
Copyright © 2011 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
I3D 2011, San Francisco, CA, February 18 – 20, 2011.
© 2011 ACM 978-1-4503-0565-5/11/0002 $10.00

Realtime Human Motion Control with A Small Number of Inertial Sensors

Huajun Liu
Wuhan University

Texas A&M University

Xiaolin Wei
Jinxiang Chai

Texas A&M University

Inwoo Ha
Taehyun Rhee

Samsung Advanced Institute of Technology

Abstract

This paper introduces an approach to performance animation that
employs a small number of motion sensors to create an easy-to-use
system for an interactive control of a full-body human character.
Our key idea is to construct a series of online local dynamic mod-
els from a prerecorded motion database and utilize them to con-
struct full-body human motion in a maximum a posteriori frame-
work (MAP). We have demonstrated the effectiveness of our sys-
tem by controlling a variety of human actions, such as boxing, golf
swinging, and table tennis, in real time. Given an appropriate mo-
tion capture database, the results are comparable in quality to those
obtained from a commercial motion capture system with a full set of
motion sensors (e.g., XSens [2009]); however, our performance ani-
mation system is far less intrusive and expensive because it requires
a small of motion sensors for full body control. We have also eval-
uated the performance of our system by leave-one-out-experiments
and by comparing with two baseline algorithms.

Keywords: Performance animation, data-driven animation, natu-
ral user interfaces, motion capture, inertial sensors

1 Introduction

This paper introduces an approach to performance animation that
employs a small number of motion sensors to create an easy-to-
use system for an accurate control of a full-body character in real
time (Figure 1). We choose inertial sensors for performance in-
terfaces because they are compact, occlusion-free and relatively
cheap. However, building such a performance interface is chal-
lenging because the input information from a small number of mo-
tion sensors is quite low-dimensional compared to a typical human
body model, which is often represented by more than fifty degrees
of freedom. The user’s inputs, therefore, cannot be used to fully
determine a full-body human pose because they will be consistent
with many disparate solutions, some of which might correspond to
unnatural poses and not be what the user intends to model.

The key idea of our paper is to construct an efficient dynamic mo-
tion model from prerecorded motion data and use it to constrain the
solution space of online motion reconstruction. We represent our
dynamic model as a set of mathematical functions that predict the
current pose using its previous poses. Building an efficient dynamic
model to predict how humans move, however, is difficult because
human movement is highly nonlinear and demonstrates a wide va-
riety of variations even for the same functional action. Instead of
learning a global dynamic motion model, which would necessarily
be high-dimensional and nonlinear, this paper chooses to construct
a series of online local linear dynamic models to approximate a
global highly nonlinear dynamic model.

Figure 1: The user wearing a small number of motion sensors con-
trols an avatar in real time. From left to right: boxing, golf, and
table tennis.

At run time, we search the motion capture database for motion ex-
amples that are close to the recently synthesized motion. The K
closest motion examples as well as their subsequent poses are then
used as training data to learn a dynamic model that maps the previ-
ous poses to the current pose. Our dynamic model is time-varying
because a new local dynamic model is created to predict a pose at
each time step. Our motion model is appealing to human motion
modeling and prediction because it scales up well to the size and
heterogeneity of motion databases.

We formulate the online motion reconstruction problem in a max-
imum a posteriori framework (MAP) by combining a prior term
encoded by online local dynamic motion models with a likelihood
term defined by control inputs. Maximum a posteriori estimation
of human poses in sequential mode produces a natural-looking mo-
tion sequence that best matches the control signals obtained from
motion sensors.

We have demonstrated the effectiveness of our system by control-
ling a variety of human actions, such as boxing, golf swinging, and
table tennis, in real time. Given an appropriate motion capture
database, the results are comparable in quality to those obtained
from a commercial motion capture system with a full set of motion
sensors (e.g., XSens [2009]); however, our performance animation
system is far less intrusive and expensive because it only requires a
small number of motion sensors for full body control. In addition,
we have evaluated the performance of our system by leave-one-out
experiments and by comparing with two baseline algorithms.

2 Background

In this section, we discuss related work in performance-based con-
trol interfaces for avatar control. Because we use a motion capture
database in our system, we also briefly review research utilizing
motion capture data for motion synthesis and control.

Performance-based control interfaces. One popular solution for
performance animation is based on commercially available motion
capture equipment. Active optical, passive optical, magnetic, and
exoskeleton-based motion capture systems all now have the abil-

133

ity to perform real-time capture of a typical human model. How-
ever, this solution is far too expensive for common use. It is also
cumbersome, requiring the user to wear 40–50 carefully positioned
retro-reflective markers and skin-tight clothing, 18 magnetic mo-
tion sensors or inertial measurement units, or a full exoskeleton.

Systems that can extract meaningful information about the user’s
motion from only a few sensors are appealing because they dramat-
ically reduce the intrusiveness and cost of the system. The Wiimote
controllers by Nintendo, for example, are a successful commercial
example of this class of interface. The system measures 3D acceler-
ation of sensors with a three-axis accelerometer and detects 2D po-
sitions with the use of an infrared sensor; The motion information
enables users to interact with virtual objects in game environments.
In contrast, Sony’s EyeToy [2003] is a vision-based system that re-
quires no markers but is capable of extracting the 2D silhouettes of
simple gestures such as a punch or a wave. Most recently, Sony’s
PlayStation Move uses the PlayStation Eye to track the position of
a wand in three dimensions through a special illuminated orb at the
end. None of these systems attempted to fully capture or animate
the user’s motion but instead focused on recognizing or locating a
limited set of simple actions and showing their effect on the scene.

Researchers have also explored techniques for using a few sen-
sors to reconstruct full-body motion. Badler and colleagues [1993]
used four magnetic sensors and real-time inverse kinematics algo-
rithms to control a standing figure in a virtual environment. Their
system adopted a heuristic approach to handling the kinematic re-
dundancy while we use a data-driven approach. Semwal and col-
leagues [Semwal et al. 1998] provided an analytic solution to the
inverse kinematics algorithm based on eight magnetic sensors. Yin
and Pai [2003] used a foot pressure sensor to develop an interface
that extracts full-body motion from a database. Their system was
successful at reproducing full body motion for a limited range of
behaviors. However, foot pressure patterns may be insufficient to
accurately reconstruct a motion with detailed upper body motions.

An alternative to performance interfaces is to act out the motion
in front of vision sensors [Lee et al. 2002; Ren et al. 2004; Chai
and Hodgins 2005; Ishigaki et al. 2009]. Most recently, with a sin-
gle depth camera, Kinect by Microsoft enables users to control and
interact with the Xbox 360 without the need to touch a game con-
troller through a natural user interface using body gestures. Our
system is different because our performance-based control inter-
faces are based on a small number of inertial motion sensors. Un-
like vision sensors, inertial motion sensors do not suffer from oc-
clusion problems.

Slyper and Hodgins [2008] creates a similar performance anima-
tion system that leverages the power of low-cost inertial sensors and
prerecorded motion data. Their system enables the user to control
upper-body movement with five inertial sensors. In contrast, our
system allows full-body motion control with six inertial sensors.
Similar to their system, we also use prior knowledge embedded in
prerecorded motion data to reduce ambiguity of motion reconstruc-
tion. However, our work is different because we learn a series of
online local dynamic models for motion interpolation rather than
play the best match. Statistical interpolation of example motions is
advantageous to our application because it can generalize motion
examples to give the user more precise control over the character’s
motion.

Animation with motion capture data. A number of researchers
have developed data-driven models for motion interpolation and
synthesis. Three distinct approaches have been used: construct-
ing models of human motion [Brand and Hertzmann 2000; Li et al.
2002; Grochow et al. 2004; Chai and Hodgins 2005; Chai and Hod-
gins 2007; Lau et al. 2009; Min et al. 2009], reordering motion clips

employing a motion graph [Lee et al. 2002; Arikan and Forsyth
2002; Kovar et al. 2002; Lee et al. 2006; Safonova and Hodgins
2007] and interpolating motion to create new sequences [Rose et al.
1998; Kovar and Gleicher 2004; Mukai and Kuriyama 2005; Kwon
and Shin 2005; Heck and Gleicher 2007]. In our work, we search
the motion examples that are close to recently synthesized motion
and use them to build a statistical dynamic model for motion recon-
struction. We therefore discuss statistical motion modeling in more
detail.

Statistical motion models are often represented as a set of math-
ematical equations or functions that describe human motion us-
ing a finite number of parameters and their associated probabil-
ity distributions. Thus far, statistical motion models constructed
from prerecorded motion data have been used for interpolation of
key frames [Li et al. 2002] or motion styles [Brand and Hertzmann
2000], inverse kinematics [Grochow et al. 2004], interactive control
of human motion with performance interfaces [Chai and Hodgins
2005], synthesis of human animation that satisfies the user-defined
constraints [Chai and Hodgins 2007], editing of human motion with
direct manipulation interfaces and sketching interfaces [Min et al.
2009], perturbations of natural-looking human motion [Lau et al.
2009], and so forth.

Among all the statistical models aforementioned, our work is most
similar to local subspace models used for online motion con-
trol [Chai and Hodgins 2005] because both are constructed at run
time and are based on training examples relevant to current poses.
However, there is an important distinction. We consider spatial-
temporal correlation embedded in a prerecorded motion database
and construct a statistical dynamic model which maps the previous
synthesized poses to the current pose. Our experiment in Section 7
shows that our local dynamic models can produce more accurate re-
sults for performance animation than the previous online pose mod-
els [Chai and Hodgins 2005].

Our work is motivated by the success of statistical dynamic models
used for space-time motion optimization [Chai and Hodgins 2007],
which constructs a single global linear dynamic model to create an
animation that satisfies sparse constraints specified by the user. We
significantly extend the idea of statistical dynamic models by con-
structing a series of local linear dynamic models on fly to approxi-
mate highly nonlinear dynamic behaviors of human movement. The
online local dynamic models avoid the problem of finding an appro-
priate structure for a global dynamic model, which would necessar-
ily be high-dimensional and nonlinear.

3 Overview

Our system transforms control signals obtained from a small num-
ber of motion sensors into full-body motion by constructing a series
of online local dynamic models from a prerecorded motion database
and using those models to interpret probable values for the informa-
tion about the user’s motion not captured by motion sensors. The
entire system consists of three major components:

Skeleton and sensor calibration. We first introduce a novel cali-
bration process for the actor to ensure that the performance interface
is robust to users of different skeletal sizes and to variations in sen-
sor placement. Our calibration process simultaneously estimates
the actor’s skeletal lengths and local coordinates for each motion
sensor using a small number of “calibration” poses.

Online modeling of dynamic behaviors. We present a new statis-
tical dynamic model for online human motion reconstruction. Our
system models nonlinear dynamic behaviors of human movement
using a series of online local linear dynamic models learned from
prerecorded motion data. The proposed local dynamic models pre-

134

Figure 2: A close-up view of motion sensors used for performance-based control interfaces.

dict how humans move in local regions of the current poses and
are used to constrain the reconstructed motion to lie in the space of
natural-looking human motion.

Online motion synthesis. At run time, the user wears a small num-
ber of motion sensors to act out the motion. The performance in-
terfaces record the global locations and orientations of each motion
sensor, [c1, ..., ct], in real time. The trajectories of the motion sen-
sors specify the desired trajectories of certain points or vectors on
the animated character. We formulate the online motion reconstruc-
tion in a MAP framework by combining a prior term encoded by
online local dynamic motion models with a likelihood term defined
by control inputs. The local dynamic models are used to reconstruct
the user’s pose qt based on the current control signals ct obtained
from the performance-based interface as well as previous synthe-
sized poses [q̃t−1, ..., q̃t−m]. Maximum a posteriori estimation of
sequential poses produces a natural-looking motion that matches
the control signals obtained from motion sensors. The system runs
at interactive frame rates (about 35 fps).

The calibration process are done in offline mode, while both motion
modeling and motion synthesis steps are performed online based on
the live performance from the user. We describe each component in
detail in the next three sections.

4 Skeleton and Sensor Calibration

Our system requires the user to wear a small number of motion
sensors on the left hand, right hand, left ankle, right ankle, head
and torso for realtime full-body motion control (see Figure2). The
performance interfaces use a InterSense IS-900 system to record
3D position and orientation data of each motion sensor in real time
(40 fps). IS-900 processor controls the entire IS-900 system and
processes motion signals from tracking device to compute 6-DOF
tracking data, including 3D orientation data integrated from gyro-
scopes, accelerometers and magnetometers and 3D position data
obtained from ultrasonic sensors. Our calibration process ensures
that the performance interfaces are robust to users of different skele-
tal sizes and to variations in sensor placement. In particular, the
skeleton calibration process estimates the actor’s skeletal lengths of
each bone segment and the sensor calibration process calculates the
local coordinates of each motion sensor, i.e., the positions and ori-
entations of each sensor with respect to their local reference frames.

We propose to use a small set of “calibration” poses to simultane-
ously estimate the skeletal lengths of the actor and local coordi-
nates of each motion sensor. We choose eight “calibration” poses
for skeleton and sensor calibrations. We instruct the actor to take
the same poses as visualized on the screen and record the global
locations and orientations of motion sensors under each calibration
pose (Figure 3).

To reduce ambiguity for human skeleton modeling, we construct a
principle subspace for skeletal lengths using a large set of prere-
corded human skeleton data. Our human skeletal data is down-

Figure 3: Skeleton and sensor calibration with a small set of “cal-
ibration” poses. The user is instructed to perform the same pose as
a target pose shown on the screen. The “green” character shows
the target pose and the “orange” character shows the actor’s pose.

loaded from the online CMU mocap library 1 and represented
by Acclaim Skeleton File (ASF) format. Each skeleton example
records length of individual bones. Our human skeletal model con-
tains 24 bones, including head, thorax, upper neck, lower neck, up-
per back, lower back, and left and right clavicle, humerus, radius,
wrist, hand, hip, femur, tibia, and metatarsal. Figure 4 shows the
top five eigen modes of human skeleton variations.

We represent the skeletal size of a human figure using a long vector
s, which stacks the lengths of each bone segment. We also represent
the positions and orientations of the j-th motion sensor with respect
to its local coordinate systems using the vectors pj and oj , respec-
tively. Let the vectors qi, i = 1, ..., 8, represent the i-th calibration
pose, which is known in our calibration process. We formulate the
calibration process as the following nonlinear optimization prob-
lem:

arg mins,{pj},{oj},{λb}
∑

i

∑
j
‖f(s, pj ; qi)− tji‖

2

+α1‖f(s, oj ; qi)− rji‖
2 + α2‖s− e0 −

∑B

b=1
λbeb‖2

(1)

where the vector-valued function f is the forward kinematics func-
tion that computes from the joint angles of the calibration poses,
qi, given the user’s skeleton model, s, and the locations or orien-
tations of the j-th motion sensors, pj or oj , relative to the inboard
joint. The vectors tji and rji represent the recorded global positions
and orientations of the j-th motion sensor under the i-calibration
pose, respectively. The vectors e0 and eb, b = 1, ..., B represent
the mean and eigen modes of human skeletal models, respectively.
The weights α1 and α2 balance the importance of each term.

We minimize the cost function using the Levenberg-Marquardt
(LM) algorithm [Bazaraa et al. 1993]. The optimization simulta-
neously computes sensor locations and orientations p̃j and õj and
skeletal lengths of the actor s̃.

1http://mocap.cs.cmu.edu

135

Figure 4: The top five modes of human skeleton variations keeps about 99% of skeleton variations from a large set of prerecorded human
skeletal models. Note that we normalize each bone segment using left tibia (red) for visualization.

5 Online Motion Modeling

Reconstructing human motion from a small number of motion sen-
sors is difficult because the control information from performance
interfaces does not adequately constrain the joint angles of a full-
body human model. The key idea of our approach is to automati-
cally construct a series of online local dynamic models to resolve
reconstruction ambiguity. We assume dynamic behaviors of human
movement can be described as a m-order Markov chain. In other
words, we assume the current pose qt only depends on previous m
poses: Pr(qt|qt−1, ..., q1) = Pr(qt|qt−1, ..., qt−m).

However, building a dynamic motion model for human motion
prediction (i.e., predicting the current pose from previous poses)
is challenging because human movement is highly nonlinear and
demonstrates a wide variety of variations even for the same func-
tional action. To address this challenge, we propose to construct
a series of online local dynamic models to approximate a global
highly nonlinear dynamic model. The local dynamic models avoid
the problem of finding an appropriate structure for a global dynamic
model, which would necessarily be high-dimensional and nonlin-
ear.

To predict the current pose qt from previous synthesized mo-
tion, we first search the motion capture database for mo-
tion examples that are close to the recently synthesized poses
Q̃ = [q̃t−1, ..., q̃t−m]. The K closest examples Qk =
[qtk−1, ..., qtk−m], k = 1, ...,K as well as their subsequent poses
qtk , k = 1, ...,K are then used as training data to learn a predic-
tion function that maps the previous m poses qt−1, ..., qt−m to the
current pose qt.

We assume a linear relationship of an input vector x =
[qt−1, ..., qt−m] and an output vector y = qt. Here, for simplicity,
we consider only the case of one output variable, since we can learn
prediction functions for each degree of freedom in output qt sep-
arately. We also assume, without loss of generality, that the mean
values of x and y are zeros. This can be achieved by subtracting the
mean from input and output training data. Given this simplification,
the model function in linear regression is

y = βT x + εy (2)

where the vector x is a m × D-dimensional input vector, where
D is the number of degrees of freedom of the configuration space
for a human figure and y is the output value. The vector β are the
regression coefficients and εy is a homoscedastic (independent of
x) noise variable.

Furthermore, given the K closest examples {(xk, yk)}, k =
1, ...,K, the coefficients β can be estimated by minimizing the ex-

pected squared error E,

E =

K∑
k=1

‖yk − βT xk‖2 (3)

which results in the ordinary-least-squares solution

β = (XTX)−1XT y (4)

The matrix X contains the input vectors xk in its rows, and the
vector y stacks the K output values yk, k = 1, ...,K.

In our implementation, we first apply principle component analysis
to the input data xk, k = 1, ...K and then compute ordinary least
squares regression in the principal subspace. Thus, we minimize
‖y− XUγ‖2 with respect to the reduced coefficients γ. Therefore,
the final regression coefficients are

β = Uγ
= U(UTXTXU)−1UTXT y
= UΛ−1UTXT y

(5)

where the matrix Λ is a diagonal matrix containing the eigenvalues
of the covariance matrix C = XTX.

We choose the weight for each data point xk based on their
relative distance from the recently synthesized motion Q̃ =
[q̃t−1, ..., q̃t−m] using Gaussian functions:

wk = exp(−1

2
(xk − Q̃)TD(xk − Q̃)) (6)

where the diagonal matrix D specifies the weights for each degree
of freedom from the recently synthesized motion. For simplicity,
we choose D as an identity matrix in our experiment.

Thus, the solution in Equation (5) is replaced by

βw = UwΛ−1
w UTwXTWy (7)

where the vector W is a diagonal matrix, containing the wk’s
along its diagonal. The vectors Uw and Λw are extracted from the
weighted covariance matrix Cw = XTWX.

Furthermore, by assuming a Gaussian distributed noise variable
εy , we can estimate its standard deviation σ from the residues
yk − βwxk, k = 1, ...,K. Because we learn a prediction function
for each degree of freedom of the current pose, the local dynamic
model to predict the d-th degree of freedom of the current pose can
be described as

qt,d = βTw,dQ̃+N (0, σd) (8)

where the scalar qt,d is the d-th degree of freedom of the current
pose qt. The vectors βw,d are the regression coefficients for d-th

136

degree of freedom of the current pose qt. The vector Q̃ represents
the recently synthesized poses. The scalar σd is the standard devia-
tion for the d-th prediction function.

Equation (8) can be thought as a time-varying dynamic model be-
cause it uses the recently synthesized poses to predict the current
pose and all the model parameters, including βw,d and σd, are de-
pendent on time. A new local dynamic model is created to predict
each pose. The local dynamic model avoids the problem of finding
an appropriate structure for a global dynamic model, which would
necessarily be high-dimensional and nonlinear. Instead, we assume
that a series of local linear dynamic models are sufficient to approx-
imate the global highly nonlinear dynamic model.

selected for reconstruction.

6 Online Motion Reconstruction

This section focuses on how to reconstruct a sequence of joint an-
gle poses, [q̃1, ..., q̃t], from the input control signals, [c1, ..., ct] ob-
tained from a small number of motion sensors in sequential mode.
We formulate the online motion reconstruction problem in a maxi-
mum a posteriori (MAP) framework by estimating the most likely
pose qt from the current control input ct as well as previous syn-
thesized poses q̃t−1, ..., q̃t−m:

arg maxqt
pr(qt|ct, q̃t−1, ..., q̃t−m)

∝ arg maxqt
pr(ct|qt) · pr(qt|q̃t−1, ..., q̃t−m).

(9)

In our implementation, we minimize the negative logarithm of the
posteriori probability density function, yielding the following en-
ergy minimization problem:

arg minqt
− lnpr(ct|qt)︸ ︷︷ ︸ + − ln pr(qt|q̃t−1, ..., q̃t−m)︸ ︷︷ ︸,
Econtrol Eprior

(10)
where the first term Econtrol is the control term that measures how
well the reconstructed pose qt matches the current control inputs
ct, and the second term is the prior term Eprior that constrains the
reconstructed motion to stay close to the training examples. Opti-
mal estimation of the current pose sequentially produces a natural-
looking motion sequence that matches the control signals obtained
from motion sensors. We discuss each term in more detail in the
following sections.

6.1 Control Consistency

The control input ct obtained from motion sensors might vary due
to noise. Assuming gaussian noise with a standard deviation of
σdata, we can define the control term as follows:

Econtrol = − ln pr(ct|qt)
∝ ‖f(qt;s̃,z̃)−ct‖2

2σ2
data

,
(11)

where the vector qt represents the reconstructed pose at frame t, the
vector s̃ is the character’s skeleton model, and the vector z̃ repre-
sents the local coordinates of motion sensors (i.e., p̃j and õj). The
vector ct is the observed data from motion sensors. The vector-
valued function f is the forward kinematics function which maps
the current pose qt to the global coordinates, given the estimated
skeletal lengths and local coordinates from the calibration process.

The control signals from motion sensors are often very noisy and
occasionally contains outliers. For example, the position data from
ultrasonic sensors are often corrupted by outliers due to sensor
noise. To deal with noise and outliers, we measure the distance

between the predicted data f(qt; s̃, z̃) and the observed data ct with
robust estimators. In our experiment, we choose the Lorentzian ro-
bust estimator to define the matching cost term:

ρ(e) = log(1 +
e2

2σ2
) (12)

where e is the residual distance between the predicted data and the
observed data and the scalar σ is a parameter for the robust estima-
tor.

6.2 Dynamic Motion Priors

The motion prior term measures the a-priori likelihood of the cur-
rent pose using the knowledge embedded in the prerecorded motion
database, given the recently synthesized motion. The prior term
is used to constrain the reconstructed motion to satisfy the proba-
bilistic distribution determined by the training examples in the local
region of the recently synthesized motion.

In our system, we maximize the conditional probability of the cur-
rent pose qt given the recently synthesized poses q̃t−1, ..., q̃t−m:

Pr(qt|q̃t−1, ..., q̃t−m) ∝
D∏
d=1

exp(−
(qt,d − βTw,dQ̃)2

2σ2
d

) (13)

where qt,d, d = 1, ..., D, is the d-th degree of freedom of the
current pose qt. The vector βw,d and the scalar σd are the re-
gression coefficients and standard deviation of the d-th prediction
model. The long vector Q̃ sequentially stacks the recently synthe-
sized poses [q̃t−1, ..., q̃t−m].

We minimize the negative log of Pr(qt|q̃t−1, ..., q̃t−m), yielding
the energy formulation

Eprior =
∑
d

(qt,d − βTw,dQ̃)2

2σ2
d

(14)

6.3 Implementation Details

This section briefly describes implementation details of our sys-
tem as well as details of our motion capture databases. We ana-
lytically evaluate the Jacobian terms of the objective function de-
fined in Equation 10, initialize the optimization with the closest
example in the database, and optimize the objective function using
the Levenberg-Marquardt programming method [Lourakis 2009].
The solution converges rapidly because of a good starting point.
The computational efficiency of our system highly depends on the
size of prerecorded motion databases. Our system speeds up the K
nearest neighbor search process with a strategy similar to a pre-
computed neighbor graph reported in [Chai and Hodgins 2005],
which accelerates the runtime query by utilizing temporal coher-
ence of query signals. Our system runs in real time with an average
frame rate of 35 fps; and the latency of our current system is 0.025s.

Our motion capture database contains five full-body behaviors:
walking (18160 frames), boxing (31358), jumping (6483), golf
swing (2339), and table tennis (7582). The motions were cap-
tured with a Vicon motion capture system consisting of 12 MXF20
cameras with 41 markers, running at 120Hz. Note that we down-
sampled the original motion capture data to match the frame rate of
motion sensors.

137

(a)

(b)

(c)

Figure 5: Performance interfaces for realtime human motion control: (a) boxing; (b) golf swinging; (c) table tennis.

138

Figure 6: Comparison with two baseline algorithm (IK and online local PCA [Chai and Hodgins 2005]) for five different human actions:
(left) motion reconstruction with position and orientation data from six motion sensors; (right) motion reconstruction with position from six
motion sensors.

7 Results

We tested the effectiveness of our algorithm on different behaviors
and evaluated the quality of the reconstructed motions by compar-
ing with motion capture data recorded with a full marker set. Our
results are best seen in the accompanying video although we show
several frames of a few motions in Figure 5.

Testing on real data. We tested our system by controlling and
animating a virtual character using real data captured by a small
number of motion sensors. Figure 5 shows sample frames of the
results for boxing, table tennis, and golf swing. The accompanying
video demonstrates realtime motion control for a full-body avatar
with six sensors (left ankle, right ankle, left hand, right hand, torso,
and head). In addition, a side-by-side comparison between inverse
kinematics techniques and our method is also shown in the video.

Leave-one-out evaluation. We evaluated the quality of the re-
constructed motions by leaving out one sequence of motion cap-
ture data from each database as the testing sequence. We tested
on different human actions and computed the average reconstruc-
tion errors measured by degrees per joint angle per frame. More
specifically, we pulled testing motion sequences out of the train-
ing database and simulated the 3D positions and/or orientations for
each motion sensor. We then employed our online motion recon-
struction system to synthesize an animation. The reconstruction
error was computed by the average squared distance between the
reconstructed motion data and ground truth data. Figure 6 shows
the means and standard deviations of the reconstruction errors for
five different actions.

Comparisons with baseline algorithms. We compared the perfor-
mance of our algorithm against two baseline algorithms, including
inverse kinematics techniques and motion reconstruction with on-
line local PCA models [Chai and Hodgins 2005], with leave-one-
out evaluation. Figure 6 reported our evaluation results, including
mean errors and standard deviations, for all three techniques. We
reported the reconstruction errors for two types of control inputs:
motion reconstruction using both 3D position and orientation data
from six motion sensors and motion reconstruction using only 3D
position data from six motion sensors. Figure 7 shows a detailed
frame-by-frame comparison for one testing sequence. The evalua-
tion results show that our method creates more accurate results than
either inverse kinematics techniques or online local PCA models.

Different combinations of sensor data. The companying video
compared the reconstructed motions using different combinations
of sensor data obtained from six motion sensors, which include (1)

position and orientation data from all six sensors; (2) position data
from all six sensors plus orientation data from torso; (3) position
data from all six sensors; (4) position data from torso and both an-
kles plus orientation data from torso, head, and both hands. For
boxing, the reconstruction errors for each combination are 1.25 de-
grees, 2.25 degrees, 2.52 degrees, and 3.27 degrees, respectively.
Such results are expected because the reconstruction errors usually
increase as the number of constraints is reduced.

8 Conclusion

We have presented an approach for performance-based control in-
terfaces using a small number of motion sensors. Our key idea is
to construct a series of online local dynamic models from a prere-
corded motion database and utilize them to construct full-body hu-
man motion in real time. We have demonstrated the effectiveness
of our system by controlling a variety of human actions, including
boxing, golf swinging, and table tennis, in real time. Given an ap-
propriate database, the results are comparable in quality to those
obtained from a commercial motion capture system with a full set
of motion sensors (e.g., XSens [2009]); however, our system is far
less intrusive and expensive because it only requires a small number
of sensors for full body control.

References

ARIKAN, O., AND FORSYTH, D. A. 2002. Interactive Motion
Generation from Examples. In ACM Transactions on Graphics.
21(3):483–490.

BADLER, N. I., HOLLICK, M., AND GRANIERI, J. 1993. Real-
time Control of A Virtual Human using Minimal Sensors. In
Presence. 2(1):82–86.

BAZARAA, M. S., SHERALI, H. D., AND SHETTY, C. M. 1993.
Nonlinear Programming: Theory and Algorithms. John Wiley
and Sons Ltd. 2nd Edition.

BRAND, M., AND HERTZMANN, A. 2000. Style Machines. In
Proceedings of ACM SIGGRAPH 2000. 183–192.

CHAI, J., AND HODGINS, J. 2005. Performance Animation
from Low-dimensional Control Signals. In ACM Transactions
on Graphics. 24(3):686–696.

139

(a) walking (b) jumping

Figure 7: Comparison of methods for synthesizing motions from a small number of motion sensors for one testing sequence. We compared
our method with inverse kinematics techniques and motion reconstruction using online local PCA models in [Chai and Hodgins 2005].

CHAI, J., AND HODGINS, J. 2007. Constraint-based Motion Opti-
mization Using A Statistical Dynamic Model. In ACM Transac-
tions on Graphics. 26(3):Article No.8.

GROCHOW, K., MARTIN, S. L., HERTZMANN, A., AND
POPOVIĆ, Z. 2004. Style-based Inverse Kinematics. In ACM
Transactions on Graphics. 23(3):522–531.

HECK, R., AND GLEICHER, M. 2007. Parametric Motion Graphs.
In Proceedings of the 2007 symposium on Interactive 3D graph-
ics and games. 129-136.

ISHIGAKI, S., WHITE, T., ZORDAN, V. B., AND LIU, C. K. 2009.
Performance-based control interface for character animation. 1–
8. 28(3).

KOVAR, L., AND GLEICHER, M. 2004. Automated Extraction
and Parameterization of Motions in Large Data Sets. In ACM
Transactions on Graphics. 23(3):559–568.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion
Graphs. In ACM Transactions on Graphics. 21(3):473–482.

KWON, T., AND SHIN, S. Y. 2005. Motion modeling for on-
line locomotion synthesis. In ACM SIGGRAPH Symposium on
Computer Animation. 29-38.

LAU, M., CHAI, J., XU, Y.-Q., AND SHUM, H. 2009. Face Poser:
Interactive Modeling of 3D Facial Expressions Using Facial Pri-
ors. In ACM Transactions on Graphics, Article No. 3. 29(1):
article No. 3.

LEE, J., CHAI, J., REITSMA, P., HODGINS, J., AND POLLARD,
N. 2002. Interactive Control of Avatars Animated With Human
Motion Data. In ACM Transactions on Graphics. 21(3):491–
500.

LEE, K. H., CHOI, M. G., AND LEE, J. 2006. Motion
patches:building blocks for virtual environments annotated with
motion data. In ACM Transactions on Graphics. 25(3):898–906.

LI, Y., WANG, T., AND SHUM, H.-Y. 2002. Motion Texture:
A Two-level Statistical Model for Character Synthesis. In ACM
Transactions on Graphics. 21(3):465–472.

LOURAKIS, M. I. A., 2009. levmar: Levenberg-Marquardt nonlin-
ear least squares algorithms in {C}/{C}++.

MIN, J., CHEN, Y.-L., AND CHAI, J. 2009. Interactive Generation
of Human Animation with Deformable Motion Models. ACM
Transactions on Graphics. 29(1): article No. 9.

MUKAI, T., AND KURIYAMA, S. 2005. Geostatistical Motion
Interpolation. In ACM Transactions on Graphics. 24(3):1062–
1070.

REN, L., SHAKHNAROVICH, G., HODGINS, J. K., PFISTER, H.,
AND VIOLA, P. A. 2004. Learning Silhouette Features for Con-
trol of Human Motion. In Computer Science Technical Reports
2004, Carnegie Mellon University. CMU-CS-04-165.

ROSE, C., COHEN, M. F., AND BODENHEIMER, B. 1998. Verbs
and Adverbs: Multidimensional Motion Interpolation. In IEEE
Computer Graphics and Applications. 18(5):32–40.

SAFONOVA, A., AND HODGINS, J. K. 2007. Construction and
optimal search of interpolated motion graphs. In ACM Transac-
tions on Graphics. 26(3).

SEMWAL, S., HIGHTOWER, R., AND STANSFIELD, S. 1998. Map-
ping Algorithms for Real-time Control of An Avatar using Eight
Sensors. In Presence. 7(1):1–21.

SLYPER, R., AND HODGINS, J. 2008. Action capture with ac-
celerometers. In 2008 ACM SIGGRAPH / Eurographics Sympo-
sium on Computer Animation.

SYSTEMS, S. E. T., 2003. http://www.eyetoy.com.

XSENS, 2009. http://www.xsens.com.

YIN, K., AND PAI, D. K. 2003. FootSee:An Interac-
tive Animation System. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation.
329–338.

140

