1060

psi
+ 128z @ 568psi.
» Dither is a square wave (according to Meritt signal shape makes no difference)

*

void Dither({double svoltage,
const int valveNumber,
const SysPropertiesT »sysProperties){

double P = 2.22e-3; // 1/2 dither period (sec)

double A = 08.2; // dither ampiitude (V)

static int k = B; // iteration counter

int kmax = 8; // max number of iteration for 1/2 period
static int sign = 1; // direction of dither signal

if(sysProperties->ditherFrequency != 6){ // don't add dither to the voltage if no frequency is specified
P = 8.5/(sysProperties->ditherFrequency); // 1/2 dither period
A = sysProperties->ditherAmplitude;
kmax = (int) (P/TS); // divide 1/2 period by sampling time to find number of iterations needed for one 1/2 period
if(valveNumber == 8){ // this function runs 6 times so don't keep on switching the sign 6 times
k++; // update the counter
if (kokmax){ // if the counter has gone beyond the 1/2 period, change the sign and zero the counter
k = 8;
sign = -sign;

}

wvoltage = xvoltage + A » sign;

157



158



Appendix A.10 - Fhm.h

/= Function: GetFHMcontrolTorques
*

» Computes the reguired machine torques to minimize human-machine forces.

-

void GetFrMcontrolTorques{double *FHMTerques,
const BodyDataT *bodyData,
SensorDataT »sensorData,

SysPropertiesT =*sysProperties);

/= Funckion: GetTgAndTHM

L
» Calculates and updates the required gravity compensator torque vector.

» Calculates and ouputs the joint torques due to human on the machine.

» The vectors are as follows:- [Tankiet Tkneet ThipL TankleR TkneeR ThipR]
*

o

/
void GetTgAndTHM(const BodyDataT »bodyData,
SensorDataT *=sensorData,
SysPropertiesT =sysProperties,
ForceDistributionT =distrData);

159



Appendix A.11 - Fhm.c

<math. h>
<time. h>
<stdio. h>

#include
#include
#include

"ExoMain.h"”
"Defines.h"”
"Filters.h”
“Fhm. h*

#include
#include
#include
#include
#include
#include
#include
#include
#include

extern double filterCoeffsOFF[5];

extern double filterCoeffsistd25[5],
filterCoeffsistS[5],
filterCoeffsistsa[s],
filterCoeffsist168{5],
extern double filterCoeffs2nd825{5],
filterCoeffs2nds[5], filterCoeffs2n
filterCoeffs2nd28[5],
filterCoeffs2nd128[S], filterCoeffs2n
filterCoeffs2ndi68[5],

filterCoeffsist85[5],
filterCoeffsisti8[s],
filterCoeffsistibe{s],
filterCoeffsist188[5],
filterCoeffs2ndeS[5],
d18[5],
filkerCoeffs2ndsSe[5],
d148[5],
filterCoeffs2nd188[5],

filterCoeffsisti{s],
filterCoeffsist2B[5],
filterCoeffsisti128[5],
filterCoeffsist286[S];
filterCoeffs2ndi[5],

filterCoeffs2ndBB[5],
filterCoeffs2nd288{5],

filterCoeffsist2[5],
filterCoeffsist58[5],
filterCoeffsist148[S],
filterCoeffs2nd2{5],
filterCoeffs2nd1688[5],

filterCoeffs2nd258(5],

filterCoeffs2nd368[5], filterCoeffs2nd356{5],
filterCoeffs2nd488[S], filterCoeffs2ndSes(5],
filkerCoeffsznd1686[5];

extern double DfilterCoeffsi[?], DfilterCoeffs2[7], DfilterCoeffsS[7], DfilterCoeffsiB8[7],
DfilterCoeffs20[7]), DfilterCoeffs58[7], DfilterCoeffs188[7], OfilterCoeffsi48[7], DfilterCoeffs168{7],
DfilterCoeffs268[7], OfilterCoeffs256[7], DfilterCoeffs388[7], OfilterCoeffs358[7], DfilterCoeffs488{7],
DfilterCoeffsSBEB[7];

/» Function: GetFHMcontrolTorques
»
» Computes the required machine command torques FHMTorques to minimize human-machine forces.
» Command Torque can then be sent to valve controller.

»/
void GetFHMcontrolTorques(double

«FHMTorques,
const BodyDataT »bodyData,
SensorDataT »sensorData,
SysPropertiesT =sysProperties){
ink 3, i3
double Tlin[6] = {8,6,8,8,0,8); // torque for feedback linearization Tlin = Tg + Tf
double dT1in[8] = {8,6,0,8,8,8}; // human-machine torque Lime derivative
double THM[6] = {8,0,8,8,8,8}; // human-machine torque
double dTHM[6] = {8,9,0,6,6,08}; // human-machine torque time derivative
static double THM_int[6] = {9,0,8,8,8,8}; // integral of THM
double Tfriction[6] = {6,0,0,0,06,8}; // debug, added by JRS 2684-87-28
. stakic double unfilteredTHM[6][4] = {{8, 6, 6,8}, {8, 9, 8, 8}, {6, 8, 8,8}, {6,6,8,0}, {6,0, 8,6}, {8,8,8,8}}; // Previous
values
. static double filteredTHM[6][4] = {{0, 0,8, 6}, {8, 0, 8, 0}, {8, 6, 8,8}, {6, 8,8,8}, {6,0,8,08},{0,8,8,8}}; // used in
owpass filter
static double unfiltered_dTHM[6][4] = {{8,8, 8,8}, {8, 8,8, 8}, {6, 8, 8,6}, {6, 8, 8,8}, {8, 6,8,0),{6,8,8,8}}; // Previous
values
static double filtered_dTHM[6][4] = {{e,6,8, 8}, {8, 8, 8, 8}, {8, 6, 8, 8}, {8, 8, 8, B}, {8, 8, B, 8}, {8,8,6,8}}; // used in
Towpass filter
. static double unfilteredTlin[61[4] = {{8,8,9,8},{8,8,6, 8}, {6, o, 8,8}, {6,8,8,8},{6,6,0,0},{8,8,8,8}}; // Previous
values
static double filteredTiin[6]1[4] = {{8, 8,8, 6}, {8, ©, 8, 8}, {6, 8, 8, 8}, {8, 8, 6, 83, {0,8,0,0},{8,0,8,8}}; // used in

lowpass filter

. static double unfiltered_dTlin[6][4] = {{8, 8,8, 8}, {8, 9, 6, 8}, {8, 8, 8, 8}, {8, 6,8, 8}, {6,8,98,8},{6,0,8,8}}; // Previous
values
static double filtered_dTlin[61[4] = {{8,8,8,8},1{8,8,8,8},{8,6,8,0},{6,86,8,0},{8,8,8,0},{6,0,0,8}}; // used in

lowpass filter

double VLimitsTorques[6] = {6,0,8,8,68,8}; // torques to implement a virtual stop
double kpFHM = @8; // PD gains

double kv = 8;

double kp = B;

double TH¥max = 18;

double THYmin = 8.5; // max and min values of THM¥;

double THYReductionFactor = 8; // JRS default is ZERO!

int frequency =2;

double accelf6] = {8,8,6,06,8,06};

double »DfilterCoeffsTemp;

double SWING FhmGains{6] = {SWING_LANKLE_KPFHM , SWING_LKNEE_KPFHM , SWING_LHIP_KPFHM , SWING_RANKLE_KPFHM ,

SWING_RKNEE_KPFHM , SWING_RHIP_KPFHM};
double DSTANCE_FhmGains[6] = {DSTANCE_LANKLE_KPFHM , DSTANCE_LKNEE_KPFHM , DSTANCE_LHIP_KPFHM , DSTANCE_RANKLE_KPFHM ,
DSTANCE_RKNEE_KPFHM , DSTANCE_RHIP_KPFHM};

GetTgAndTHM(bodyData, sensorData, sysProperties, &sensorData->forceDistribution); // update THM, torque due to human on
machine

for (j=8; j<6; j++){ /7 j is the valve number

switch(j){ // change array index number so it matches convention in jointData array
case LANKLE_T: // index j is used in 6x1 arrays

i = LANKLE; // index i is used in 8x1 arrays

break;
case LKNEE_T:

1 = LKNEE;

break;

160



case LHIP_T:

i = LHIP;
break;
case RANKLE_T:

i = RANKLE;

break;
case RKNEE_T:

i = RKNEE;

break;
case RHIP_T:

i = RHIP;

break;

if{sysProperties->torqueControl.controlFHM){ // if FHM contrel is enabled
. if (sysProperties->jointControl[]. kpFHM <= B){ //if kpFHM is NEGATIVE or ZERO in GUI, use pre-set gains found
in Defines.h

kpFHY = SWING_FhmGains[jl;
kv = 8;

} .

else{ // else use GUI gains
kpFHM = sysProperties->jointControl[j]. kpFHH;
ky = sysProperties->jointControl[j]. kv;

}
}else{ // else, Fhm switch is off, set gains to B

kpFHM = B;
kv = B;
}

i if(sgsProperties->torqueContr~ol.controlFl‘M){ // if FHM control is enabled
I 1f{ sensorData->dynamicMode.Mode == SSTANCE &&
’ { { j < RANKLE_T && t!sensorData->dynamicMaode. JeftIsGrounded)// if this is a swing leg
/7 It (i > LHIP_T && sensorData->dynamicMode. leftIsGrounded) )} ){
/7 /lky = sgsProperties—>jointCnntrolf[j].kv;
124 kpFHM = SWING_FhmGains[jl;
/7 }else if (sensorData->dynamicMode.Mode == DSTANCE){
/7 kpFHM = DSTANCE_FhmGains[j];
I //kv = sysProperties->jointControl[j]. ky;
/7 Yelse{
/7 kpFHM = sysProperties->jointControl[j].kpFHM; // get latest feedback gains
1A if(kEFI-M tm B){
'z v = sysProperties->jointControl[j].kv; // make sure I gain is not activated when P gain is 8
/ Jelse{
I ky = 8;
I }
/7 }
/7 }else{ t/ if FHM control set gains to 8
IZ4 kpFHM = 8;
/7 kv = B;
174

// ignore FHM if it's forcing against the stops
if(i == RANKLE || i == LANKLE){
if (sensorData->jointDatali].position < (ANKLE_MIN + ANKLE_MIN_SOFT_OFFSET) /x && sensorData->jointData[i]. Thm
< 8 »/){ // old ankle soft min = B.17

sensorData->jointDatali]. Thm = 8; //sensorData->jointData[i]. ThmTHMReductionFactor;
sensorData->jointData[i]. againstStop = TRUE; // when against stops only compensate for gravity
//sysProperties->jointControl[j].CiSwitch = 8; // Ci=8 is OFF

}else if(sensorData->jointData[i].position > (ANKLE_MAX - ANKLE_MAX_SOFT_OFFSET) /+&& sensorData-
>jointData[il.Thm > 8»/){ // old ankle soft max = 8,23

sensorData->jointDatali]. Thm = @; //sensorData->jointDatalil}. ThmeTHMReductionFactor;
//sensorData—>jointData[i].a?ainstStop = TRUE;
//sysProperties->jointControl[j}.CiSwitch = @; // Ci=8 is OFF

}else{
sensorData->joinl:Data[i].u?ainststnp = FALSE;
sysProperties->jointControl[j]. CiSwitch =1; // Ci=l is ON

3}
}else if(i == RKNEE || i == LKNEE){
if(sensorData->jointData[i}. position < (KNEE_MIN + KNEE_MIN_SOFT_OFFSET) /»&& sensorData->jointDatali) . Thm <
8x/){ // old knee soft min = B.14

sensorData->jointDatal{i]. Thm = 8; //sensorData->jointData[i]. ThmwTHMReductionFactor;
sensorData->jointData{i}. againstStop = TRUE;
//sensorData->jointDatal[il. Tlin = sensorDa+8.17ta->jointData[i].Tlin + (sysProperties-

>jointControlfi-1]. manualTorques18+({KNEE_MIN + B.14)-sensorDats->jointData[i].pesition));
//sysProperties->jointControl[j].CiSwitch = 8; // Ci=8 is OFF

}else if(sensorData->jointData[i].position > (KNEE_MAX - KNEE_MAX_SOFT_OFFSET) /+ && sensorData-
>jointDatafil.Thm > @8x/)}{ // old knee soft max = 6.36

sensorData->jointData[i]}, Thm = 8; //sensorData->jointData[i]. ThmwTHYReductionFactor;
sensorData->jointData[i]. againstStop = TRUE;
//sysProperties—>jointControl[j].CiSwitch = 8; // Ci=B is OFF

}eised
sensorDeta->juintData[i].a?ainstStop = FALSE;
sysProperties->jointControl[j]. CiSwitch = 1; // Ci=1 is ON

Yo .

Yelse if(i == RHIP || i == LHIP){

161



if(sensorData->jointData[i].position < (HIP_MIN + HIP_MIN_SOFT_OFFSET) /»8&& sensorData->jointData[i].Thm <
6+/){ // o1d hip soft min = B.17

sensorData->jointData[i]. Thm = 0; //sensorData->jointData[i]. ThmTHMReductionFactor;
sensorData->jointData[i]. againstStep = TRUE;
//sysProperties->jointControl[j].CiSwitch = 8; // Ci=8 is OFF
}else{
sensorData—>jointData[i].a?ainststop = FALSE;
sysProperties->jointControl[j]. CiSwitch =1; // Ci=i is ON
}

THM[}] = sensorData->jointData[i].Thm; // get human machine torque
Tlin[3] = sensorData->jointData[il. Tlin;

ZPEETITFEIIT 000200002000 0080 00080 0810000000408000800000080007000000000100000100000¢

// temporary -- these values were determined experimentally on 2684-89-18 for EX02

Tfriction[j] = B;
IZ4 if (j == LANKLE_T)
174 Tfriction[j] = -4,25;
/7 else if (j == LKNEE_T)
/7 Tfriction[j] = 2.06;
i/ else if (j == LHIP_T)
/7 Tfriction[j] = 2.88;
I else if (j == RANKLE_T)
¥7; Tfriction[j] = -5.686;
/i else if (j == RKNEE_T)
17 Tfriction[j] = 2.88;
12 else if (j == LHIP_T)
/7 Tfriction[j] = 1.88;
. Tfriction[j] = TFriction[j] + sysProperties->jointControl[j}.manualTorque; // get friction from GUI, ignore stance
iles

2277 FETELEF01 07000002 E0000008020 4807700800000 80000072000887080012004007¢8¢8807
i/ // take derivative of THM (dTHM)
14 DfilterCoeffsTemp = DfilterCoeffs168;
i dTHM[j] = T[S L . )
/ J/dTHMj] = (filteredTHM[j][B] - filteredTHM[j1[1])*FREQ; /7 Calculate T_error time derivative
IZd DifferentiatingFilter{unfiltered_dTHM[j], filtered dTHM[j], &dTHM[j], DfilterCoeffsTemp); // filter dTHM
174 //LowpassFilter(unfiltered_dTHM[j], filtered_dTHM[j]l, &dTHM[j], filtercoeffs2ndie®); // filter dTHM
/7 /7 ute the inte?ral gain THM_int
Iz iF(THM[j] == 8 // if THM is zero
/7 || sysProperties->torqueControl.controlFHM == 8 // or if THM control is switched OFF
i || sysProperties->jointControl[j].kv==8 // or if the integral gain is zero
// | (5 < RAMKLE_T && sensorData->dynamicMode.LstanceSwingTransition) // of if this is a left leg joint going
into swing
/7. Il ( j > LHIP_T && sensorData->dynamicMode.RstanceSwingTransition)){ // or a right leg joint going into
swing
Iz THY_int[j] = 8; // reset integral to @
/7 Jelse{
i/
% ) THA_int[j] = THLint[j] + THM[j]»TS; // otherwise integrate THM error
I /7 filter THM
/
I // jump or swing leg of s.stance mode
I if ( sensorData->dynamicMode.Mode == JLMP // jump
4 | ( sensorData->dynamicMode.Mode == SSTANCE // s stance // this is a swing leg
/7 8% ( ( (j == RHIP_T || j == RKNEE_T || j == RANKLE_T) && sensorData->dynamicMode. leftIsGrounded)
/ J1 {(j == LHIP_T || j == LKNEE_T || j == LANKLE_T) && !sensorData->dynamicMode, ieftisGrounded) } }
”
;’; //filter_hack_working = 1; //use as a flag to see of we ever enter this
I
124 if(j == RHIP_T |} j == LHIP_T){ // swing hip
Vs PF(THM[j] > THMmax){
’ THA[}] = THMmax;  // saturate THM
/ Yelse iF(THM[}] < -TH¥max){
/ THM[ 3] = -TrMmax;
/7 }else if(fabs(THM[j]) < THMmin){
;/ THM[j) = 8; // ignore any [THW| < THMmin
/ }
/7 LowpassFilter(unfilteredTHM[j], filteredTHM[j], &THM[j], filterCoeffs2nd2); // filter THM SHz (2Hz2)
/7 }else{ // swing knee and ankle
/; rat if( (Fabs(Tlin[j) - filteredTlin{il[0]) > 1)){ // if there's a step input type difference it’'s a change
of state
17 LowpassFilter{unfilteredTHM[j], filteredTHM[j], &THM[j], filterCoeffs2nd2); // filter knee and
ankie THM 2Hz
// lelse{
// LowpassFilter{unfilteredTHM[j], filteredTHM[;], B&THM[j], filterCoeffs2ndS); /7 filter knee and
ankle THM SHz
/i
/7 }
/7 Jelse{ // for stance
174
/" //#ifdef USE_BACKPACK_SENSOR

LowpassFilter{unfilteredTHM[j], filteredTHM[j], &THMLj], filterCoeffs2nd1f); /7 filter THM

7/ /

before differentiation
//#else

/

162



/! //TH[j} = 8; // 18138388, exe, make sure THM is only used for swing leg

/

/7 if(j == RHIP_T || j == LHIP_T){

7/ if( (fabs(Tlin[j] - filteredTlin[j}[8]) > 1)){ // if there's a step input type difference it's a change

of state

ﬁ el L?wpassFilter(unfilteradTl-M[j], filteredTHM[j], &THM[j], filterCoeffs2nd2); // filter hip THM 2Hz
else

/f LowpassFilter(unfilteredTHM[j], filteredTHM[j], &THM[j]), filterCoeffs2ndS); // filter hip THM SHz

/7 }

/7 Yelse if(j == RKNEE_T || j == LKNEE_T){

Ids LowpassFilter(unfilteredTHMj], filteredTHM[j], &THM[j], filterCoeffs2nd2); // filter knee THM 2Hz

/7 }else{ // ankle

/7 ) LowpassFilter(unfilteredTHM[j], filteredTHM[j], &THM[j], filterCoeffs2nd2); // filter ankle THM 2Hz

7

/7 //#endif

7/ }

I

/7

77 // get derivative of Tlin

1147 dTlin[j] = TVin[j);

1417 DifferentiatingFilter{unfiltered_dT1in[j], filtered_dTlin[j], &dTlin[j], DfilterCoeffsiB);

7177 kp = sysProperties->jointControl[jl.kp; // get latest feedback gains

1177 sensorData->jointData[j]. Tylimit = dTlin[j];

/

IZ4 /7 filter Tlin (linearization torgue)

/7 //if(sensorData->dynamicMode.Mode == SSTANCE && (sensorData->dynamicMode.LstanceSwingTransition || sensorData-

>dynamicMode. RstanceSwingTransition)}

x 174 knee_Tlin_filter_counter = 8;

% if(jasLANKLE_T || j==RANKLE_T){ // for the left or right ankie

174 if{ (sensorData->dynamicMode.Mode == ONE_REDUNDANCY &&( (j==LANKLE_T &% sensorData-

>dynamicMode. leftIsRedundant)

‘/’5 p || (j==RANKLE_T && !sensorData->dynamicMode. leftIsRedundant)))
*

/7 |1({ sensorData->dynamicMode.Mode == SSTANCE && ( (js=LANKLE_T && !sensorData-

>dynami cMode, leftIsGroxiqued)

;,{ (j==RANKLE_T && sensorData->dynamicMode. leftIsGrounded) ) )»/){

;’;{ LowpassFilter(unfilteredTlinj], filteredTlin[jl, &T1in{j), filterCoeffs2nd2);

ﬁ else if( fabs(Tlin[j] - filteredTlin[j][8]) > 1){// if there's a step input difference it's a change of state
/7 /»if (sensorData->dynamicMode.Mode == ONE_REDUNDANCY &&( (j==LANKLE_T && sensorData-

>dynamicMode, Tef tI1sRedundant)

/ {1 (j==RANKLE_T 8& IsensorData—>d?namichde.IeftIsRedundant))) {

’/,5 y LowpassFilter(unfilteredTlin[j], filteredTlin[j], &Tlin[j], filterCoeffs2ndi);

I

IZA else »/

I if({ sensorData->dynamicMode.Mode == SSTANCE && { (j==LANKLE_T 8& IsensorData->dynamicMode, leftIsGrounded)
5,/’ |} (j==RANKLE_T && sensorData->dynamicMode. leftIsGrounded) )} ){ // if this is a swing leg

/ LowpassFilter{unfilteredTiin[j], filteredTlin[j}, &TVin[j], filtercoeffs2ndi8); // filter Tlin @1Hz
(SHz better B7 1 83), set back to 1Hz 88-11-83 good?, then set to 1B8Hz...why?

/7 // filter more because
foot oscillates after toe off

/7 else if( !'( ( (Tlin[j] > © && unfilteredTlin{j}[B] > B) && {Tlin[j] < unfilteredTVin[j](8]) )

124 It ( (Tlin[j] < @ && unfilteredTIin{j][8] < 8) && (Ttin[j] > unfilteredTlin[;1[81)} )) {

7/ // Stance leg with above transition

I£4 LowpassFilter(unfilteredTlin[j], filteredTlin[j], &Tlin[j], filterCoeffs2nd2); // filter Thin
@2Hz

/7 Yelse{ // Stance leg with
transition

/ LowpassFilter{unfilteredTlin[j], filteredTlin[j], &T1in[j], filterCoeffs2ndS); // filter Tlin @5H2
I

I

/7l else{ // if there's no |:han[gi_er of state, filter normally

Z ) LowpassFilter(unfilteredTlin[j], filteredTlin[jl, &TVin[j], filterCoeffs2nd10); /7 Filter Tlin @1BH2
/

I }

I else { // for the knee or the hip

I /*

/7 if( sensorData->dynamicMode, Mode == SSTANCE && ( (j==LHIP_T && IsensorData->dynamicHede. leftlsGrounded)
/7 |1 (j==RHIP_T && sensorData->dynamicMode. leftIsGrounded))

/7 | | (sensorData->dynamicMode. Mode == ONE_REDUNDANCY &&( (j==LHIP_T && sensorData-

>dynamicMode. 1ef t1sRedundant)

/7 |} (j==RHIP_T && !sensorData->dynamicMode. TeftIsRedundant)))){

//

/" LowpassFilter(unfilteredTlin[jl, filteredTlin[jl, &Tlin[j], filterCoeffsi);

//

I /7 if (knee_Tlin_filter_counter < (sysProperties->ditheramplitude=2)){

/t 17 LowpassFilter(unfilteredTlin[j], filteredTVin[j], &Tlin[j], filterCoeffs2ndB25); // filter Tiin
@08. 25Hz

I /7 knee_Tlin_filter_counterss+;

4 7/ filter_hack_working = 1;

4 /i }

/7

’ }

14 elsex/

174 if( (fabs{Tlin[j] - filteredT1in[j}[B]) > 1)){ // if there's a step input type difference it's a change of
state

/ /*

/7 if (sensorData->dynamicMode,Mode == ONE_REDUNDANCY && (j==LKNEE_T && sensorData-
>dynamicMode. Tef t1sRedundant)

i/ | (j==RKNEE_T && !sensorData->dynamicMode. teftIsRedundant)){

/7 LowpassFilter(unfilteredTlin[j], filteredTlin[j], &Tlin[j]l, filterCoeffs2ndi);

163



else »/
if( sensorData->dynamicMode.Mode == SSTANCE && ( (j==LKNEE_T && |sensorData->dynamicMode. leftIsGrounded)
|1 (j==RKNEE_T && sensorData->dynamicMode. JeftIsGrounded) ) }{ // if this is a swing leg, KNEE

LowpassFilter{unfilteredTlin[j], filteredTlin[;], &T1in[j], filterCoeffs2nd2); // filter Tlin @2Hz

added to prevent jerkiness during swing
/"

/7

else if( sensorData->dynamicMode.Mode == SSTANCE && ( (j==LHIP_T && !sensorData-

>dynamicMode. 1eftisGrounded)
/"

/7
/

|| (j==RHIP_T && sensorData->dynamicMode. leftisGrounded) ) ){ // if this is a swing leg, HIP

LowpassFilter{unfilteredTlin[j], filteredTlin[j), &TTin[j], filterCoeffs2nd2); // filter Tlin @8.5Hz

/
added to prevent jerkiness during swing, changed to 2Hz by JLR "a long time ago”

else {
towpassFilter{unfiltteredTlin[j], filteredTlin[jl, &Tlin[j], filterCoeffs2nd2); // filter Tlin @2H2

else{
LowpassFilter(unfilteredTlin[j], filteredTlin[jl, &T1in[j), filterCoeffs2ndiB); /7 Filter Tlin @18Hz

// turn OFF filters for Thm and Tlin when the exo is against the hard stops (i.e. we don't want it ko "sktick® to

if {!sensorData->jointData[i].againstStop){ // exo is NOT against stops
LowpassFilter(unfilteredTHM[j], filteredTHM[j], &THM[}], filterCoeffs2nd28); // filter THM @ 1BHz
LowpassFilter(unfilteredTlin[]1), filteredTlin[}j], &T1in[j], filterCoeffs2nd1B@); // filter Tlin @ 186Hz
lelse{ // exo 1S against stops, turn off filters
LowpassFilter(unfilteredTHM[j], filteredTHM[j], &THM[j], filterCoeffsOFF); // filter is OFF
LowpassFilter(unfilteredTlin[j], filteredTlin[j], &TVin[j], filterCoeffsOFF); // filkter is OFF

// Simulates spring at ankle. Added by JRS, 2884-87-28
if (s?sProperties->debuggingContro|s.activateAnkleSpring == TRUE}{
if () == LANMLE_T){
Tlin[j] = (sensorData->jointData[LANKLE].position - (sysProperties->debuggingControls.centerAnglesPi/188))

» sysProperties->debuggingControls.springRate;

Jelse if{j == RANKLE_T){
Ttin[3) = (sensorData->jointData[RANKLE]. position - (sysProperties->jointControl [RANKLE_T]. kv*Pi/188)) »

sysProperties->debuggingControls. springRate;
}

b

// Simutates damper at knee during stance. Becomes pivot during swing.
// Added by IWR, 2864-88-83
if (stésProperties—>debuggingContruls.activateKneeDaﬂper == TRUE){
if () == LKNEE_T){
if (sensorData->dynamicMode.Mode == SSTANCE && (sensorData->dynamicMode.groundedieg == RIGHT)){
//TVin[j] = 8; // VFC mode - no human machine torque
}else{
Tlin[j] = Tlin[j]-(sensorData->jointData[LKNEE]. velocity » sysProperties-

>debuggingControls. flexionDampingCoeff);
}

}else if (j == RKNEE_T){
if (sen?or?agaodgnaniddode.mde == SSTANCE && (sensorData->dynamicMode. groundedLeg == LEFT)){
//TVin[j] = 6;
Yelse{ ’
T1in[j] = Tlin[j]-(sensorData->jointData[RKNEE]. velocity » sysProperties-

>debuggingControls, flexionDampingCoeff);
}

ddq )

}
}

// calculate FrM torques (torgues due to interaction between human and machine)
FHMTorques{j} = (kpFHM » THM{31} + Tiin[j] + Tfriction[j]; // new control scheme, 3RS, 2084-86-25

if (j==LANKLE_T || j==RANKLE_T){ // saturate ankle negative torque in double stance or single stance leg
if(sensorData->dynamicMode.Mode == DSTANCE
|| sensorData->dynamicMode.Mode == ONE_REDUNDANCY
|| {sensorData->dynamicMode.Mode == SSTANCE
&k ((j==LANKLE_T && (sensorData->dynamicMode.groundedLeg == LEFT))
|| (j==RANKLE_T && (sensorData->dynamicMode.groundedleg == RIGHT)})}}{

if (FHMTorques| j] < MINIMUM_ANKLE_TORQUE)
FHMTorques[j] = MINIMUM_ANKLE_TORQUE; // default is -5.8 N»

}
// using more feedback linearization { Tdes = K»THM + Tg + Meddg - ddq gives very linear eq of motion (1+K)THM =
//accel[j] = sensorData->jointDatali]. acceleration;

//LowpassFilter(unfiltered_dTHM[j], filtered_dTHM[j], &accel{j] , filterCoeffs2ndS); // filter acceleration
//FHMTorques[i] = (kpFHM + 1)+THM[j] + sensorData->jointData[i]. torque - accel[j);

} /7 for (3=8; j<6; j++)

/» Function: GetTgAndTHM

»

= Calculates and updates the required gravity compensator torque vector.
» Calculates and cutputs the joint torques due to human on the machine,
« The vectors are as follows:- [TankleL TkneeL ThipL TankleR TkneeR ThipR}

*/
void GetTgAndTHM(const BodyDataT *bodyData,

SensorDataT »sensorData,
SysPropertiesT ssysProperties,

164



ForceDistributionT =distrData)

double angles[12], velocities[8], accelerations{8], torques[6];
double torsoForces[3) = {8,8,8}; // backpack sensor forces

int 1;
VirtualGuardT vguard;

for (1=0; i<8; 1++){
angles[i] = sensorData->jointData[i].position; // get joint angles
velocities[i] = sensorData->jointData[i]. velocity;
accelerations[i] = sensorData->jointData[i}.acceleration;

}

angles[LHIP_ROT]
angles[LHIP_aBD]
angles[RHIP_ROT]
angles[RHIP_ABD]

sensorData->hipData.L_rotation; // hip unactusted joinkt angles
sensorData->hipData.L_abduction;
sensorDats->hipData.R_rotation;

sensorData->hipData, R_abduction;

torques[LANKLE_T] = sensorData->jointData[LANKLE]. torque; // get actuator joint torgues
torques{LKNEE_T] = sensorData->jointData[LKNEE]. torque;

torques[LHIP_T] = sensorData->jointData[LHIP]. torque;

torques[RANKLE_T] = sensorData->jointDatafRANKLE]. torque;

torques[RKNEE_T] = sensorData->jointData[RKNEE]. torque;

torques[RHIP_T] = sensorData->jointData[RHIP]. torque;

torsoForces[TORSO_FX] = sensorData->torsoForce.Fx; // make torso sensor force/torque vector
torsoForces[TORSO_FY] = sensorData->torsoforce. Fy;
torsoForces[TORSO_T] = sensorData->torsoforce.T;

vguard = sysProperties->virtualGuard;

//sensorData->dynamicMode. Mode = DSTANCE; // force exo into dynamic mode DSTANCE, better to do this by forcing foot
switches, JRS 84-27-2804

switch (sensorData->dynamicMode.Mode){ // use dynamic equations corresponding to current dynamic mode

case JUMP: // lump

JumpTgandTHM(angles,
velocities,
accelerations,
torques,
bodyData,
distrData,
sensorData);

break;

case SSTANCE: // Single Suppork

SingleSupportTI-M?an ies,
velocities,
accelerations,
torques,
bodyData,
sensorData—>dgnanicMode,?roundedLeg,
sensorData->dynamicMode. leftHeelContact,
sensorData->dynamicMode, rightHeelContact,
distrData,
sensorData,
sysProperties);

break;

case DSTANCE: // Double Support

DoubleSuppor tTHM{angles,
velocities,
accelerations,
torgques,
bodybata,
sysProperties->DynDistributionFactor,
torsoForces,
distrData,
sensorData,
vguard,
sysProperties);

break;

case ONE_REDUNDANCY: // Double Support Single Redundancy

DoubleSupportSingieRedundancyTH4(angles,
vejocities,
accelerations,
torques,
bodyData,
sensorData->dynamicMode, redundantlLeg,
sensorData->dynamicMode. 1ef tHeelContact,
sensorData->dynamicMode. rightHeelContact,
sysProperties->DynDistributionFactor,
torsoForces,
distrData,
sensorData,
vguard,
sysProperties);

break;

case TWO_REDUNDANCY: // Double Support Double Redundancy {get rid of this state?)
DoubleSupportDoubleRedundancyTHM(angtes,
velocities,
accelerations,
torgques,
bodyData,
sensorData->dynamicMode. leftHee1Contact,
sensorData->dynamicMode. rightHeelContact,

165



sysProperties->DynDistributionFactor,
torsoForces,
distrData,
sensorData,
vguard);
break;

166



Appendix A.12 — Jump.h

/* Function: JumpTgandTHM

" -

» Calculates the joint torques or operational space vector due to the human during jump mode and updates THM.

» The joint torgques due to gr'avitlf Tg are also computed and updated.

» The vector is as follows: [TankieL TkneeL ThipL TankleR TkneeR ThipR]

LTS

void JumpTgandTHM( const double =angles, const double »velocities,
const double saccelerations, const double * torques, const BodyDataT sbodyData, ForceDistributionT »distrData,
SensorDataT »sensorData);

/» Function: GetTfrictionSwing

» -
* Calculates the joint torques vector to counteract joint friction and stiffness and updates Tf.
» The vector is as follows:[Tankle Tknee Thip] and represents the torque of the distal segment on the proximal segment,

*
void GetTfrictionSwing(double »Tf, const double »angles, const double svelocities, const int legSide);

167



Appendix A.13 - Jump.c

#include <math. h>

#include "ExoMain.h"
#include "Defines.h”
#include "Filters.h”
#inciude "Jump.h"
#inciude "DSup.h”

extern double filtercCoeffsOFF[5];

extern double filterCoeffsist825[5], filterCoeffsist8S[5], filterCoeffsisti[S], filterCoeffsist2{5],
filtercCoeffsist5[5], filterCoeffsistiB[5], filterCoeffsist26[5]), filterCoeffsistSB[S],
filterCoeffsist88[5], filterCoeffsist188[5]), filterCoeffsist128[5], filterCoeffsist148[5],
filterCoeffsist168{5], filterCoeffsist188[S], filterCoeffsist288{5];

extern double filterCoeffs2ndB25[5], filterCoeffs2ndBS[5), filterCoeffs2ndiiS], filterCoeffs2nd2[5],
filterCoeffs2ndS[5], filterCoeffs2ndiB([5],

filterCoeffs2nd28{5], filterCoeffs2nd58[5], filterCoeffs2ndsB[5), filterCoeffs2ndiBB[5],
filterCoeffs2nd128[5], filterCoeffs2nd148[5],

filterCoeffs2nd168[51, filterCoeffs2nd18B8[5], filterCoeffs2nd288[5], filterCoeffs2nd258[5],
filterCoeffs2nd360[S], filterCoeffs2nd358[S],

filterCoeffs2nd48B[S], filterCoeffs2ndSOB[5],

filterCoeffs2nd1888[5];

extern double DfilterCoeffsif[7], DfilterCoeffs2[7], DfilterCoeffs5(7], pfilterCoeffsiB{7],
DfilterCoeffs28f{7], DfilterCoeffsS6[7], DfilterCoeffs168[7], DfilterCoeffsi148(7], OfilterCoeffsi68[7],
DfilterCoeffs200[7], DfilterCoeffs258[7]), DfilterCoeffs368[7], DfilterCoeffs356[7], of i 1terCoeffs488[7],
DfilterCoeffs588{7];

/» Function: JumpTgandTHM

*
» Calculates the joint torques or operational space vector due to the human during jump mode and updates THM.
= The joint torques due to gravitli; Tg are also computed and updated.

»* The vector is as follows: [TankleL TkneeL ThipL TankleR TkneeR ThipR]

*

o

/

void JumpTgandTHM(const double =angles,
const double svelocities,
const double »accelerations,
const double »torgues,
const BodyDataT »bodyData,
ForceDistributionT »distrData,
SensorDataT »sensorData){

double TF[3];

double mf, If, LGF, hGf, msh, Is,Ls, LGs, LGsp, hGs,mt, Tk, LE, LGE, LGtp, hGt; // segment properties
double g5, 96,97, dg5, dg6, dq7, ddg5, ddg6, ddq?, TS, T6, T7, Tg5, Tgs, Tg7, TceS, Teccb, TeeZ;
double c5,s5, cS6, s56, c567, s567, dgS6, ﬂq567;

int i, legSide; '

mf = bodyData->foot.mass; // get mass and geometric properties
If = bodyData->foot.inertia;

LGf = bodyData->foot.Lcg;

hGf = bodyData->fook. hcg;

msh = bodyData->shank.mass;

Is = bodyData->shank.inertia;

Ls = bodyData->shank. iength;

LGs = bodyData->shank.bLcg;
LGsp = LGs - Ls;

hGs = bodyData->shank.hcg;
mt = bodyData->thigh.mass;

It = bodyData->thigh. inertia;
Lt = bodyData->thigh. length;
LGt = bodyData->thigh.Lcg;
LGtp = LGt - LL;

hGt = bodyData->thigh.heg;

// Run Jump.m in MATLAB to create dynamic equations
for (legSide=8; legSide<2; legSide++) { // repeat torque calculation for each leg (8 = left leg, 1 = right leg)
//define kinematic variables according to the leg

if (legSide==8){ // Left Leg
g5 = = -angles[LHIP] + sensorData->TorsoTilt;

g6 = -angles[LKNEE];

g7 = -angles[LANKLE};

dq5 = -velocities[LHIP] + sensorData->torsovelocity;

dgé = -velocities[LKNEE];

dq? = -velocities[LANKLE];

ddg5 = -accelerations[LHIP] + sensorData->bodyAccel[UPPERBODY]. angular_accel;
ddg6 = -accelerations{LKNEE];

ddg7 = -acceleraktions{LANKLE];

q
}else{ // Right Le
95 = -angles?RH]P] + sensorData->TorsoTilt;
q6 = -angles[RKNEE];
q7 = -angles[RANKLE];
dqS = -velocities[RHIP] + sensorData->torsoVelocity;
dgé6 = -velocities[RKNEE];
dq? = -velocities[RANKLE]; '
ddq5 = -accelerations[RHIP] + sensorData->bodyAcce1{UPPERBODY]. angular_accel;
ddg6 = -accelerations{RKNEE];
ddq? = -accelerations{RANKLE];
3

dg56 = dqS+dq6; dq567 = dq7+dq6+dqS5;

168



c5 = cos(g5); sS = sin{g5);
c56 = cos{g5+q6); s56 = sin{q5+q6);
c567 = cos(q5+q6+97); 5567 = sin(q5+q6+q7};

for (i=8;1<4;1++){

distrData->unfilteredBetafFg[i] = 8.5; // reset load distribution parameters used in double stance
distrData->filteredBetaFg[1] =0.5;

distrData->unfilteredbBetaFHM[i] = B.5;

distrData->filteredBetaFHM[i] = 8.5;

distrData->unfilteredKrot[i] =1;

distrData->filteredkrot[i} =1;

}
// Compute torque induced by gravity on the distal segment of the machine

Tg5 = -mf» a(Lbx(s5)+Lsx(556)+LGF*{c567)-hGFf#(5567))-mshuwgn{Ltx(s5)-LGsp*(556)+hGs»(cS6))-mtrge(-
Lth»(sS)+tht(05)?; /7 JumpVs, bxt

Tgb = -mfwge(L5*{556)+LGF»(c567)-hGf #(5567))-mshags(-LGsp*(s56)+hGs*(c56)); // Jumpveé. bxt

Tg7 = -mfaga{LGF»(c567)-hGf»(s567)); // Jumpv7.kxt

// Compute human torques due to Coriclis and centrifugal forces

TecS = 8, Swmfa{2»{-dq56»dq56sLs#(556)-dgS+dqS+Lt»{s5)-((dq567) )*(LGF»(c567)»{(dg567))-
th*(5567)t((dq567))))#(Ltm(c5)+st(c56)—LGf
#(s567)-hGF*{Cc567))+2+(Lt»(s5)»dq5+Ls»{556)»(({dg56))+((dg567))*(LGF»{c567)-
hGfx{s567}) }*(dqssLE(c5)+((dg56) )aLs»{c56)-L6E»(5567)»((dg567))
-thw(c567)»((dq567)))¢2t(dq5tLt*(c5)¢((quG))*Lsm(css)—((dq567))u(LGf*(sSﬁ?)#tht(cSﬁ?)))v(-Ltt(ss)»qu-
Ls»({sS6)»{{dq56))-LGF»(cS67)=(((dq?
+dq6+d35)))+th»(5567)*((3q567)))+Z#(dq56*dq56*Ls~(c56)+dq5~dq5»Ltt(cs)o((dq567))t(-LGf*(sSS?)n((dq567))—
hGfs(c567)»(({dq7
+d 6+dq5)))))w(Lt*(55)+Ls*(556)*LGf*(c567)-th~(5567)))#B.S*mtt(4*dq5»(Lth»(c5)+tht(55))»(-
LGtp#{s5)wdqS+hGEn(c5)»dqS)+d+dq5(-LGtps(sS)+hGt
»(cS))=(-LGt m(cS)tqu-th*(ss)adqs))-9.5Mnf»(2t(dq5tLt~(c5)+((dq56))#Lsn(c56)-
((dq567) )x(LGF»(5567)+hGFf»{c567) ) )w{-Lt+(s5)+d 5-Ls+(s56)=((dg56))
-((dq567))t(LGf*(c567)-th»(5567)))+2a?Lt»(sS)*dq5+Lsm(556)*((dq56))0((dq567))~(LGf*(c567)-
hGf»{s567) ) )»(dgSsLts(e5)+(({dq56) )»Ls»(c56)+(((dq7
*dq6+dq5)))*(-LGfi(sS67)-th~(0567))))-9.S*mt*(2*dq5ﬂdq5»(Lth*(c5)#th*(sS))t(-Lth~(55)+th¢(c5))+2*dq5ndq5*(-
LGtpx(sS)+hGt=({c5) n(
-Ltht(cS)—tht(ss)))+8.5*nsh*(2w(—((dq56))#(—LGspn(sss)*((quG))*th*(cSG)'((quﬁ)))—qu*quth*(sS))a(Lt»(cs)—
LGsp#{c56)-hGs*(s56))+2»(Lt
*{55)*d 5+((quﬁ))*(-LGsp»(556)+tha(c56)))t(qu*Lt*(cs)-LGsp*(cSG)*((quG))—th*(sSﬁ)a((dq56)))+2~(dq5»Lt‘(c5)—
((dq56))t(LGsp»?c56)+tht(556)))
*(—Lt»(55)~d§5+LGspt(556)»((dq56))-th'(c56)m((quG)))wZ*(((quG))w(—LGsp»(cSﬁ)v((dqss))-
hGs#»(s56)*({dq56)))+dqS»dqSsLEt#{c5))»(Lts(s5)-LGsp
w($56)+hGs»(c56)))-8. Sxmshw(2+(d SaLb*(cS)-((dg56) ) (LGsp={c56)+hGsn(s56) ) )+ (-Lb»(s5)»dq5-((dg56))»(-
LGsp»(556)+hGSt(c56)))#2*(Lt*(ss)*d35+((quG))
a(-LGsp#{s56)+hGs»(c56)))*( gSsLEx(c5)+({dq56) )»{-LGsp»(c56)-hGs=(s56)}));

Tecé = B.Suﬂfa(2*(-dq56mdq56~st(556)-quwqumLt»(SS)-((dq567))*(LGf»(c567)t((dq567))—tht(5567)-((dq567))))
w(Ls»(c56)-LGFa{s567)-hGF»(c567))+2#(dg5=LEx(s5)+Ls=(s56)#((dq56))+({dq567))»(LGCF*(c567)~
hGf»(s567)))#{( (dq56))»Ls»{c56)-LGFf»(s567)*((dg567))
-hGf»{c567)#({dq567)))+2»{dgSxLtx(c5)+ (dq56))#Ls»{c56)-( (dq567) )»{LGF*(s567)+hGf#(c567)))»{-Ls*(556)#({dqS6))~
LGF»(c567)»((dgq567))
+hGF(s567)#((dq567)) )+2%(dq56+dq56sLsa{c56)+dgSadqS+Lt(cS)+{{dq567) )»(-LGF+(5567)#((dg567))~
hGf»(c567)#((dg5671)))
*(Ls#(556)+LGfm(0567)-thw(5567)))-9;Samf*(Zw(quaLtt(cs)*((quB))*Lsa(c56)-((dq567))t(LGft(5567)+thm(c567)))u(-
LSt(sss)»((d?SG))-((dq567))
w(LGF»({c567)~hGF»(5567)))+2+(dq5+Lt»({s5)+Ls*(556)*((dq56))+({dq567) )»(LGF»(c567)-
hGf»(5567)))*({((dq56) )*Ls»(c56)+({dq567) ) (~LGF*»(s567)
—tht(c567))))+B>5*n5hw(2n(—((dqss))»(—LGspn(sss)»((quG))cth—(css)a((dqss)))-dq5mdq5~Ltw(sS))-(—LGsp»(c56)-
hGs»(s$56))+2+(dqS*Lt=(s5)+((dq56))
*(—LGspu(556)+th*(556)))*(—LGspm(cSG)*((dq56))-thw(556)~((dq56)))+2t(dq5th*(c5)—
((dq56) y»{LGspx(c56)+hGs#{s56) ) )+ (LGsp*(s56)+((dg56))
-thw(cSﬁ)*((quG)))&Zt(((dq56))-(—LGspa(css)*((dqss))-th*(sSﬁ)*((quS)))+dq5tdq5~Lt~(c5))*(-
LGsp*(s56)+hGs»(c56)))-8. Samsh#{-2x(dqSsLtx(c5)
—((dq56))t(LGspn(c56)+thw(556)))~((dq56))»(-LGsp~(556)+tha(c56))+2*(dq5th*(sS)+((dq56))~(-
LGsp(556)+hGs»(c56)))»((dq56) )»{-LGsp*(c56)-hGs»(s56)));

Tee? = B.Snnft(2*(—dﬁSSmquﬁ»Ls*(sSS)-qu»qutLta(sS)—((dq567))t(LGf
#{c567)#{(dg567) )-hGF»(s567)»{(dq567))) ) »(-LGF»(5567)~
hGF#{c567))+2#(dg5+LLx(s5)+((dg56) )sLs»(556)+((dq567) )#(LGF+{c567)-hGf*(s567)))
#{-LGF*(5567)#((dq567) )-hGf»(c567)»((dq567) )} +2+(dg5»Lt*(c5)+({dq56))»Ls»(c56)-
{(dq567) )»(LGF»(5567)+hGf#{c567)) )»(-LGF»(c567)»({(dq?
+dq6+dq5)))+th!(5567)*((dq567)))+2~(quE*quG*LS#(c56)+dq5*dq5*Lt*(c5)¢((quGT))*(-Lwa(5567)~((dq567))-
hGf»{c567)»(({dq?
+dq6¢dq5)))))t(Lwa(c567)-th~(5567)))—B.S»mfm(—za(qu»Ltw(cs)w((dq56))*Ls~(c56)-
((dg567))»(LGF»{5567)+hGf = (c567)))»((dq567) }»(LGF»{c567)
hoF —hG§~(5567))+2*(dq5uLta(sS)+((gqss))~Ls*(556)+((dq567))*(LGF»(:SE?)—th*(5567)))~((dq567))u(-LGft(sSﬁT)-
Gf*{c567))};

// Compute human torques due to ang. acceleration only

TS5 = (1f+8. Semfx(2s(-LGF»(s567)-hGF»{c567))»(Ltr{c5)+Ls*(c56)-LGF»{s567)-hGf+(cS567))+2#(LGf*(c567)-
hGFa($567) Ju{Ltx(s5)+Ls»{s56)+LGf»{c567)-hGf»(s567})})»ddq?

+(lf¢3.5*msh*(2*(-LGSp*(c56)-hGS*(556))*(Lt*(CS)—LGSP*(CSG)-th!(SSG))+Z*(-LGSP*(556)+th*(c56))t(Lt'(SS)-
LGspa(556) +hGs»(c56)))+15+0. Semf

»(2n{Ls#{c56)-LGF»(s567)-hGf*{c567) )»{LEr(c5)+Ls#(c56)-LGF*(s567)-hGf»(c567))+2#(Ls»(s56)+LGF+(c567)~
hGFe(s567) )+ {Lt*(s5)+Ls+{s56)+LGFf»(c567)-hGf»(s567))1)

#dquO(G.S-mfw(Zw(Ltm(ss)+Ls~(sSS)»LGf*(c567)—th*(5567))t(Lt*(sS)+st(556)+LGf'(c567)-
hGFa(s567))+2#{Lta(c5)+Ls»{c56)-LGF»(5567)-hGf»(c567))

w{LE»(Cc5)+Ls»(c56)-LGFw(s567)-hGF*{cS567)))

~IF+B.S*mshm(za(Ltn(ss)—LGsp»(sSS)*thm(cSG))*(Ltt(55)-LGsp*(556)+th'(c56))42*(Lt*(c5)-LGsp*(c56)-
hGs»(s556) }#(Lt»(c5)-LGsp*(c56)-hGs+(s56)))

41t+!s¢9.Swmt*(2~(Ltht(c5)+th*(ss))*(Lthn(cS)+th~(sS))*Zw(—Ltht(55)¢tht(05))u(-Lth»(sS)Otht(cs))))»dqu;

// JumpKES. txt

T6 = (1f+B, Sumfu(2»(-LGF#{s567)-hGf+(c567) ) (Lsx(c56)-LGF»(s567)-hGf»(c567))+24(LGFf*(c567)-
hGf*{s567) )*{Ls#(s56)+LGF»{c567)-hGf»(s567))))»ddq7+(B. Swmf(2

169



#{Ls»(c56)-LGF*{5567)-hGF»(c567))»(Ls»{c56)-LGF»{5567)-hGf=(c567))+2#(Ls+(556)+LGF»(c567)-
hGF#(s567) )»{Ls»(s56)+LGf»(c567)-hGF*»(s567)))+8. Sxmsh»(2

#{-LGsp(c56)-hGs#(s56) ) (-LGspx(c56)-hGs#($56) )+2%(-LGspa(s56)+hGsa{c56) )e(-LGsp» (556} +hGs*(c56)})

+1s+If vddqﬁ*(lf*@.S#mft(Zt(Ltw(55)+LGft(c567)-th»(5567g+L5»(556))*(Lsm(556)+LGf*(c567)—th*(5567))oZv(Lt*(cS)-
LGf* (5567 )-hGf#{c567)+Ls»(c56) )»{Ls*(cS6)

—LGfa(sSG?)-th»(c567)))+Is+a.5unsh*(2*(-LGsp»(556)+thw(c56)+Lt»(55))m(-LGsp*(sss)ths*(CSS))+2*(—LGsp~(c56)-
hGs»(s56)+Lt»{c5) )*({-LGsp»(c56)

~-hGs#»{556))))*ddqS;

/7 JumpKEG. txt

T7 = (8. 5mFa(2x(-LGF*(5567)-hGF»(cS567) y#(-LGF (5567 )-hGf*(c567))+2»(LGF*(c567)-hGf*(5567) )+ (LGF(c567)-
hGf»(5567)))+1f )xddg7+(B. S+mfa(2
#(Ls#»(c56)-LGF*»(5567)-hGf»(c567))*(~LGf*(s567)-hGf»(c567))
+2#(L5*{556)+LGF»(c567)-hGF»(5567) }» (LGF»(c567)-hGF=(s567)))+1f }»ddg6+(B. Semfa(2+(Ltx(s5)+LGF»(c567)-
hGF*(5567)+Ls*{s56) )»(LGF#(c567)-hGf»(s567))+2»{LL
#{c5)-LGF*+{5567)-hGf+(c567)+Ls#(c56) )x{-LGF*{s567)-hGf»(c567)))+1f}»ddqS;
/ JumpKE7. txt

// OUTPUT:
// add gravity and actuator torques to compute total human-machine torques
// Torgques are multiplied by {-1) since they should be expressed as the torque of the distal segment on
/7 the proximal segment whereas the computed torques represent the oppposite sign convention.
if {legSide==B){ // Left Leg
GetTfrictionSwing(Tf, Bangles[LANKLE], 8velocities[LANKLE], legSide); // (left} get joint friction and
stiffness torques

sensorData->jointData[LANKLE]. Tg = Tg7; // ankle torque necessary to support segment against gravity and
velocity forces

sensorData->jointData[LKNEE]. Tg = Tg6; // knee

sensorData->jointData[LHIP].Tg = Tg5; // hip

sensorData->jointData[LANKLE]. Tcc = - Tce?; // torque necessary to support segment against velocity forces
sensorData->jointDatafLKNEE]. Tcc = - Tccé; // Negative sign is due to different sign conventino in controller
sensorData->jointData[LHIP).Tcc = - Tec5 ;

sensorData->jointData[LANKLE]. Tf = TF[ANKLE_T]; // torque necessary to compensate friction
sensorData->jointDatafLKNEE]. Tf = TF[KNEE_T];
sensorData->jointData[LHIP].Tf = Tf[HIP_T];

sensorData->jointData[LANKLE]. Thm = -T?-Tcc?; // ankle. note: actuator torques are already expressed in
correct coords

sensorData->jointData[LKNEE]. Thm = -T6-Tcc6; // knee
/7 sensorData->jointData[LHIP].Thm = -T5-TccS5; // hip

sensorData->jointData[LANKLE]. Thm = TF[ANKLE_T] - T7 + Tg? - Tcc? - torques[LANKLE_T}; // ankle. note: actuator
torques are already expressed in correck coords

sensorData->jointData[LKNEE]. Thm = TF[KNEE_T] - T6 + Tg6 - Tccé - torques[LKNEE_T]; // knee

sensorData->jointData[LHIP]. Thm = TF[HIP_T] - 75 + Tg5 - TccS - torques[LHIP_T}; // hip

sensorData->jointData[LANKLE]. Tinertial = -T7; // Ankle torque due to inertial forces, JRS, 2884-06-24
sensorData->jointData[LKNEE]. Tinertial = -T6; // Knee torque due to inertial forces, JRS, 2884-86-24
sensorData->jointData[LHIP]. Tinertial = -T5; // Hip torque due to inertial forces, JRS, 2804-86-24

Yelse{ // Right Leg
GetTfrickionSwing(TF, &angles[RANKLE], &velocities[RANKLE], legSide); // (right)

sensorData->jointData[RANKLE]. Tg = Tg7; // ankle
sensorData->jointData[RKNEE].Tg = Tgé; // knee
sensorData->jointData[RHIP].Tg" = Tg5; // hip

sensorData->jointData[RANKLE]. Tcc = - Tee?; // ankle
sensorData->jointData[RKNEE]. Tec = - Tceb; // knee
sensorData->jointData[RHIP].Tce = - TceS; // hip

sensorData->jointData[RANKLE]. Tf = TF[ANKLE_T]; // torque necessary to compensate friction
sensorData->jointData[RKNEE]. Tf = TF[KNEE_T];
sensorData->jointData[RHIP].Tf = Tf[HIP_T];

124 sensorData->jointData[RANKLE]. Thm = -T7-Tcc?; // ankle
/7 sensorData->jointData[RKNEE]. Thm = -T6-Tcc6; // knee
/7 sensorData->jointData[RHIP].Thm = -T5-Tec5; // hip

sensorData->jointDatalRANKLE]. Thm = TF[ANKLE_T] -T7 - Tee7 + Tg7 - torques[RANKLE_T]; // ankle
sensorData->jointData[RKNEE]. Thm = TF[KNEE_T] -T6 - Tcc6 + Tg6 - torques[RKNEE_T]; // knee
sensorData->jointData[RHIP]. Thm = TF[HIP_T] -T5 - Tcc5 + Tg5 - torques[RHIP_T]; // hip

sensorData->jointData[LANKLE]. Tinertial = -T7; // #nkle torque due to inertial forces, IRS, 2884-86-24

sensorData->jointData[LKNEE]. Tinertial = -T6; // Knee torque due Lo inertial forces, JRS, 2084-66-24
sensorData->jointDatafLHIP]. Tinertial = -T5; // Hip torque due to inertial forces, JRS, 2004-86-24

}
} #/ for loop

sensorData->jointData[LANKLE]. Tlin = sensorData->jointDeta[LAM(LE].Tg
+ sensorData->jointData[LANKLE]. Tf; // compute torque for feedback linearization

sensorData->jointData[LKNEE]. Tlin = sensorData—>jointData[LK\\EE].T?
+ sensorData->jointData{LKNEE]. Tf; // compute torque for feedback linearization

sensorData->jointData[LHIP]. Tlin = sensorData—>jointData[LHIP].T?
+ sensorData->jointData[LHIP]. Tf; // compute torque for feedback linearization

sensorData->jointData[RANKLE].T1in = sensorData—>_jointData[RAN(LE].Tg
+ sensorData->jointData[RANKLE].TF; // compute torque for feedback linearization

sensorData->jointData[RKNEE]. Tlin = sensurDate->jaintData[RKl‘EE].T? .
+ sensorData->jointData[RKNEE]. Tf; // compute torque for feedback linearization

170



sensorData->jointData[RHIP]. T1in = sensorData->jointData{RHIP]. T?
+ sensorData->jointData[RHIP]. Tf; // compute torque for feedback linearization

// set toe torgues to zero (there's no actuator at the toe)
sensorData->jointDataf[LTOE]. Tg = B;
sensorData->jointDatafRTOE Tg“ = 0;
sensorData->)ointDataf[LTOE].
sensorData->jointData[RTOE]. Thm
sensorData->jointData[LTOE]). Tlin =
sensorData->jointData[RTOE]. T1in =
sensorData->jointData[LTOE]. Tce
sensorData->jointData[RTOE]. Tce
sensorData->jointData{LTOE]. Tf
sensorData->jointData[RTOE]. Tf
sensorData->jointDatafLTOE]. Tinertial =
sensorData->jointData[RTOE]. Tinertial =

3

Q@

3

® D

Yoo

Son

~

» Function: GetTfrictionSwing

»
» Calculates the joint torques vector to counteract joint friction and stiffness for one leg. Updates Tf.

» The vector is as follows:[Tankle Tknee Thip] and represents the torque of the distal segment on the proximal segment.
= Equations are obtained from Excel documents 'rankle stiffness.x1s’, ‘rknee stiffness.x1s', 'rhip stiffness.x1s’,

» legSide =8 for left leg and 1 for right leg

L

void GetTfrictionSwing{double »Tf,
const double wangles,
consk double =velocities,

const int legSide}{
double torque_slopef3], torque_offset[3], force_slope[3], force_offset[3], shankAngle;
// the slope of the offsets of the joint stiffness torques w.r.t. to anguiar position, are function of velocity
// Compute ankle stiffness
/» torque_sltope[B] = ANKLE_STIFFNESS_SLOPE_SLOPE = velocities[B] + ANKLE_STIFFNESS_SLOPE_OFFSET;

if(velocities{B] >= 8

torque_of fset[B] = ANKLE_STIFFNESS_OFFSET_POS_VEL; // average offset for positive velocities
Yelse{

torque_of fset[8] = ANKLE_STIFFNESS_OFFSET_NEG_VEL; // average of fset for negative velocities

TF[B] = (torque_slope[8] » angles[8] + torque_offset[8]); // ankle friction (rankle)
»/
// USE ONLY STATIC FRICTION VALUES

/7 TF{B] = 0.8653 » ((angles[1] + angles[2])*18B/Pi + 13.8) + 8.8297+angles[B]*188/Pi-2.5546
/7 - B.62468%9, 81#(0, 858978+cos{13. 8*P1/180¢anglcs[B]ﬂngIes[i]ﬂn?les[Z])
/ + 8.83244»s5in(13.8+Pi/180+angles{08]+angles[1)+angles[2])); // o

/7 Tf[ﬁ] = (8.0043 » ({angles[1] + angles[2])»180/Pi - 13.8) + 0.829+angles[8]*188/Pi-2.2366);
/7 - B.62468+9, 81» (B, B50978xcos(-13, S*Pl/188+angles[9]+angles[i?wngles[z])
/ + 8.83244»sin(-13.8+Pi/180+angles[B8]+angies[i]+angles[2]));

shankAngle = angles{1]} + angles[2] - 13.8sPi/186;

if{anglesf@] < -15+Pi/188){ // -15 > ankle angle > -38
?(shankhng!e < -504Pi/188){
TFIANKLE_T] = -1.8; // -1.9;
}else if(shankangle < -4ewP1/158){
TF[ANKLE_T] = -1.8;
}else if(shankAngle < -29#?1/160){
TF[ANKLE_T]} = -1.8; // -1.9
}else if(shankAngie < —18*P1/160){
TfANKLE_T] = -1.8;

Jelse 1f(shankAng'le < G){
TF[ANKLE_T] = -1.8;

}else if(shankangle < 5*P1/153){ // from here on is for hip angle = 8
TF[ANKLE_T] = -1.65;

}else if{shankAngle < 1G'P1/138){
TF[ANKLE_T] = -1.865;

Jelse 1f(shankAngle < 15*P1/169){
TFIANKLE_T] = -1.75;

}else 1f(shankAng]e < 45*Pv/159){
TF{ANKLE_T]) = -1.75;

}else 1f(shankAng]e < 60*91/188){
TF{ANKLE_T] = -1.75;

}else if(shankAngle < 89~P|/180)(
TF[ANKLE_T] = -1.75;

Jelse{
TFIANKLE_T] = -2.5;

/7 TF[ANKLE_T] = -1.8;

lelse lf(anEIes[B] < B){ // 8 > ankle angle » -15
if (shankAngle < -59:P1/188){
TFLANKLE_T] = -1.8;
}else lf(shankAngle < -49*?1/189){
TF{ANKLE_T)] = -1.8;
}else if(shankAngle < -20*P1/186){
TFANKLE_T] = -1.75;

171



}else if(shankAngle < -1BwPi/iBB){
TFANKLE_T] = -1.7

}else 1f(shankAngle < B){

TFIANKLE_T] = -1.75; // -

}else !f(shankAngle < 5*P\/189){ // from here on is for hip angle = @
TFIANKLE_T] = -1,75;

}else if(shankAngle < 19:P1/159){
TFIANKLE_T] = -1,75;

}else 1f(shankﬁngle < 15*?1/189){
TFIANKLE_T]} = -1,86;

lelse Ef(shank?ngle < 45»P1/168){
Tf = -1,

}else if(shankAngle < 60*P!/189){
TFLANKLE_T] = -1.75;

}else if(shankangle < BB*P)MBB){
TFIAMKLE_T] = -1,95;

Jelse{
TF[ANKLE_T] = -2.5;

7/ TFIANKLE_T] = -1.75;

Jelse 1f(anEles[B] < 15+Pi/188){ // B < ankle angle < 15

f(shankangle < -58+Pi/188){
TF{ANKLE_T] = -1.7S;

}elsef;f(shank?ngle < -49*Pr/189){
T = -1,

}else if(shankAngle < -ZEI*PI/iBB){
TF[ANKLE_T] = -1.5

}else if(shankangle < —IB*PV:LBB){
TF{AMKLE_T] = -1.5; // -1.45

}else if{shankangle < 8){
TF[ANKLE_T] = -1.5;

}else{
TF[ANKLE_T] = -1,25;

/7 TFLANKLE_T] = -1.5;

}else If(anEIes[G] < 23+Pi/188){ // 15 < ankle angle < 23
if (shankaAngie < -5B»Pi/186){
TFIANKLE_T] = -1.3;
}else if(shankAngle < —48*P1/18I3){
TF[ANKLE_T] = -1.15;
}else if(shankAngle < —29*?1/130){
TFLANKLE_T] = -1,25;
}else if(shankAngle < —19»P1/158){
TFIANKLE_T] = -1,2;
lelse lf(shankMgle < 9){
TF{ANKLE_T] = -1.7;
Jelse if(shankéngle < SQ-Pv/iBB){ // from here on is for hip angle =
Jelse Tf[AM(LE T] = -8.85;
e

Tf[ma.s_'r] = -8.5;
/7 TFIANKLE_T] = -1.2;

}else{ // 23 < ankle angle < 38

if (shankAngle < -58xPi/188){
TE[ANKLE_T] = -1;

}else if(shankAngle < -48»Pi/188){
TF[ANKLE_T] = -1;

}else if(shankAngle < -2B+Pi/186){
TFIANKLE_T] = -1;

}else if(shankAngle < -18+Pi/1808){
TF[ANKLE_T] = -1; // -8.75;

}else if(shankéngle < 8){
TF{ANKLE_T] = -1;

}else zf(shankAngle < 45*Pi/168){ /7 from here on is for hip angle = 8
TFIANKLE_T] = -1.15;

}else if(shankAngle < 69»?1/186){
TFLANKLE_T] = -6.7;

Jelise{
TFLANKLE_T] = -1;

/ ' TFIANKLE_T] =-1;

// Compute knees stiffness

/»
if(angles[1) > 1.5){ // use different values for higher angles
force_slope[1] = KNEE_STIFFNESS_SLOPE_A2 » velocities[1]}svelocities[1] + KNEE_STIFFNESS_SLOPE _Alxvelocities[1]
+ KNEE_STIFFNESS_SLOPE_AS;
force_offset[1] = KNEE_STIFFNESS OFFSET_A2 » velocities[1]l»velocities[1] + KNEE_STIFFNESS_OFFSET_Aixvelocities[1]
+ KNEE_STIFFNESS_OFFSET_AS;
Jelse{
force_slope{d1] = KNEE_STIFFNESS_SLOPE_SLOPE = velocities[1] + KNEE_STIFFNESS_SLOPE_OFFSET;
force_offset[1] = KNEE_STIFFNESS_OFFSET_SLOPE » velocities[1] + KNEE_STIFFNESS_OFFSET_OFFSET;
TF[1] = -momentArms[1]*({force_slope[1] » angles[1] + force_offset[1]); // knee stiffness (validated for right knee
only)
»/

172



if (angles[2] > 8){ // change knee friction torque wih hip angle
TFIKNEE_T] = B8.3;

Jelse if(angles[2] > -382Pi/188){
TF[KNEE_T] = 8. 4;

}else if{angles[2] > -45+Pi/180){

) TF[KNEE_T] = 8.5;

e

1se{
Tf[KNEE_T] = B.6;

if(angles[i] > 1,8){ // if knee is almost fully flexed decrease the friction
THIKNEE_T]) = Tf[KNEE_T] - 0.2;
}

// USE ONLY STATIC FRICTION VALLES

// Compute hip stiffness
torque_stope[2] = HIP_STIFFNESS_SLOPE_SLOPE » velocities[2] + HIP_STIFFNESS_SLOPE_OFFSET;
/» if(velocities[2] > 8){ // eq. for positive velocities
torque_of fset[2] = HIP_STIFFNESS_OFFSET_SLOPE_POS VEL = velocities[2] + HIP_STIFFNESS_OFFSET_OFFSET_POS_VEL;

}eise{ // for negative or zero velocities
tar‘que_offset[z] = HIP_STIFFNESS_OFFSET_SLOPE_NEG_VEL » velocities[2] + HIP_STIFFNESS_OFFSET_OFFSET_NEG_VEL;

}
»/
torque_of fset{2] = HIP_STIFFNESS_OFFSET_OFFSET_NEG_VEL;
7/ TF[2] = (torque_slope[2] » angles[2] + torque_offset[2]); // hip friction
I7s TF[2] = 1.9828+ angles[2]» angles[2]» angles[2] +1.1377 » angles[2]* angles[2] +8.3567+ angles[2] +1.7427;

TFIHIP_T] = 8.9879* angles[2]+ angles[2]» angles[2] -8.796 » angles[2]» angles[2] +B.362 » angies[2] + 2,28B4;
/7 if(]e?Sideﬁ){ //1eft leg v’
TH

// ANKLE_T] = sysProperties->jointControl [LANKLE].manualTorque;
I TFIKNEE_T] = sysProperties->jointControl [LKNEE].manua]Torgue;
/7 TF{HIP_T] = sysProperties->jointControl[LHIP].manualTorque;
IZ4 Yelse{ //right leg

IZA TF[ANKLE_T] = sysProperties->jointContro] [RANKLE ].manualTorque;
17 TF[KNEE_T] = sysProperties->jointControl [RKNEE].manualTorque;
/7 TF[HIP_T] = sysProperties->jointControl[RHIP].manualTorque;
}

173



Appendix A.14 — SSup.h

/» Function: SingleSupportTHM
»

» Calculates the joint torques due to the human during single support and updates THM.
* does not use the backpack force sensor.

» The torque vectors are as follows: - [TankleL TkneeL ThipL TankleR TkneeR ThipR]

*

void SingleSupportTH¥{const double sangles,
const double »otherLegAngles,
const double =accelerations,
const double =torques,
const BodyDataT *bodyData,
const int groundedLeg,
const int leftHee1Contactk,
const int rightHeelContact,
ForceDistributionT »distrData,
SensorDataT =sensorData,

const SysPropertiesT ssysProperties);

/* Function: Gek)TsensorInTorsoFrame

*
* Calculates the transpose jacobian matrix of the backpack force sensor for a 3dof leg and updates JT.
*

void GetlTsensorlInTorsoFrame{double IT{ 131,
const double kneeAngle,
const double hipaAngle,

pi
conskt BodybDataT »bodyData};

/*» Function: GetTfrictionSStance
*

» Calculates the joint torques vector to counteract joint friction and stiffness for one leg. Updates Tf.

» The vector is as follows:[Tankle Tknee Thip]l and represents the torque of the distal segment on the proximal segment.
+ Equations are obtained from Excel documents 'rankle stiffness.xls’, 'rknee stiffness.x1s’, ‘rhip stiffness.xis’.

» legSide =8 for left leg and 1 for right leg

»

void GetTfrictionSStance{double - »Tf,
const double wangles,
const double »velocities,
const double wmomentArms,
const SysPropertiesT #s?sProperties,
const char egSide);

174



Appendix A.15 — SSup.c

#include <math, h>

#include “ExoMain. h”
#include "Defines.h”
#include "Filters.h”
#include "SSup.h®
#include "DSup.h”
#include "Jump.h”

extern double filterCoeffsOFF{5];

extern double filterCoeffsist825[5], filterCoeffststB5[5), filterCoeffsisti[S5]), filterCoeffsist2[S],

filterCoeffsist5[5], filterCoeffsist18[5]), filterCoeffsist28[S], filterCoeffsistSB[5],

filterCoeffsist88[5], filterCoeffsisti88[5]), filterCoeffsist128[5], filterCoeffsist148[5],

filterCoeffsist168[5], filterCoeffsistiBB[5], filterCoeffsist28B[5];
extern double filterCoeffs2ndB25[5], filterCoeffs2ndB5[5], filterCoeffs2ndi[5], filterCoeffs2nd2(5],
filterCoeffs2ndS[5], filterCoeffs2ndiB[5],

filterCoeffs2nd28[5], filterCoeffs2nd58[S], filterCoeffs2nd8e[5], filterCoeffs2nd1B8[S],
filterCoeffs2nd128[5], filterCoeffsznd148[5],

filterCoeffs2ndi68[S5], filterCoeffs2nd188[5), filterCoeffs2nd288[S], filterCoeffs2nd2Se[S],
filterCoeffs2nd388[5], filterCoeffs2nd358[5],

filterCoeffs2nd488[S5], filterCoeffs2nd568[5],

filterCoeffs2nd1868(5];

extern double DfilterCoeffsi[7], DfilterCoeffs2[7], DfilterCoeffs5[7], DfilterCoeffsi8[7],
DfilterCoeffs28[7], DfilterCoeffsS8[7], ODfilterCoeffs188[7], DfilterCoeffs148[7], DfilterCoeffsi66[7],
DfiTterCoeffs206[7], DfilterCoeffs258[7], DfilterCoeffs388[7], OfilterCoeffs3568[7], DfilterCoeffs488[7],
Df i lterCoeffsS8B{7];

Function: SingleSupportTHM

*®

*

» Calculates the joint torques due to the human during single support and updates THM.
» does not use the backpack force sensor,

» The torque vectors are as follows: - [TankieL TkneeL ThipL TankleR TkneeR ThipR]

»
o

/

void SingleSupportTHM{const double +angles,
const double avelocities,
const double »accelerations,
const double =torques,
const BodyDataT »bodyData,
const int ?roundedl.eg,
const int eftHeelContact,
const int rightHeelContact,
ForceDistributionT =distrData,
SensorDataT ssensorData,

const SysPropertiesT wsysProperties){

double mf, If,Lf, LGF, hGf,ms, Is,Ls, LGs, hGs, mt, Ik, LE, LGE, hGt,mub, Tub, LGub, hGub,LGsp, LGtp;// se?nent properties

double T2,T3,T4,75,T6,77,Tke[6]; // local variable for joint torgques in the form ?TGroundedAnk e .... TSwingAnkle]
// these torques are due to inertial components of the dynamic equations

double

a1, 92, 93, 94, 5, 96, 97, dq1, dq2, dq3, dg4, dg5, dgs, dq7, dq12, dg123, dq1234, dq12345, dqi23456, dq1234567, ddq1, ddq2, ddq3, ddqd, ddg5, ddqé
ddq7;
’ d:)uble c1,s1,¢12,c123, c1234, c12345, ¢123456, c1234567, s12, 5123, 51234, 512345, 5123456, 51234567;
double pi1,p2, p3, p4, pS, pé, p7, p8, p3, p18, pii, pi2, p13, pid, p15; . .
double Tg2, Tg3, Tgd, Tg5, Tgé, Tg7, Tec2, Tce3, Teced, Tec5, Tecé, Tece?; // gravity and velocity torques;
double TF[6]; "// torque to resist joint stiffness and friction
int i;
doubTe momentArms[31 = {8, 8,8)};

mf = bodyData->foot.mass;

If = bodyData->foot.inertia;
Lf = bodyData->foot.length;
LGf = bodyData->fook.Lcg;

hGf = bodyData->foot,bcg;

ms = bodyData->shank.mass;
Is = bodyData->shank.inertias;
Ls = bodyData->shank.length;
LGs = bodyData->shank.bLcg;
LGsp = LGs - Ls;

hGs = bodyData->shank. hcg;

mt = bodyData->thigh.mass;

It = bodyData->thigh. inertia;
bodyData->thigh. length;
bodyBata->thigh. Lcg;

LGt - Lt;
bodyData->thigh. hcg;
bodyData->upperBody.mass;
bodyData->upperBody. Lcg;
bodyData->upperbody. hcg;
bodyData->upperbody. inertia;

g
@
-~
LN B B B B B )

lub

if (groundedieg == LEFT){ // Adjust angles to match with lecal sign convention [q1 ...q7] = [grounded toe ... swing
toe]
angles[LTOE] - ANKLE_TOE_HEEL_ANGLE;
angles[LANKLE] + ANKLE_TOE_HEEL_ANGLE;
angles{LKNEE];
angles{LHIP);
-angles[RHIP];
-angles[RKNEE];
-angles[RANKLE];
velocities[LTOE);
velocities[LANKLE];

o
[
B HUWNNODH NN

175



dg3 = wvelocities[LKNEE];
dg4 = velocities[LHIP];

dqS = -velocities[RHIP];

dgé = -velocikties{RKNEE];
dg? = -velocities[RANKLE];
ddqi = accelerations[LTOE];
ddq2 = accelerations[LANKLE];
ddq3 = accelerations[LKNEE];
ddg4 = accelerations[LHIP];
ddqS = -accelerations[RHIP];
ddq6 = -accelerations[RKNEE];
ddq7? = -accelerations[RANKLE];

for (i=8;i<d;i++){
distrData->unfilteredBetaFg[i]
distrData->filteredBetaFg[1]
distrData->unfilteredBetaFtM[i]
distrData->filteredBetaFHM[i]

; // reset beta parameters used in double stance

}
} else{ // Right leg is grounded

gt = angles[RTOE] - ANKLE_TOE_HEEL_ANGLE;
g2 = angles[RANKLE] + ANKLE_TOE_HEEL_ANGLE;
g3 = angles[RINEE];

g4 = angles[RHIP];

g5 = -angles[LHIP};

g6 = -angles[LKMEE];

7 = -angles[LANKLE];

gt = velocities[RTOE];

dg2 = wvelocities[RANKLE];
dg3 = velocities[RKNEE];
dq4 = velocities[RHIP];

dg5 = -velocities[LHIP];

dgé = -velocities[LKNEE];
dg? = -velocities[LANKLE];
ddqt = accelerations[RTOE];
ddq2 = accelerations[RANKLE];
ddq3 = accelerations[RKNEE];
ddqd = accelerations[RHIP];
ddq5 = -accelerations[LHIP];
ddgq6 = -accelerations[LKNEE];
ddq7 = -accelerations[LANKLE];

for (i=d4; 1; i-=)q{
distrData->unfilteredBetaFg[i-1]
distrData->filteredBetaFg[1-1]
distrData->unfilteredBetaFHM[i-1]
distrData->filteredBetaFHM[i-1]

G; // reset beta parameters used in double stance

e
=

7/ make acc. signals for grounded leg = 8
ddqi=8; ddq2=0; ddq3=8; ddqd=8; // added 16/13/2803 by 3RS, NOTE: Thm=8 for grounded leg b/c Kp = 8 for grounded leg,
see FHM.ct

// make vel. signals for grounded leg = B;
dgl=B; dq2=8; dq3=8; dq4=8; // added 1B/13/2083, by IRS

for (i=d4; 1; i--){
distrData->unfilteredkrot{i-1] = 1;
distrData->filteredkrot[i-1] = 1;

if ({{(groundedLeg == LEFT) && leftHeelContact) || ({groundedLeg == RIGHT) B& rightHeelContact}){ //Adjust foot segment
length
Lf = bodyData->heel. length;
//LGf = bodyData->heel.Lcg;  // for heel contact the foot length is from the ankle to the heel
//hGf = bodyData->heel, hcg;
ql = q1 - HEEL_ANKLE_TOE_ANGLE;
q2 = q2 + HEEL_ANKLE_TOE_ANGLE;

}

cl = cos(q1); s1 = sin{q1);

ci2 = cos(qi+q2); 512 = 5in{qi+q2);

c123 = cos(q1+q2+q3); s123 = sin(qi+q2+q3);

1234 = cos(qi+q2+q3+q4); 51234 = sin(qi+q2+q3+q4);

c12345 = cos(qi+q2+g3+q4+q5); 512345 = sin{qi+q2+q3+q4+g5);
©123456 = cos(qi+q2+q3+q4+q5+g6); 5123456 = sin{ql+q2+q3+q4+q5+qb);
c1234567 = cos{qi+q2+q3+q4+q5+g6+q7); $1234567 = sin(qi+q2+q3+q4+q5+q6+q7};
dqi2 = dqi + dq2;

dgqi23 = dqi2 + dq3;

dqi234 = dqi23 + J 4;

dq12345 = dqi234 + 3q5;

dq123456

dg12345 + dgﬁ;
dq1234567 97;

dq123456 +
// Use Tg later for feedback linearization

Tg2 = -msags(-LGs*(512)+hGs»(c12))-mbagn(-Ls*(s12)-LGt»(s123)+hGts(c123))-mubugs(-Ls*(512)-Lt=(s123)-
LGub»(s1234) +hGub*(c1234) )-mkwgs(-Ls+(s12)-Lt»(s123)-(LGt

-Lt)#(512345)+hGbw(c12345) )-mswgs(-Ls»(s12)-Lt={5123)+L E#(512345)-L Gspa (5123456 ) +hGs=(c123456) Y-mfwgn(-Ls#(s512)-
Ltn{s123)+Lt»(512345)+Ls*(s123456)+LGf

»{c1234567)-hGf»(s1234567)); // SSupvz.txt

Tg3 = -mbags(-LGEw(s123)+hGts(c123))-mubsgs{-Lt*(s123)-LGubs(51234)+hGub»(c1234))-mbsgs(-Ltx(s123)-
LGLp*{s12345)+hGtx(c12345) )-ms#gs{-Lt=(s123)+L t»(512345)

176



~LGsp* (5123456} +hGs(c123456) )-mfgx({-LEa{s123)+Ltn{s12345)+Ls»(5123456)+LGF»(c1234567)-hGF»{s1234567)); //
SSupV3. txt

Tgd = -mub*ﬁu(—LGub*(51234)+hGubw(c1234))—mt»g*(-Ltht(512345)+h6t-(c12345))—nswg*(Lt»(512345)-
LGsp*(5123456)+hGs*(c123456) )-mf#ga (Lt*{512345)+Ls*(5123456)
+LGF»(c1234567)-hGf»(s1234567)); // SSupvd, txt

Tg5 = -mtwge(-LGtp»(512345)+hG*(c12345))-msngw{Lt»{s12345)-LGsp»(s123456)+hGs*(c123456))-
mfags(LEs(512345)+L5+(5123456)+LGf+(c1234567)-hGf»(s1234567)); // SSupvs. txt

Tgh = —ms»gs(-LGsp»(5123456)+hGs+(c123456) )-mfag»(Ls#{s123456)+LGF»(c1234567)-hGF(51234567)); // SSupVé. bxt
Tg7 = -mfage{LGF»(c1234567)-hGf»(51234567)); // SSupv7. txt

//compute stance leg human-induced joint torques (THM)
// Run SevenLinkSwing2dof.m in MATLAB to create these equation

// SSupKE2Subs. txt

pl = -Ls*s12-LGb»s123+hGkec123;

p2 = -LGt*s123+hGtw»c123;

p3 = -Ls»c12-LGtac123-hGt»s123;

p4 = -(LGs-Ls5)*5123456+hGs+c123456;

pS = -Ls»s12-LLws123+Ltxs512345-(LGs-Ls)»5123456+hGs»c123456;

p6 = -Lsxc12-Lbacl123+LL»c12345-(LGs-Ls)*»c123456-hGs»s5123456;

p7 = -Ls*s12-LE+5123-LGubws1234+hGub»c1234;

p8 = -LGub»s1234+hGub»c1234;

pS = -Lswci2-Lbsc123-LGub*c1234-hGub»s1234;

P18 = -Ls»si2-LEss1234Ltes12345+Ls+5123456+LGf »c1234567-hGf»s21234567;
pil = LGf»c1234567-hGf»s1234567;

p12 = -Lssci2-LExc123+Ltwc12345+L s4c123456-LGF »51234567-hGF»c1234567;
P13 = -Lsws12-Ltas123-(LGL-LE)*512345+hGl»c12345;

pl4 = -(LGE-Lt)}#*s12345+hGt=»c12345;

p15 = -Ls»c12-Lt»c123-(LGt-Lt)»c12345-hGLtws12345;

// SSupKEZ. bxt
Tcc2 -p.S*msn(2*(-din*(-LGsts&Zudq12+th»c12»dq12)+dq1*d 1xLfact)s(-LGswci2-hGsws12)+2x{-dgisLfaci+dgi2

m(-LGs*siZ»thrciZ))t(-LGs»ci2*dq12—th~512tdq12)#2»(gqiantsi-dqizn(LGs*c12+th*512))» LGs»s12xdqi2-
hGsxc12+dq12)+2»(dqi2»(-LGs»c12+dqi2-hGs»si2»dqi2)

+3Girdqlalfest)*(-LGses12+hGs»ci2))-. Semfw(2*{dgint frs1-dqi2alsxci2-
dq123#Lkxc123+dq12345+Lknc12345+0q1234562L5+c123456-dq1234567»{L Gf »51234567+hGf»c1234567) )

»(Ls»512»dqi2+Lt»5123»dq123-Lt»512345+dq12345-L 5+5123456+dq123456-dq1234567+p11)+2#(-dgisLf+ci-Ls*si2+dqi2-
Lts5123»d3123+Lt»sl2345adq12345+L5*5123456~dq123456

+dq1234567+p11)»(-dqi2+Ls#c12-dq123L t»c123+dq12345aL knc12345+dq123456L s#c123456+dq1234567(-LGFws1234567-
hGf»c1234567)))~. Sembw(2x{dqislfxsi-dgi2=Lsec12

-dq123»Lt»c123-dq12345#((LGt-LE)}#ci2345+hGt#512345) )» (Ls*»s12»dq12+L kas123%dq123-dq12345+p14)+24(-dqisLfrci-
Lsws12adql2-LE#s123%dq123+dq12345+pid)»(-dqi2

#Ls*c12-dq123»L twc123+dq12345e (~(LGE-LE)#c12345-hGtns12345) ) ) -, Swmubn {2+ (dqi»Lf*s1-dqi2»ts»ci2-dq123sL Esci23-
dq1234x» (L Gub»c1234+hGubrs1234) )« {Lsxs12»dq12

+LE*5123%dq123-dq1234#pB) +2% (-dqislfecl-Ls»s12xdq12-Ltxs123»dq123+dq1234spB)w(-dqi2aLs»c12-dq123sLt¥c123+dqi234(-
LGub*c1234-hGub*s1234)) )+, Swmts(2«(dqiz=dgi2

wLsxs12+dqisdqlslfaci-dq12345#(-(LGE-LE}+512345+dq12345+hGtac12345+dq12345)+dq123+dq1234Lt»5123)»p15+2(-dqisLfacl-
Ls*s12»dq12-LEt*s123»dq123+dq1234S

#pld)»(-dgizsls»ci2-dqi23+L tsc123-(LGE-Lt)*c12345+dq12345-hGt#s12345%dq12345) +2*(dql»Lfs1-dgl2abssci2-
dq123+Lt»c123-dqi2345+{ (LGt-Lk)»c12345+hGt»s12345))

w(Ls#s12+dqi2+LL»5123+dq123+(LGE-LE) »512345+dq12345-hGtc12345+dq12345)+2#(-
dqi2+dqi2+Ls+»c12+dqisdqi+Lfrsi+dg12345+(-(LGt-LE)#c12345+dq12345-hGtes12345

adq12345)—dgizawdq123~Ltvc123)*p13)—.Samt»(2*(dqiwLf»si—dinstwc1Z-dq123t(LGtmc123+ths5123))t(Ls*siZ*dqiz-
dq123#p2)+2n(-dgisLfaci-Ls»s12+dgi2+dq123%p2)

#(-dqi2aLs*c12+dq123«(~LGL»C123-hGtes5123) ) )+, Semfe(2#{-dq1234562dq123456sL5%5123456+dqisdqisLfect-
dq1234567+(LGf»c1234567+dq1234567-hGf»512345674dq1234567)

+dqi12+dql 2+ 5+512-dq12345+dq12345xL kx512345+dq123+dq123»L tas123)wp12+2s(-daisLfeci-Lsws12sdqi2-
LEws123%dq123+L Ews12345%dq12345+L s»5123456+dq123456+dq1234567

#pi1)a(~dqi2+Lswc12-dq123»L txc123+dq12345xL trc12345+dq123456aLs»c123456-LGF +s1234567+dq1234567-
th*c1234567*d31234567)+2t(dqithtsi-dqizaLs*c12—dq123th

#c123+dq12345»L t»c12345+dq1234564Lswc123456-dq1234567»(LGF»51234567+hGfwc1234567) )»(Lses12+dqi2+Ltns1234dqi23-
LEt*5123452dq12345-1L545123456%dq123456-LGf

#C1234567+dq1234567+hGf»51234567+dq1234567 ) +2+(dq123456+dq123456+L 54c123456+dqindqialfxsi+dq1234567(-
LGf»51234567+dq1234567-hGf»c1234567%dq1234567)-dqi2*dqi2

*Ls#c12+0q12345+dq12345+L trc12345-dq123+dq123#Ltwc123)#p18)+. Semubs (2 (dqi2xdqi2sLswsi2+dqindqisLfrcl-dqi234«(-
LGub*s1234+dqi234+hGubrc1234»dq1234)

+dq123»dq123+L b+5123)wp9+2»(-dginLfaci-Ls+s12+dq12-Ltxs123%dq123+dq1234pB)»(-dqi2»lswci2-dq123sL tsc123-
LGub#c1234»dq1234-hGub*s1234»dq1234)+2»(dqiaLf

#51-dqi2#Lswc12-dqi23+Ltxc123-dq1234#{LGubaci234+hGub»s1234) )»(Ls»s12#dq12+L t»s123+dq123+LGubnes1234xdqi234-
hGubwc1234%dq1234)+2»(-dqi2»dqi2sLssc12+dgqiadql

wLfrs1+dq1234#(-LGubac1234wdq1234-hGubas1234%dq1234)~dq123»dq123+Ltwci23)»p7)+. Semss(2s(-dq123456»(~(LGs-
Ls)»s123456+dq123456+hGs»c123456+dq123456 ) +dqi~dqt

wLfrc1+dq123+dql23=L bxs123-dq12345+dq12345#L tws12345+dqi2#dq12+Lsws12)wpb+24(-dqisLfrcl-Lswsi2+dgql2-
Lt*s123+dq123+L bxs12345+dq12345+dq123456wpd)»{-dq12

aLs»c12-dqi23+L b+c123+dq12345+L bxc12345-(LGs-Ls)nc123456+dq123456-hGs»5123456%dq123456)+2# (dqisLfesi-dqi2als»ci2-
dq123#L t»c123+dq12345L kwc12345-dq123456

#((LGs-Ls)*c123456+hGs*5123456) }» (Ls*s124dqi2+Ltas123»0q123-L Ews12345+dq12345+(LGs-Ls)#5123456+dq123456-
hGs*c123456%dq123456)+2%(dq123456#(-(LGs-Ls)»c123456

#dQ123456-hGs»5123456+dq123456 ) +dqindqlsLfrsi-dqi23+dqi23+L tac123+dq12345+dq12345+L kec12345-dq12+dgqi2wtsnci2)»p5)-
.Sams»(2x(dqisLfast-dqi2Lsxci12-dq123

#LExc123+0q12345+L kxc12345-dq123456 ((LGs-Ls)*c123456+hGs*5123456) )»(L5»512+dq12+L t#5123+dq123-L t*#s12345+dq12345-
dqi23456=pd)+2+(-dqislfaci-Lses12+dqi2

~Lt»5123+dqi23+L k»512345+dq12345+dq123456#pa)w{-dq12uLswc12-dqi23»L krc123+dq12345L kxc12345+dq123456(-(LGs-
Ls)»c123456-hGsw»s123456) ) )+. Swmt=(2+(dqi2+dq12

wLsws12+dqisdqisl frcd~dqi23»(-LGt*5123+dq123+hGlxc123+dq123) )#p3+2#(-dqisLfacl-Lsws12xdqi2+dq123+p2)»(-dgi2sLswci2-
LGt»c123+dq123-hGt*s123%dq123) +2x(dql

#Lf*s51-dqi2+Lsec12-dg123# (LGErc123+hGlws123) )x(Lsns12+dqi2+L Gtws123+dq123-hGt#c123+dq123)+2w (-
dgl2+dqi2wlswci2+dqinsdqisLfesi+dq123»(-LGt»c123%dq123

~hGtws123xdq123) )#p1)-. Sems(-2»{dqisLfr51-dq12e(LGswc12+hGs»s12) Indqi2a(-LGs2512+hGs»c12)+2»(~dqisLfrct+dqi2e(-
LGs*512+hGs#c22) )wdq12»(-LGswc12-hGs»s12));

T2 = (.Swmf+(2%(-LGf#51234567-hGf»c1234567)mp12+2#p11wpl0)+1f)uddg7+(. Sems»{2#(-(LGs5-L5)%c123456-
hGs#5123456 ) %p6+2#p4*pS)+1f+, Swmf w(2%(-LGf#s1234567-h6f»c1234567

177



0st0123456)up12*2»(LGf~c1234567-thas1234567+L5~5123456)*pie)+Is)#ddq5*(.5~mf*(2*(Lta012345-LGf~51234567-
hGf#c1234567+Ls%c123456) wp12+42% (L bxs12345+LGF

#C1234567-hGf»51234567+Ls%5123456)xp18)+1f+. Samsx(2»(LE»c12345-(LGs-Ls)»c123456-hGs+51234568 ) #p6+2m(L txs12345-(LGs~
Ls)*5123456+hGs#c123456)*p5)+15+, Swmt

#{2% (- {LGL-Lt)»c12345-hGt*512345)wp15+2+p14wp13)+Tt)}+ddqS+(Iub+. Semubs{2+{-LGubxc1234-
hGub*s1234)#p9+2#pBwp7 )+, Swms» (2 (LExc12345-(LGs-Ls )*c123456-hGs»5123456)

*p6+2»(LExs12345-(LGs-Ls)*5123456+hGs*c123456)»p5)+If+, Semf#(2»(Lt*»c12345-LGF»51234567-
hGf#c1234567+Ls#c123456)#p12+2» (L t*s12345+LGf »c1234567-hGf %51234567

+L5#5123456)»p18)+It+1s+. Semba (2+(-(LGL-LE)»c12345-hGtws12345)#p15+24p14#p13) )»ddqd+(2» 1L+, Sxms» (2+(-
Lttc123+Lt*c12345-(LGs—Ls)~5123456-th»5123456)mEG

+2#(-LEws123+L k4512345 (LGs-L5)#5123456+hGs#c123456)#p5)+. Sambw(2#{-LGt»c123-
hGt*5123)%p3+2+p2apl)+Is+1f+, Swmbx(2+(-(LGt-Lt)*c12345-hGtxs12345-LE»c123)

#p15+2% (- (LGL-Lt)#512345+hGtxc12345-Ltws123)#p13)+, Swmf (2 (-Ltrc123+4Ltwc12345-L6Fns1234567-
hGf#c1234567+Ls#C123456)*p12+2#(-Lt*5123+Ltns12345+LGF»c1234567

-hGf#51234567+L5%5123456) #p10)+. Semubx» (2% (-LGub»c1234-hGub*s1234-LE»c123)#p9+2»{-LGubxs1234+hGubsci234-
Lt#s123)wp7)+1ub)»ddql+(2»1t+2»1s+, Semsm(2#p6sp6

+2#p5#p5)+. Sambx (24p34p3+24paapl)+. Semsx (2w (-LGS*C12-hGsns12)w{-LGsHc12-hGs»512)+2#(-LGsws12+hGs#ci2)# (-
LGs»512+hGs*c12) )+, Sambw{2+p1S%p15+24p13wp13)+, Samubs(2

#p9p9+2sp7ap7)+If+. Samfx(20p12ap12+424paBup1B)+Iub)»ddq2+{. Swmtm(2x(-Lfrci-LGt*s123+hGtxc123-Ls#512)wp1+2(Lfars1-
LGtxc123-hGt»s123-Ls»ci2)

Ap3)+2+Es+2+Ib+. Sems+(2#(LEns12345-L bxs123-Ls#s512-(LGs-Ls)#5123456+hGs#c123456-LF»c1)»pS+2w{Ltrci2345-L tsci23-
Lsxci2-(LGs-Ls)*c123456-hGs#s123456+Lf»51)

#p6)+, Swmubs(2#(-Lsrs12-Lfrcl-LGubas1234+hGubrc1234-Ltws123)wp7+2n(-Lsac12+L Fasi-LGubsc1234-hGubss1234-
Liwc123)#p9)+If+lub+, Semfa(2s (LLtws12345+L sa5123456

~Lf*cl-LEws123+LGF#c1234567-hGf#51234567-Ls#s12)#p1B+2»(LEwc12345+L s%c123456+LFwsi-Lbnc123-LGf#s1234567-
hGf%c1234567-Ls»c12)#p12)+. Sambs{2a(-Ls»s12-Lf»cl

-(LGt-Lt)»512345+h6t—c12345-Ltwsizs)mp13+2—(-Ls»ciZeLf*si-(LGt-Lt)*c12345-th»512345—Lt*c123)»p15)+.Snnsw(Zt(-
LGs#s12+hGs*c12-Lfxcl)»(-LGs»s12+hGs»ci2)

+2#{-LGs#c12-hGs*512+LFws1)w(-LGsnc12-hGs»s12) ) )»xddql;

// SSupkKE3Subs. txt
pl = -LEws5123+Lt#s12345-(LGs~Ls)»5123456+hGs*c123456;

p2 = -(LGs-Ls)}»s123456+hGs»c123456;

P3 = ~Lbxc123+LLt»c12345-(LGs-Ls)»c123456-hGsxs123456;

pé4 = -LExs123+Lt»s512345+LGfxc1234567-hGf»s1234567+Ls»5123456;
pS = LGf»c1234567-hGf»s1234567

p6 = -Li#c123+Ltxc12345-LGfx51234567-hGFf»c1234567+L5%c123456;
p7 = -(LGt-Lt)*512345+hGt*c12345-Lt»5123;

p8 = -(LGE-Lt)*s12345+hGtwc12345;

p® = -(LGE-Lt)»c12345-hGk#s12345-Lt=c123;

p18 = -LGub#»s51234+hGubsc1234-LE»s123;

pll = -LGub#s1234+hGub»ci234;

pi2 = -LGub#c1234-hGub%s1234-Lt»c123

pi3 = -LGt»c123-hGt*s123;

pl4 = -LGt»s123+hGb»c123;

// SSUpKES3, txt
Tce3 = . Swmts(2+(dqi2«dqi2eLs»s12+dgindqisLfrct
-dqi23»(-LGt»s123+dq123+hGtaci23+dq123) )wpa3+2e(-dqislfrci-Lsws12%dq12+dqi23#p14)# (-LGt*»c123%dq123~
hGt»5123+dq123)+2#(dqisL fas1-dqi2sLs»c12-dq123%(LGtwci23
+hGEss5123) j#(LGEws123+dq123-hGtwci23+dqi23) +2+{-dq12+dq12L s»ca2+dqixdqist fxs1+dq123(~-LGtsc123+dq123-
hGEws123+dq123) )apid)-. Semtx(2={dqisLfxs1-dq12
sLsac12-dq123sLbac123-dq12345» ((LGE-LE)#c12345+hGt#512345) )x(Lb*s1234dq123-dq12345+p8)+2»(-dqinLfrci-Ls»s122dqi2-
Ltws123+dq123+dqi2345%p8) = (-dqi23+Ltxc123
+3q12345~(-(LGt—Lt)~c12345—h6t*512345)))-.Samta(-2*(dqi*Lf»si—din*LstciZ-dqizam(LGttc123+th*5123))»dq123tp14#2t(-
dqisLfeci-Ls#s12xdql2+dq123+pl4)»dql23
#p13)-, Sams»(2#(dqisLfrsi-dgl2+Ls»c12-dqi23»Ltxc123+dq12345+Ltwc12345-dq123456#( (LGS~
LS)*C123456¢hGS*5123456))*(Lt*5123*§q123'Lt'512345‘dq12345-dq123456
#p2)+2#(-dqislfacli-Lses12+dqi2-LE»s123+dq123+L txs12345+dq12345+dq123456mp2)n(~
dq123#L bxc123+dq12345+L tac12345+dq123456x» (- (LGs-Ls)#c123456-hGs»5123456)))
- Semubs(2»(dgisLfxs1-dqi2#Ls+c12-dqi23»L t*c123-dq1234+(LGub»c1234+hGubas1234) )» (L t#s123»dq123-dq1234»p11)+2%(~
dqisLfxcl-Ls»s12+dqi2-Lt»s5123+dq123+dq1234
*p11)»(-dqi23sLt»c123+dg1234(-LGub*c1234-hGub*+51234)))+. Samubs(2+(dqi2+dq12sLs#s12+dqisdqislfrcl-dqi234d»(-
LGub*s51234+dqi234+hGub»c1234+dq1234)+dq123+dqi23
#Lws123)wp12+2» (-dQiabfaci-Ls»s512sdql2-LE»5123+dq123+dq1234+p11) #(-dq123#L kxc123-L Gubac123d%dq1234-
hGub»51234tdq1234)+2w(dqi*L?*si-din*stc12- qi23sLt
#c123-dq1234«{LGub*c1234+hGub»521234) )» (LLws123%dq123+L Gub»51234%dq1234-hGubsc1234%dq1234)+2#(~
dqi2+dqi2sls»c12+dgqis=dqisLfrst+dq1234m(-LGub»c12344dq1234
~hGub»s1234%dq1234)-dq123+dq123+Lt+c123)wp106)+. Swmb»(2»(dqi2+dqi2sL s*s12+dqindginLfxci-dqi2345+(-{LGt-
LE)»512345+dq12345+hGxc12345%dq1 2345} +dq123»dq123
#LEx5123)#p9+2#(-dqislLfaci-Ls»s124dq12-LErs123+dq123+dq12345+pB)»(-dq123xL twc123-(LGt-L k) »c12345+dq12345-
th~512345»dq1234S§oZn(dqimLf»si-dqi?*LstciZ-dqiza
#Lbec123-dq12345#( (LGL-Lt)»c12345+hGtss12345) )a(Lt*s123+dqi23+{LGt-LL)»s12345»dq12345-hGl#c12345+dqi12345)+2#(-
dql2+dqi2atsaci2+dgixdglsLf*s1+dq12345
»{-(LGt-LE)*c12345+dq12345-hGt*s12345+dq12345)-dq123+dq123sL twc123)#pT)-. Semf»(2«{dqisLf+si-dgi2nlssci2-
dq123»Lt»c123+dq1234S+LEwc12345+dq123456%L 5123456
-dQ1234567+(L.GF»51234567+hGf»c1234567) )»(LE*5123+dq123-L t#512345+dq12345-L5#5123456%dq123456-dq1234567#p5)+2#{-
dgqisLfecl-Ls*512+dq12-Lt*s123»dq123+LL*s12345
*dq12345+L5%5123456%dq123456+dq1234567+p5)» (-dqi23»L tac123+dq12345#Ltwc12345+dq123456%L s»c123456+dq1234567%(~
LGF#51234567-hGf»c1234567)) )+, Samf =2+ (-dq123456%dq123456
#Ls»s5123456+dqisdqislfacl-dqi234567+(LGF+c1234567+0q1234567-hGf »s1234567+dq1234567 ) +dq12»dgi2slsssi2-
dq12345ndq12345*Lt*si2345~dq123‘d3123~Lt~5123)
#p6+2x(-dQisLfrcl-Lsws12+dqi2-Ltns123+dq123+LL»512345+dq12345+L5+5123456+dq123456+dq1234567+p5) (-
dg123+Lksc123+4dq12345#L bac12345+dq123456eLs+c123456-LGF
*512345672dq1234567-hGf xc1234567+dq1234567 ) +2+(dqisL fasi-dqi2alsxci2-
dqi123+Lt»ci23+dq12345#L t*c12345+dq123456L5+c123456-dq1234567#(LGF »s1234567+hGf#c1234567))
w(LE*s123#dqi23-Ltws12345+dq12345-Ls#51234564dq123456-
LGF*C1234567+dq1234567+hGf #51234567%dq1234567) +2#(dq123456»dq123456#L5xc123456+dq1adqisL frs1+dq1234567
*(-LGf»51234567+dq1234567-hGf»c1234567%dq1234567)~dqi2»dqi2alsnci2+dq12345+dq12345+L bwc12345-
dq123+dq123+Lkwc123)#pd)+, Sems»{2»(-dq123456# (- (LGs-Ls)*s123456
»dq123456+hGs»c123456+dq123456 )+dqirdgislfrcl+dqi23»dql23«Ltas123-
dq12345+dq123454L E+512345+dq12+0q12+Ls#512)»p3+24(~dglaLfacl-Ls»s12»dq12-L Ex5123
*0Q123+L kxs12345%dq12345+dq123456+p2)»{-dqi23»L kwc123+dq12345%L kxc12345-(LGs-Ls)»c123456+dq123456-
hGs*5123456+dq123456)+2#{dqlsL f*s1-dqi2#Ls»c12-dqi23sLt
#c123+dq12345#L t»c12345-dq123456#( (LG5-L5)*#Cc123456+hGs#5123456) )#(Ltw»s123%dq123-Lt*512345+dq12345+(LGs-
Ls)#*s123456+dq123456-hGs*c123456% 9123456 )+2»(dq123456
*(-(LGs-Ls)*c123456%dq123456-hGs»5123456%dq123456) +dqisdqislfrs1-dq123+dqi23sl tac123+dq12345+dql 2345aL kec12345-
dgi2+dqi2alswc12)*pl);

178



T3 = (. Samfa(2x(-LGF#51234567-hGf+c1234567)#p6+2+p5+p4)+1f )»ddq?+{ Is+. Samsx(2(-(LGs-Ls)*c123456-
hGs#5123456 )xp3+2wp2apl)+1f+, Swmf»(2»(-LGF*s1234567-hGf»c1234567
+L5»c123456 ) xp6+2+ (LGF#c1234567-hGf #51234567+L 5+5123456)#p4) )»ddq6+{Tt+1f+, Swmsx(2»(Ltwc12345~(LGs-Ls)»c123456-
hGs»$123456)#p3+2»(LE»512345-(LGs-Ls)»s5123456
+th'c123456)tp1)4.S*mt‘(za(-(LGt-Lt)*c12345-h6t*512345)*p902*p8tp7)+.Swmf»(2*(Lt*012345—LGft51234567-
hGf#c1234567+Ls#c123456) xpb+2#(LE»s512345+LGF »c1234567
~hGf#51234567+Ls45123456)#pa)+1s)+ddgS+(1t+Tub+. Samf#(2+(Lt+c12345-LGFas1234567-
hGfac1234567+Ls%c123456 ) #p6+2# (LExs512345+LGF»c1234567-hGF»51234567+L s#5123456)
#pd)+, Swmsa(2x(Ltwc12345-(LGs-L5)#c123456-hGsws123456 )wp3+2w(Ltns12345-(LGs-
Ls)#5123456+hGs#c123456) #p1)+1s+, Samubx(2x(-LGubxc1234-hGubss1234)»p12+24pi1
*pl0)+, Sembw(2#(-(LGL-LE)»c12345-
hGtxs12345)%pG+2»pBap7 }+1f )addgd+ (. Samub»(2»p12+p12+42+p10#p18)+. Semta(24p13%p13+2xp1dapid)+1f+15+, Sumbs(2Z+pIp9
+2#p7wp7 }+ 201k +1ub+, Sams» (2%p3#p3+24p1apl )+, Semf #{ 2xpbxp6+2#pdwpd) ynddq3+ (21 t+, Sxms»(2#p3a(-Ls*cli2-
LE*c123+Lb*c12345-(LGs-L5)»c123456
~hGs»5123456)+24pls(-L5»512-L b*5123+L t*512345-{LGs-Ls)»5123456+hGs»c123456} )+, Swmb#(2#p13s(-Ls*c12-LGt+c123~
hGt#s5123)+2»pld*(-Ls»s12-LGt*s123+hGt*c123))
+Is+1f+, Swmbe(2+pIn(-Lswc12-LEwc123-(LGE-LE )*c12345-hGtws12345)+2np7n(-Lsrs12-Ltes123-(LGL-
LE)*512345+hGtwc12345) )+, Swmf#(2#p6w(-Lsaci2-LEwc123+Lt+c12345
+L52c123456-LGf#51234567-hGf+c1234567)+2wpdn(-Lsws12-Ltas123+Ltrs12345+Ls#5123456+LGF»c1234567-
hGfws1234567) )+, Samubs{22p12»(-Ls»ci2-LExc123-LGubsci234
~hGub#51234)+2+p18s(-L5»512-L tx5123-L Gub*s1234+hGubxc1234) ) +Tub)»ddq2+ (. Semba{2»{-Lfsci-LGtrs123+hGtrc123-
Ls*s12)wpld+2n(Lfast-LGt#c123-hGtws123-Lswc12)
#p13)+2a1k+. Samsn (24 (L tr512345-L bws123-Lsxs12-{LGs-L5)*s123456+hGs#c123456-Lfact)wpl+2s(Ltac12345-Lt»c123-Lsaci2-
(LGs-Ls)#c123456-hGs»s5123456+L f*51)%p3)
+. Swmubs{2x(-Lsxs12-Lf*c1-LGubws1234+hGub*c1234-LEws123)#p1B+2#(-Lswci2+LFrs1-LGubrc1234-hGubs1234-
Lt»c123)api2)+1s+Tub+. Sxmf»(2a{Lt*s12345+L5+5123456
~Lf#ci-LErs5123+LGf#c1234567-hGf»51234567-Ls#s12)»pd+2#(Lt*c12345+L52c123456+LFes1-LLwci23-LGF#s1234567~
hGf*c1234567-Ls*c12)#p6)+. Sambs{2#(-Ls»s12-Lfxcl
~{LGE-Lt)#512345+hGLac12345-LErs123)p7+2x(-Lsnct2+LFus1-({LGE-LE)#»c12345-hGbrs12345-Lbwcd23)#p9)+1f Ixddq1;

// SSupKE4Subs, txt

pl = LE»512345-(LGs-Ls)»5123456+hGs»c123456

p2 = —(LGs-L5)*5123456+hGs*c123456;

P3 = Lk#c12345-(LGs-Ls)*c123456-hGs»5123456;

p4 = -(LGE-Lt}»512345+hGt»c12345;

pS = -{LGt-Lt)»c12345-hGtx512345;

p6 = Ltxs12345+L6fxc1234567-hGf»51234567+Ls+5123456
p? = LGf#c1234567-hGf»51234567;

p8 = LExc12345-LGf#51234567-hGf*c1234567+Ls+c123456;
P9 = -LGub*c1234-hGubssi1234

pi8 = -LGubws1234+hGub»c1234;

// SSupkEd4. kxt
Tccd = , Samubw(2

#(dq12»dqi2sLs»512+dqisdqisifrci-dq1234x (-LGubss1234+dq1234+hGubwc12342dq1234) +dqi23+dqi23aL bas123)wpSe2e (-
dqisLfrci-Lswsi2xdql2-Ltrs123#dqi23+dq1234

»p18}#(-LGub»c1234+dq1234-hGubws1234+dq1234)+2»(dqisLfasi-dqi2=Ls»c12-dqi23sLt*c123~
9q1234»(LGubxc1234+hGubxs51234) )»{LGub*s1234»dq1234-hGubsci234+dq1234)

+2»(-dq12wdqi2sl sxc12+dql »dqisLf»s1+dq1234+ (-LGubac1234xdq1234-hGubx51234+dq1234)~dq123+dq123L E»c123 )»p1B)-
. Swmubs(-2+(dqisLf+s1-dqi2»Lswc12-dqi23

»Lt»c123-dq1234x(LGubsc1234+hGubss1234) )+dq1234#p18+2#(-dqisLfrci-Ls»s12»dq12-L txs123+dq123+dq1234xp1B)»dql23d=p3)-
. Swmfx{2»(dqisLfesi-dqi2alswc12-dq123

*Lttcizaﬁdq12345*Lttc12345¢dq123456'Ls*c123456—dq1234567u(LGf*51234567¢h6f*c1234567))#(-Lt*512345*dq12345-
Ls*5123456+dq123456~-dq1234567»p7 ) +2»{-dqisLf»cl

-Ls»s12#dqi2-
Lt*5123adq123+Lt»512345mdq12345+Lsu5123456*dq123456¢dq1234567wp7)t(dq12345*Lt»c12345+dq123456*L5*0123456#dq1234567u(—
LGf#51234567-hGf»c1234567)))

+. Semfa(2#(-dg123456+dq123456+L 5+5123456+dqirdqinL Fxc1-dq1234567»(LGF»c1234567+dq1234567-
th¢51234567~dq1234567)+dq12tdq12aLs*s12-d?12345~dq12345oLtt512345

+dq123*dq123»Ltws123)wpB+2x(-dqlisLfrcl-Lses12sdql2-
Lt*51231dq123+Lt*S12345#dq12345+LS*S123456»dq1234560dq1234567»p7)*(dq12345*Lt*c123459dq123456*L5»0123456

-LGf»51234567+dq1234567-hGf»c1234567%dq1234567 ) +2»{dqixLfxs1-dql2«L s*ci2-
dg123+Lt»c123+dq12345L b#c12345+dq123456#Lsxc123456-dgq1234567*(LGf #51234567 +hGf

#C1234567) )»(-Lt»512345%dq12345-L 5%5123456+dq123456~
LGf»c1234567%dq1234567+hG6f»s1234567%dq1234567 )+ 2#(dq123456+dq123456%L sxc123456+dq1adqisLfrs1+dql234567

a(-LGf*si234567~dqi234567—h6f~c1234567~dq1234567)—din*dinvLs*c12¢dq12345*dq12345»Lt‘c12345-
dq123»dqi23+Ltec123)»p6)-. Semba(-2»(dgisLfesi-dgi2sLsxci2

~dg123+L t#c123-dq12345#( (LGE-LL)#c12345+hGLx512345) )»dqi23454p4+2(-dgisL frci-Ls»si2xdql2-
LE»s123+dq123+dqi2345+p4)+dq12345mp5) -, Swms= (2« (dqisLfrs1-dqi2

wLs#c12-dqi23#L krc123+dq123454L brc12345-dq123456+( (LGS-Ls)mc123456+hGs»5123456) )= (-L kws12345+dq12345-
dq1234564p2)+2+(-dqisLfrcl-Lsxs12+dqi2-Lt»s123+dgq123

+Lb#512345+dq12345+dq1234564p2 ) #(dq12345»L kxc12345+dq123456#(-(LGs-Ls)»c123456-
th*5123456)))+.S*mtw(2»(dq12*dqi2~Ls»512¢3q1*dq1aLf*c1-dq12345*(-(LGt

-LE)*s123452dq12345+hGLrc12345+dq12345)+dq123%dqi23»L tws123)#pS+2»(-dgialfrcl-Lsss12+dgi2-
Ltnsizatd§123+dq12345wp4)t(-(LGt-Lt)*c12345*dq12345-thu512345

#dq12345)+2+(dqiLf+s1-dqi2sls#c12-dq123#L bac123-dq12345%( (LGL-LE)*c12345+hGt»512345) )»((LGE-LE)»512345+dq12345-
hGt»c12345+dq12345)+2#(-dql2»dqi2als*c12

+dq1xdqistfrs1+dq12345#(-{LGt-LE)*c12345+dq12345-hGtns12345+dq12345)-dq123xdq123»L trca23)#pd)+. Sumss( 2#{~
dq123456(-(LGs-L5)*5123456+4dq123456+hGs*c123456

*dq123456)+d31*dqiaLf*c1+dq123tdq123*Lt*si23-dq12345*dq12345*Lt»512345¢dq1Z*dqiZ*Ls*slz)~p3+2t(-dqiaLf*c1-
Ls*512+dq12-Lt+5123+dqi23+L t*512345+dq12345

+dq123456*p2):(dq12345»Lt*c12345-(LGs-Ls)~c123456*dq123456-th*s123456*dq123456)+2u(dqimLf:si-din»Lsach-
dq123«Ltmc123+dq123454Ltac12345-dg123456»( (LGs

-L5)*c123456+hGs#5123456) )+ (-Lt»512345+dq12345+(LGs-L5)»5123456+dq123456-hGs»c123456»dq123456 )+2x(dq123456(-(LGs-
Ls)*c123456»dq123456-hGs»s123456+dq123456)

+dqisdqisLf*51-dq123+dq123»Ltrc123+dq12345+dq12345#L kxc12345-dql2xdqi2wtssc12)»pl);

T4 = (If+, Swmf»(2%(-LGf+51234567-hGfwc1234567)%pB+2xp7#p6 ) )nddq7+(1f+1s+. Sems#{2#(~(LGs-L5)»c123456-
hGs*5123456 ) #»p3+2#p2ap1)+. Semf» (2% (~LGf #51234567-hGfxc1234567

+Ls#0123456)#p8+2»{LGfwc1234567-~
hGf#51234567+L5%5123456 ) »p6) ) »ddq6+(, Semfa(24pBapB+2+p6ap6 )+, Semba(2ap5ap5+2xpdupd)+1f+1k+ s+, Semsa(25p3+p3

+2%p1xpl) ) »ddg5+(. Semubx(2+p9up9+2+p16+p18)+1k+1f+. Sems»(2+p3#p3+24piapi )+ IubsIs+, Samfw(24pBupB+2+p6np6)+, Sembs({24pSep5+2
#pdspd) )»xddqd+ (1k+Tub+, Semfu{2xpBs(-LEwc123+L t4c12345-LGF»51234567-hGf xc1234567+L5+c123456)+20pba( -
Ltws123+4L b»s512345+LGf»c1234567-hGf»s1234567+L5%5123456))
+. Swmsa (2#p3n(-LE#C123+L t#C12345-(LGs-Ls)xC123456-hGs*$123456)+2#pla(-LEws123+L brs12345-(LGs-
Ls)*»5123456+hGs+c123456) )+ 15+, Samubs(2xp9=( -L Gubsc1234-hGub

179



t51234—Lt*c123)*2*p19*(-LGub*s1234+hGub*ci234-Lt*s123))*.S*mt»(2»p5»(-(LGt—Lt)~c12345—th~512345-Lttc123)*2#p4u(-
(LGt-LE)*512345+hGL#c12345-L tas5123) )+1f)

wddg3+ (. Sambs(2(-Lssca2-LErc123-(LGE-Lt)»Cc12345-hGtrs12345 ) 4pS+2» (-Ls»s12-LLrs123-(LGL-
LE)#512345+hGt*c12345)wpd)+, Semuba{2x(-Ls+c12-Ltxc123-LGubrc1234

—hGub*s1234)*p9¢2*(-Ls*siZ-Lt*siZS-LGub*si234*hGub*c1234)*piB)4.S*ms*(2*(-Ls~c12-LttciZS#Lt~c12345-(LGs—
Ls)#c123456-hGs#5123456)»p3+2% (-Ls#s12-Lk*51234LL

~512345-(LGs—Ls)*5123456¢th*c123456)~p1)+ItoIfﬁIs#IuboA5*mf~(2~(-stciZ—Lt~c123+Lt*ci2345+Ls*c123456—LGf151234567—
hGF#c1234567 )#p8+2#(-L5*s12-LExs123+LE

#512345+L s+5123456+LGF%c1234567-hGfxs1234567)#p6) )»ddq2+(Tt+, Swmsa(2x(Ltrs12345-LE#5123-Ls#s12-(LGs-
Ls)*5123456+hGs#c123456-Lfwciypi+2#(Lt»c12345-Lt*c123

—Ls*ciz-(LGs-Ls)*ciZBdSE-th*s123456¢Lf»sl)*p3)¢.Swnub*(2*(—Ls*si?-Lfnci—LGuh»51234+hGub»c1234—Lt#siZB)apiG*Zt(—
Lsac12+Lfas1-LGubxc1234-hGubxs1234-LLxc123)

*p9)+Xs*1ubo.Sﬂnfm(2*(Ltt512345+Ls*5123456-Lf»c1-Lt*5123+LGfwc1234567-h6f~51234567-
Ls#siz)*p6+2#(Lttc1234S+Ls~c123456+Lfa51-Lt*c123-LGf»51234567—thtc1234567

—Ls*clz)wpﬁ)+.S*mtu(Z»(-Lsmsiz-Lf*ci-(LGt~Lt)~512345¢h6tt012345-Lt*siza):p4~2w(-Ls~c12~Lf*si—(LGt—Lt)wc12345-
hGk*512345-Lt*c123)»p5)+1f)»ddql;

// SSupKESSubs. txt

pl = LExs12345+LGf »c1234567-hGfws1234567+Ls+5123456;
p2 = LGf»c1234567-hGf»s1234567;

p3 = LEwc12345-LGF»52234567-hGf»c1234567+Ls%c123456;
pd = LE*s512345-(LGs-Ls)»s423456+hGs»c123456;

pS = —(LGs-Ls5)*5123456+hGs»c123456;

pé = LExc12345-(LGs-Ls)»c123456-hGs»s5123456

p7 = -(LGE-Lt)»c12345-hGt#512345;

p8 = -(LGE-LLt)»512345+hGt#c12345;

// SSupKES. txt
Tee5 = . Swmbx(2+{dqi2+dqi2*Ls*s12+dgqixdql

~Lf#ci-dq12345#(—(LGt-Lt)1512345»dq12345+h6t~012345*dq12345)+dq123»dq123*Lt*siZS)*p7+2*(-dqi*Lf*ci—Lstsiz*dqiz—
Lt*siZStd3123¢dq12345th)t(—(LGt-Lt)*c12345

» q12345-th»512345*dq12345)+2t(dqi*Lftsi-dinaLs*ciZ-dqizavLt*c123-dq12345*((LGt-Lt)*c12345+h6t—512345))s((LGt-
Lt)*$12345+dq12345-hGtwc12345+dq12345)+2

t(-dq12¢dq12~Lsac12+dq1*dq1»Lf*si+dq12345»(-(LGt—Lt)a012345»dq12345—h6tas12345wdq12345)-dq123~dq123tLttc123)tpa)-
. Swmbx{-2»{dqinsLfrsi-dql2eLsaci2

—dq123nLt'c123-dq12345~((LGt—Lt)*c12345+tht512345))tdq12345tp8+2»(-dqiwa*ci—Ls*siZ#din-
Lt»s123+dqi23+dq12345»pB ) xdqi2345+p7)-. Swms» (2 (dqisLf>s1-dql2 )

*Lstciz-dq123*Lt*c123¢dq12345'Lt#c12345-dq123456*((LGS-LS)*ciZ3456#hGS*5123456))*(-Ltt512345#dq12345-
dq123456#p5)+2# (-dqisLfaci-Lsssi2adqi2-L t»s123+dq123 )

+LE»s12345%dq12345+d 123456tp5)*(dq12345wLt»c12345+dq123456t(-(LGS—LS)~c123456—h65t5123456)))#.5*ﬂst(2u(—
dq123456~(—(LGs-Ls)»s123456»3q123456+tht0123456

tdq123456)+dgiudqith~c1+dq123*dq123~Lt*5123-dq12345wdq12345*Lt*si2345+dq12*dq12*Lst512)*p6¢2u(—dqiwaﬁci-
Ls#s12#dq12-LE»5123%dq123+L bas12345+dq12345

+dq123456tp5)*(dq12345*Lt~c12345—(LGs-Ls)wc123456tdq123456—h65ts123456*dq123456)+2*(dqi*Lftsi-dinaLs»ciz—
dq123sLt»c123+dq12345%L k»c12345-dq123456#((LGs

—Ls)*0123456+h65'5123456))v(-Ltt512345*dq12345+(LGS-LS)*5123456»dq123456—thtc123456*dq123456)*2*(dq123456t(-(LGs-
Ls)»c123456+dq123456-hGs+5123456»dqi23456)

+dgis gi»Lf#si-dqizaﬂdq123uLtwc123+dq12345vdq1234S»Lt*ci2345—dq12»dq12*Ls*c12)»p4)-.S»mfa(Zt(dqi*Lf-si-dinth'ciz-
dq123»Lt*c123+dqi2345+Ltrci2345

+dq123456*Ls»c123456-dq1234567~(LGft51234567+thf01234567))»(-Ltwsi2345»dq12345—Ls:5123456tdq123456-
dq1234567tp2)02*(—dgiaLfvci—Ls*siZadin-Lt~5123~dq123

+LEx512345x q12345¢Ls»s123456*dq123456+dq1234567tp2)t(dq12345*Lt»ci2345*dq123456~Ls~c123456+dq1234567t(-
LGF#51234567-hGf»c1234567) ) )+. Semf»{2%(~dq123456+dq123456

tLs*5123456+dqi»dqi»Lftci—dq1234567w(LGfsc1234567»dq1234567-tht51234567*dq1234567)+dq12tdq12»Lsas12-
dq12345%dq12345#L txs12345+dq123edq123+L Lxs123)

~p3+2t(-dqi»Lfaci-Lsnsithin-
Lt*sizaadq123+Lt~512345»dq123454Lsa5123456*dq123456+dq1234567*p2)*(dq1234SmLt~c12345*dq123456'Ls~c123456—
LGF»s1234567%dq1234567

~hGFxc1234567+dq1234567 ) +2#+(dqisLfasi-dq12+Ls+c12-dq123+L t»C123+dq123454L krc12345+dq123456#L5+c123456~
dq1234567*(LGf#51234567+hGf #c1234567 ) }»(-LE»512345

#dq12345-L5*5123456+dq123456-
LGf#c1234567*dq1234567+h6f*51234567»dq1234567)+2*(dq123456#dq123456wLs*ci23456~dq1*dq1tLf*51+dq1234567#(-
LGf*s1234567+dq1234567

—hGf»cd234567+dq1234567 )-dql2+dgl 2L s»c12+dq12345+dq12345+L »c12345-dq123+dq123+L Exc123)pl);

Ts -(If+.S»ﬂﬁu(Zt(-LGf*s1234567-th*c1234567)*p3+2*p2»p1))tddq74(1f+]s+.Smmsn(2#(-(LGs-Ls)~c123456-
hGs*5123456)#p6+2#pSwpd)+. Samfw (2 (-LGf+51234567-hGf»c1234567
+Lsne123456)#p3+2»(LGF»c1234567~
th*51234567+LS'5123456)*pi))#ddqﬁ#(.5‘mft(2$p3'p3+2*p1*p1)*.5*mt#(2*p7*p7+2tp5*p5)+1f#1t%ls#.S*ﬂs’(Z*pS*pG

02»p4wp4))tddq5*(.5~nf~(2*p3~p3¢2»p1*p1)+.S*mt»(2*p7*p?+2*p8»p3)+!f+1t+Is¢.5*ms*(2*p6tp6+2*p4*p4))»ddqdo(.5*mtn(2»p7t(-(LGt
-Lt)ac12345-thts12345-Lt#c123)+2tp3~(-(LGt—Lt)*si2345+th*c12345-Lt~5123))+ls+1t*.5»mf*(2»p3m(-Ltm0123+Lt¢012345-
LGf%51234567-hGf»c1234567+L5%c123456)
+2~p1~(-Lt~5123¢Lt*512345+LGf~01234567—tht51234567*L5t5123456))+.Smms»(2#p6*(-Lt*c123¢Lt*c12345—(LGs-Ls)»0123456-
hGs#5123456)+2#pd»(-Ltx5123+L k512345
-(LGs-Ls)*5123456+h65#c123456))+If)*ddq3+(Is+.5*n5»(2~(-Ls*clz—Ltwc123+Lt*012345—(LGs-Ls)»c123456-
hGs*s123456)#p6+2%(-Ls#s12-Lbxs123+L k#512345-(LG5-Ls)
~5123456+h65*c123456)»p4)+.Snnfw(2*(-Ls»ciZ-Lt*c123¢Lt*c12345+Ls»c123456-LGf~51234567-h6f*c1234567)'p3¢2w(-Ls'512-
Lt#5123+L t»s12345+Ls»5123456+LGf »c1234567
-th*siZ34567)~p1)+lt#If#.Stmtt(2*(-stc12-Ltac123-(LGt-Lt)»c12345-h6t»512345)»p7*2~(-Ls*siZ-Lta5123—(LGt—
Lt)#»512345+hGtxc12345)»pB) )»ddq2+{It+Is+, Swms
t(Zt(Lt#512345-Lt#siZS-LstsiZ—(LGS-LS)w5123456¢th*c123456-Lfwci)*p4*2*(Lt~c12345-Lt~0123-Ls~c12-(LGs—Ls)‘c123456—
hGs»$123456+Lf»s1)#p6)+1f+, Semfu{2»(LL
51234540 sw5123456-LFrcl-LExs123+LGFncl1234567-hGFxs1234567-Ls#s12)#pi+2a(Lbsc12345+Ls*c123456+LFasi-L beci23~
LGF#51234567-hGf»c1234567-Ls+c12)#p3)+. Swmt
*(2*(-Ls»si?-Lf*ci-(LGt—Ltg*5123450th#012345-Lt*5123)»pB+2*(—LS*012+Lf*51-(LGt-Lt)tc12345-h6tt512345-
Ltxc123)»p7))»ddq1;

// SSupKEBSbs, txt

LGf»c1234567-hGf »51234567;
LGf#c1234567-hGf#51234567+L5%5123456;
-LGf»51234567-hGf»c1234567+Ls+c123456;
—-{LGs-Ls)#c123456-hGs»5123456;
-(LGs-Ls)*s123456+hGs»c123456

o
w
LI B BB ]

// SSupkKES, txt
Tcch = .S*msa(2*(—dq123456a(-(LGS-Ls)—5123456»d3123456+th~c123456tdq123456)
+dgqisdqixLfrcl+dqi23+dqi23+LL»5123-dq12345% q12345~Lt»512345»dq12tdq12*L50512)up4¢2*(-dqi*Lf:cl-Lsusidein-
LE#s123»dq123+LL#512345+dq12345+dq123456

180



»ps)u(-(LGs-Ls)*c123456wdq123456-h65*5123456*dq123456)¢2w(dqi»Lf*si-din*LsaciZ-dq123~Lt»0123+dq12345*Lttc12345-
dq123456m((LGS-LS)#c123456+th»5123456))

#( {LGs-Ls)+s1234562dq123456-hGs#c123456+dq123456)+2*(dq1234564 (- (LGs~Ls)»c123456+dq123456~
hGs#5123456+dq123456)+dqisdgqisLfes1-dq123»dq123»LL»c123+dq12345+dq12345

*Lt*c12345-din*dinuLstciz)*ps)-.S*ms*(-2:(dqi*Lf*si-dqiZ*Lsnciz—dq123~Lt*c123+dq12345*Lt»012345—dq123456t((LGs-
Ls)*c123456+hGs»5123456) Jxdq1234564pS

*2*(—dqi:Lf*ci—Ls*siZmdqiz—Lt~5123‘dq123+Lt*512345»dq12345+dq123456»p5)'dq123456tp4)f.Stmf*(Z*(-
dq123456+dqi23456mLs%5123456+d 1»dqixt Frcl-dgq1234567#(LGF

wc1234567*dq1234567—h6?t51234567*dq1234567)+dq12tdq12~Ls*512-dq12345tdq12345~tt*s12345+dq123»dq123*Lttsiza)»p3+2a(—
dgisLfsci-Lsesi2+dql2-LL»s123+dqi23

+Lt*512345ﬂdq12345*L5*5123456*dq123456+dq1234567*p1)*(dq123456~LS*ci23456-LGf*51234567*dq1234567—
hGfxc12345672dq1234567 ) +2+(dqisLf»s1-dqiz=Lssc12-dqi23

*Lt*c123+dq12345tLt*012345¢dq123456*Ls*c123456-dq1234567*(Lwa51234567*th‘c1234567))u(-LSt5123456mdq123456-
LGF*c1234567+dq1234567+hGFf»s1234567%dq1234567)

+2~(dq123456udq123456tLs~c123456+dq1*dqi*Lf*si+dq1234567a(-LGf»s1234567adq1234567-th»c1234567adq1234567)-
dqi2wdin*LsaciZ#dq12345~d?12345aLt»c12345-dq123*dq123

wLtwc123)»p2)-. Swm w(2»(dqisLfrsi-dqi2+Lsc12-dq123#L bxc123+dq12345+L bxc12345+dq123456aL s%c123456-
dq1234567* (LGF*51234567+hGfxc1234567) )#{-Ls*5123456dq123456

-dqi234567#p1)+2x(-dqist feci-Lsxs12xdgl2-
Lt»5123~dq123+Lttsi2345:dq12345+Lss5123456*dq123456+dq1234567*p1)»(dq123456»Ls*c123456¢dq1234567*(-Lan51234567-
hGf*c1234567))) ;

T6 = (. 5+mf#(2%(-LGf#s1234567-

hGF»c1234567 ) +p3+2#p1ap2}+1f )xddq7+(Is+. Sums» (2#p4spa+2+pSap5 )+, Sunfw(24p3wp3+24p2+ 2)+If)*dd?6*(.Snns*(Za(Ltucizsés
-{LGs-L5)*c123456-hGs#5123456 ) #pd+2»(LL»512345-(LGs-L5)*»5123456+ Gsnc123456§wp5)+.5*m w{2%(Lt»c12345-LGf»51234567-

hGF#c1234567+Ls#C123456 ) »p3+2» (LErs12345
4LGF#c1234567-hGF»s1234567+L5+5123456)»p2)+1s+1f )»ddqS+(. Semsw{2»(LL»c12345-(LGs-Ls)*c123456-

hGs#+5123456)*pd+2s(LEws12345-(LGs-L5 ) »5123456+hGs5#c123456)
tp5)+.S*mfw(2*(Lttci2345-LGf*51234567—th»c1234567+Ls*c123456)»p3¢2»(LtnsiZ345+LGf»c1234567-

hGFx$1234567+L 55123456 ) #p2)+15+1f )»xddqd+ (. Sems»(2»(-LLxc123
+Lt*c12345-(LGs—Ls)~c123456-h65~5123456)*p4+2n(-Lt»5123+Lt*s12345-(LGs-Ls)a5123456¢h6s*c123456)ap5)+1s+.S*mfn(Zﬂ(—

Ltwci23+Ltxc12345-16f»s1234567-hGf»c1234567
4stc123456)*p3+2~(-Ltw5123+Lttsi2345+LGfac1234567—hGFa51234567+Ls~5123456)apz)oIf)*ddq3+(ls+.5*mft(2*(—Ls*c12-

Lexci23+Lbnc12345+Ls%c123456-LGF »51234567
—th~c1234567)~p3¢2»(—Ls*512-Lt*5123+Lt»si2345+Ls*5123456+LGf*c1234567-th~51234567)apZ)+If+.5~mst(2*(—Ls*ciz-(LGs-

Ls)%c123456-hGs»5123456-L twc123+L kwc12345)
*p4+2»(—Ls»siz-(LGs—Ls)n5123456+h65*c123456-Ltt5123+Ltu512345)#pS))uddq20(15+.Snns*(Z*(Ltu512345—Lts5123-Ls»512—

{LGs-Ls)*5123456+hGsxc123456-Lfwcl)ap5+2
»(Lt»c12345-Lttc123-Lstc12-(LGs-Ls)*c123456—thvsiZ3456*Lf*si)*p4)+If+.5*nﬁn(Zw(Ltt512345+Ls*5123456—Lf»c1-

Ltws123+LGf#c1234567-hGF»51234567-Ls#s512)»p2
+2%{LEnc12345+L 590123456 +LFasi-LE»c123-LGF»51234567-hGf#c1234567-Lsxc12)»p3))*ddql;

// SSupkE7Subs. txt
pli = -LGf »51234567-hGf »c1234567;
p2 = LGf»c1234567-hGf*s51234567;

// SSupkKE7.Exkt
Tec? = . Semfs(2x(-dq123456+0q1234564L5+5123456+dgixdgistfxcl
-dq1234567#(LG6f»c1234567xdq1234567-hGf »51234567+dq1234567) +dq12+dqi2ats+s12-
dq12345+dqi2345»L txs12345+dqi23»dq123xLtxs123 }4pi+2#(-dqisLfrci-Lsss12xdqi2
—Ltasizatdq123+Ltasi2345:3q12345#Ls*s123456*dq123456+dq1234567up2)w(—LGf:51234567tdq1234567—
hGf*c1234567%dq1234567 ) +2» (dqisLfsi-dqi2sLs»ci2-dq123«Lt»c123
+dq12345*Lt*c123450dq123456»Ls¢c123456-dq1234567~(LGf*siZ34567¢h6f*c1234567))»(-
LGFxc1234567+dq1234567+hGf x51234567xdq1234567 }+2#{dq123456#dq123456xLswc123456
+dqlrdqislfrs1+dq1234567(-LGf x51234567+dq1234567-hGF xc1234567+dq1234567 )~
dq12#+dql2sL swc12+dq12345mdq12345sL tac12345-dq123+dq123+Ltrc123)wp2) . Swmf
*(—2*(dqi-Lf#si-dqizustciz-dq123»Lttc123+3q12345-Lt~c12345+dq123456uL5*c123456-
dq1234567*(LGFx51234567 +hGf #c1234567) )#dq1234567#p2+2»(-dqisLfrci-Lsesi2
wdin—Lt'5123ﬁdq123¢Lttsi2345!dq12345+LS*5123456t q123456+dq1234567#p2)»dqi234567+p1);

T7 = (.Swmft(2»p1*p1+2*p2*p2)¢If)*ddq7+(.Stmf*(2»p1*(-LGf*51234567-hGf*c1234567+Ls*c123456)+2*p2*(LGf*01234567-

hGf»s1234567+Ls»s123456) )+1f )»ddg6+(.5

winfa(2n (L E*c12345-LGFx51234567-hGFwc1234567+L5%c123456)wpl+2+(LLss12345+L Gf 1234567
hGfs1234567+L5#5123456)»p2)+1f YeddqS+ (. Swmf+{2+(Ltxc12345-LGf»51234567

—hGfwc1234567+Ls»c123456 ) api+ 2w (LExs123454LGF2c1234567-hGf »51234567+L5+5123456)+p2)+1f )»ddqd+{. Semf»(2(-
Lt#c123+L txc12345-LGF#51234567-hGfxc1234567+Ls

tc123456)ap1+2*(-Lt*si23+Lt»5123450LGf»c1234567—th#51234567+Ls*5123456)ap2)+If)»ddq3¢(.Smmf#(Zt(-Ls*ciz—
LEmc123+LEnc12345+Lswc123456-LGF»51234567-hGf»c1234567)

wpl+e2w(-L5»s12-L bxs123+1L kxs12345+L s%5123456+LGFwc1234567-
th~51234567)~p2)+If)wddq2+(.S#mfn(Zm(Lt*siz345+Ls»5123456—Lf~c1-Lt*5123+LGftc1234567-tht51234567

-LSnsiZ)*pZ*Zt(Lt#c12345#Ls*c123456*Lf*si-Lt*c123-LGf*51234567-h6f~c1234567-Ls*c12)»pi)*If)wddqi;

if (groundedLeg == LEFT){ // LEFT leg is grounded, Adjust torgques to match sign convention [TankleL TkneelL ThipL
TankleR TkneeR ThipR]

momentArms[B8] = sensorData->jointData[LANKLE].momentArm;
momentArmsf1] = sensorData->jointData[LKNEE].momentArm;
momentArms[2] = sensorData->jointData[LHIP].momentArm;

GetTfrictionSwing(&TF[RANKLE_T], &angles{RAMNKLE], tvelocities[RANKLE], 1); // right leg is swing leg, legside (last
arg) not used in GetTfrictionSwin

GetTfrictionSStance (8TF[LANKLE_T], &angles[LANKLE], &angles[RANKLE], momentArms, sysProperties,'L'); //left leg is
stance leg

// Tg = torque needed to hold device against gravity
// Use Tg later for feedback linearization
sensorData->jointData[LANKLE]. Tg = -Tg2;
sensorData->jointDatalLKNEE]. Tg = -Tg3;
sensorData->jointData[LHIP).Tg = -Tg4; // left leg
sensorData->jointData[RANKLE]. Tg Tg7;
sensorData->jointData[RKNEE]. Tg Tgb;
sensorData->jointData[RHIP]. Tg Tg5; // right leg

sensorData->joinkData[LANKLE]. Tcc = Tecc2; // torques to counteract velocity forces
sensorData->jointData[tKNEE].Tcc = Tce3;

sensorData->jointData[LHIP].Tcc = Tccd; // left leg
sensorData->jointData[RANKLE]. Tcc = -Tee?;
sensorData->jointData[RKNEE]. Tcc = -Tccé;

181



sensorData->jointData[RHIP]. Tcc

= -TeeS; // right leg

sensorData->jointData[LANKLE]. Tinertial = T2; // torques to counteract velocity forces

sensorData->jointData[LKNEE]. Tinertial

sensorData->jointData[LHIP]). Tiner
sensorData->jointData[RANKLE]. Tin
sensorData->jointData[RKNEE]. Tine
sensorData->joinktDatafRHIP]. Tiner

tial = T4; // left leg
ertial = -T7;
rtial = -T6;
tial = -T5; // right leg

sensorData->jointData[LANKLE]. Thm = T2+Tcc2; // - torques[LANKLE_TI; //TFILANKLE_T] - Tg2 - torques[LANKLE_T] + T2

+ Tce2; / GROUNDED leg
sensorData->jointData[ LKNEE]. Thm
// compute total THM torgque for e

sensorData->jointData[LHIP]). Thm

+ Tce3;

+ Tccd;
sensorData->jointData[ RANKLE]. Thm
sensorData->jointData[RKNEE]. Thm
sensorData->jointData[RHIP]. Thm

} else { // RIGHT leg is grounded
momentArms{8] = sensorData->joint

momentArms{1]} = sensorData->joint
momentArms[2] = sensorData->joint

ach joint

-T7-Tce?; // ankle
-T6-Tceh; // knee
-TS-Tee5; // hip

Dakta[RANKLE ]. momenkArm;
Data{RKNEE ]. momen tArm;
Data[RHIP].momenkArm;

T3+Tcc3; // - torques[LKNEE_T];

Td+Tcecd; // - torques[LHIP_T];

//TFILKNEE_T] + T3

J/Tf[LHIP_T]

- Tg3 - torques{LKNEE_T]

- Tg4 - torques[LHIP_T] + T4

GetTfrictionSwing{&TFILANKLE_T], Bangles[LANKLE], &velocities[LANKLE], B); // Teft leg is swing leg, Tegside (last

arg) not used in GetTfrictionSwing

GetTfrictionSStance(&TF[RANKLE_T], &angles[RANKLE], &angles[LANKLE], momentArms, sysProperties,’'R'); // right leg

is stance leg

// Use Tg later for feedback linearization
sensorData->jointData[LANKLE]. Tg = 7g7;
sensorData->jointData[LKNEE].Tg = Tgé;
sensorData->jointData[LHIP}.Tg~ = Tg5; // left leg
sensorData->jointData[RANKLE].Tg = ~Tg2;
sensorData->jointData[RKNEE], Tg = -Tg3;
sensorData->jointData[RHIP].Tg = -Tg4; // right leg
sensorData->jointData[LANKLE]. Tcc = -Tee?;
sensorData->jointData[LKNEE]. Tcc = -Tccé;
sensorData->jointDatafLHIP]).Tee = -TecS; // left leg
sensorData->jointData[RANKLE]. Tcc = Tce2;
sensorData->jointData[RKNEE]. Tce = Tcc3;
sensorData->jointData[RHIP].Tcc = Tccd; // right leg
sensorData->jointData[LANKLE]. Tinertial =
sensorData->jointData[LKNEE]. Tinertial = -T6;
sensorData->jointData[LHIP). Tinertial = -T5; // left leg
sensorData->jointData[RANKLE]. Tinertial = T2;
sensorData->jointData[RKNEE]). Tinertial = T3;
sensorData->jointData[RHIP]. Tinertial = T4; // right leg
sensorData->jointData[LANKLE]. Thm = -T7-Tcc7; // ankle
sensorData->jointData[LKNEE]. Thm = -T6-Tccé; // knee
sensorData->jointData[LHIP). Thm = -T5-TceS; // hip
sensorData->jointDate

+ Tcee; / GROUNDED leg
sensorData->jointData[ RKNEE]. Thm
// compute total THM torque for e

sensorData->jointData[RHIP]. Thm

+ Tee3;

+ Tecd;

/7 friction and stiffness

ach joint

sensorData->jointDatalLANKLE]. Tf = TF{LANKLE_T];
sensorData->jointDatalLKNEE]. Tf = Tf[LKNEE_T];
sensorData->jointData[LHIP].Tf = TfLHIP_T];
sensorData->jointData[RANKLE].TFf = TF[RANKLE_T);
sensorData->jointData[RKNEE]. Tf = TF[RKNEE_T];
sensorData->jointData[RHIP]. Tf = Tf[RHIP_T];

// compute torque for feedback linearization
sensorData->jointData[LANKLE]}. T1in = sensorData->jointData[LANKLE].Tg
sensorData->jointData[LKNEE]. Tlin = sensorData->jointData[LKNEE].Tg
sensorData->jointData[LHIP].Tlin = sensorData->jointData[LHIP].Tg
sensorData—>jointData[RANKLE]. T1in = sensorData->jointDatalRANKLE].Tg
sensorData->jointData[RKNEE], TTin = sensorData-»jointDatalRKNEE].Tg
sensorData->jointData[RHIP].T1in = sensorData->jointData[RHIP].Tg
// set toe torques to zero

sensorData->jointData[LTOE]. Tg = B8;
sensorData->JointDats[RTOE}. T = B;
sensorData->jointData[tTOE]. T = B;
sensorData->joinkData[RTOE]. Thm = B;
sensorData->jointData[LTOE]. T1in = 6;
sensorData->jointData[RTOE]. Tlin = 9;
sensorData->joinktData[LTOE]. Tcc = 8;
sensorData->jointData{RTOE]. Tce = B;
sensorData->jointData[LTOE]}. Tf = B;
sensorData->jointData[RTOEY. T = 0
sensorData->jointData[LTOE]. Tinertial = 6;
sensorData->jointData[RTOE]. Tinertial = 8;

/* Function: GetlTsensorInTorsoframe

T3+Tec3; // - torques[RKNEE_T];
T4+Tccd; // - torgques[RHIP_T];

// torques to counteract velocity forces

-T7; // torques to counteract velocity forces

RANKLE]. Thm = T2+Tcc2; // - torques[RANKLE_T); //TFIRANKLE_T] - Tg2 - torques[RANKLE_T] + T2

//TE[RKNEE_T] + T3

//TF[RHIP_T]

- Tg3 - torques[RKNEE_T]

- Tg4 - torques[RHIP_T] + T4

sensorData->jointData[LANKLE]. Tf;
sensorData->joinktData[LKNEE]. Tf;
sensorData->jointData[LHIP]. Tf;
sensorData->jointData[ RANKLE]. Tf;
sensorData->jointData[RKNEE]. Tf;
sensorData->jointData{RHIP]. Tf;

*
» Calculates the transpose jacobian matr
* [T2 T3 T4]' = 3T_4 = [Fx Fy Tz]_sensor

ix

182

of the backpack force sensor for a 3dof leg and updates IT.



» and JT_4 = JT_B RB4, where JT_B is the Jacobian in frame B8 and R84 is the rotation matrix fom frame®
» to frame 4,
» Jacobian is obtained from sensor)acobian.m

-
void Get)TsensorInTorsoFrame(double ITLI3],
const double kneeangle,
const double hipAngle,

const BodyDataT »bodyData){

double g3, g4, Ls, Lt, Lsn, hsn, cd, sd4;

Ls = bodyData->shank, length;
Lt = bodyData->thigh. length;
Lsn = bodyData->torsoSensor_L;
hsn = bodyData->torsoSensor_h;
g3 = kneeAngle;

g4 = hipAngle;

c4 = cos{qd);

s4 = sin(q4d);

//{rowl[col]

JT[e][8] = -Ls*cos(q3+q4)-Ltwcd-Lsn;
IT[8][1] = Lsxsin(q3+q4)+Ltwsd+hsn;
1-

T[ejfz) = 1;
JT[1}[0] = -Ltxcd-Lsn;
IT[1][1] = Ltssd+hsn;
IT[4][2] = 1;
1T{2}[e] = -Lsn;
JT[2][1] = hsn;
ITE2){2] = 1;

/# Function: GetTfrictionSStance

L
» Calculates the joint torques vector to counteract joint friction and stiffness for one leg. Updates Tf.
» The vector is as follows:[Tankle Tknee Thip] and represents the torque of the distal segment on the proximal segment.
» Equations are obtained from Excel documents 'rankle stiffness.xls’, 'rknee stiffness.xls', ‘rhip stiffness.xls’.
t/legside =5 for left leg and 1 for right leg
L
void GetTfrictionSStance(double *Tf,
const double »angles,
const double sotherLegAngles,
const double wmomentArms,
const SysPropertiesT -snfsPropert'ies,
const char egSide){

double torgque_slope[3], torque_offset{3), force_slope{3], force_offset[3], shankAngle, hipAngleD, extraKneeT;

7i if(angles[8] < -15+Pi/188){ /7 ankle
/ T?[ANKLE_T] = 2B;
17 }else if{angles[8] < @}{
/7 TF[ANKLE_T] = 18;
/7 Jelse{
/7 Tf[ANKLE_T] = 6;
Iz }
/"
/7
/" if(legSide =='L')}{ 7/ left le
/i hipAngleD = otherLegMgles[z? - angles{2]; // difference in hip joint angles
/7 if(hipangleD > 8}{
/ b extrakneeT = 43xhipAngleD; // extra knee torque so that stance leg doesn’t straighten too much when swing leg
is back
/7 }else{
/4 extrakneeT = 8;
o)
/ J/TFIANKLE_T] = -6; //-2; // left stance 06 83 63
/7 TFIKNEE_T] = -2 + extrakneeT; //-12 + extrakneeT; //left stance 66 18 B3
/,/l TF[HIP_T] = -13; //-28;
/
% Jelse{ // right leg
/7 hipAngleD = otherLegAngles[2] - angles{2]; // difference in hip joint angles
/7 if(hipAngleD > 8){
// extrakneeT = 43shipAngleD; // extra knee torque so that stance leg doesn't straighten too much when swing leg
is back
/7 Jelse{
I extrakneeT = 8;
24 }
/
/" J/TELANKLE_T] = -6;
174 TF[KNEE_T] = -2 + extraKneeT;
/" TFIHIP_T) = -13;
124 }
TFIANKLE_T] = 8;
TF[KNEE_T] = B;
Tf[HIP_T] = 0B;
}

183



Appendix A.16 — 1Red.h

/* Function: DoubleSupportSingleRedundancyTHM

* -
» Calculates the joint torgues due to gravity(Tg) and due to the human (THM) during the double support
* mode with @ kinematic re undanc? in one of the the legs. i.e. one leg is 3dof, the other is 4dof

» The vector is as follows:-[TankleL TkneeL ThipL TankleR TkneeR ThipR?

*/

void DoubleSupportSingleRedundancyTHM(double =angles,
double »velocities,
double saccelerations,
double »torques,
const BodyDataT »bodyData,
ink redundantieg,
int leftHeelContact,
int rightHeelContact,
const double Kf,
const double =torsoForces,
ForceDistributionT sdistrData,
SensorDataT *sensorData,

const VirtualGuardT vguard,
const SysPropertiesT *sysProperties);

/» Function: GetddofTorques

»*
« Calculates the joint torques vector due to the human for a 4dof leg, and updates THM.
# The vecktor is as follows:[Tankle Tknee Thip]

»
void GetddofTorques(double *Tg,
double *Tec,
double *Tf,
double *THY,
const double »angles,
const double =vejocities,
const double saccelerations,
const double =torques,
const BodyDataT »bodyData,
const int heeiContact,
const double =trig,
const char side,
const SensorDataT ssensorData);

/» Function: GetlT44 - ABZ 2084-18-85

L]
» Calculates the transpose jacobian matrix for a 4dof leg and updates 17T,
= The jacobian Eransforms an opertional force of the form [Fx_hip Fy_hip Tz_hip Tz_foot] into a torque vector [Tfoot Tank]

Tknee Thip]

* T = )Tdd4 F

*/

void GetlT4d(double 3TL3[4],
const BodyDataT »bodyData,
const double *trig);

/» Function: GetlinvT44

*
» Calculstes the inverse transpose jacobian matrix 3inT for a 4dof leg. F = JinvT T where T is the
+ joint torque vector and F is the operational force [Fx@hip Fyship Tz@hip Tfoot] .

»*

void GetlinvTd4{double JinvT[1[4],
const BodyDataT »bodyData,
const int hee'anntact,
const double xtrig);

/» Function: GeblpsT

*

« Calculates the jacobian transpose matrix Jp6T for a double support system with one redundancy.
+ Tpé = Jp6T Fpé is the joint torque vector and F is the operational force system vector

» F = [FLx@hip FLu@hip FRx@hip FRy@hip Tzehip Tz@foot] .

*/

void Getlp6T(double Jp6TL1[6],
const BodyDataT »bodyDats,
const int heelContact,
const double »trigRD,
const double *=trighR);

/#» Function: GetlpéTnew (may 27 83)
»

» Calculates the jacobian transpose matrix JpsT for & double support system with one redundancy.
» Tp6 = 1p6T Fp6 is the joint torque vector and F is the operational force system vector

» F = [FLx®hip FLy@hip FRx@hip FRyghip Tz@hip T2@foot]} .

* see J6xT in TeskForceDistr.m

*

/

void Getlp6Tnew{double Jp6T[1[6],
const BodyDataT *bod?Data,
const int heelContack,

const double *trigRD,
const double *trigNR)};

/= Function: Get)pSxT
SRS S R S SRR
» Calculates the jacobian transpose matrix JpST for a system with a zero ankle torque at the non-redundant leg.

184



+ Tp5 = Jp5T FpS is the joint torgue vector and F is the operational force system vector
» FpS = [FNRx@hip FRDx@hip Fy@hip Tzehip Tzefoot]

*/

void GetlpSxT{double JpSxTL1{5],
const BodyDataT *bodyData,
const int heelContact,
const double »krigRD,
const double *trighR);

/» Function: Getlp5xxT

@ e e et e —

» Calculates the jacobian transpose matrix 3pST for a system with a zero ankle torque at the redundant leg.
» Tp5 = Jp5xxT Fp5 is the joint torgque vector and F is the operational force system vector
» Fp5 = [FNRx@hip FROx@hip Fyehip Tz@hip Tz@foot]

*/

void GetlpSxxT{double IpsxxT[I[S]1,
const BodyDataT sbodyData,
const int heelContact,
const double *trigRD,
const double *trighR};

/» Function: GetTRDfootOperational

»
» Calculates the foot operational torque for a 4dof leg. TRDfoot is the result
= THRD is the leg's joint torque vector,

»/

double GetTRDfootOperational(double #THYRD,
const BodyDataT #bodyData,
const int heelContact,
const double »trig);

/» Funckion: GetlpdxT

»

» Calculates the jacobian transpose matrix JpdT for a sgstem with two zero ankle torques.
» Tp4 = Jp4xT Fpd is the joint torque vector and F is the operational force system vector
» Fpd = [Fx@hip Fy@hip Tz@hip Tz8foot]

»/

void GetlpdxT{double 3p4xT[1[4],
const double *RDangles,
const double *NRangles,
conskt BodyDataT sbodyData,
consk int heelContact,
const double #trigRD,
const double »trighR);

/* Function: ComputeTrig_1iRed
. -
» Computes trigonometric sin and cos functions for the iRedundancy Double Support state and stores them in an
* array.
-/this function reduce the number of cos and sin to be computed in the iRed double stance state by half.
»
void ComputeTrig_1Red(double »trigRD,
double *trighR,
const double *RDangles,
const double »NRangles,
const int heelContact);

/» Function: GetTfrictionRedtlLeg
L]
» Calculates the joint torques vector to counteract joint friction and stiffness for one ieg. Updates Tf.

+ The vector is as follows:[Tankle Tknee Thip} and represents the torque of the distal segment on the proximal segment.

*/
void GetTfrictionRedtLeg{double »Tf,
const double *angles,
const char side,
const SensorDataT =sensorData);

/# Function: GetTfrictionNRedtLeg

»
» Calculates the joint torques vector to counteract joint friction and stiffness for one leg. Updates Tf.
» The vector is as follows:[Tankle Tknee Thip] and represents the torque of the distal segment on the proximal segment.

»/
void GetTfrictionNRedtLeg{double »Tf,
const double »angles,
const char side,
const int heelContact,
const double dhR,
const double dRD,
const BodyDataT »bodyData);

185



Appendix A.17 — 1Red.c

#include <math. h>

#include "ExoMain.h”
#include "Defines.h”
#include "Filters.h”
#inciude "DSup.h”
#include “"1Red. h”

extern double filterCoeffsOFF[5];

extern double filterCoeffsistB25[S], filterCoeffsistdS[S], filterCoeffsist1[5], filterCoeffsist2[S],
filterCoeffsistS[5], filterCoeffsist18[S], filterCoeffsist26[5], filterCoeffsistSB{5],
filterCoeffsist8B[5], filterCoeffsist1@B[5], filterCoeffsist12@[5], filterCoeffsist148[S}],
filterCoeffsist166[5], filterCoeffsist188[S], filterCoeffsist268[S];

extern double filterCoeffs2ndd25[5], filterCoeffs2nde5[5], filterCoeffs2znd1[S], filterCoeffs2nd2(5],
filterCoeffs2nds[5], filterCoeffs2ndi8[5],

filterCoeffs2nd28{5], filterCoeffs2ndS6[5], filterCoeffs2nd8B[5], filterCoeffs2ndi88[5],
filterCoeffs2nd128[5]), filterCoeffszndid4B[S],

filterCoeffs2nd16B8[5], filterCoeffs2nd1808[5], filterCoeffs2nd208[5], filterCoeffs2nd258{S],
filterCoeffs2nd3ee{5), filtercCoeffs2nd3s0[S],

filterCoeffs2nd488({5]), filterCoeffs2ndS6B[S],

filterCoeffs2nd188B8[5];

extern double DfilterCoeffsi{?7}, DfilterCoeffs2[7], Df i TterCoeffs5[7], DfilterCoeffsiB[7],
DfilterCoeffs26[7], DfilterCoeffs58[7], DfilterCoeffs108[7), DfilterCoeffs148{7), DfilterCoeffs168{7],
Dfi TterCoeffs288[7], DfilterCoeffs258[7], DfilterCoeffs368[7], DfilterCoeffs356[7], DfilterCoeffs4se[7],
Df i lterCoeffsSeB[7];

/» Function: DoubleSupportSingleRedundancyTHM

*®

« Calculates the joint torques due to gravity(Tg) and due to the human (THM) during the double support
» mode with a kinematic re undancv.‘; in one of the the legs. i.e. one leg is 3dof, the other is 4dof

»« The vector is as follows:-[TankleL TkneeL ThipL TankleR TkneeR ThipR?

w/

void DoubleSupportSingleRedundancyTHM(double sangles,
double *velocities,
double »accelerations,
double =torques,
const BodyDataT wbodyData,
int redundantLeg,
ink leftHeelContack,
int ri?htHaelContact,
const double Kf,
const double st