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An EMG-Based Robot Control Scheme Robust to
Time-Varying EMG Signal Features

Panagiotis K. Artemiadis, Member, IEEE, and Kostas J. Kyriakopoulos, Member, IEEE

Abstract—Human–robot control interfaces have received in-
creased attention during the past decades. With the introduction
of robots in everyday life, especially in providing services to people
with special needs (i.e., elderly, people with impairments, or people
with disabilities), there is a strong necessity for simple and nat-
ural control interfaces. In this paper, electromyographic (EMG)
signals from muscles of the human upper limb are used as the con-
trol interface between the user and a robot arm. EMG signals are
recorded using surface EMG electrodes placed on the user’s skin,
making the user’s upper limb free of bulky interface sensors or ma-
chinery usually found in conventional human-controlled systems.
The proposed interface allows the user to control in real time an
anthropomorphic robot arm in 3-D space, using upper limb motion
estimates based only on EMG recordings. Moreover, the proposed
interface is robust to EMG changes with respect to time, mainly
caused by muscle fatigue or adjustments of contraction level. The
efficiency of the method is assessed through real-time experiments,
including random arm motions in the 3-D space with variable hand
speed profiles.

Index Terms—Electromyographic (EMG) control, muscle fa-
tigue, neurorobotics.

I. INTRODUCTION

ROBOTS came to light approximately 50 years ago. How-
ever, the way humans interface and control them is still

an important issue. The human–robot interface plays an utmost
significant role, especially if we realize that the use of robots
is increasingly widening to everyday life tasks (e.g., service
robots and robots for clinical applications). A large number of
interfaces have been proposed in earlier studies [1]. Most of
the previous work proposes complex mechanisms or systems of
sensors, while in most cases, the user should be trained to map
his/her action (i.e., 3-D motion of a joystick or a haptic device)
to the motion desired for the robot. In this paper, a new means of
control interface is proposed, in which the user performs natural
motions with his/her upper limb. Surface electrodes recording
the electromyographic (EMG) activity of the muscles of the
upper limb are placed on the user’s skin. The recorded muscle
activity was transformed to kinematic variables that were used to
control the robot arm. Since an anthropomorphic robot arm was
used, the user did not have to be acquainted with the interface
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mapping, since natural arm motions essentially sufficed to di-
rectly control the robot arm.

EMG signals have often been used as control interfaces for
robotic devices. However, since the musculoskeletal system is
very complex and the relationship of the EMG signals and arm
motion is highly nonlinear [2], in most cases, only discrete
control has been realized. Previous work focused, for exam-
ple, only on the directional control of robotic wrists [3] or on
the control of multifingered robot hands to a limited number
of discrete postures [4]. Arm exoskeletons [5] have used EMG
signals as control interface in the past. However, most of the
previous works decode only finite arm or hand postures from
EMG signals [6], although controlling a robot using only finite
postures can cause many problems regarding smoothness of mo-
tion, especially in the cases where the robot performs everyday
life tasks. Therefore, effectively interfacing a robot arm with a
human entails the necessity for continuous and smooth control.

Continuous models have been built in the past in order to
decode arm motion from EMG signals. The Hill-based muscle
model [7], whose mathematical formulation can be found in [2],
is most used in the literature [8], [9]. However, only a few DOFs
were analyzed (i.e., 1 or 2), since the nonlinearity of the model
equations and the large number of the unknown parameters
for each muscle made the analysis rather difficult. Therefore,
random arm motions were never efficiently decoded through
EMG signals for the scope of the EMG-based robot control.

An important factor that is present in the EMG-based con-
trolled robotic systems, though it has never been investigated
until now, is the fact that EMG signals change with respect to
time.1 These changes can be caused by muscle fatigue, changes
in the level of muscle force production, sweat at the recording
site, or small electrode movement with respect to its initial po-
sition [10]. However, all the algorithms that have been proposed
use stationary models for translating EMG signals into motion.
Therefore, time variation of EMG signals is not incorporated,
making the aforementioned methods applicable only for short
time periods. The authors recently proposed a method for incor-
porating time-vayring EMG signal characteristics in decoding
arm motion from muscle activations [11]. The present paper is
a significant extension of the previous one, since a new signal
feature (median frequency) is included in the analysis, which
proves to capture most information about muscle fatigue [12].
Moreover, more subjects are used in this study, for multiple and
long experimental sessions.

In this paper, we propose a methodology for controlling an
anthropomorphic robot arm using surface recordings from the

1Explicit time variation is meant here, i.e., during a course of arm movements,
the same motions could result in different EMG signals.
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muscles of the upper limb, which is robust to time variation
of EMG signals. The system architecture was divided into two
phases: the training and the real-time operation. During the
training phase, the user was instructed to move his/her arm
in random patterns with variable speed in the 3-D space. A
position tracking system was used to record the arm motion
during reaching, while surface EMG electrodes were used to
record the activity of nine muscles of the shoulder and the elbow.
EMG signals and computed signal features are incorporated into
a classification and estimation methodology in order to train a
set of models that will be used in real time for arm motion
estimation using only EMG recordings. As soon as the training
phase had finished, the real-time-operation phase commenced.
A control law that utilized the motion estimates was applied to
the robot arm actuators. In this phase, the user could teleoperate
the robot arm in real time, while he could correct any possible
robot deviations since he had visual contact with the robot. The
efficacy of the proposed method is assessed through a large
number of experiments (four subjects, five sessions per subject,
3.5 min each) during which the users controlled the robot arm
in performing random movements in the 3-D space.

II. METHODS

A. Data Acquisition and Processing

The motion of the upper limb was analyzed in 3-D space,
though excluding the wrist joint for simplicity. Therefore, the
shoulder and the elbow joints were of interest. Three rotational
DOFs were used to model the shoulder joint and one rotational
DOF for the elbow joint.

For the training of the proposed system, the motion of the
upper limb should be recorded and joint trajectories should be
extracted. Therefore, in order to record the motion, and then,
extract the joint angles of the four modeled DOFs, a magnetic
position tracking system was used. The system was equipped
with two position trackers and a reference system, with respect
to which the 3-D position of the trackers was provided. In or-
der to compute the four joint angles, one position tracker was
placed at the user’s elbow joint (at the olecranon) and the other
one at the wrist joint (at the styloid process of radius). The
reference system was placed on the user’s shoulder. The setup
as well as the four modeled DOFs are shown in Fig. 1. Let
T1 = [x1 y1 z1 ]T and T2 = [x2 y2 z2 ]T be the posi-
tion of the trackers with respect to the tracker reference system.
Let q1 , q2 , q3 , and q4 be the four joint angles modeled as shown
in Fig. 1. Finally, by solving the inverse kinematic equations,
the joint angles are given by

q1 = arctan 2 (±y1 , x1)

q2 = arctan 2
(
±

√
x2

1 + y2
1 , z1

)

q3 = arctan 2 (±B3 , B1)

q4 = arctan 2
(
±

√
B2

1 + B2
3 ,−B2 − L1

)
(1)

Fig. 1. User moves his arm in the 3-D space. Two position tracker measure-
ments are used for computing the four joint angles. The tracker base reference
system is placed on the shoulder. The variables q1 and q2 jointly simulate the
shoulder flexion–extension and adduction–abduction, q3 corresponds to shoul-
der internal–external rotation, while q4 corresponds to elbow flexion–extension.

where

B1 = x2 cos (q1) cos (q2) +y2 sin (q1) cos (q2)−z2 sin (q2)

B2 = −x2 cos (q1) sin (q2) − y2 sin (q1) sin (q2) − z2 cos (q2)

B3 = −x2 sin (q1) + y2 cos (q1) (2)

where L1 is the length of the upper arm. The length of the upper
arm was computed from the distance of the first position tracker
from the base reference system. Likewise, the length of the
forearm L2 was computed from the distance between the two
position trackers. Finally, one out of the multiple solutions given
by (1) was selected for each joint angle at each time instance,
based on the range of motion for each human joint; if this was
not enough for solving the ambiguity, the solution selected was
the one that was closer to the previously computed value.

The position tracking system provided the position vectors
T1 and T2 at the frequency of 30 Hz. Using an antialiasing
finite-impulse-response (FIR) filter, these measurements were
resampled at the frequency of 1 kHz, in order to be consistent
with the muscle activations sampling frequency.

Motion variability is important for such methods; therefore,
during training, the user was instructed to move his/her arm to
all the possible ranges of motion for the shoulder and elbow,
at various speeds. The 3-D positions of the user’s hand during
this session, along with the distribution of the arm velocity, are
shown in Fig. 2. As can be seen, the user was moving his/her
hand in a large portion of the available workspace, with speed
varying inside the range of arm speed profiles for everyday
life tasks (i.e., 150–200◦/s for most joints) [13]. The frequency
spectrum of the hand velocity is also shown, in order to prove
that the user was performing arm motions that spanned most of
the usual frequency range of arm motions in everyday life tasks
(i.e., 1–1.5 Hz) [13].

Regarding muscle recordings, a group of nine muscles,
mainly responsible for the analyzed motion, was recorded:
deltoid (anterior), deltoid (posterior), deltoid (middle), pec-
toralis major, pectoralis major (clavicular head), trapezius, bi-
ceps brachii, brachioradialis, and triceps brachii. Surface bipo-
lar EMG electrodes, used for recording, were placed on the
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Fig. 2. User’s upper limb motion during training. (a) 3-D position of the
user’s hand in the Cartesian system defined in Fig. 1, and its three 2-D views.
(b) Distributions of the rotational velocities per joint during the training phase.
(c) Frequency spectrum of the user’s hand velocity during training.

user’s skin following the directions given in [14]. The raw
EMG recordings were preprocessed, i.e., full-wave-rectified,
low-pass-filtered, and normalized to their maximum voluntary
isometric contraction value [2].

B. Time Variation of EMG

It is widely reported in the biomechanics and physiology
literature that EMG signals are not stationary, in the sense that
some signal features change with respect to time. In other words,
EMG recordings for the same motion change with respect to
time. In this paper, we want to monitor these changes, and build
a method capable of incorporating these signal changes into the
motion decoding scheme. In this way, EMG changes will not
affect the decoding accuracy. This will be done by defining a set
of EMG classes, where each class will correspond to cases where
the EMG recordings will have some specific characteristics.
After analyzing the data recorded during the training period, we
computed a set of signal features that were observed to vary
with respect to time. It must be noted that the extraction of the
signal features was done at the raw EMG recordings, before
the preprocessing mentioned earlier (i.e., rectification, low-pass
filtering, and normalization). These are listed as follows.

1) Integral of absolute value (IAV): The IAV of the
EMG signal of one muscle was calculated by IAV =
(1/M)

∑M
i=1 |ei |, where |ei | is the absolute value of the

ith sample and M is the number of samples in each seg-
ment. Raw signal was digitized at the frequency of 1 kHz
and partitioned in overlapping segments (i.e., time bins)
of 100 ms. Therefore, M = 100; since the bins were over-
lapping, the signal characteristic was computed at the fre-
quency similar to that of the acquisition (i.e., 1 kHz).

2) Zero crossing (ZC): This was defined as the number of
times the signal passed the zero-amplitude axis. It was
calculated by ZC =

∑M
i=1 sgn (−eiei+1), where

sgn (e) =
{

1, if e > 0
0, otherwise.

(3)

Fig. 3. Variation of the four selected EMG characteristics during a 4-min
experiment. The percentage change with respect to their initial values is plotted
for each characteristic. Based on their final values (at time t = 250 s), and
starting from the top to the bottom of the figure, the curves correspond to (top)
VAR, IAV, ZC, and (bottom) MDF.

3) Variance (VAR): The variance was a measure of
the signal power and was calculated by VAR =
(1/(M − 1))

∑M
i=1 e2

i .
4) Median frequency (MDF): The median frequency is

the frequency at which the power spectrum of the
recorded signal is divided into two parts of equal power.
It is mathematically described by

∫ MDF
0 P (ω) dω =∫ ∞

MDF P (ω) dω = (1/2)
∫ ∞

0 P (ω) dω, where P (ω) is the
power spectral density and ω is the frequency of the signal.
In our case, the MDF was computed for 0 < ω < 500 Hz.

The calculation of the previously defined signal features for
the training period showed that there was significant variation
in their values with respect to the experiment time. Similar
behavior was reported in previous studies [15]. The variation of
these characteristics, for one muscle, with respect to their initial
values (i.e., at the start of the training phase) is shown in Fig. 3.
Similar behavior was noticed for all the recorded muscles.

From the earlier analysis, a feature vector F can be defined,
including the four aforementioned signal characteristics that
can be computed at each time bin for each muscle. However,
EMG signals’ features are not only time-dependent, but are
also related with the performed motion. Therefore, the feature
vector F should also include the motion variables of the arm.
As motion variables, the angular velocities q̇w , w = 1, . . . , 4,
were used, since it was shown from the data recordings that
their dependence on the EMG signal features was stronger than
the dependence of the joint angles. The feature vector F of each
muscle i, at each time instance m, was finally given by

F(i)
m

= [IAV(i)
m ZC(i)

m VAR(i)
m MDF(i)

m q̇1m q̇2m q̇3m q̇4m ] ,

i = 1, . . . , 9, m = 1, . . . (4)

where time instance m and m − 1 are 1 ms away and correspond
to the time instances the signal features were computed.

The purpose of this paper, as described before, is to clas-
sify the recorded EMG signals, according to their time-varying
features, in order to be able to switch between different mod-
els for EMG-based motion decoding. In other words, a class
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f (i) for each muscle i should be defined, denoting a specific
value range for the time-varying features, which is differ-
ent among the classes. The set of these classes is defined as
f (i) = {f (i)

1 , f
(i)
2 , . . . , f

(i)
n }, where n is the number of classes

for the muscle i. In order to decide the class for the muscle i at
each time instance m, according to the measured feature vector
F(i)

m , we needed to compute the conditional probability of the
muscle being at the class f

(i)
(j ) , j = 1, . . . , n, where n is the pos-

sible classes, given the feature vector F(i)
m , i.e., P

(
f

(i)
(j ) |F

(i)
m

)
.

This was done using the Bayes theorem [16], which, in our case,
is described by the following equation:

P
(
f

(i)
(j ) |F

(i)
m

)
=

p
(
F(i)

m |f (i)
(j )

)
P

(
f

(i)
(j )

)

p
(
F(i)

m

) , j = 1, . . . , n

(5)
where p(F(i)

m |f (i)
(j )) is the probability density function (pdf) of

the feature vector F(i)
m given the class f

(i)
(j ) , P (f (i)

(j ) ) the prior

probability of the class being f
(i)
(j ) , and

p
(
F(i)

m

)
=

n∑
j=1

p
(
F(i)

m |f (i)
(j )

)
P

(
f

(i)
(j )

)
. (6)

It indicates the evidence factor that can be considered as a scale
factor that guarantees the posterior probabilities sum to 1. The
n classes for each muscle i were considered equally likely to
happen, i.e., P (f (i)

(1)) = P (f (i)
(2)) = · · · = P (f (i)

(n)) = 1/n.
In order to decide the class of the muscle i at each time in-

stance m, related to the recorded time-varying signal features,
we used (5) to compute the probability of being at the class
f

(i)
(j ) for each j, j = 1, . . . , n, given the feature vector F(i)

m .
Then, the class with the largest probability was assigned for
muscle i. This was done at every time step m, using the new
feature vector F(i)

m . However, the pdf of the feature vector F(i)
m

given the class f
(i)
(j ) , p(F(i)

m |f (i)
(j )), the so-called likelihood term,

needed to be computed. This was achieved using the data col-
lected through the training period. Since there was no specific
relation between the coefficients of the feature vector, a flexi-
ble method of modeling was used, called finite mixture mod-
els [16]. In our case, where more than one components (i.e.,
features) were to be modeled, which were not independent, a
multivariate mixture model was used. Moreover, a common as-
sumption in practice is to take the component densities to be
Gaussian. Therefore, a multivariate Gaussian mixture model
(GMM) was used for modeling the multivariate density of the
feature vector F(i)

m . Let F(i)
m be the observed feature vector of

muscle i at time instance m during the training procedure. The
pdf of this was modeled using a GMM, which is defined by
p(F(i)

m ) =
∑g

h=1 πhφh(F(i)
m , µh ,Σh), where φh(F(i)

m , µh ,Σh)
represents a multivariate Gaussian density function, with µh be-
ing the mean vector and Σh the respective covariance matrix,
and π = [π1 · · · πg ]T is the vector of mixing proportions of
the mixture, which sums to 1. Using the collected training data,
the parameters of the GMM, i.e., π, µ, and Σ, were fitted using

the expectation–minimization (EM) algorithm [16]. The num-
ber of the Gaussian components g was determined by using the
Akaike criterion, which is a widely used measure of goodness
of fit of an estimated statistical model.

In our case, the mixture components could be used for clus-
tering the signal characteristics into the aforementioned classes.
This could be done once the mixture models has been fitted
using a probabilistic clustering of the data into g clusters that
could be obtained in terms of the fitted posterior probabilities
of component membership for the data. An outright assignment
of the data into g clusters was achieved by assigning each data
point to the component to which it has the highest posterior
probability of belonging. For this purpose, we define r(F(i)

m )
as an allocation rule for assigning the feature vector F(i)

m to
one of the components of the mixture model, where r(F(i)

m ) = l
implies that the observation was assigned to the lth compo-
nent (l = 1, . . . , gi). The optimal or Bayes rule rB (F(i)

m ) for the
allocation of F(i)

m is defined by

rB

(
F(i)

m

)
= l, if ψl

(
F(i)

m

)
≥ ψh

(
F(i)

m

)
, h = 1, . . . , gi

(7)
where ψl(F

(i)
m ) is the posterior probability that the entity be-

longed to the lth component, with F(i)
m having been observed

on it, and it is given by

ψl

(
F(i)

m

)
= pr

{
entity ∈ lth component |F (i)

m

}

=
πlφl

(
F

(i)
m

)
∑g

h=1 πhφh

(
F

(i)
m

) . (8)

Relating the classes corresponding to the time variations of
EMG signal characteristics to the g clusters was straightforward.
Therefore, the set of classes for each muscle i could be rede-
fined as f (i) = {f (i)

1 , f
(i)
2 , . . . , f

(i)
gi }, where gi is the number of

components fitted to the data collected from muscle i.
Therefore, from the aforementioned analysis and after the

training period, the class related to the recorded time-varying
signals features was assigned to each muscle i at each time in-
stance m using (5). Then, the decision for the global class fG

was made using the classes of all the muscles, f (i)
s , i = 1, . . . , 9,

and by deciding which of the classes was most popular among
the muscles. Let Ph be the sets that include the muscles whose
assigned class is h, h = 1, . . . , g. Thus, if Π is the union of the

sets Ph , h = 1, . . . , g, Π = P1
⋃

P2 · · ·
⋃

Pg , we had
=
Π = 9,

where
=
Π is the total number of population of the sets, which

coincided with the number of muscles. Then, we defined an
allocation rule rB (fG ) for assigning the global class fG to one
of the possible classes, where rB (fG ) = fl implies that the
global class is assigned to the lth class (l = 1, . . . , gi). There-
fore, the optimal rule for the allocation of fG is defined by

rB (fG ) = arg max
h

=
Ph , where

=
Ph is the population number of

the set Ph , h = 1, . . . , g. The aforementioned rule essentially
means that the global class fG was the one that coincided with
the class assigned to the majority of the recorded muscles.



586 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 14, NO. 3, MAY 2010

As noted before, the switching between the class assignments
of the muscles was controlling the switching between the mem-
bers of a set of decoding models. This resulted in a robust
decoding method, the accuracy of which was not affected by the
changes of EMG time-varying characteristics. The analysis of
the switching decoder is presented in the next section.

C. Class-Dependent Switching Decoder

Since the number of muscles recorded was quite large (i.e., 9),
a low-dimensional (low-D) representation of muscle activations
was used instead of individual activations. This was based on the
muscle synergies during motion of the arm, which have been
discussed in the biomechanics literature [17]. The processed
EMG recordings were represented into a low-D space, using
the principal component analysis (PCA) algorithm [16]. It was
found that a 2-D space could most represent the original high-
dimensional data variance (i.e., more than 96%). The authors
had used the dimensionality reduction for muscle activations
in the past for planar movements of the arm [18]. Therefore,
the details of the method application are omitted. Furthermore,
the dimensionality reduction technique was also used for rep-
resenting the arm motion in a low-D space, revealing motion
primitives that are extensively discussed in the literature [19].
Therefore, by using the PCA algorithm, the analyzed 4-DOF
motion, described in joint space (i.e., q1 , q2 , q3 , q4), was repre-
sented into a low-D space. Specifically, it was found that most
of the original data variance (i.e., 97%) was represented using
a 2-D space. The next step was to build a model that will use
the EMG low-D embeddings to estimate performed motion. It
is quite obvious that from a physiological point of view, a model
that would describe the function of the skeletal muscles in actu-
ating the human joints would be generally a complex one. Using
such a model for real-time decoding would be problematic. For
this reason, we adopted a more flexible decoding model in which
we introduced “hidden,” or “latent” variables that we called x.
These hidden variables could model the unobserved, intrinsic
system states, and thus, facilitated the correlation between the
low-D embeddings for the muscles activation U and joint angles
y. Let Ut ∈ R

2 be the 2-D vector of the low-D representation
of the nine muscle recordings at time t = kT, k = 1, . . .. Let
yt ∈ R2 be the low-D embedding of the arm joint angles at the
same time instance. The model that was used for decoding the
EMG activity to performed motion was defined by

xt+1 = Axt + BUt + vt

yt = Cxt + υt (9)

where xt ∈ R
d is a hidden state vector, d the dimension of this

vector, and vt and υt are zero-mean Gaussian noise variables in
the process and observation equations, respectively, i.e., vt ∼
N (0,W), υt ∼ N (0,Q), where W ∈ R

d and Q ∈ R
2 are the

covariance matrices of vt and υt , respectively. Details on the
model structure can be found in [18].

A distinct model described by (9) was used for each of the g
possible global classes. During the training phase, after defining
the class of each muscle using (8), the global class fG was
defined. Then, each of the g models of the form (9) was trained

using the low-D embeddings of the muscle recordings and the
corresponding joint angles. Data belonging to each one of the
possible global classes were used only for the corresponding
decoding model. Model fitting was defined by the estimation
of the following parameters: matrices A, B, and C, and noise
covariance matrices W and Q. Given a training set, the model
parameters could be found using an iterative prediction-error-
minimization (i.e., maximum likelihood) algorithm [20].

During real-time operation, the g trained models were used to
transform the low-D embeddings of muscle activations to low-
D embeddings of joint angles. Then, using the transformation
defined by the PCA algorithm, the high-dimensional represen-
tation of the arm motion (four joint angles) were computed
(see [18] for details).

D. Robot Control

A 7-DOF anthropomorphic robot arm (PA-10, Mitsubishi
Heavy Industries) was used. Only 4 DOFs of the robot were
actuated (joints of the shoulder and elbow), while the others
were kept fixed at zero position via electromechanical brakes.
The arm was horizontally mounted to mimic the human arm.
The robot motors were controlled in torque. In order to control
the robot arm using the desired joint angle vector qd ,2 an inverse
dynamic controller was used, which is defined by

τ = I (qr) (q̈d + Kvė + Kpe) + G (qr)

+ C (qr , q̇r) q̇r + Ffr (q̇r) (10)

where τ = [ τ1 τ2 τ3 τ4 ]T is the vector of robot joint
torques, qr = [ q1r q2r q3r q4r ]T are the robot joint an-
gles, Kv and Kp are gain matrices, and e is the error vector
between the desired and the robot joint angles, i.e.

e = [ q1d − q1r q2d − q2r q3d − q3r q4d − q4r ]T . (11)

Further, I, G, C, and Ffr are the inertia tensor, the gravity
vector, the Coriolis–centrifugal matrix, and the joint friction
vector of the four actuated robot links and joints, respectively,
identified in [21]. By using the aforementioned controller, the
robot arm was teleoperated by the user in real time, using the
proposed methodology for decoding user’s arm motion from
EMG signals.

III. RESULTS

A. Experimental and Verification Procedures

The proposed architecture was assessed through remote tele-
operation of the robot arm using only EMG signals from the
nine muscles, as analyzed before. The robot arm used was a 7-
DOF anthropomorphic manipulator (PA-10, Mitsubishi Heavy
Industries). Details of the setup can be found in [18].

The system training phase had no resting periods. The dura-
tion of the training phase was decided to be 4 min, since after
that period, the user wanted to rest his/her arm. Moreover, dur-
ing the real-time operation, a possible user would not be able to
teleoperate the robot arm in the 3-D space for more than 4 min

2The vector of joint angles is decoded from EMG signals.
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without a resting period. As soon as the training period ended
and the proposed switching model was trained, the real-time
operation phase commenced. During this phase, the user had vi-
sual contact with the robot arm, while teleoperating it in the 3-D
space. Only EMG signals were used for estimating arm motion,
and finally, controlling the robot arm in real time. The posi-
tion tracking system was kept into place for a few experiments,
only for offline validation purposes. Five experimental sessions
were conducted using each subject, with each session lasting for
3.5 min. Real and estimated motion data were recorded during
these sessions for evaluating the models’ performance. The real
joint angle profiles were computed from the position tracker
sensors, which were kept in place (i.e., on the user’s arm) for
offline validation purpose. Using the kinematic equations, we
computed the estimated hand trajectory in the 3-D space using
the estimated joint angles. This phase could have as many resting
periods as desired by the user; however, it was noticed that usu-
ally the user was resting his/her arm after approximately 3 min of
operation. The system was tested by four able-bodied persons,
who found it convenient and accurate while they were easily ac-
quainted with its operation. All experimental procedures were
conducted under a protocol approved by the National Technical
University of Athens’ Institutional Review Board.

The proposed methodology was compared with other models
used in the literature for decoding a continuous representation
of motion using EMG signals. The linear filter method, widely
used in the literature for decoding motion using neural sig-
nals, was used. The support vector machines (SVMs) method
was also used [4]. The experimental data used for model com-
parison were the same within the models and were collected
through experimental sessions in which four male subjects (age
group: 24–30 years) participated. The criterion that was used
for assessing the accuracy of the reconstruction of human mo-
tion using the decoding models was the correlation coefficient
(CC). The latter essentially describes the similarity between the
reconstructed and the true motion profiles and constitutes the
most common means of reconstruction assessment for decod-
ing purposes. Perfect matching between the estimated and the
true angles corresponds to CC = 1.

B. Methodology Assessment Results

The estimated user’s hand 3-D trajectory, along with the
ground truth for an experimental session with one of the sub-
jects, is depicted in Fig. 4(a). As can be seen, the method could
estimate the hand trajectory with high accuracy, compensating
for EMG changes with respect to time. The latter is shown
in Fig. 4(a), where the estimates based on a stationary decod-
ing model of the same form of (9), which did not compensate
for EMG time variation, are shown. As can be seen, using a
stationary model, the accuracy of the estimates decreases with
time, due to time variation of EMG signals. Table I includes the
mean values and standard deviation values of CC for the 3-D
hand trajectory estimates coming from the switching model, the
stationary model, and the other two methods used, i.e., the lin-
ear filter and the SVM algorithm. Data from five experimental
sessions, each lasting 3.5 min, across all the four subjects par-

Fig. 4. (a) Real and estimated hand trajectory along the x-, y-, and z-axis, for
a 3.5-min period. Estimates from the proposed switching method are found to
be quite close to the ground truth during the whole 3.5-min test, while the other
models’ accuracy decreases after a period of approximately 60 s. (b) CC values
(mean and standard deviations) for the estimated user’s hand position in the
Cartesian space with respect to time, using the four models. Real and estimated
distances of the user’s hand with respect the origin of the Cartesian reference
system was used for computing the criteria values.

TABLE I
EFFECTIVENESS COMPARISON AMONG DIFFERENT DECODING METHODS

ticipated were used. As can be seen, the proposed model was
highly accurate in predicting arm motion, and it outperformed
the other methods.

The accuracy of the four compared methods in estimating arm
motion with respect to time is shown in Fig. 4(b). The CC values
for the Cartesian position of the user’s hand in the 3-D space
were calculated at each time interval of 30 s.3 Data only within
the corresponding 30-s interval were used. Mean and standard
deviation values were calculated for the five experimental ses-
sions, across the four subjects who participated. As can be seen,
the proposed model was able to robustly estimate user’s motion,
while the other three models showed deteriorating accuracy with
respect to time.

IV. CONCLUSION

In this paper, a methodology for controlling an anthropomor-
phic robot arm using EMG signals from the muscles of the upper
limb was proposed. EMG signals recorded from muscles of the
upper limb were used for extracting kinematic variables (i.e.,

3The distance of the user’s hand with respect to the origin of the Cartesian
reference system was used, instead of each coordinate separately, for simplicity.
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joint angles) in order to control an anthropomorphic robot arm
in real time. EMG signal characteristics changes are usually
noticed after a period of approximately 30 s of operation [10].
For this reason, a probabilistic framework was designed in or-
der to assign to each of the muscles recorded a class related
to the recorded time-varying signal features. Then, a switching
model was built in such a way that it compensated for the EMG
changes. From the experiments with four subjects, it was shown
that the proposed method could estimate the human arm motion
using only EMG signals with high accuracy.

The novelty of the method proposed here can be centered
around two main issues. First, the proposed method is not af-
fected by EMG changes with respect to time. Since EMG is
widely known as a nonstationary signal, the fact that the pro-
posed method can compensate for EMG changes through time
(caused by muscle fatigue or changes in the level of muscle
force production) is quite important for the field. The second
important issue presented here is that, to the best of our knowl-
edge, this was the first time a continuous profile of 3-D arm
motion (including 4 DOFs) was extracted using only EMG sig-
nals. Moreover, this study proposes a methodology that can be
easily trained to each user and takes little time to build the de-
coding model, while the computational load during real-time
operation is negligible.
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